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Abstract

Two concepts of symmetry for the distributions of positive random vari-
ables Y are log-symmetry (symmetry of the distribution of log Y ) and R-
symmetry (Mudholkar & Wang, 2007). In this paper, we characterise the
distributions that have both properties, which we call doubly symmetric. It
turns out that doubly symmetric distributions constitute a subset of those
distributions that are moment-equivalent to the lognormal distribution. They
include the lognormal, some members of the Berg/Askey class of distribu-
tions, and a number of others for which we give an explicit construction
(based on work of A.J. Pakes) and note some properties; Stieltjes classes,
however, are not doubly symmetric.

Keywords: double symmetry; lognormal distribution; moment equivalence;
weighted distribution.
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1. Introduction

Let Y be a random variable following an absolutely continuous distribu-
tion F with density f on the positive half-line R

+. One natural concept of
symmetry of this distribution is that Y/δ and δ/Y have the same distribution
for some δ > 0. Since this is equivalent to ordinary symmetry, about log δ,
of the distribution of log Y , we will refer to this as log-symmetry (Seshadri,
1965, Marshall and Olkin, 2007, Section 12.A.c). In density terms,

y2f(δy) = f

(

δ

y

)

, for some δ > 0 and all y > 0. (1.1)

Note that δ is the median of the log-symmetric distribution F .
An alternative interesting concept of symmetry on R

+ is the R-symmetry
introduced and investigated by Mudholkar & Wang (2007). This is defined
directly in terms of the density and another constant θ > 0 by

f(θy) = f

(

θ

y

)

, for some θ > 0 and all y > 0. (1.2)

In fact, θ is the mode of F (if f is unimodal). A comparison of these two
concepts of reciprocal symmetry was given by Jones (2008).

The focus of this note is on distributions on R
+ which have both properties

(1.1) and (1.2), log-symmetry and R-symmetry; we will call such distributions
doubly symmetric. It is easy to see that no continuous distribution on R

+

can be doubly symmetric with the same constant (δ = θ). However, as noted
by Jones (2008), the lognormal distribution — with density

f0(y) =
1√

2πσy
exp

{

−1

2

(log y − µ)2

σ2

}

(1.3)

in its usual parametrisation resulting from taking the exponential of a random
variable following a normal distribution with mean µ and variance σ2 — is
both log-symmetric about δ1 = eµ and R-symmetric about θ1 = eµ−σ2

. In
that paper, the first author of this note was “tempt[ed] to conjecture that
the lognormal is unique in this respect” — this proves to be wrong!

In this note, we characterise the class of absolutely continuous distribu-
tions on R

+ which are doubly symmetric (call this class DS). It turns out to
be a proper subset of the wide class of absolutely continuous distributions on
R

+ which are moment-equivalent to the lognormal distribution (e.g. Pakes,
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2007, Section 3; use MEL to denote this class); moreover, this subset of MEL
distributions contains more densities than just the lognormal. See Section 2
for our main result. Our work will rely heavily on deep and detailed work of
Pakes (1996, 2007).

The first, and most famous, MEL subfamily is a version of the Stieltjes
class with density

fǫ(y) = f0(y)
[

1 + ǫ sin
{

2π(log y − µ) /σ2
}]

, (1.4)

−1 ≤ ǫ ≤ 1. This is the class considered by Stieltjes (1894/5) and Heyde
(1963); see Stoyanov (2004) for a more general formulation. It is intriguing
to find that such Stieltjes densities are not DS. In fact, members of the
Stieltjes class (1.4) are neither log-symmetric nor R-symmetric except when
ǫ = 0. Instead, y2fǫ(δ1y) = f−ǫ(δ1/y) and fǫ(θ1y) = f−ǫ(θ1/y), the former
comprising Theorem 3.1 of Pakes (2007). And it is clear that no other values
of δ or θ can be found to make fǫ log-symmetric or R-symmetric, respectively,
for ǫ 6= 0.

For examples of MEL densities that are DS, and some investigation of
their properties, see Section 3.

The paper finishes in Section 4 with some further comments.

2. Main result

Write k = δ/θ. Note that k > 1 because the median is not less than
the mode for either log-symmetric or R-symmetric densities (Jones, 2008).
Then, manipulating (1.1) and (1.2) shows that DS densities satisfy

1

k2
f

( y

k2

)

=
y2f(y)

θ2k4
(2.1)

(together with either of (1.1) and (1.2)). This, therefore, says that DS den-
sities are the same when you rescale by k2 (left-hand side of (2.1)) and when
you perform weighting with weight function y2 (right-hand side of (2.1); note
that E(Y 2) is indeed equal to θ2k4).

Rescaling, let g(x) = θk2f(θk2x) be the density of X = Y/(θk2). Then,
(2.1) translates to

1

k2
g

( y

k2

)

= y2g(y) (2.2)

which is the same as (2.1) except that E(X2) = 1. Now, (2.2) is identical
to (3.15) of Pakes (1996) provided we set Pakes’s q = k−2. Next, write
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h(z) = g(
√
z)/(2

√
z) to be the density of Z = X2. Then, as Pakes notes, the

problem of solving (2.2) for g is equivalent to solving

1

k4
h

( y

k4

)

= yh(y) (2.3)

with E(Z) = 1.
Pakes (1996, Theorem 3.1) gives the general form for any distribution

function solving (2.3) with E(Z) = 1. These distributions, it turns out
(Pakes & Khattree, 1992), are a subset of the distributions that are moment-
equivalent to the log-normal law. We are interested only in absolutely con-
tinuous versions of these distributions, for which Pakes (1996) writes down
the form of the density, h∗ say, at his (3.10) (see also Theorem 3.3 of Pakes,
2007). It has a piecewise form on intervals (k−4(i+1), k−4i], i = 0,±1,±2, ... .
Explicitly,

h∗(y) ∝
∞

∑

i=−∞

k2i(i+3)yiω(k4iy)I(k−4(i+1) < y ≤ k−4i) (2.4)

where ω is a nonnegative function on (k−4, 1] such that h∗ is integrable. Since
f(y) = (2y/θ2k4)h (y2/(θ2k4)) , solutions of (2.1) take the form

f ∗(y) ∝
∞

∑

i=−∞

θ−2ik2i(i+1)y2i+1ω(θ−2k4(i−1)y2)I(θk−2i < y ≤ θk2−2i). (2.5)

However, densities f ∗ constitute a superset of DS densities since the latter
also need to satisfy one of (1.1) or (1.2).

Theorem 1. Absolutely continuous doubly symmetric densities have the
form f ∗ given by (2.5) with ω chosen to satisfy

ψ (u) = ψ

(

1

k4u

)

, k−4 < u ≤ 1. (2.6)

Here,
ψ(u) ≡ u ω(u).

Proof. First, write (2.5) as

f ∗(y) ∝
∞

∑

i=−∞

θ−2ik2i(i+1)y2i+1F(θ−2k4(i−1)y2)
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where F(u) = ω(u)I(k−4 < u ≤ 1). Now, consider requirement (2.1), recall-
ing that δ = kθ. We have

y2f ∗(kθy) ∝
∞

∑

i=−∞

k2i(i+2)y2i+3F(k4i−2y2). (2.7a)

Also,

f ∗(kθ/y) ∝
∞

∑

j=−∞

k2j(j+2)y−2j−1F(k4j−2/y2)

=
∞

∑

i=−∞

k2i(i−2)y2i−1F(k−4i−2/y2). (2.7b)

Expression (2.7b) follows from the previous line by setting j = −i, the choice
determined to be the one that gives the F functions in (2.7a) and (2.7b) the
same support. It follows that (2.7a) = (2.7b) if

k8iy4ω(k4i−2y2) = ω(k−4i−2/y2)

which, by setting u = k4i−2y2, is equivalent to (2.6). The reader can verify
that the same result is obtained by considering (2.2) in place of (2.1). �

Remarks. Note that the mode θ enters (2.5) simply as a scale parameter.
Note also that, although f ∗ is the density of the (scaled) square root of
a random variable whose distribution is MEL, it remains the case that f ∗

itself is MEL; this is because the (scaled) square root of a lognormal random
variable is itself lognormal. It will also prove useful, in Section 3, to write

f ∗(θy) ∝
∞

∑

i=−∞

k2i(i−1)y2i−1ψ(k4(i−1)y2)I(k−2i < y ≤ k2−2i). (2.8)

3. Examples of DS distributions

3.1. Lognormal distribution

Lognormal density f0 given by (1.3) or any alternative scaling of it by
factor c say, has E(Y 2) = c2e2µ+2σ2

= θ2k4 since θ = ceµ−σ2

and k = eσ2

.
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Note that the i = 1 term of (2.8) shows that, on support (k−4, 1], ψ(u) ∝
f ∗(θ

√
u)/

√
u. Then, the log-normal’s psi-function is

ψ(u) ∝ 1√
u

exp

(

−1

8

log2 u

log k

)

(3.1)

which satisfies (2.6).

3.2. Another known MEL distribution

For a first example of a class of MEL distributions some of whose members
are DS and are not the lognormal, we turn to the Askey/Berg class (Askey,
1989, Pakes, 1996, Section 3, especially pp. 834–835, Berg, 1998, Pakes,
2007, Section 3). One way of writing the density of this class, employing a
particular scaling for convenience, is as

fγ(y) ∝ yγ−1/Lk(y) where Lk(y) =
∞

∑

n=−∞

ynk−
1
2

n2

, (3.2)

γ ∈ R, y > 0, is Ramanujan’s theta function (e.g. Brendt, 1993). Now,

Lk(k
cy)

Lk(kc/y)
=

∑

∞

n=−∞
ynk−

1
2n2+cn

∑

∞

n=−∞
y−nk−

1
2n2+cn

=

∑

∞

n=−∞
ynk−

1
2

n2+cn

∑

∞

n=−∞
ynk−

1
2

n2
−cn

=

∑

∞

n=−∞
ynk−

1
2
(n−c)2

∑

∞

n=−∞
ynk−

1
2
(n+c)2

= y2c

∑1 yjk−
1
2

j2

∑2 yjk−
1
2

j2

.

Here,
∑1 sums over j ∈ {...,−2− c,−1− c,−c, 1− c, 2− c, ...} and

∑2 sums
over j ∈ {...,−2 + c,−1 + c, c, 1 + c, 2 + c, ...}. The two sums are equal if
c is integer or half-integer, in which case (1.1) holds with δ = kγ and (1.2)
with θ = kγ−1 if γ is also integer or half-integer. This chimes with (1.10) of
Theorem 1 of Brendt (1993) whose integer n is our 2c. We have thus shown
that Askey/Berg densities with integer or half-integer values of γ are DS.

In fact, limited computational comparisons of the lognormal and Askey/
Berg densities with the same median and mode (as well as moments) have
failed to find any visible differences between them. (Often, the two densities
are identical to the eighth decimal place, sometime to just four.) The version
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of the lognormal density that is compared with fγ at (3.2) has µ = γ log k,
σ2 = log k and hence density

f0(y) =
1√

2π log k
k−

1
2

γ2

yγ−1 exp

(

−1

2

log2 y

log k

)

.

It follows that, to a very good degree of approximation, it must be that

Lk(y) ∝ exp

(

1

2

log2 y

log k

)

.

Indeed, it can be proven that fγ and f0 are exactly equal at all points of the
form kp, p = 0,±1,±2, ... . To see this, note that, exactly,

Lk(k
p) =

∞
∑

n=−∞

k−
1
2

n2+np = e
1
2

p2

∞
∑

n=−∞

k−
1
2
(n−p)2 ∝ e

1
2

p2

.

3.3. Constructing further specific DS MEL distributions

Appropriate functions ψ satisfying (2.6) can be constructed by specify-
ing nonnegative ψ arbitrarily on [k−2, 1] and extending it uniquely to the
remainder of [k−4, 1] by defining

ψ(u) = ψ

(

1

k4u

)

, k−4 ≤ u ≤ k−2. (3.3)

Note that ψ is continuous at k−2. Also, it can readily be shown from (2.5)
that continuity of density f ∗ at the “grid endpoints” k2i, i = 0,±1 ± 2, ...
requires ψ(1) = ψ(k−4) — equivalent to Lemma 3.1 of Pakes, 2007 — which
is immediate from (2.6); it follows that if ψ is chosen to be continuous then
f ∗ is continuous. We note Pakes’s (2007, p.1278) observation that continuous
MEL densities “probably are the exception” and that this construction seems
a promising way of extending this class (with double symmetry thrown in).

Now let ψ be continuously differentiable. From (3.3), continuous differen-
tiability of f ∗ at “grid midpoints” k2i−1, i = 0,±1,±2, ... requires ψ′(k−2) =
0. From (2.8), continuous differentiability of f ∗ at grid endpoints k2i, i =
0,±1,±2, ... requires 2ψ′(1) = −ψ(1) < 0.

Unimodality of f ∗ with unique mode θ demands that:
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(i) ui−(1/2)ψ(u) be increasing for all i = 1, 2, ... which follows if
√
uψ(u) is

strictly increasing;

(ii) ui−(1/2)ψ(u) be decreasing for all i = 0,−1,−2, ... which follows if ψ(u)/
√
u

is strictly decreasing.

It can then be shown that, when ψ is differentiable, these two requirements
reduce to choosing ψ on (k−2, 1) such that |(logψ)′(u)| < (2u)−1.

One parametric family of unimodal DS (MEL) distributions arises if we
take

ψ(u) = ψα(u) ≡ uα−(1/2), k−2 ≤ u ≤ 1, 0 < α < 1. (3.4)

We note at once that, while continuous, the resulting density is not contin-
uously differentiable at both grid mid- and end-points for any value of α.
However, this at least makes for densities that more obviously differ from
the lognormal. To this end, we briefly investigate the simplest case, that of
α = 0 in (3.4). The corresponding density is

f ∗

U(y) =

∑

∞

i=−∞
k2i(i−1)(y/θ)2i−1I(k−2i < y/θ ≤ k2−2i)

θ{2 log k +
∑

∞

j=1 j
−1k−2j2(k2j − k−2j)} . (3.5)

It is pictured in Figures 1 and 2 in conjunction with the moment-equivalent
lognormal density in each case. Density (3.5) acts as a piecewise (odd-power)
polynomial approximation to the lognormal with discontinuities in derivative
at grid endpoints. Discrepancies between the two densities are clearest at
their common modes.

* * * Figures 1 and 2 about here * * *

4. Further Remarks

That doubly symmetric distributions are moment-equivalent to the log-
normal distribution is essentially immediate from the derived relationship
(2.1) from which we get

E(Y s+2) =
δ2(s+2)

θ2(s+1)
E(Y s), s ∈ R. (4.1)

(Inter alia, the existence of all positive and negative moments of f is thereby
established.) This relationship is satisfied by the lognormal distribution with
δ = exp(µ), θ = exp(µ − σ2) and E(Y s) = exp(sµ + 1

2
s2σ2). In the closely
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related context of (2.3), Pakes (1996, 2007) notes that the ratio of the moment
functions of f and of the lognormal is periodic.

Here is another take on periodic differences between solutions. Define
h(w) = log f(ew), w ∈ R. Then, a little manipulation based on (2.1) yields

h(w − 2 log k) = 2w − 2 log θ − 2 log k + h(w). (4.2)

Thus, h comprises a periodic function, with period 2 log k, plus a linear one.
Moreover, for DS densities we also have, from (1.2), that

h(w) = h(2 log θ − w), (4.3)

displaying symmetry of h about 2 log θ. Combining (4.3) and (4.2) yields

ℓ(w − 2 log k) = ℓ(2 log θ − w) (4.4)

where ℓ(w) = h(w) − w.
The periodicity evident in (4.2)–(4.4) can be utilized to formulate a char-

acterization of the lognormal distribution within the class DS. If X has a
lognormal distribution then for any γ > 0, Xγ is also a lognormal vari-
able and consequently is also DS. If one assumes only that for any γ > 0,
Xγ ∈ DS, it follows that the functions in (4.2)–(4.4) have multiple period-
icities and, as a consequence, the function h(w) must be quadratic. In this
manner we may formulate:

Theorem 2. If Xγ ∈ DS ∀γ > 0, then X has a lognormal distribution.

We conjecture, but are as yet unable to verify, that it will suffice to replace in
the hypothesis the statement “∀γ > 0” by the statement “for two judiciously
chosen values of γ”.
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Fig. 1. Densities f ∗

U(y) (in black) and f0(y) (in red) for θ = 1 and k = 1.1
(solid lines), k = 1.25 (dashed lines), k = 1.5 (dotted lines) and k = 2.5
(dot-dashed lines).
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Fig. 2. Densities f ∗

U(y) (in black) and f0(y) (in red) for k = 1.75 and θ = 0.1
(solid lines), θ = 0.5 (dashed lines), θ = 1.0 (dotted lines) and θ = 2.0
(dot-dashed lines).
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