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Abstract 

 
We propose a simple and effective method for dealing with missing data in decision 

trees used for classification. We call this approach “missingness incorporated in 

attributes” (MIA). It is very closely related to the technique of treating “missing” as a 

category in its own right, generalizing it for use with continuous as well as categorical 

variables. We show through a substantial data-based study of classification accuracy 

that MIA exhibits consistently good performance across a broad range of data types 

and of sources and amounts of missingness. It is competitive with the best of the rest 

(particularly, a multiple imputation EM algorithm method; EMMI) while being 

conceptually and computationally simpler. A simple combination of MIA and EMMI 

is slower but even more accurate.  

 

Keywords: C4.5; C5.0; CART; EM algorithm; Fractional cases; Missingness as 

attribute; Multiple imputation. 
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1. Introduction 
 

Decision trees provide a simple yet effective methodology for classification and 

prediction (e.g. Breiman et al., 1984, Quinlan, 1986, 1993). They are, therefore, 

popular in both statistics and machine learning and have generated a vast literature, 

particularly in the latter area. On the other hand, real datasets are almost synonymous 

with “datasets involving missing data” and another vast literature, particularly in 

statistics (e.g. Little and Rubin, 2002), is concerned with coping with missing data. The 

intersection of the two literatures − to which this paper contributes − is, however, 

relatively small. A review and comparison of existing methods for coping with missing 

data in decision trees is given in Twala (2005, 2007). Twala found an implementation 

of multiple imputation using an EM algorithm due to Schafer (1997; henceforth 

EMMI) to be consistently the best of the existing methods investigated. 

 

In Section 2 of this paper, we introduce a simple and natural alternative method for 

coping with missing data in decision trees used for classification. We call this approach 

“missingness incorporated in attributes” or MIA for short. (It is very closely related to, 

but differs slightly from, the approach of treating “missing” as a category in its own 

right.) In Section 3, we compare MIA with EMMI within the broad data-based 

comparisons of Twala (2005, 2007). We find that the simple and speedy MIA 

approach typically performs almost as well as the complex and cumbersome EMMI 

approach in terms of classification accuracy and is sometimes the better of the two. In 

Section 4, we consider two very simple combinations of MIA and EMMI (EMIMIA 

and REMIMIA) and present the results of using them too. The paper closes with brief 

conclusions and discussion in Section 5. Throughout, we consider only binary decision 

trees in the sense that branches of the tree are only ever split into two parts, although it 

will be obvious that MIA could be extended to multiway splitting too. 

 

 

2. The MIA approach 
 

Let X be an attribute for which a split is currently being sought. MIA treats individuals 

with missingness in X as a single group, defining splits to contain all such individuals 

in one or other part of the split, together with allowing splits on missingness per se. 

Concretely, let Y be a subset of X corresponding to one part of a putative split; if X is 

an ordered or numeric attribute, Y is the set of all values of X of the form }:{ xXX ≤  

for some split-point x; if X is a nominal attribute, Y is simply some subset of the values 

of X. Then, in choosing a split, we choose between the following options as well as 

varying Y: 

 

Split A: }{ missingisXorYX ∈ versus }{ YX ∉ ; 

Split B:  }{ YX ∈  versus }{ missingisXorYX ∉ ; 

Split C:  X is missing versus X is not missing. 

 

So, if there were o options for splitting a branch without missingness, there are 2o+1 

options to be explored with missingness present. 
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This MIA algorithm is very simple and natural and applicable to any method of 

constructing decision trees, regardless of that method's detailed splitting/stopping/ 

pruning rules. It has a very close antecedent: the approach of handling unknown 

attribute values by treating all attributes as categorical and adding missingness as a 

further category. The two approaches are the same for categorical attributes, but differ 

a little in their treatment of continuous attributes: rather than categorizing continuous 

variables, we incorporate missingness directly in splits of continuous variables. The 

“missingness as category” approach was, on the basis of a single artificial example 

and, in our view, prematurely, dismissed by Quinlan (1986, pp. 97−98); see Section 5 

for discussion. It has, nonetheless, been used since (Hastie et al., 2001, Section 9.2.4). 

Both approaches can be expected to be particularly useful when missingness is not 

random but informative. Classifying a new individual whose value of a branching 

attribute is missing is immediate provided there was missingness in that attribute in the 

training set that led to the decision tree. In the remainder of the paper, we show that 

MIA can be an extremely effective method for coping with missing data in decision 

trees. 

  

 

3. Experimental setup and results 

 

3.1. Experimental set-up 

 

We add MIA to the experiment reported by Twala (2007), to which the reader should 

refer for implementation details of the outline description given here.  

 

The experiment was based on a suite of 21 datasets taken from the Repository of 

Machine Learning Databases provided by the Department of Information and 

Computer Science at the University of California at Irvine (Newman et al., 1998). See 

Table 1 of Twala (2007) for details of the specific datasets used: they range from 57 to 

20,000 in terms of sample size, from 4 to 60 in terms of numbers of attributes, from 2 

to 26 in terms of numbers of classes, and display a mix of numerical and nominal 

attributes. All are complete datasets into which missingness is artificially introduced at 

rates of 15%, 30% and 50% into either the single attribute which is most highly 

correlated with class or else evenly distributed across all attributes. Three missing data 

mechanisms were employed, coming under the headings (Little and Rubin, 2002) of: 

missing completely at random (MCAR); missing at random (MAR), under which the 

probability of being missing depends on the value of another, non-missing, attribute; 

and informative missingness (IM), under which the probability of being missing 

depends on the actual (but in non-simulation practice unobserved) value of the attribute 

itself. The six combinations of missingness mechanisms and distribution will be 

referred to as MCARuniva, MARuniva and IMuniva when missingness is in a single 

attribute and as MCARunifo, MARunifo and IMunifo when missingness is spread 

uniformly across all attributes.    

  

Performance of methods is measured by the excess classification error rate, that is, the 

difference between the error rate observed in cases incorporating missingness and the 
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error rate observed for the complete dataset. (A smoothed error rate was used to cope 

with ties between competing classes.) Five-fold cross-validation was used to provide 

separate training and test sets from each complete dataset. (Note, therefore, that 

missing values occur in both training and test data.) Decision trees on complete 

training data were grown using the Tree function in S-PLUS (Becker et al., 1988, 

Venables and Ripley, 1999) which in turn uses the GINI impurity index (Breiman et 

al., 1984) as splitting rule and cross-validation cost-complexity pruning.  

 

Twala (2007) compared the performances of seven methods for coping with missing 

data in decision trees. These were: deletion of instances with any missing data; 

Shapiro's decision tree single imputation technique (Quinlan, 1993); maximum 

likelihood imputation of data for both continuous (assuming multivariate normality) 

and categorical data via the EM algorithm as developed by Schafer (1997), and 

considered in both single and (five replicate) multiple imputation (EMMI) forms; mean 

or mode single imputation; fractional cases (FC; Cestnik et al., 1987, Quinlan, 1993); 

and surrogate variable splitting (Breiman et al., 1984, Therneau and Atkinson, 1997). 

To cut a long story short, EMMI proved to be the overall best of the seven techniques 

and FC the second best, and it is only these two best techniques with which we directly 

compare MIA in the results that follow. (Note that for the largest datasets, we modified 

Schafer's version of EMMI by splitting up the dataset in order for it to run in a 

reasonable time.) 

 

3.2. Experimental results 

 

Fig. 1 shows the excess error rates, averaged over the 21 datasets, attained by MIA, 

EMMI and FC; the six frames of Fig. 1 refer to the missingness mechanism/ 

distribution combinations described in Section 3.1. One can readily observe the 

consistently superior performance of EMMI over FC. When missingness is in only one 

attribute (the `univa' cases) MIA is broadly on a par with FC under the MCAR 

mechanism, intermediate between FC and EMMI under MAR and comparable to 

EMMI under IM. When missingness is spread across all attributes (the `unifo' cases), 

the performance of MIA improves relative to the other two methods. Indeed, in these 

important cases, MIA is broadly comparable with EMMI and superior to it when the 

missingness is informative. (In further averaging of error rates over missingness 

mechanisms, distributions and percentages, but still for these particular 21 datasets, 

MIA takes second place to EMMI, only a statistically insignificant amount ahead of 

FC; see Fig. 5.5 of Twala, 2005.) 

 

Further investigation of performance on individual datasets within the collection 

suggests that MIA is especially effective (and superior to both EMMI and FC) for 

datasets consisting primarily of nominal, as opposed to quantitative attributes. A case 

in point is the `kr-vs-kp' chess dataset of A. Shapiro. This consists of 3196 instances 

each having 35 binary attributes and one further nominal attribute with three 

categories; there are just two classes. Results are shown for this dataset in Fig. 2. As 

for any individual dataset, one has to be wary of reading too much into the results. 
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Fig. 1. Excess error rates attained by MIA, EMMI and FC, averaged over the 21 datasets and 

plotted against percentages of missing values. The six frames correspond to MCARuniva, 

MCARunifo, MARuniva, MARunifo, IMuniva and IMunifo missingness 

mechanism/distribution combinations.   
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Fig. 2. Excess error rates attained by MIA, EMMI and FC for the `kr-vs-kp' dataset, plotted 

against percentages of missing values. The six frames correspond to MCARuniva, 

MCARunifo, MARuniva, MARunifo, IMuniva and IMunifo missingness 

mechanism/distribution combinations.   
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Here, the ‘bucked trend’ is that MIA is more effective when missingness is in only one 

variable than in all. This appears to be because the one variable on which missingness 

occurs is the single non-binary one. 

 

In limited timing experiments involving the largest datasets in our simulation testbed, 

the most complex missingness, and full training and classification, MIA proves to be 

no faster than (the inferior performing) FC, but gives savings of around 25-35% over 

EMMI. It seems, therefore, that MIA is a quicker and much more readily 

comprehensible method that is competitive with what we believe to be the best of the 

current methods for dealing with missing data in decision trees, namely EMMI. 

 

 

4. EMIMIA and REMIMIA 

 

4.1. The methods 

 

Can we do even better with simple combinations of these two successful methods (or 

extremely simple ‘ensembles’), perhaps attaining performance equal to the best of 

either singly? We briefly investigate two such combinations. The first of these is 

EMIMIA (standing for Ensemble Multiple Imputation and Missing Incorporated in 

Attributes). In both EMMI and MIA, class predictions are made on the basis of 

estimated class probabilities. In EMIMIA, run both EMMI and MIA on your data. 

When the two yield the same classification for an instance, as they will usually do, take 

that answer. When the two suggest different classifications for an instance, choose the 

class has the higher probability assigned by the two methods. (If the two assign 

different classes with the same probability choose randomly between them.) 

 

The most obvious disadvantage of this technique is the computational cost of having to 

run both EMMI and MIA. To alleviate this, we also consider REMIMIA (Resampling 

Ensemble Multiple Imputation and Missing Incorporated in Attributes). In this version, 

the training data is randomly divided into two halves and EMMI applied to one half 

and MIA to the other. Then the results of each are combined in the same way as for 

EMIMIA. 

 

4.2. Experimental results 

 

We simply add results for EMIMIA and REMIMIA to those of Section 3.2 and drop 

those of FC for clarity. See Fig. 3. A pleasingly consistent improved performance by 

EMIMIA relative to EMMI and MIA singly is observed. Of course, there is a 

computational cost involved which turns out to be an increase of around 70% relative 

to EMMI. REMIMIA, on the other hand, is more ‘in the same ballpark’ as EMMI and 

MIA, although it too improves on them, a little, sometimes. Its computational cost 

remains quite high, however, and greater than EMMI alone. In terms of overall mean 

excess errors, EMIMIA is best (with average error rate of 9.2%), followed by EMMI 

and REMIMIA, closely together on 9.8% and 10.2%, respectively, and finally, but not 

too far behind, MIA with 10.7%. 
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Fig. 3. Excess error rates attained by EMIMIA and REMIMIA as well as MIA and EMMI, 

averaged over the 21 datasets and plotted against percentages of missing values. The six 

frames correspond to MCARuniva, MCARunifo, MARuniva, MARunifo, IMuniva and 

IMunifo missingness mechanism/distribution combinations.   
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5. Conclusions and discussion 
 

We have put forward the method of MIA as a conceptually and computationally simple 

method for dealing with missing data in decision trees when classification is the goal. 

It is closely related to treating “missing as category” per se, generalizing that approach 

for use with continuous as well as categorical variables. MIA shares with EMMI 

consistently good performance across a broad range of data types and of sources and 

amounts of missingness. We recommend its use if, as well as excellent classification 

accuracy, it is desirable that the end-user understand the methodology employed. If 

simplicity is less of a concern, EMMI is outstanding, but then the combination of 

EMMI and MIA through EMIMIA is to be recommended. 

 

We have already mentioned that “missing as category” was summarily dismissed by 

Quinlan (1986, pp.97-98). Quinlan set up a very simple example involving a binary 

attribute and then removed knowledge of one (out of four) values. His (correct) 

calculations show a higher information gain in the latter case than the former. It was 

concluded that, since “having unknown values may apparently increase the desirability 

of an attribute,” this is “a result entirely opposed to common sense” and hence that 

“treating ‘unknown’ as a separate value is not a solution to the problem”. Our 

alternative view is that missingness is informative in that case, in the sense that the 

single missing value is associated with a particular class: the method can be envisaged 

as taking it that missingness is a strong indicator of that class. (If we had more data, 

this would either be confirmed by a strong correlation between missingness and class 

which we could make use of or else debunked − but in the latter case, a mixture of 

classes associated with missingness would not, we imagine, lead to an increased 

information gain.) We believe our substantial study to have shown that MIA actually 

shows very promising results and should be taken seriously. 
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