
Open Research Online
The Open University’s repository of research publications
and other research outputs

SOA4All, enabling the SOA revolution on a world wide
scale
Conference or Workshop Item
How to cite:

Domingue, John; Gonzalez-Cabero, Rafael and Fensel, Dieter (2008). SOA4All, enabling the SOA revolution
on a world wide scale. In: Second IEEE International Conference on Semantic Computing (ICSC 2008), 4-7 Aug 2008,
Santa Clara, CA, USA.

For guidance on citations see FAQs.

c© 2008 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSC.2008.45

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82921203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSC.2008.45
http://oro.open.ac.uk/policies.html

SOA4All, Enabling the SOA Revolution on a World Wide Scale

John Domingue
Knowledge Media Institute, The Open University

j.b.domingue@open.ac.uk

Dieter Fensel
University of Innsbruck

dieter.fensel@sti2.at

Rafael González-Cabero
Atos Research & Innovation, Atos Origin

rafael.gonzalez@atosresearch.eu

Abstract

SOA4All will help to realize a world where billions
of parties are exposing and consuming services via
advanced Web technology. The outcome of the project
will be a comprehensive framework and infrastructure
that integrates four complimentary paradigm-shifting
technical advances into a coherent and domain
independent service delivery platform: Web principles
and technology as the underlying infrastructure for the
integration of services at a world wide scale; Web 2.0
as a means to structure human-machine cooperation in
an efficient and cost effective manner; Semantic Web
technology as a means to abstract from syntax to
semantics as required for meaningful service
discovery; and context management as a way to
process in a machine understandable way user needs
that facilitate the customization of existing services for
the needs of users.

1. Introduction

One of the most visible trends that has been gaining
momentum in IT technologies field in recent years is
the concept of service-oriented architectures (SOA).
Service-orientation is a design paradigm that seeks the
separation of concerns by founding the building blocks
of a solution on top of services. Thus SOA specifies a
set of loosely coupled services – whose interfaces are
published, discovered and invoked over the Internet -
along with their interactions. SOA is currently
enjoying massive adoption in large corporations since
it promises to close the gap between what companies

require and what IT is able to deliver. Moreover, SOA
promises a more flexible IT infrastructure that is able
to react to business changes more quickly than the
classic monolithic IT systems. Finally SOA is built on
top of Web standards, making interaction among
companies easier; even facilitating the formation of
business ecosystems able to traverse enterprise
boundaries.

Nevertheless despite of its benefits, SOA is being
primarily used for internal integration and far less for
external consumption. In particular companies seem
still reluctant to expose their business services
thorough the Internet. At the moment very few
companies offer their (internal) services to others, e.g.
customers on their own. This situation is changing
however, as increasingly IT companies such as Yahoo,
eBay, Amazon and Google are exposing their IT
services over the Web; allowing others to integrate
these services in order to build new applications in so-
called “mash-ups.”

Parallel to the emergence of SOA as a valid
infrastructure alternative for large enterprises, the Web
has continued its success and has become the dominant
information medium for consumers and for the entire
range of companies. It has helped many small and
medium enterprises to be globally visible in a world
dominated by large enterprises. Consumers have been
dazzled by new means of participation brought forward
by Web 2.0 technologies. Technologies that further
simplify user contributions such as blogs and tagging
communities have unleashed the power of cooperation
with efforts such as Wikipedia1 demonstrating the

1 www.wikipedia.org

“wisdom of crowds” in creating the world’s largest
encyclopedia.

Today, the Web contains just around 25,000 Web
services - a minuscule amount in comparison to the 30
billion Web pages constituting its content. In
consequence, SOA is largely still an enterprise specific
solution exploited by and located within large
corporations as part of their in-house supply chains.
Nevertheless, complex mobile devices and more
efficient wireless communications facilitate ubiquitous
computing; and as optical and broadband
communication infrastructures expand, we expect the
number of Web services to grow exponentially in the
next few years. In particular:
− More companies will publish their offerings as

services accessible through the Web inspired by
the success of early adopters companies (e.g.
Amazon).

− Web 2.0 has popularized concepts such as mash-
ups and syndication though, for example,
technologies such as RSS, Atom. They have
thereby illustrated comparatively simple means for
business networking and business flexibility.

− Efforts to turn the Web into a general platform for
accessing and interconnecting arbitrary devices
and services are maturing.

Hence, there is a need to master the very large, we
must be able to handle the complexity of these systems
confidently as well as provide them with learning
capabilities and self-organizing functions. Crucially,
systems and software must be secure, robust,
dependable and optimized in terms of functionalities to
cater for multiple audiences.

In particular, we envisage that the combination of
Semantic Web and SOA will lead to the creation of a
“service Web”—a Web where billions of parties are
exposing and consuming billions services seamlessly
and transparently and where all types of stakeholders,
from large enterprises to SMEs and singleton end
users, engage as peers consuming and providing
services within a network of equals. But, as was
highlighted in [1], SOA will not scale without:
properly incorporating principles that made the web
scale to a world wide communication infrastructure;
significant mechanization of service lifecycle activities
(which includes location, negotiation, adaptation,
composition, invocation and monitoring as well as
service interaction requiring data, protocol and process
mediation); and a balanced integration of services
provided by humans and machines. In a service-
oriented world, services must be discovered and
selected based on requirements, then orchestrated and
adapted or integrated. Solving these problems in a
scalable and manageable manner is a major pre-
requisite to realize a web interconnecting billions of

services (as the current Web does for information
sources).

In this paper we present the principles and rationale
behind the SOA4All project, and outline how these
principles will provide the means and methods for an
internet-scale deployment and adoption of SOA
infrastructures. We will begin by describing the SOA
paradigm. Then we contrast SOA principles with the
principles underlying the Web, the Semantic Web and
Web 2.0. Later on we describe the challenges and
requirements for integrating Web, Semantic Web and
Web 2.0 principles with the SOA paradigm. Finally we
briefly outline SOA4All, the project where all of these
activities will be carried out, enabling the adoption of
services-oriented computing up to Web scale.

2. SOA and Service-orientation principles

A Web service is an interface that describes a
collection of operations that are network-accessible
through standardized Web protocols, and whose
features are described using a standard XML-based
language [2]. As such, as interfaces, Web services have
proven very popular in industry, becoming a layer of
abstraction over legacy hardware and software
platforms. Thus Web services have already proven to
be a cornerstone technology for EAI scenarios.

Even though, we consider that service-orientation
provides a broad design paradigm beyond integrating
legacy systems, permitting the separation of concerns
utilizing services as the basic building blocks of
functionality. Service-oriented computing represents a
new generation of distributed system that encompasses
its own design paradigm and design principles, design
pattern catalogs, pattern languages, a distinct
architectural model, and a set of associated
technologies and frameworks [3]. Service-orientation
provides a way of thinking about computational
infrastructures in terms of services, service-based
development and the outcomes of those services.

As we have already stated, this architectural model
aims to enhance efficiency, agility, flexibility and
productivity by positioning services as the primary
atomic functional elements. In the context of our work
we classify these services according to:
− The functionality they provide within the

architecture. We distinguish between business
and middleware services. Business services are
services which various service providers supply
through their back-end systems. Additionally, they
are the subject of integration and interoperation
within the architecture and can provide a certain
value for users (such as booking a hotel room). On
the other hand, middleware services are the main

facilitators for the integration and interoperation of
business services (providing discovery and
interoperability support).

− The abstraction level within the architecture.
Namely, we distinguish between Web services and
services. A Web service is a general service that
might take several forms when instantiated (such
as purchasing a flight), whereas a service is an
actual instance of the Web service that is
consumed by and provides a concrete value for a
user (such as the purchase of a particular flight
from Innsbruck to Vienna).

The SOA design paradigm thus captures a distinct
approach to the analysis, design, and implementation to
all types of service-oriented IT environments,
introducing a set of principles which govern aspects of
communication, architecture, and processing logic.
According to [3] these design principles are: the
Standardized Service Contract Principle; Loose
Coupling Principle; Abstraction Principle; Reusability
Principle; Autonomy Principle; Statelessness Principle;
Discoverability Principle and Composability Principle.

2.1. Standardized Service Contract Principle

In order to make the description of service
capabilities understandable to any interested party, the
properties of a service should be compliant with some
design standard, the service contract. The service
contract may include any information regarding the
identification of the services (e.g. URL, name, textual
description); functional properties, such as the type of
the input/output parameters, interaction model; and
non-functional properties, such as QoS, the location of
the service, security constraints, etc.

Standardization supports the interpretability of
services, resulting in an increase in the predictability of
the service behaviour. The ability to predict the future
behavior of a service is a key mechanism to achieve
scalability, since it allows the evaluation of the
necessary computational resources required to enact a
specific service. This mechanism enables the
intelligent provisioning of resources to prevent
software resources running out.

2.2. Loose Coupling Principle

The Loose Coupling Principle states that the
interface of a service should impose low consumer
coupling and should also be orthogonal to its
surrounding environment. Loose coupling, as

presented in [4], intentionally sacrifices precision in
the description of the interfaces of services for a
greater good: the achievement of flexible
interoperability among systems which are
heterogeneous with respect to technology, location,
performance, and availability. Loosely coupled
applications aim to be more reusable and adaptable to
new requirements.

Loosely coupled systems, such as event-driven
systems [5] or space-based systems [6] have proven to
be highly scalable when compared with tightly coupled
systems.

2.3. Abstraction Principle

The Abstraction Principle dictates that the details of
software artifacts which are not indispensable for
others to effectively use it should be hidden. Therefore
all the information necessary to invoke the service is
contained in the service contract; and all the
knowledge of the underlying logic, technology, etc.
should be completely buried. This principle can be
considered as a synonym of the old software
engineering concept of black boxing.

The Abstraction Principle enables replaceability,
which as outlined in [7], combined with fault isolation
and fault recovery, enhances scalability.

2.4. Reusability Principle

The Reusability Principle states the functionality
provided by services are as domain and context
independent as feasible, facilitating reuse [3]. As a
direct consequence of the application of this principle
the logic of a service should be highly generic,
independent from its original usage scenario. The
Reusability Principle is a key enabler for SOA
infrastructures, since it makes possible the creation of
huge libraries of domain-independent services that
leverage the construction of new complex context-
dependent services.

2.5. Autonomy Principle

The Autonomy Principle states that services should
be able to carry out their processes independently from
outside influences. The only way to affect the results of
a service should be through the modification of the
input parameters as specified in the service contract.

Service autonomy increases reliability and more
importantly predictability and fault isolation, which as
presented in [7] leads to an increase of the overall
system scalability.

2.6. Statelessness Principle

The Statelessness Principle dictates that services
should minimize resource consumption by deferring
the management of state information when necessary
[3]. This notion of statelessness has been taken to the
extreme by the REST architectural style [8], which has
also been successfully applied to SOA in recent years.

Conformance with the Statelessness Principle is
vital for the scalability of the entire SOA infrastructure,
since state maintenance is one of the most resource
consuming tasks in computer science. A small
reduction of the amount of state information taken in to
account by each service produces a significant
reduction in the resources used by the overall system.

2.7. Discoverability Principle

The Discoverability Principle states that we should
annotate services with metadata to enable their
discovery by interested parties. This principle is
closely related with the Standardized Service Contract
Principle.

2.8. Composability Principle

The Composability Principle identifies services as
effective composition participants, regardless of the
size and complexity of the composition [3]. From a
bottom-up perspective, we consider combining simpler
services into larger services; from a top-down view,
service composition is an effective way to tackle with
the complexity of certain types of processes.

The Composability Principle is a core element
within the definition of a service Web, since the ability
to create new services easily is a key pre-requisite to
the widespread take up of SOA.

3. Enhancing SOA with the Web

principles

The Web is based also in a collection of principles
that lead to a highly scalable means for electronic
publication. We believe that we should analyze and
apply these principles to service-orientation, which will
lead to a global, dynamically changing environment of
services accessible for third-party usage. Within this
environment, services will undergo many changes; and
there will be a very high churn rate. Users and
resources will appear, disappear, and change location;
resources can be initially free, and then transform to
pay-per-use; and occasionally be blocked, out of
service, or inspected for antitrust violations, etc..

The provision of Web-based lightweight integration
infrastructures will facilitate openness and easy
adoption for both the service provider and consumer.
Moreover, the adoption of Web principles will open
service-orientation beyond the boundaries of single
organizations. We advocate several main Web
principles for widespread acceptance.

We believe that the transformation of SOA into an
architecture comprised of billion of services requires
the embodiment of the principles which made the Web
such a successful platform for the worldwide sharing
of content. The major principles we will incorporate to
SOA4All from the Web are described in the following
subsections.

3.1. Distributed Principle

The Distributed Principle is the process of
aggregating several computing entities’ power to
collaboratively run a single task, transparently and
coherently, so that those entities appear as a single
centralized system. Applying this principle to the
architecture middleware system will allow the
transparent distribution of components over the
network so that executing processes running in a
middleware can be scaled across numerous physical
servers over a network. The distributed principle would
also apply to business services, enabling running
processes to span across enterprises distributed over a
network.

3.2. Openness Principle

The Openness Principle states that a system should
be easy to extend; in principle everybody should be
able to contribute effortlessly to the system either as a
provider or consumer of information. The usage of this
infrastructure as a service provider or user must be as
simple, smooth, unrestricted and even as possible.

Openness is a major and essential necessity to
ensure global adoption.

3.3. Interoperability Principle

Interoperability should be provided through the
integration of heterogeneous proprietary and legacy
solutions through a common interface. Interoperability
on the Web is platform and vendor neutral allowing all
providers and requesters of information to participate
on level playing field.

3.4. User-centric Principle

The User-centric Principle puts the user in the
centre of the architecture. This principle is associated
with concepts such as personalizing business services,
facilitating service usability, promoting multichannel
access and service delivery, building trust, and
achieving efficiency, accountability, and
responsiveness according to user requirements. It will
also facilitate the seamless implementation of business
processes across organizational boundaries.

4. Enhancing SOA with semantic

technologies

Current standards for describing Web services use
syntactic (XML-based) notations such as WSDL. As
these descriptions are not machine readable, IT staff
must carry out all of the tasks associated with creating
and maintaining Web service-based applications. The
requirement for specialist workers to be involved in all
points in the Web service lifecycle causes numerous
problems, the most significant of which is the lack of
scalability. Maintaining millions of services, let alone
billions, to cope with environmental and context
changes solely through human effort is simply not
feasible.

Tasks such as Web service discovery, composition,
and invocation can be automated to a great extent by
applying semantic technologies (such as OWL-S [9],
WSMO [10], WSDL-S [11]). For example, semantics
allows programs to access services through a machine-
processable description of offered capability rather
than as an endpoint. The use of semantics thus forms a
scalable access layer over Web service data and
processes.

4.1. Semantic Principle

In short the markup of a Web service with formal
descriptions makes them computer-interpretable, use-
apparent and agent-ready [12]. The combination of
semantics with service-orientation allows us to define
scalable, semantically rich, formal service models
founded on ontologies.

A semantic approach to the modeling and
implementation of service-based applications will
facilitate the intelligent governance of SOA
environments. Semantics will enable the management
of categories of services as a whole; aiding the user in
the visualization and update of services; facilitating the
(semi) automation of service lifecycle activities, such
as service discovery, contracting, negotiation,
mediation, composition, and invocation; and enabling
the advanced monitoring of execution and provenance

analysis associated with the enactment of millions of
services.

5. Integrating SOA with the Web 2.0 and

Semantic Web

Embedding the principles underlying the Web, the
Semantic Web and Web 2.0 within SOA will require
the following in order to bring the SOA4All vision to
reality:
− The Web principles and technology have to be

applied to service-orientation creating an open and
dynamically changing environment of services
amenable to third-party usage.

− We have to provide Semantic Web technology as a
means to implement a scalable access layer, both
to data and processes

− We have to make usage of Web 2.0 technology as
means to generate and access the semantic service
layer.

The above objective of integrating all the principles
generates the following requirements and challenges
which will be addressed in SOA4All

5.1. Worldwide access mechanisms

If we wish realize a wide-spread SOA infrastructure

we require a worldwide communication infrastructure
able to deliver:
− A global addressing schema, which in simplest

form may be a unique name and, more elaborately,
a description of the capability of a service (that is,
the degree to which it can be used to achieve a
certain goal).

− A transport layer to transmit requests for and the
results of service invocations.

− A platform-independent interface to process
(client) service requests and access to service
implementations. The trade-off though, as pointed
out in [8], is that a uniform interface degrades
efficiency, since information is transferred in a
standardized form rather than one which is
specific to an application’s needs

5.2. Lightweight and new ways of semantic

provisioning

Web service formal descriptions should be
leveraged in order to allow lightweight reasoning about
services; and they should also be extended to describe
new forms of services. More precisely we should
provide:
− Lighter representations and representational

languages. Current initiatives (such as OWL-S

and WSMO incorporating languages such as
WSML[13]) are powerful but are relatively
complex to use; computationally lighter
alternatives open the possibilities for wider take
up, based, for example, on RDF(S) [14] and
SAWSDL [15].

− Extend to reflect the new mechanisms available
in Web 2.0. Within Web 2.0, there are many
services in the form of mash-ups, gadgets and
pipes which do not use standard Web services
technology for their interface description,
communication or enactment. These function
provider entities should also be considered and
accordingly annotated.

5.3. Decentralized changeability and

dynamicity

Content can appear, be modified, or disappear in an
ad hoc fashion. That is, the provisioning and
modification of content should be under the distributed
control of peers rather controlled by a central authority.
Central control would hamper access and therefore
scalability.

5.4. Automation of the activities that cover the

entire services lifecycle

If we want to handle in an effective manner an
environment composed by a huge number of decoupled
services, we should provide highly automated
governance mechanisms including:
− Automatic service location. This includes sub-

tasks such as Service Crawling for collecting Web
service information from the Web; Semantic
Indexing to allow intelligent queries on top of the
Semantic crawling solution; Service Discovery to
allow users to find new services matching their
needs which have to be formalized in some way
by the user; Service Selection provides means to
select the most suitable service among those
services discovered by utilizing a service ranking
algorithm; and Service Adaptation, in order to
refine the results of discovery through interaction
with the services and/or their providers, tailored
according to users’ needs.

− Automatic Web service invocation. The
invocation of Web Service is usually hard-coded
within client applications. In contrast, automatic
Web service invocation is the automatic
invocation of a Web service by a computer
program or agent, given only a declarative
description of the target service.

− Automatic Web service construction. This task
involves the automatic selection, composition, and
interoperation of Web services to perform some
complex tasks, given a high-level objective.

5.5. Automation of central mechanisms to

route requests or responses

Nowadays most of the routing activities are mainly

carried out either by routing tables or rule engines
based on solutions such as XPath and XQuery. These
solutions are inherently non-scalable, very costly to
maintain, and can easily become outdated. In order to
create systems based on services that might appear and
disappear continuously, we need more dynamic
mechanisms. More importantly, all these routing
techniques rely and base their decisions solely on
syntax-based properties of requests and responses. We
need to propose efficient semantic-based routing
techniques that provide smarter routing, resulting in a
highly-scalable smart semantic middleware.

5.6. Enabling of n:m asynchronous

interactions

We should enable new models of interaction which
enhance scalability, and facilitate the broadcast or
multicast of requests and responses seamlessly. The
Web is based on anonymous distribution through
publication, which we believe has be true of any
infrastructure aspiring to scale to the same magnitude.

5.7. Blurring the distinction between roles and

nature of interactions participants

From a purely technological viewpoint, the
mechanisms used in Web 2.0 are similar to the
“standard” Web. However, Web 2.0 brings a number
of Web-related concerns to the fore which when
incorporated into SOA will aid in the creation of a
Service Web:
− Blurring the distinction between content

consumer and content provider – within Web
2.0 the provision of content has been democratized
– in contrast to the standard Web where users are
considered to be passive spectators of read-only
content.

− Blurring the distinction between service
consumer and service provider. The classic
client-server model of interaction no longer
reflects the nature of the Web and thus we should
introduce richer models of interaction.

− Blurring the distinction between machine and
human-based computation. Web 2.0

technologies provide a means to generate and
access the semantic service layer outlined above.
Incorporating human interaction and cooperation
in a comprehensive fashion creates a route to
solving tasks such as service ranking and
mediation, which otherwise remain
computationally infeasible. In several scenarios,
Web 2.0 and human computing approaches,
together with their underlying social consensus-
building mechanisms, have proven the potential of
combining human-based services with services
provided via automated reasoning. In our view the
transparent provisioning of services abstracting
over whether the ‘engine’ is a human or machine
will significantly increase the overall quality of
services available to the end-user. In the end, a
service need not necessarily by supplied by a
computer program, enabling for example, current
approaches to service discovery and (human)
expert finders to be combined.

6. SOA4All, a Web of billions of Services

SOA4All will help to realize a world where a

massive number of parties expose and consume
services via advanced Web technology. The outcome
of the project will be a comprehensive framework and
software infrastructure which will integrate four
complimentary advances into a coherent and domain
independent worldwide service delivery platform. To
achieve such an scalable and widely adopted
infrastructure and framework, SOA4All stands on the
four main pillars which are depicted in Figure 1:

Figure 1 Cornerstones of SOA4All.

 Web principles and technology as the
underlying infrastructure for the integration of
services at a world wide scale. We will apply all
the principles identified earlier to scale SOA to a

world communication infrastructure. Moreover,
we consider the Web as the underlying
infrastructure to which we add machine-
interpretable layers.

 Web 2.0 as a means to structure human-
machine cooperation in an efficient and cost
effective manner. SOA4All will make use of Web
2.0 technology as a means to generate and access
the semantic service layer. Including human
interaction and cooperation will enable us to
provide solutions to certain classes of task such as
service ranking or mediation that otherwise remain
unfeasible. Web 2.0 and human computing
approaches together with their underlying social
consensus building mechanisms have proven the
potential of integrating human based services and
services solved by automated reasoning. Web 2.0
will be used for human interaction, and also will
be used in SOA4All to support a range of
activities including the ranking of services, service
deployment, the acquisition of context and the
semi-automation of service composition.

 Semantic Web technology as a means to
abstract from syntax to semantics. The intensive
use of semantics within the services environment
described by SOA4All will reinforce our approach
to dependability and fault tolerance. This aspect
will be addressed in the indexing, crawling,
discovery and adaptive dynamic composition. The
expected result of this research will be the on-the-
fly substitution of services - when required
services will be composed dynamically at run time
and service faults will be resolved by finding the
most suitable alternative service to achieve the
overall result.

 Context management as a mechanism to
process user requirements in a machine
understandable way, facilitating the
customization of existing services for the needs of
users. SOA4All will include context from a global
perspective and will enable the specification of
some parameters related to security as part of the
service related formal descriptions, establishing
restrictions and requirements for the composition
and deployment of services in terms of the
individual user, the community or the target
organization. In turn this will make our solutions
more flexible, secure and robust.

7. A promising future

From our point of view, we believe that the
successful integration of Semantic Web and service-
oriented technologies will form the main pillar of the

software architecture of the next generation of
computing infrastructure. We envision a
transformation of the Web from a Web of static data to
a global computational resource that truly meets the
needs of its billions of users, placing computing and
programming within a services layer to facilitate
computing’s real goal: placing problem solving in the
hands of end users through a truly balanced
cooperative approach.

8. Acknowledgments

The work is funded by the European Commission
under the project SOA4All (FP7- 215219).

9. References

[1] R. Benjamins, J. Davies, E. dorner, J. Domingue, D.
Fensel, O. Lopez, R. Volz, A. Wahler, and M. Zaremba,
“Service Web 3.0”, STI Innsbruck Technical report.
Available at http://www.sti-
innsbruck.at/results/browse/technical-reports/details/?uid=35

[2] F. Curbera, W.A. Nagy, and S. Weerawana, “Web
Service: Why and How?”, In Proceedings of the OOPSLA-
2001 Workshop on Object-Oriented Ser-vices. Tampa,
Florida, 2001.

[3] T. Erl, SOA Principles of Service Design, The Prentice
Hall Service-Oriented Computing Series from Thomas Erl,
July 28, 2007

[4] D. Kayne, Loosely Coupled, The Missing Pieces of Web
Services Rds Associates Inc, ISBN: 1881378241, 2003

[5] P.Th. Eugster, P. Felber, R. Guerraoui, Handurukande,
“Event systems. How to have your cake and eat it too”, 22nd
International Conference on Distributed Computing Systems
Workshops (ICDCSW '02), 2002

[6] R. Krummenacher, E. Simperl and D. Fensel, “Towards
Scalable Information Spaces”, Workshop on New forms of
reasoning for the Semantic Web: scaleable, tolerant and
dynamic, ISWC 2007.

[7] J. Armstrong, Making reliable distributed systems in the
presence of software errors. PhD thesis, Royal Institute of
Technology, Swedish Institute of Computer Science (SICS),
Stockholm, December 2003.

[8] R. T. Fielding, R. Thomas, Architectural Styles and the
Design of Network-based Software Architectures, University
of California, Irvine, 2000

[9] D. Martin, M. Burstein, Hobbs J., O. Lassila, D.
McDermott, S. McIlraith, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, K. Sycara, “OWL-S 1.1 Release:
Semantic Markup for Web Services”, available at:
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2004

[10] D. Fensel, H. Lausen, A. Polleres, J. De Bruijn, M.
Stollberg, D. Roman, J. Domingue. Enabling Semantic Web
Services: Web Service Modeling Ontology. Springer, 2006.

[11] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.T.
Schmidt, A. Sheth, K.Verma, WSDL-S Technical
NoteVersion 1.0 Web Service Semantics, 2005

[12] S. McIlraith, T.C. Son, and H. Zeng, “Semantic Web
Services”, IEEE Intelligent Systems, 16(2):46–53, 2001.

[13] The Web Service Modelling Language WSML
http://www.wsmo.org/TR/d16/d16.1/v0.21/

[14] RDF Vocabulary Description Language 1.0: RDF
Schema W3C Recommendation 10 February 2004
http://www.w3.org/TR/rdf-schema/

[15] J. Farrell, H. Lausen, Semantic Annotations for WSDL
and XML Schema W3C Recommendation 28 August 2007
http://www.w3.org/TR/sawsdl/

