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HYPERBOLIC GEOMETRY AND THE
HILLAM-THRON THEOREM

IAN SHORT

Abstract. Every open ball within RN
∞ has an associated hyper-

bolic metric and Möbius transformations act as hyperbolic isome-
tries from one ball to another. The Hillam-Thron Theorem is con-
cerned with images of balls under Möbius transformation, yet exist-
ing proofs of the theorem do not make use of hyperbolic geometry.
We exploit hyperbolic geometry in proving a generalisation of the
Hillam-Thron Theorem and examine the precise configurations of
points and balls that arise in that theorem.

1. Introduction

An (infinite complex) continued fraction is a formal expression

(1.1)
a1

b1 +
a2

b2 +
a3

b3 + · · ·

,

where the ai and bj are complex numbers and no ai is equal to 0. This
continued fraction will be denoted by K(an| bn). We define Möbius
transformations tn(z) = an/(bn + z), for n = 1, 2, . . . , and let Tn =
t1 ◦ · · · ◦ tn. The continued fraction is said to converge classically if the
sequence T1(0), T2(0), . . . converges. Observe that tn(∞) = 0 for every
n ∈ N, which is equivalent to Tn(∞) = Tn−1(0) for each n ∈ N, with
the convention that T0 is the identity map.

The Hillam-Thron Theorem is stated in [5, Theorem 4.37] as follows.

Theorem A. Let D be the circular region defined by

(1.2) D = {w : |w − c| < r}, where |c| < r.

Let the continued fraction K(an| bn) be such that

(1.3) tn(D) ⊆ D, n = 1, 2, . . . ,
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2 IAN SHORT

where tn(z) = an/(bn + z). Then the continued fraction converges to a
value f ∈ D.

It is our intention to establish a generalisation of Theorem A in
a geometric context that is independent of dimension and is conju-
gation invariant. To this end, we first interpret Theorem A within
this framework. In geometric terms, equation (1.2) says that D is
an open Euclidean disc that contains the origin within its interior.
The transformations tn map ∞, which is strictly exterior to D, to 0,
which is strictly interior to D. This is of particular significance to
the Hillam-Thron Theorem; other results of continued fraction theory
such as Van Vleck’s Theorem and the Parabola Theorem also involve
transformations tn mapping certain sets D within themselves, but with
these results the points ∞ and 0 do not lie on opposite sides of the
boundary ∂D. We can generalise this strong condition associated with
the Hillam-Thron Theorem as follows. Let D be any open ball in
RN

∞ = RN ∪ {∞}, N > 1, defined with the chordal metric (the chordal
metric is described in §2). Choose a point a ∈ D and another point
b ∈ RN

∞ \D. An open ball in the chordal metric is either a Euclidean
half-space, one of the components of the complement of an (N − 1)-
dimensional Euclidean hypersphere, or RN

∞ itself (the final possibility
is implicitly excluded from proceedings through the assumption that
b ∈ RN

∞ \ D). We work with sequences tn of N -dimensional Möbius
transformations that satisfy tn(b) = a and tn(D) ⊆ D, for all n ∈ N.
The hypotheses of Theorem A may be recovered upon choosing a = 0,
b = ∞ and N = 2, and declaring D to be a Euclidean disc.

We have now described the assumptions of Theorem A in geometric
terms that make sense in all dimensions. In this paper we amend the
assumption that tn(D) ⊆ D in the following manner. Equation (1.4)
ensures that

(1.4) D ⊇ T1(D) ⊇ T2(D) ⊇ · · · .
It is intuitively clear, and will subsequently be proved, that the inter-
section of this nested sequence of closed discs is itself a closed disc.
The discs Tn(D) converge, in a sense that will later be made precise,
to this intersection of closed discs. It is our contention that it is the
convergence of Tn(D) that is significant in the Hillam-Thron Theorem,
not the nested requirement. Moreover, all the geometry should be set
within C∞ (or RN

∞ in higher dimensions), rather than C, since Möbius
transformations are conformal bijections of the former space and not
the latter. We state our generalisation of Theorem A bearing in mind
all the above modifications.

Theorem 1.1. Let D be an open ball in RN
∞, and choose two points

a ∈ D and b ∈ RN
∞ \ D. Let T1, T2, . . . be N-dimensional Möbius

transformations that satisfy



HYPERBOLIC GEOMETRY AND THE HILLAM-THRON THEOREM 3

(i) Tn(b) = Tn−1(a), for n = 1, 2, . . . ;
(ii) Tn(D) converges to a compact set X ̸= RN

∞.

Then Tn converges locally uniformly within D to a point.

If X consists of a single point x, then in fact Tn converges uniformly
within D to x, and given a, b, D and X, the set D∪{b} is the largest set
on which pointwise convergence of Tn to x is assured. If X is a closed
ball of positive chordal radius then Tn converges locally uniformly to
a point x on the complement of ∂D, and given a, b, D and X, the
complement of ∂D is the largest set on which pointwise convergence
of Tn to x is assured. Theorem 1.1 and these stronger deductions are
proved in §4. The best possibility of the theorem is discussed in §5.

Condition (ii) of Theorem 1.1 is that the sequence Tn(D) converges
to X with the chordal Hausdorff metric, which may be defined on the
set of compact subsets of RN

∞. This metric is defined in §2 and there
we outline the basic theory of convergence of closed balls within RN

∞.
The limit of this sequence Tn(D) must be another closed ball, although
we have excluded the possibility that X = RN

∞ in Theorem 1.1 as the
result fails in that case. To see this, choose T2n−1(z) = 1/(nz) and
T2n(z) = nz, with D the unit disc in C, a = 0 and b = ∞. Then it is
easily proven (after the chordal Hausdorff metric has been defined in
§2) that Tn(D) converges to C∞, whilst Tn diverges at every point of
C∞. It can never happen that X is equal to C∞ in the classic Hillam-
Thron Theorem as the nested condition (1.4) ensures that X ⊆ D.

Theorem Amay be recovered from Theorem 1.1 upon restrictingD to
be a Euclidean disc, choosing N = 2, a = 0, b = ∞, and assuming that
the balls Tn(D) are nested. Unlike Theorem A, our result is conjugation
invariant, in the sense that the sequence g ◦ Tn ◦ g−1, where g is an N -
dimensional Möbius transformation, also satisfies the hypotheses and
conclusion of Theorem 1.1, but with alternative associated ball and
points g(D), g(a) and g(b).

Theorem 1.1 is a result about Möbius transformations mapping balls
to other balls. Each open chordal ball D ( RN

∞ admits a hyperbolic
metric that we denote by ρD. Any Möbius transformation f that maps
such an open ball D to another open ball E is an isometry from the
metric space (D, ρD) to the metric space (E, ρE). Thus the geometry of
the hypotheses of Theorem A and Theorem 1.1 is hyperbolic, although
the deduction of both theorems is Euclidean convergence. (More pre-
cisely, it is convergence in the chordal metric, but the chordal metric
is locally equivalent to the Euclidean metric in RN .) This interaction
between hyperbolic and Euclidean metrics is reflected in our proof of
Theorem 1.1. In contrast, the standard proofs of the Hillam-Thron
Theorem have little geometric insight and generally consist of opaque
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algebraic manipulations. Throughout this article we assume that the
reader has basic knowledge of standard properties of Möbius transfor-
mations and the hyperbolic metric that can be found in [1] and [6].

To appreciate the geometric simplicity of the principle behind The-
orem 1.1, we encourage the reader to first comprehend Theorem 1.2,
which is an extension of [2, Theorem 1.1]. In Theorem 1.2 we use hyper-
bolic geometry to calculate the precise locations of the balls Tn(D) and
points Tn(a) that arise in Theorem 1.1. With this precision attained,
the proof of Theorem 1.1 is then a careful exercise in converting the ex-
act hyperbolic distance measurements to Euclidean distance estimates
that are necessary to establish Euclidean convergence.

For the purposes of concise exposition, we encapsulate the hypothe-
ses of Theorem 1.1 in a single definition. Let a Hillam-Thron sequence
(Tn, a, b,D) be a sequence of Möbius transformations Tn, an open ball
D ( RN

∞ and points a ∈ D and b ∈ RN
∞ \D, such that Tn(D) converges

in the chordal Hausdorff metric to a limit that is not RN
∞, and such

that Tn(b) = Tn−1(a), for n = 1, 2, . . . . We use the notation ιD for
inversion in the boundary ∂D of D (ιD is a Euclidean reflection if D is
a half-space). If f is a Möbius transformation that maps one open ball
D to another open ball E, then for any z ∈ D

f(ιD(z)) = ιE(f(z))

(see [1, Theorem 3.2.5]).

Theorem 1.2. Let Dn ( RN
∞, n = 1, 2, . . . , be a sequence of open balls

such that Dn converges to a compact set X ̸= RN
∞. Choose a constant

k > 0. Let z1, z2, . . . be a sequence of points in RN
∞ such that for each

n > 2,

(i) zn−1 ∈ Dn−1 \Dn;
(ii) ρDn(ιDn(zn−1), zn) = k.

Then there is a Hillam-Thron sequence (Tn, a, b,D) with Tn(D) = Dn

and Tn(a) = zn, for n = 1, 2, . . . . Conversely, the sequence of balls
Dn = Tn(D) and points zn = Tn(a) associated with any Hillam-Thron
sequence (Tn, a, b,D) satisfy the above conditions with k = ρD(a, ιD(b)).

Theorem 1.2 extends [2, Theorem 1.1], which is a result of a similar
nature that applies to Pringsheim’s Theorem. Pringsheim’s Theorem is
commonly recognised as the special case of the Hillam-Thron Theorem
when D is the unit disc (and a = 0 and b = ∞). From a geometric
perspective, Pringsheim’s Theorem should be considered as the special
case of the Hillam-Thron Theorem when a and b are inverse points
with respect to ∂D. In Theorem 1.2 and the proof of Theorem 1.1, this
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amounts to choosing k = 0, which negates the need to introduce hyper-
bolic geometry, making Pringsheim’s Theorem a significantly simpler
special case of the Hillam-Thron Theorem.

All of our results are true for N = 1, 2, . . . . When we speak of the
hyperbolic metric of an open ball D in R∞, we refer to the restriction
to D of the two-dimensional hyperbolic metric of the open chordal ball
E in C∞, where E is the unique open chordal ball in C∞ such that
E ∩ R∞ = D and such that ∂E cuts R∞ orthogonally.

2. Convergence of sequences of balls in RN
∞

The purpose of this section is to formalise the notion of convergence
of a sequence of closed balls in RN

∞. The results are all intuitive and
the proofs are deliberately terse as they are straightforward.

It is simplest to first consider what it means for a sequence of balls in
RN to converge. To this end, we define the Euclidean Hausdorff metric
α by the equation

α(A,B) = sup
a∈A

inf
b∈B

|a− b|+ sup
b∈B

inf
a∈A

|a− b|,

for compact subsets A and B of RN . The metric α is complete on the
set of compact subsets of RN (see [4, Theorem 2.4.4] for proof).

Lemma 2.1. If A is the closed Euclidean ball with centre c and radius
r > 0 and B is the closed Euclidean ball with centre d and radius s > 0,
then

α(A,B) = |c− d|+max{|c− d|, |r − s|}.

Proof. This follows from adding the equation

sup
a∈A

inf
b∈B

|a− b| = max{|c− d|+ r − s, 0}

to a similar equation for supb∈B infa∈A |a− b|. �
Corollary 2.2. Let B1, B2, . . . and B be closed Euclidean balls with
centres c1, c2, . . . and c, and non-negative radii r1, r2, . . . and r. Then
Bn converges to B in the Euclidean Hausdorff metric if and only if
cn → c and rn → r as n → ∞.

Corollary 2.3. Let B1, B2, . . . be closed Euclidean balls that converge
in the Euclidean Hausdorff metric to a compact set B. Then B is also
a closed Euclidean ball.

Proof. Define cn and rn to be the centre and radius of Bn, for n =
1, 2, . . . . Lemma 2.1 may be applied to show that cn and rn are Cauchy
sequences. Completeness of RN ensures that cn and rn both converge,
then our result may be deduced from Corollary 2.2. �
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We now switch to working with closed balls in RN
∞. The chordal

metric σ on RN
∞ is defined by identifying RN

∞ with the N -dimensional
unit sphere SN through stereographic projection, then transferring the
Euclidean metric on SN over to RN

∞ via this bijection. See [1] for details.
The metric σ is complete, since the Euclidean metric is complete when
restricted to closed sets. Formulae for the chordal metric follow:

σ(x, y) =
2|x− y|√

1 + |x|2
√

1 + |y|2
, σ(x,∞) =

2√
1 + |x|2

,

where x and y are distinct points in RN . The chordal and Euclidean
metrics are locally equivalent within RN . We define the chordal Haus-
dorff metric β by the equation

β(A,B) = sup
a∈A

inf
b∈B

σ(a, b) + sup
b∈B

inf
a∈A

σ(a, b),

for compact subsets A and B of RN
∞. The metric β is complete on the

set of compact subsets of RN
∞ (see [4, Theorem 2.4.4] for proof).

Lemma 2.4. If f is a Möbius map of RN
∞ and K1, K2, . . . is a sequence

of compact sets in RN
∞ that converges to another compact set K in the

chordal Hausdorff metric, then f(Kn) converges to f(K) in the chordal
Hausdorff metric.

Proof. This is true as f satisfies a Lipschitz condition

1

kf
σ(x, y) 6 σ(f(x), f(y)) 6 kfσ(x, y),

for some kf > 0 and all x, y ∈ RN
∞. We refer the reader to [1, Theorem

3.6.1] for information about this Lipschitz condition for Möbius maps.
�

Lemma 2.5. Let B1, B2, . . . be closed Euclidean balls and let B be a
compact subset of RN . Then Bn → B as n → ∞ in the Euclidean
Hausdorff metric if and only if Bn → B as n → ∞ in the chordal
Hausdorff metric.

Proof. This follows quickly from local equivalence of the Euclidean and
chordal metrics within RN . �
Lemma 2.6. The limit B of a convergent sequence of closed chordal
balls B1, B2, . . . in the chordal Hausdorff metric is itself a closed chordal
ball (this includes the possibilities that B is a single point or the whole
of RN

∞).

Proof. If B ̸= RN
∞, there is a point w /∈ B. Choose a Möbius map f such

that f(w) = ∞. Then f(Bn) converges to f(B) by Lemma 2.4 and for
large enough n, the f(Bn) are Euclidean balls. Lemma 2.5 shows that
f(Bn) converges to f(B) in the Euclidean Hausdorff metric, therefore
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Corollary 2.3 shows that f(B), and hence B, are closed chordal balls.
�

It remains to show that a nested sequence of closed chordal balls
converges, so that Theorem 1.1 includes Theorem A.

Lemma 2.7. Let B1 ⊇ B2 ⊇ · · · be closed chordal balls. Then Bn

converges to
∩∞

n=1Bn in the chordal Hausdorff metric.

Proof. Through application of Lemma 2.4 and Lemma 2.5, it suffices
to prove Lemma 2.7 for sequences of closed Euclidean balls Bn. Let Bn

have centre cn and radius rn, for n = 1, 2, . . . . The inclusion Bn ⊇ Bn+1

is equivalent to

rn+1 6 rn, |cn − cn+1| 6 rn − rn+1,

from which we can deduce that both cn and rn converge. Thus Bn

converges to a limit ball B by Corollary 2.2, which is easily seen to be
equal to

∩∞
n=1Bn. �

3. Proof of Theorem 1.2

The proof of Theorem 1.2 precedes the proof of Theorem 1.1 as the
geometry of the former theorem provides motivation for the proof of the
latter. Figure 1 shows the first few points zn and balls Dn associated
with a Hillam-Thron sequence. We have used the notation z∗n−1 for
the point ιDn(zn−1). The dashed circles about the points z∗n represent
hyperbolic spheres in Dn of radius k centred on zn. The convergence of
zn = Tn(a) in Theorem 1.1 is suggested by continuation of this diagram
for higher integers n when the balls Dn are close to the limit ball X.
(It is then a short step in hyperbolic geometry from convergence at the
point a ∈ D to locally uniform convergence within D.)

The next lemma in hyperbolic geometry is pivotal in the proof of
Theorem 1.2 and it is also used in the examples of §5. We give only a
sketch proof as it is an elementary exercise in hyperbolic geometry.

Lemma 3.1. Choose two open chordal balls A,B ( RN
∞, and two points

a1 ∈ A and b1 ∈ B. Choose two further points a2 and b2 such that
either a2 ∈ ∂A and b2 ∈ ∂B, or a2 ∈ A and b2 ∈ B with ρA(a1, a2) =
ρB(b1, b2). Then there exists an N-dimensional Möbius map f with
f(A) = B, f(a1) = b1 and f(a2) = b2.

Sketch proof. It suffices to prove the result when B is the unit ball
BN and b1 = 0. Choose any Möbius map g with g(A) = BN and
g(a1) = 0, then choose an orthogonal map h with h(g(a2)) = b2. Such
an orthogonal map clearly exists when a2 ∈ ∂A, and it exists when
a2 ∈ A since, by preservation of hyperbolic distance

ρg(A)(0, g(a2)) = ρA(a1, a2) = ρBN (0, b2),
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Figure 1. Typical geometry of Theorem 1.2.

so that |g(a2)| = |b2|. The map f = h ◦ g has the required properties.
�

Proof of Theorem 1.2. Suppose that we are given sequences Dn and
zn and a constant k > 0 as described in Theorem 1.2. We define a
Hillam-Thron sequence (Tn, a, b,D) with Tn(D) = Dn and Tn(a) = zn,
for n = 1, 2, . . . . Choose a point a /∈ D1, with ρD1(ιD1(a), z1) = k,
then choose any open ball D containing a and any point b /∈ D with
ρD(a, ιD(b)) = k.

Define z0 = a, then for each n ∈ N: zn ∈ Dn, ιDn(zn−1) ∈ Dn

and ρDn(ιDn(zn−1), zn) = ρD(a, ιD(b)), therefore Lemma 3.1 may be
applied to deduce the existence of a Möbius map Tn with Tn(D) = Dn,
Tn(a) = zn and Tn(ιD(b)) = ιDn(zn−1). Preservation of inverse points
ensures that Tn(b) = zn−1 so that (Tn, a, b,D) is the required Hillam-
Thron sequence.

It remains to check that a given Hillam-Thron sequence (Tn, a, b,D)
satisfies the conditions of Theorem 1.2. Let Dn = Tn(D) and zn =
Tn(a), then since (Tn, a, b,D) is a Hillam-Thron sequence, Dn converges
to a closed ball which is not RN

∞. As a ∈ D whilst b /∈ D, we have that
zn−1 = Tn−1(a) = Tn(b) ∈ Dn−1 \Dn. This is condition (i). Condition
(ii) is also quickly verified with k = ρD(ιD(b), a), since the Möbius
map Tn is a hyperbolic isometry from D to Dn and it preserves inverse
points between these two balls, so that

ρDn(ιDn(zn−1), zn) = ρDn(Tn(ιD(b)), Tn(a)) = ρD(ιD(b), a),
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as required.

�

The beauty of Theorem 1.2 is that it allows us to understand the
Hillam-Thron Theorem in terms of sequences of points and balls. One
can construct analogous results for other continued fraction theorems
such as Van Vleck’s Theorem and the Parabola Theorem, but the ab-
sence of a nesting condition (1.4) in Theorem 1.2 distinguishes it from
the geometry that is associated with these classic theorems. Whilst
Theorem 1.2 allows one to construct all possible Hillam-Thron se-
quences in a geometric manner whether the nesting condition is satis-
fied or not, we have yet to discount the unlikely possibility that every
given Tn that does not satisfy (1.4), does in fact satisfy (1.4) for a
different choice of a, b and D. Examples that remove this possibility
are plentiful. For instance, let t1, t2, . . . be Euclidean rotations that
map −1 to 0, and choose any open Euclidean disc D with 0 ∈ D and
−1 /∈ D. (The maps tn are of the form tn(z) = αn(z + 1), for αn ∈ C
such that |αn| = 1.) Define Tn = t1 ◦ · · · ◦ tn, then (Tn, 0,−1, D) is a
Hillam-Thron sequence provided that the αn are chosen suitably such
that Tn(D) converges. On the other hand, Tn cannot satisfy (1.4) for
a different choice of D since the maps tn are elliptic and thus cannot
map a disc strictly inside itself.

It will usually be difficult to apply Theorem 1.1 to a particular given
continued fraction because one must find a disc D for which Tn(D)
converges. That may very well be a more troublesome task than de-
termining that Tn(z) converges through some other means. Of course,
convergence of Tn(D) is guaranteed by the condition tn(D) ⊆ D of the
classic Hillam-Thron Theorem (see Lemma 2.7).

4. Proof of Theorem 1.1

In Proposition 4.2 we supply a set of conditions that ensure that a
sequence xn in RN converges, then we show that the sequence Tn(b)
of Theorem 1.1 satisfies these conditions. Lemma 4.1 contains the key
geometric step in Proposition 4.2.

Lemma 4.1. Let a, b and c be three distinct points in RN such that the
angle θ between the segments [a, b] and [a, c] lies in the interval [0, π/2)
and such that |a− c| 6 |a− b| cos θ. Then

|a− b| − |b− c| > 1
3
cos θ|a− c|.

Proof. If θ = 0 then c ∈ (a, b) and the result is clearly true. If θ ∈
(0, π/2) we may apply the Cosine Rule to the triangle with vertices a,
b and c to yield,

|a− b|2 − |b− c|2 = 2|a− b||a− c| cos θ − |a− c|2.
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Using this equation and the inequality |a− c| 6 |a− b| cos θ we obtain

|a− b| − |b− c| =
(
2|a− b| cos θ − |a− c|

|a− b|+ |b− c|

)
|a− c|

>
(

2|a− b| cos θ − |a− b| cos θ
|a− b|+ |a− b|+ |a− b| cos θ

)
|a− c|,

from which the result follows. �

Proposition 4.2. Choose a constant θ ∈ [0, π/2) and let c1, c2, . . . and
x1, x2, . . . be sequences in RN with cn → 0 and |xn| → 1 as n → ∞.
Suppose that there is a natural number N such that for every n > N ,

(i) the angle θn between the Euclidean line segments [xn, xn+1] and
[xn, cn] satisfies 0 6 θn 6 θ;

(ii) |xn − xn+1| 6 |xn − cn| cos θn.

Then x1, x2, . . . converges.

Proof. Since |xn|−|cn| 6 |xn−cn| 6 |xn|+|cn|, it is true that |xn−cn| →
1, and similarly |xn+1 − cn| → 1, as n → ∞. Choose M > N such that
whenever n > M the next set of four inequalities hold,

|xn| 6 2, |xn − cn| > 1/2, |xn+1 − cn| > 1/2, |cn| 6 1
12
cos θ.

From Lemma 4.1 we know that

1
3
cos θ|xn+1 − xn| 6 |xn − cn| − |xn+1 − cn|,

therefore for n > M ,

1
3
cos θ|xn+1 − xn| 6 |xn − cn|2 − |xn+1 − cn|2

= |xn|2 − |xn+1|2 + 2(xn+1 − xn) · cn
6 |xn|2 − |xn+1|2 + 2|xn+1 − xn||cn|
6 4(|xn| − |xn+1|) + 1

6
cos θ|xn+1 − xn|,

therefore

|xn+1 − xn| 6 24
cos θ

(|xn| − |xn+1|).
This shows that

L∑
n=M

|xn+1 − xn| 6 24
cos θ

L∑
n=M

(|xn| − |xn+1|) = 24
cos θ

(|xM | − |xL+1|).

The right hand side of this inequality converges, therefore the left hand
side converges also. Hence the sum

∑L
n=M(xn+1 − xn) = xL+1 − xM

converges, hence x1, x2, . . . converges. �
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In the next lemma, the precision of hyperbolic geometry is employed
in obtaining Euclidean distance estimates that are necessary in rec-
onciling Theorem 1.1 with Proposition 4.2. We assume in the proofs
of Lemma 4.3 and Theorem 1.1 that it is known that the Euclidean
centre and hyperbolic centre of a ball within the Poincaré ball model
of hyperbolic space both lie on the same radius of the Poincaré ball.
This follows from the symmetry of hyperbolic and Euclidean metrics
and is proven in most introductory texts in hyperbolic geometry. We
also use standard formulae for the hyperbolic metric in a disc (and a
half-plane in §5), such as can be found in [1, Chapter 7].

Lemma 4.3. Let ∆ be an open Euclidean ball in RN with centre c and
radius r > 0, and let x ∈ RN \ ∆ and y ∈ ∆ be inverse points with
respect to ∂∆. Let B be the closed ball in ∆ with hyperbolic centre y
and hyperbolic radius k > 0. Then the Euclidean radius s of B and the
Euclidean centre b of B satisfy (1 + e−k)s 6 |x− b|.

Proof. Let the Euclidean line through c, b and y intersect ∂B at points
u and v, where the label v is chosen for the intersection point such that
c, b, v and x occur in that order along the line. Then

(4.1) ρ∆(c, u) = |ρ∆(c, y)− k|, ρ∆(c, v) = ρ∆(c, y) + k.

Using the well known formula (see [1, §7.2])

ρ∆(c, z) = log

(
r + |c− z|
r − |c− z|

)
, z ∈ ∆,

with equation (4.1), one obtains the formulae

|c−v| = r
γek − 1

γek + 1
, |c−u| = r

|γe−k − 1|
γe−k + 1

, γ = eρ∆(c,y) =
r + |c− y|
r − |c− y|

.

If u lies between c and b then 2s = |c − v| − |c − u| (this corresponds
to γ > ek). On the other hand, if c lies between u and b then 2s =
|c− v|+ |c− u| (this corresponds to γ 6 ek). In either case, it follows
that

s = rγ
ek − e−k

(γek + 1)(γe−k + 1)

and this may be simplified to yield

s =
δr(r2 − |y − c|2)
r2 − δ2|y − c|2

, δ =
ek − 1

ek + 1
.

Since 2δ/(1− δ2) = sinh k 6 ek and |y − c| 6 r, we have that

(4.2) s 6 2δr2(r − |y − c|)
r2(1− δ2)

6 ek(r − |y − c|).

Now

(4.3) |x− b| = |x− v|+ s
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and

(4.4) |x− v| > |x− c| − r > r
|x−c|(|x− c| − r) = r − |y − c|.

Equations (4.2), (4.3) and (4.4) may be combined to give the result. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. If Tn(D) converges to a single point x then Tn

converges to x uniformly on D. Thus we assume that Tn(D) converges
to a closed ball X of positive radius. Choose a Möbius transformation
f that maps X to the closed unit ball BN in RN . Lemma 2.4 shows that
f ◦ Tn ◦ f−1(f(D)) = f ◦ Tn(D) converges to BN . Since the hypothe-
ses and conclusion of Theorem 1.1 are preserved under conjugation, it
suffices to assume that X = BN . Corollary 2.2 and Lemma 2.5 show
that we may henceforth restrict to large enough n for which Tn(D) is a
Euclidean ball with centre cn and radius rn, where cn → 0 and rn → 1
as n → ∞.

Define b∗ to be the inverse point of b in ∂D. Let A be the closed ball
with hyperbolic centre b∗ and hyperbolic radius k, where k > ρD(a, b

∗),
so that a ∈ A. We define xn = Tn(b) and then match the hypotheses of
Proposition 4.2, which then shows that xn must converge. That cn → 0
as n → ∞ has been assured. To see that |xn| → 1 as n → ∞, observe
that xn = Tn(b) /∈ Tn(D), so that |xn − cn| > rn, and xn = Tn−1(a) ⊆
Tn−1(D), so that |xn − cn−1| 6 rn−1. Therefore

rn 6 |xn − cn| 6 |xn − cn−1|+ |cn−1 − cn| 6 rn−1 + |cn−1 − cn|.
Since cn → 0 and rn → 1 as n → ∞, these inequalities show that both
sequences with nth terms |xn − cn| and |xn| converge to 1.

To see that xn converges we have only to verify properties (i) and (ii)
from Proposition 4.2. Möbius maps preserve inverse points, therefore
yn = Tn(b

∗) and xn = Tn(b) are inverse points with respect to ∂Tn(D),
hence

(4.5) |xn − yn| = |xn − cn| −
r2n

|xn − cn|
→ 0 as n → ∞.

The map Tn preserves hyperbolic distance from D to Tn(D), therefore
the closed ball Tn(A) has hyperbolic centre yn and hyperbolic radius
k in Tn(D). Let Tn(A) have Euclidean centre bn and Euclidean radius
sn. As xn+1 = Tn(a) ∈ Tn(A), we have the inequality

(4.6) |xn − bn| − sn 6 |xn − xn+1| 6 |xn − bn|+ sn.

We apply Lemma 4.3 with ∆ = Tn(D) and B = Tn(A) to deduce that

(4.7) (1 + e−k)sn 6 |xn − bn|.
Since bn lies on the Euclidean line segment [xn, cn], the angle θn ∈ [0, π)
between the Euclidean line segments [xn, cn] and [xn, xn+1] is equal to
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the angle between the Euclidean line segments [xn, bn] and [xn, xn+1].
If θn > 0, we may apply the Cosine Rule to the triangle with vertices
xn, bn and xn+1 which, along with equations (4.6) and (4.7), yields

cos θn =
|xn − bn|2 + |xn − xn+1|2 − |bn − xn+1|2

2|xn − bn||xn − xn+1|

> |xn − bn|2 + (|xn − bn| − sn)
2 − s2n

2|xn − bn|(|xn − bn|+ sn)

=
|xn − bn| − sn
|xn − bn|+ sn

> 1

2ek + 1
.

Hence all θn lie in the interval [0, θ), where θ is the unique solution in
[0, π/2) of cos θ = 1/(2ek + 1). Thus property (i) is true. Property
(ii) is also true since |xn − cn| cos θn is greater than 1

2
cos θ for large n,

whilst we now show that |xn − xn+1| → 0 as n → ∞. Using (4.6) and
(4.7) we have that

|xn − xn+1| 6 |xn − bn|+ sn(4.8)

6
(
1 + 1

1+e−k

)
|xn − bn|

= (2ek + 1)
(
1− 1

1+e−k

)
|xn − bn|

6 (2ek + 1)(|xn − bn| − sn)

6 (2ek + 1)|xn − yn|,(4.9)

and |xn − yn| → 0 as n → ∞ by (4.5), hence property (ii) is verified.
All the hypotheses of Proposition 4.2 have now been satisfied and that
proposition demonstrates convergence of xn to a limit x.

It remains to show that Tn converges locally uniformly within D to
x. Since |xn − yn| → 0 as n → ∞, certainly Tn(b

∗) → x as n → ∞.
Now

sup
w∈A

|yn − Tn(w)| 6 2sn,

and that sn → 0 as n → ∞ can be seen from (4.8) and (4.9). Therefore
Tn converges to x uniformly within A. The result follows as Amay have
been chosen to be arbitrarily large within D. �

We remark that it has just been shown that Tn(w) → x as n → ∞
for points w ∈ D, where |x| = 1. If w ∈ RN

∞ \D and w∗ = ιD(w) then
Tn(w

∗) → x as n → ∞ and

|Tn(w)− Tn(w
∗)| = |ιDn(Tn(w

∗))− Tn(w
∗)| = r2n − |Tn(w

∗)− cn|2

|Tn(w∗)− cn|
.
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This latter expression converges to 0 as n → ∞, therefore also Tn(w) →
x as n → ∞. That Tn converges to x on RN

∞ \D when X is a ball of
positive radius is not included in the statement of Theorem 1.1 since
it is not true when X is a single point. An example verifying this
assertion is provided in §5.

5. Best possibility of Theorem 1.1

In this section we provide two examples to demonstrate the strength
and necessity of certain aspects of Theorem 1.1. Such examples are no-
tably missing from existing accounts of the Hillam-Thron Theorem for
two reasons. Firstly, those accounts are predominantly algebraic and
lack the geometric machinery we employ in constructing our examples.
Secondly, those accounts tend to focus on convergence of the sequence
Tn only at the point 0, as this is the classical definition of continued
fraction convergence. In contrast, we are interested in the convergence
or divergence of Tn at every point in RN

∞, since the point 0 has no
particular geometric significance for general Möbius transformations.

In Example 1 we examine Theorem 1.1 when the limit ball X is
chosen to be a single point and in Example 2 we examine Theorem 1.1
when X is a closed ball with positive chordal radius. We conclude that
given a, b and D in Theorem 1.1, the set D ∪ {b} is the largest set on
which we can be certain of convergence of Tn to the limit value.

Let us first assume that X is a single point x. Evidently Tn con-
verges uniformly on D to x, and since Tn(b) ∈ Tn−1(D) for every n,
also Tn(b) → x as n → ∞. We give an example of this limit point
circumstance for which Tn diverges on a chosen dense subset of the
complement of D ∪ {b}, thereby proving that the conclusion of Theo-
rem 1.1 cannot be strengthened to include convergence on a larger set
than D ∪ {b}.

Example 1. Let D = {z ∈ C : Re[z] > 0}, a = 1 and b = −1. Choose
a countable set of points S that is dense in C \ (D ∪ {−1}) and a
sequence ζ1, ζ2, . . . in S such that if s ∈ S then s = ζn for infinitely
many n. Let ρn = ρD(ιD(ζn), 1), for n ∈ N.

We define two sequences un and vn by the formulae

u1 = 1, vn = un/(1− e−ρn), un = 2vn−1 − un−1.

Let Dn = {z : Re[z] > vn}, then it can be verified that

u1 < v1 < u2 < v2 < · · · , ιDn(un+1) = un, ρDn(un+1, ιDn(0)) = ρn.

Furthermore, one may show that

vn >
(
Πn

i=1(1− e−ρi)
)−1

,
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from which we deduce that the sequence vn is unbounded. Lemma 2.7
shows that Dn converges in the chordal metric to {∞}. By Lemma 3.1
we may choose Möbius maps T1, T2, . . . with Tn(D) = Dn, Tn(1) = un+1

and Tn(ιD(ζn)) = ιDn(0). Preservation of inverse points from D to Dn

ensures that Tn(−1) = un and Tn(ζn) = 0. Thus we conclude that
(Tn, 1,−1, D) is a Hillam-Thron sequence such that Tn converges uni-
formly on D to ∞, whilst Tn(ζn) = 0 for every n. Hence Tn does not
converge to the limit point x = ∞ on S. It is sufficient for our purposes
to have shown that Tn does not converge to x on S, although one may
verify the stronger assertion that Tn diverges on S using the equal-
ity ριDn (Dn)(Tn(ζm), Tn(ζn)) = ριD(D)(ζm, ζn) and comparing hyperbolic
and Euclidean distances. �

When X is a closed ball with radius between 0 and 2, that is, when
X is neither a single point nor the whole of RN

∞, it was shown in the
proof of Theorem 1.1 in §4 and the comment following that proof that
Tn converges to x on RN

∞ \ ∂D. We supply an example of a Hillam-
Thron sequence (Tn, a, b,D) such that Tn diverges on a given dense set
of points in ∂D, thereby completing our argument to show that the con-
clusion of Theorem 1.1 cannot be strengthened to include convergence
on a larger set than D ∪ {b}.

Example 2. Let

D = {z : Re[z] < 3/2}, a = 1, b = 2 and Un(z) = z/2n,

for n = 1, 2, . . . . Then

U1(2) = 1, Un(2) = Un−1(1) = 1/2n−1 and Un(D) = Dn,

for n = 1, 2, . . . , where Dn = {z : Re[z] < 3/2n+1}.

Choose a countable dense subset S of ∂D and a sequence ζ1, ζ2, . . .
of elements of S such that every s ∈ S occurs in this sequence infinitely
many times. By Lemma 3.1, we may define Vn to be an automorphism
of Dn that fixes the interior point Un(1) and maps the boundary point
Un(ζn) to ∞. Let Tn = Vn ◦Un. Then Tn(1) = Un(1) and Tn(D) = Dn.
As Möbius maps preserve inverse points we see that

Tn(2) = Tn(ιD(1)) = ιDn(Tn(1)) = 1/2n−1 = Tn−1(1),

so that (Tn, 1, 2, D) is a Hillam-Thron sequence such that Tn(z) → 0
as n → ∞ for z ∈ D, and such that Tn(D) converges to the closed left
half-plane. If s ∈ S then Tn(s) = ∞ for infinitely many n so that Tn

does not converge to 0 on S (in fact, Tn diverges on S), as required. �
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6. Concluding remarks

A. F. Beardon has proven with Euclidean geometry a version of the
Hillam-Thron Theorem that is valid in all dimensions (see [3]). He
replaces the condition Tn(b) = Tn−1(a) with the more general condition
Tn(b) ∈ Tn−1(A), where A is a compact subset ofD. It is not difficult to
adjust Theorem 1.1 and its proof to accommodate this generalisation.
The author has extended this assumption further still in [7] whilst
proving a several dimensional version of the Parabola Theorem.

Most convergence theorems in the analytic theory of continued frac-
tions involve nested sequences of discs D ⊇ T1(D) ⊇ · · · , and it seems
probable that in results other than the Hillam-Thron Theorem one may
replace this nested condition with a suitable notion of convergence of
discs. The author has not looked into this possibility.

Finally, we remark that it may be possible to extend Theorem 1.1 to
include more general domains D than discs and more general confor-
mal (or possibly quasiconformal) maps Tn than Möbius maps, but we
have discovered only counterexamples and not positive results in this
direction.

References

[1] A. F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, 1983.
[2] A. F. Beardon. The geometry of Pringsheim’s continued fractions. Geom. Ded-

icata, 84:125–134, 2001.
[3] A. F. Beardon. The Hillam-Thron Theorem in higher dimensions. Geom. Dedi-

cata, 96:205–209, 2003.
[4] G. A. Edgar. Measure, topology and fractal geometry. Undergraduate Texts in

Mathematics. Springer-Verlag, 1990.
[5] W. B. Jones and W. J. Thron. Continued Fractions: Analytic Theory and Ap-

plications, Encyclopedia of Mathematics and its Applications. Addison-Wesley,
1980.

[6] J. G. Ratcliffe. Foundations of hyperbolic manifolds. Number 149 in Graduate
Texts. Springer-Verlag, 1994.

[7] I. Short. The Paraboloid Theorem. Paper under preparation, 2006.

E-mail address: Ian.Short@nuim.ie

Mathematics Department, NUI Maynooth, Ireland


