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Abstract 

A detailed study of the effect of off-center donor ion (Sc3+) substitution on structural, 

microstructural, optical, dielectric, electrical and ferroelectric properties of morphotropic lead 

zirconate titanate electroceramics with the stoichiometric formula Pb0.85Sc0.10Zr0.53Ti0.47O3 

(PSZT), synthesized using a high-energy solid-state reaction technique, was carried out. Powder 

x-ray diffractometry was used to identify the stabilized tetragonal phase (space group mmP4 ) 

with considerably reduced tetragonal strain, ac / = 1.005.An analysis of the thermal dependence 

of the Raman results indicated a smooth order-disorder displacive (ferroelectric-paraelectric) 

phase transition as revealed by the observed disappearance of the soft modes A1 (1TO) and A1 

(2TO) above 460 K. The dielectric response of Pt/PSZT/Pt metal-ferroelectric-metal (MFM) 

capacitors was probed over a wide range of thermal excursions (85-600 K) and ac signal 

frequencies (102-106 Hz). Thermally activated dynamic and static conduction processes indicate 

hopping conduction mechanism ( actE ≤ 0.015 eV) and the formation of small polarons caused by 

the electron and/or hole-lattice (phonon) interaction ( actE ≥ 0.1 eV) at low (100−300 K) and high 

temperatures (300−600 K), respectively. The reduction in remnant polarization obtained is in 

good agreement with the largely reduced tetragonal strain observed in this sample, ( rP ∝

1/ ac ). DC current conduction is dominated by Poole-Frenkel mechanism that assumes a 

Coulombic attraction between de-trapped electrons and positively charged stationary defects in 

the polycrystalline matrix. 
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1. INTRODUCTION 

Ferroelectric perovskites with the general formula ABO3 have a monovalent or divalent and a 

pentavalent or tetravalent cation at the A and B sites, respectively, and O represents the divalent 

oxygen anion. The simple lead zirconate titanate Pb(ZrxTi1−x)O3 (0≤x≤1) or PZT, which is a 

solid solution of lead zirconate (PbZrO3) and lead titanate (PbTiO3), is one of the most 

researched and technologically important perovskite oxides due to its exceptional ferroelectric 

and piezoelectric properties.1 Depending on the composition PZT possesses two ferroelectric 

phases at room temperature: a tetragonal phase (space group mmP4 ) in the titanium-rich 

composition with Pb-ion displaced along the 4-fold axis (statistically averaged – the local 

displacements are all [111] axes, with rapid hopping among [111], [1-11], etc.); in the zirconium-

rich composition there is a rhombohedral phase (space group cR3 or mR3 ) with Pb-ion displaced 

along the 3-fold axis, that is, along the cubic [111] direction.2,3 An enhancement of the 

piezoelectric properties in PZT has been observed at the morphotropic phase boundary, a region 

of the temperature-composition phase diagram where the tetragonal to rhombohedral phase 

transition occurs through an intermediate monoclinic (space groupCm ) phase as x exceeds ~52.4 

PZT with composition (Zr/Ti : 53/47) exhibits extraordinarily high dielectric,  pyroelectric, 

piezoelectric, and ferroelectric characteristics and undergoes a ferroelectric (tetragonal)-

paraelectric (cubic) phase transition at  ~387 °C.5 

The electrophysical properties such as permittivity, ferroelectric coercitivity, electrical 

resistivity, Curie temperature, and crystal structure of PZT can be systematically modified by 

isovalent or heterovalent ion doping as well as substitution into Pb and/or Zr/Ti sites, resulting in 

the design of new higher-performance material compositions. A-site or B-site donor (chemical 

valences higher than the original A/B site ions) substitution can decrease the fatigue in PZT, 
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which is attributed to the diluted oxygen vacancy concentration ( 

oV ) and compensated Pb 

vacancies ( "

PbV ), and mediate hole concentration by the donors. Zhang et al. theoretically 

predicted that fatigue behavior in PZT can be improved by A-site substitution using heterovalent 

group IIIA elements (La3+, Sc3+, or Y3+), which results in its conduction band minima being 

shared by Ti 3d and impurity states, leading to a reduction in occupation in Ti 3d states by the 

oxygen vacancies’ freed electrons.6 The substitution of these elements free electrons to 

compensate the holes in volatile Pb atom sites and dilute the oxygen vacancy concentration 

causes the softening of the ferroelectric features of PZT, which provides new knowledge of the 

effects of donor substitution on the electrophysical properties of PZT, and may aid in the design 

of new smart/intelligent materials.7  

With this motivation a systematic investigation on crystal structure, microstructure, 

electrical, dielectric and ferroelectric properties of A-site donor (scandium) substituted lead 

zirconate titanate electroceramics (Pb0.85Sc0.10Zr0.53Ti0.47O3) in which 10% of the A-sites have 

Sc3+ and 5% are vacant have been carried out.  Higher dopant levels do not result in single-phase 

material. 

2. EXPERIMENTAL PROCEDURE 

High purity powders of lead (II) oxide (99.9%), zirconium (IV) oxide (99.5%), titanium (IV) 

oxide (99.8%) and scandium oxide (99.9%) from Alpha Aesar products were used to synthesize 

PSZT ceramics by a conventional solid state reaction method. All of these oxide powders were 

weighed in accordance with the stoichiometric molecular formula Pb0.85Sc0.10Zr0.53Ti0.47O3 

(PSZT), mixed together, and ball milled for 24 hrs, with stabilized zirconia balls in methanol. An 

excess of 10 weight% PbO was added to recover the loss of lead during calcination and sintering 

at high temperatures. The ball-milled mixture was subsequently dried, finely crushed using 
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mortar and pestle and calcined at 1050 °C for 6 hrs in a Carbolite HTF1700 furnace. The phase 

purity of powders was checked at room temperature by employing a Rigaku Ultima III X-ray 

diffractometer (XRD) equipped with CuKα radiation (=1.5405 Å) source configured in Bragg-

Brentano (θ–2θ) geometry and operating at 40 kV and 40 mA. The synthesized powders were 

mixed with 5 wt% polyvinyl alcohol as binding agent and were pressed in the form of thick 

pellets (13 mm diameter; 1 mm thickness) at a uniaxial pressure of 3.9×104 Pa and later sintered 

at 1150 ºC for 5 hrs.The XRD spectra were again measured to confirm the phase purity. The 

samples were then subjected to Raman spectroscopy studies in the temperature range from 80 K 

to 580 K. We used a Coherent Argon ion laser (Innova 70-C) of wavelength 514.5nm.  A liquid- 

nitrogen-cooled charge-coupled detector collected the Raman scattered signal through a 50  

objective. We collected temperature dependent spectra of the sample in vacuum from 80 K to 

580 K using a Linkam module. The morphology, size, shape and distribution of the samples were 

analyzed at room temperature in vacuum at 3500 , 5000  and 10000  magnifications using a 

scanning electron microscope (SEM) model JOEL JSM-6480LV having a resolution of better 

than 1 μm and operating at a potential of 20 kV. Elemental analysis of the pellets was carried out 

by recording the energy-dispersive x-ray (EDX) spectra. For dielectric and electrical 

measurements, synthesized pellets were DC sputtered at room temperature with platinum and 

were subsequently annealed at 400°C for 30 min in a tube furnace at ambient environment for 

proper adhesion of Pt and to compensate for any sputter damage. The capacitance versus 

frequency (CF), capacitance versus voltage (CV) and loss tangent were measured using an 

HP4294A Impedance Analyzer at a low ac test signal of 250 mV, and current versus dc voltage 

(IV) measurement were carried out with a Keithley electrometer (model #6517A) in the 

temperature range of 85 K to 600 K. Temperature control was achieved using a programmable 
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temperature controller (MMR technologies, Inc.). The samples were poled for 7 hours, and the 

remnant polarization and coercive field of the ferroelectric capacitors were measured using a 

Sawyer Tower test configuration (Radiant Technologies Model RT 6000 HVA-4000V). 

3. RESULTS AND DISCUSSION  

A. Structural and microstructural analysis 

The new phase diagram of PZT reported by Zhang et al. predicts the coexistence of 

tetragonal (space group mmP4 ), rhombohedral (space group mR3 ) and monoclinic (space group

Cm ) room temperature structures at the morphotropic phase boundary.8 The coexistence of 

tetragonal (space group mmP4 ) and monoclinic (spacegroup Cm ) phases as a result of a first 

order phase transition between the low temperature monoclinic and high temperature tetragonal 

phases were identified from x-ray diffraction refinement of pure PbZrxTi1-xO3 ceramics 

(0.515<x<0.530).9,10  A ferroelectric PbZr0.52Ti0.48O3 composition with tetragonal crystal 

structure and mmP4 (
1

4vC ) space group has been reported by several researchers.5,11 The room 

temperature XRD diffraction pattern of PSZT ceramics collected at a slow angular velocity of 

0.3 deg/min shown in Fig. 1(a) suggest that the material possesses a homogenous tetragonal 

crystal structure. For cubic symmetry with lattice parameters a = b  = c  splitting of (200), (220), 

(222) Bragg peaks are not expected. For the tetragonal structure, the (200) peak is expected to be 

a doublet and (222) a singlet. However, the (222) x-ray peak for the rhombohedral phase should 

exhibit a doublet, whereas for monoclinic it is a quadruplet. In our case (200), (220) and (222) 

peaks were more accurately Gaussian modeled with doublet, doublet and singlet, respectively 

(Fig. 1insets (a-c)), which shows that PSZT ceramics possess a stabilized tetragonal symmetry 

with space group mmP4  which does not have any inversion center. Additionally, the 

Goldschmidt tolerance factor,12 0.8319, estimated for PSZT using octahedral radii of Pb2+ (1.29 
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Å), Sc3+ (0.87 Å), Zr4+ (0.84 Å), Ti4+ (0.74 Å) and O2- (1.42 Å)13 favors its tetragonal stable 

phase formation with higher symmetry (decreased degree of distortion). We observed a shift in 

Bragg peaks towards higher diffraction angle with respect to those of undoped PbZr0.53Ti0.47O3 

(data not shown) as a result of decrease in lattice constants due to the incorporation of soft/donor 

dopant Sc3+ (ionic radius 0.87Å) at the Pb2+ (ionic radius 1.29 Å) site. The room temperature 

lattice parameters of PSZT were estimated to be a = b  = 4.07 Å and c = 4.09 Å (unit cell 

volume = 67.78 Å3) using Rietveld structural analysis assuming the tetragonal structure with 

mmP4  space group (data not shown). The greatly reduced tetragonal strain, ac / = 1.005, is a 

clear evidence of Sc incorporation in the PZT matrix. Figure 2 depicts EDX spectrum of the 

PSZT sample excited by an electron beam of energy 20 kV, showing the presence of elements 

(Pb, Zr, Ti, Sc and O) making up the oxide compound, along with their respective characteristic 

x-ray emission lines (O Kα 0.525 keV, Zr Lα 2.042 keV, Sc Kα 4.089 keV, Ti Kα 4.508 keV, Pb 

Mβ 5.076 keV and Pb Lα 10.552 keV). On average, the Pb:Sc:Zr:Ti atomic ratio, estimated from 

the intensities of the respective characteristic lines, was in good agreement with the composition 

stoichiometry of PSZT precursors prior to calcination. The inset of Fig. 2 depicts a typical SEM 

micrograph of the sintered pellet revealing pores and well defined granular structure consisting 

of randomly oriented grains (crystallites) with an average grain size of about ~1-2 μm. 

B. Raman spectroscopic studies 

Raman vibrations of ferroelectric tetragonal phase with one formula unit 

in the primitive cell belong to point group mm4  and space group mmP4 or
1

4vC ; its normal modes 

are given by: , )(),(4),(3 11 rBirrEirrAopt  where opt
 
are the optical vibrational modes and 

the symbols r and ir indicate Raman- and infrared-active modes, respectively.14,15 Each of the 

three 1A and three E modes is doubly degenerate with a transverse mode (TO) having polarization 



7 

 

perpendicular to propagation 


k and a longitudinal mode (LO) with polarization parallel to


k  due 

to long-range Coulomb forces, making the total number of spectral peaks 14. Raman spectra of 

PSZT polycrystalline samples recorded in the temperature window of 80−580 K are presented in 

Fig. 3. The observed overlap in spectra and their large line-widths that broadened with 

temperature makes the identification of individual modes clumsy. It can be caused by the static 

atomic displacement from their ideal positions as a result of lattice strain due to the material’s 

thermal history as well as due to compositional substitution by atoms with mismatched cationic 

radii and valencies.16 In our case the Sc3+ substitution resulted in a nearly cubic structure with 

highly reduced tetragonality, as revealed from x-ray diffractometry studies. Nevertheless, five 

modes E (1LO), A1 (1TO), E (2TO), E+B1, and A1 (2TO) were identified with certainty and the 

peak frequency of TO modes was found to be reduced by the substitution of Pb (atomic weight 

207.2) sites by Sc (atomic weight 44.96) as a result of appreciable softening of force constant of 

the respective lattice vibration together with a large reduction in ferroelectric distortion or ac /  

ratio. The presence of prominent A1 (1TO) and A1 (2TO) modes in the 80−460 K temperature 

window show that the tetragonal phase is intact in this range. The soft mode A1 (1TO), which  

originates from the vibrations of Ti/Zr and O ions relative to Pb/Sc ions, and A1 (2TO), which 

represents the displacements of the Ti/Zr ion with respect to both O and Pb/Sc ions, are closely 

affected by the existence of the ferroelectric phase.17,18,15 All of the identified modes except 

E+B1 were found to soften with the rise in temperature.19 Above 460 K all the modes undergo 

significant damping, and A1 (1TO) and A1 (2TO) soft modes lose their intensities and 

disappear,which can be considered as arising from a displacive phase transition in which the 

ferroelectric tetragonal to paraelectric cubic symmetry distortion commences at temperatures 

below the disappearance of ferroelectric ordering. So the Sc substitution results in the significant 
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lowering of Curie temperature CT of pure PZT, which is reported to be ~653 K.4 Only some 

broad and weak phonon modes were present in the spectra above 460 K; they correspond to TO2, 

TO3, and TO4 hard modes (see Fig. 3) belonging to the cubic phase with mPm3  or 
1

hO  space 

symmetry.20 These three modes observed out of the four predicted (including TO1) originate in 

the three (TO1, TO2, and TO4) optical odd-parity/polar uT1 and one (TO3) non-polar uT2 modes 

and can be attributed to the presence of polar nanoregions at higher temperatures (below and 

above CT ) induced by off-center ion (Sc3+ whose ionic radii is only 67% that of Pb3+). 

C. Diffuse Reflectance Spectroscopy 

An optical bandgap Eg was estimated for the PSZT sample as shown in Fig. 4 using diffuse 

reflectance spectra under the assumption of a direct band-to-band transition between O 2p 

valence band maximum and Ti3d and dopant Sc3d mixed conduction band minimum. The 

vertical line in the first derivative of Kebulka-Munk function with respect to wavelength (dF/dλ) 

versus wavelength (λ), given in the inset of the graph, indicates the inflection point, which 

represents the bandgap of the material at ~363nm (~3.42 eV).This value is lower than the 

bandgap ~3.55 eV reported for undoped PZT (50/50) composition in thin film form.21 The 

observed reduction in bandgap with respect to pure PZT is in good agreement with the 

theoretical prediction by Zhang et al.6 where the phenomenon was ascribed to the formation of a 

mid-gap impurity band in PSZT by Sc3+ dopants. 

 

D. Dielectric properties 

Figure 5 depicts in a semi-logarithmic scale the variation in the real part of dielectric 

permittivity ( ' ) and the loss tangent ( tan ) of PSZT ceramic as a function of frequency (100 

Hz to 1 MHz) in the temperature range of 85 K to 600 K. The room-temperature dielectric 
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constant and the dielectric loss were found to be ~220 (high) and ~0.02 (low), respectively, at a 

frequency of 100 kHz. The dielectric constant obtained was lower than the value reported for the 

pure PZT (53/47) sintered ceramic (about 2000).22 The dielectric constant (240 at 100 Hz and 

210 at 106 Hz) and dielectric loss (0.02 at 100 Hz and 0.001 at 106 Hz) were found to be very 

weakly decreasing with increasing frequency. Below 1 kHz contribution of multi-component of 

polarization such as deformational polarization (electronic and ionic) and relaxation polarization 

(orientation and interfacial) causes the slight increase of ' . At high frequencies dipoles cannot 

keep up with the field and hence there is no contribution of orientation polarization, resulting in 

the decrease of ' approaching a constant value due to only the interfacial polarization. 

Figure 6 exhibits the variation in dielectric constant and loss tangent (inset) with temperature 

in the frequency range of 102 Hz to 106 Hz. The observed frequency-independent dielectric 

constant increases slowly from 85 K to 400 K. Above 400 K we observed a sharp increase in 

dielectric constant up to the experimental limit 600 K. 

E. AC and DC conductivities 

The frequency dependence of ac conductivity ( ac ) at various temperatures (100−600 K) of 

PSZT ceramics is shown in Fig. 7. It is clear from this figure that above a certain frequency (104 

Hz), ac increases linearly with frequency.  Dynamic conductivity shows the typical features of 

Joncher’s universal dynamic response (UDR) and obeys a power law:23 

n

dcac A  ,                                                         (1) 

where dc is the frequency independent dc conductivity; ω=2πf, the angular frequency;  

 A, a pre-exponential factor; and n (0 < n ≤ 1),  the frequency exponent. From this plot it is 

evident that the DC contribution to conductivity is significant at low frequencies and high 

temperatures, whereas the frequency dependent term dominates conductivity at high frequencies. 
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In our case the numerical values of dc and n were estimated by modeling the experimental data 

with Eqn. (1), and the results are summarized in Table I. dc was found to increase and n was 

found to decrease with the increase in temperature. The frequency exponent falls in the range of 

0 < n ≤ 1, approaches unity at low temperatures (≤ 300 K), and the transport is dominated by 

hopping in finite clusters (correlated barrier hopping). 

The thermally activated conduction process at a specific frequency is governed by the 

Arrhenius relation: 

)/(exp)( 0 TkET Bact                                                (2) 

where 0 is the pre-exponential factor; Eact, the activation energy; Bk , the Boltzmann constant; 

and T , absolute temperature. Figure 8, which is divided into two temperature regions 

(I=100−300 K and II=300−600 K), depicts the thermal behavior of AC (102−106 Hz) and DC 

conductivities. The numerical values of actE obtained by least square fitting the conductivity data 

with Eq. 2 in the regions I and II are given in Table II. The low activation energies determined in 

the 100−300 K range, ≤ 0.015 eV, represent an n-type hopping conduction mechanism with Sc 

cations acting as donor centers.24 The increase in actE to ≥ 0.1 eV in region II indicates the 

formation of small polarons induced by the electron and/or hole-lattice (phonon) interaction 

enhanced by structural deformations involved in the transition from ferroelectric to paraelectric 

phase.  

F. Ferroelectric properties  

Room temperature polarization versus electric field (P-E) hysteresis loops for PSZT ceramics 

were measured at various electric fields after poling at a high dc voltage of 1 kV (close to the 

coercive field to switch the ferroelectric domains) and are shown in Fig. 9.  The remnant 
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polarization ( rP ) and coercive field ( cE ) of the ferroelectric capacitors recorded at 50 Hz using a 

computer-controlled Sawyer Tower test circuit were ~3 μC/cm2 and ~13 kV/cm, respectively. 

The sintered PbZr0.52Ti0.48O3 ceramics prepared by sol-gel process exhibited a remnant 

polarization of 20 μC/cm2 and a coercive field of 10.6 kV/cm.25 So it can be understood that 

doping of PZT with 10 mole % Sc3+ results in a drastic reduction of rP  without any marked 

change in cE  and non-saturation of the PE loop in the experimental field range. The low 

ferroelectricity achieved is in good agreement with the largely reduced tetragonal strain observed 

in this sample as given by the relation spontaneous/remnant polarization rP ∝ 1/ ac .14 

E. DC leakage characteristics 

The temperature dependent (300−600 K) experimental J-E characteristics obtained for the 

Pt/PSZT/Pt MFM capacitor structure while sweeping the dc bias voltage from −1000 V to +1000 

V are presented in Fig.10. Major observations that can be made from the leakage characteristics 

are: a) the bottom electrode injection (+Ve voltage on top Pt) and top electrode injection (−Ve 

voltage on top Pt) branches seem to be symmetric;  the top and bottom electrodes are identical, 

resulting in similar potential barrier heights; b) at 300 K a low leakage current density of 1.35

10-8 A/cm2 was observed at an electric field of 12 kV/cm, which validates the charge storage 

capabilities of the sample; c) both positive and negative I-V branches show temperature 

dependence with three orders of increase in leakage current with temperature increase from 300 

to 600 K. These observations hint towards Schottky emission (SE) or Poole-Frenkel (PF) as the 

charge transport mechanism in Pt/PSZT/Pt capacitors. The field dependent conduction 

mechanism is formulated as16 

)/exp( 2/1

0 TkE B  ,  ,)/( 2/1

0

3

  e             (3) 
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where 0 is the low-field conductivity of the system; E, the electric field strength in the 

ferroelectric; T , absolute temperature; e , the unit of electronic charge; 0 , the permittivity of free 

space;  , the electronic dielectric constant; and the coefficient is 1 for PF and 4 for SE. The 

field dependency of current studied by plotting TkE B/2/1
vs Ln can be approximated to a 

straight line in the 2−12 kV/cm field range, as shown in the inset of Fig. 10.  The numerical 

value of the optical dielectric constant,   (and its long wavelength refractive index, n ) 

estimated from the slope of the plot [Eq. (3)] at 300K is 5.47 (2.29) and 1.31(1.14) for PF and 

SE, respectively. In our sample PF can be considered as the dominant conduction mechanism as 

the numerical value of  or n obtained in this case is in fairly good agreement with the figures 

reported for pure PZT from optical analysis26,27and show that SE modeling is unphysical. The PF 

model explicitly assumes a Coulombic attraction between a de-trapped electron and a positively 

charged stationary defect. The hypothesis of lead vacancies in PZT as a possible center for 

trapping holes has been proposed in literature,28 and these centers support the observed PF 

conduction mechanism. 

4. CONCLUSIONS 

Off-center ion (Sc3+) substituted morphotropic composition PZT electroceramics were 

synthesized by a conventional solid-state reaction technique and the influence of donor 

substitution on structural, microstructural, optical, dielectric, electrical and ferroelectric 

properties of it is reported. A stabilized tetragonal phase (space group mmP4 ) with considerably 

reduced tetragonality, ac / = 1.005 was identified by powder x-ray diffractometry. The smooth 

displacive (ferroelectric-paraelectric) phase transition was revealed by Raman studies from the 

observed disappearance of the soft modes A1 (1TO) and A1 (2TO) and the emergence of TO2, 
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TO3, and TO4 hard modes above 460 K. The dielectric response of Pt/PSZT/Pt capacitors was 

probed as a function of temperature (85−600 K) and frequency (102−106 Hz). Frequency 

dependent dynamic conductivity showed that the transport is dominated by hopping in finite 

clusters (UDR) and obeyed a power law
n

dcac A  . Thermally activated dynamic and 

static conductions followed an Arrhenius relation with activation energies of ≤ 0.015 eV and ≥ 

0.1 eV at low (100−300 K) and high (300−600 K) temperatures. The reduced ferroelectricity 

measured is in accordance with the greatly reduced tetragonal strain observed in this sample. DC 

leakage analysis revealed that the charge transport is dominated by Poole-Frenkel mechanism 

that assumes a Coulombic attraction between de-trapped electrons and positively charged 

stationary defect species in the polycrystalline sample. 
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Figure captions: 

 FIG. 1. Room temperature XRD Bragg peaks of PSZT ceramics recorded at a slow scan rate of 

0.3 deg/min. Insets (a), (b), and (c) show the (200), (220) and (222) x-ray peaks with the 

experimental data represented by circles, fitted data represented by solid line, and the Gaussian 

deconvolution represented by dashed line. 

FIG. 2. EDX spectrum of PSZT polycrystalline sample measured at room temperature. The SEM 

micrograph of the sample captured at 10000  magnification is given in the inset. 
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FIG. 3. Temperature dependent Raman spectra of PSZT ceramics in the range of 80−580 K. 

FIG. 4. Diffuse-reflectance spectra of PSZT target.  

FIG. 5. (a) and (b) Variation of dielectric constant ( ' ) and dissipation factor ( tan ) of PSZT 

ceramics as a function of frequency at different temperatures. 

FIG. 6. Temperature dependence of dielectric constant ( ' ) and loss tangent ( tan ) (inset) of 

PSZT ceramics at various frequencies. 

FIG. 7. AC conductivity (σac) of PSZT polycrystalline ceramics as a function of frequency at 

several temperatures from 100 K to 600 K. 

FIG. 8. Electrical conductivity of PSZT ceramics as a function of reciprocal temperature. 

FIG. 9. P-E hysteresis loop for PSZT ceramics at various fields. 

FIG. 10. Temperature dependence of leakage current density of Pt/ PSZT/Pt MFM capacitor. 

The dc current-voltage analysis depicted in the inset suggests that, it obeys the bulk limited 

Poole-Frenkel charge transport at room temperature. 

 

 

 

 

 

 

List of Tables: 

 

TABLE I. Power law parameters evaluated by fitting experimental data. 

 

Temp. (K) 
dc (Ωm)-1 n  

100 3.28   10-6 0.983 

200 2.11   10-6 0.985 

300 3.01   10-6 0.984 

400 2.80   10-5 0.915 

500 4.31   10-4 0.842 

600 1.08   10-3 0.801 
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TABLE II. Activation energy values for AC and DC conduction processes deduced assuming 

Arrhenius behavior in the low (100−300 K) and high (300−600 K) temperature regions. 

 

Frequency 

(Hz) 

Activation energy (eV) 

100−300K 300−600K 

0 (DC) 0.006 0.15 

102 0.015 0.24 

103 0.01 0.18 

104 0.006 0.12 

105 0.007 0.10 

106 0.004 0.11 

 

 

 

 

 

 

 

 


