
Solving Asset Pricing Models with Stochastic

Volatility

Oliver de Groot∗

Federal Reserve Board

December 29, 2014

Abstract

This paper provides a closed-form solution for the price-dividend ratio in a stan-

dard asset pricing model with stochastic volatility. The growth rate of the endow-

ment is a first-order Gaussian autoregression, while the stochastic volatility innova-

tions can be drawn from any distribution for which the moment-generating function

exists. The solution is useful in allowing comparisons among numerical methods

used to approximate the nontrivial closed form. The closed-form solution reveals

that, when using perturbation methods around the deterministic steady state, the

approximate solution needs to be sixth-order accurate in order for the parameter

capturing the conditional standard deviation of the stochastic volatility process to

be present.
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1 Introduction

Stochastic volatility has become an important feature of macroeconomic models that seek

to explain both stylized business cycle and asset pricing facts. Since closed-form solu-

tions elude richer macroeconomic models, various numerical methods have been proposed

to provide an approximated solution. The contribution of this paper is to present a

simple (asset pricing) stochastic volatility model in which an exact solution (for the price-

dividend ratio) exists, which may serve as a benchmark from which to compare alternative

numerical approximation methods.

Burnside (1998) provided an exact solution for the Lucas (1978) asset pricing model

with Gaussian, autoregressive dividend growth shocks and time-separable constant rel-

ative risk-aversion (CRRA) preferences.1 Bidarkota and McCulloch (2003) and Tsionas

(2003) extended Burnside’s solution to shocks with stable distributions and shocks with

well-defined moment-generating functions (MGFs), respectively, while Chen et al. (2008)

and Collard et al. (2006) extended it to the case with non-time-separable preferences

through habits in consumption.2 In each case, the solutions provide a useful benchmark

against which to test numerical solution algorithms. This paper follows in that tradition.

It extends the Burnside model by adding stochastic volatility to the dividend growth

process.

Since Bansal and Yaron (2004) showed the importance of stochastic volatility to ac-

count for stylized asset pricing facts, the use of stochastic volatility has become a wide-

spread addition to standard business cycle models. Yet, even beside the demand for

business cycle models to match stylized asset pricing facts, there is a growing use of

stochastic volatility in macro modelling. Stock and Watson (2002) and Sims and Zha

(2006) are prominent examples arguing that time-varying volatility is important in ac-

counting for the dynamics of U.S. aggregate data. Among Dynamic Stochastic General

Equilibrium (DSGE) researchers, stochastic volatility is being put to many applications:

Bloom et al. (2007) consider the role of time-varying uncertainty for investment dynam-

ics, Justiniano and Primiceri (2008) investigate the sources of the Great Moderation, and

Fernández-Villaverde et al. (2011) study the effects of stochastic volatility in fiscal shocks

on economic activity, to name just a few.

Because of the increasing importance of stochastic volatility, which naturally adds

additional nonlinearity into the solution of models, a growing literature has been testing

how different numerical solution methods that solve equilibrium models with stochastic

volatility perform. Caldara et al. (2012), for example, compare perturbation methods (of

second and third order), Chebyshev polynomials, and value function iteration in a real

1An early contribution by Labadie (1989) also provided the solution in a slightly more general context.
2In related work, Calin et al. (2005) develop a method that finds the solutions for analytic utility func-

tions that offer closed forms for a wide class of probability distributions for the state variable. Similarly,
Le et al. (2010) extend the Gaussian dynamic term structure model to a larger class of MGFs.
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business cycle model with stochastic volatility.

In this paper, I show the exact solution for the price-dividend ratio of a simple asset

pricing model as a nontrivial function of the model’s two state variables, the current divi-

dend growth rate and the current volatility of the dividend growth process.3 Innovations

to the dividend growth rate are drawn from a Gaussian distribution. Innovations to the

stochastic volatility process can be drawn from any distribution for which the MGF exists.

For much of the paper, I follow Bansal and Yaron (2004) and assume Gaussian shocks

for the stochastic volatility innovations. However, a gamma distribution is potentially

appealing because it ensures that the realizations of the stochastic volatility process are

strictly nonnegative and because it displays skewness and kurtosis.

The closed-form solution has the following properties: First, the price-dividend ratio

increases when the volatility of dividend growth increases, as well as when the volatility

of the stochastic volatility process increases. Second, the sensitivity of the price-dividend

ratio to a change in the volatility state is increasing in the persistence of the stochastic

volatility process. I derive an expression for the unconditional mean of the price-dividend

process, as well as several other endogenous objects of interest, such as the risk-free rate

and the conditional equity risk premium. Since the closed-form solution for the price-

dividend ratio takes the form of an infinite sum, I provide parameter conditions under

which the price-dividend ratio (and its unconditional mean) are finite. I also show where

to truncate the infinite summation when calculating the solution numerically to ensure

that the truncation error is no larger than a given value with a given probability.

Finally, I show how two alternative low-order polynomial approximation techniques

perform in terms of numerical accuracy: (1) a first-order approximation following Camp-

bell and Shiller (1988) that exploits the normality of the stochastic processes; and (2) the

perturbation method around a deterministic steady state, popular among macro-DSGE

researchers. I find two results of note: First, a fourth-order perturbation is required to

generate a similar order of accuracy close to the steady state as the approximation that

exploits the normality of the stochastic processes. Second, a sixth-order perturbation

approximation is required for the parameter capturing the conditional standard deviation

of the stochastic volatility process to show up in the approximated solution.

The rest of the paper is structured as follows. Section 2 presents the basic asset

pricing model with stochastic volatility, and Section 3 presents the general closed-form

solution. Section 4 applies the model and further discusses its uses. Section 5 concludes.

The appendix provides derivations of the paper’s key results, while an extensive online

appendix provides additional detail, describes a variant of the basic model, and tests the

model’s asset pricing implications.

3The model features CRRA preferences and not recursive preferences as in Bansal and Yaron (2004),
which means the model does not solve the risk-free rate and equity premium puzzles (see Mehra and
Prescott (1985) and Weil (1989)). However, this feature does not diminish the model’s usefulness as a
testing ground for numerical solution methods interested in capturing the effects of stochastic volatility.
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2 The asset pricing model

There is a representative agent who maximizes the expected discounted stream of utility

E0

∑∞
t=0 β

t c
1−γ
t

1− γ , (1)

subject to the budget constraint

ct + st+1pt ≤ (dt + pt) st, (2)

where Et is the mathematical expectations operator conditional on the time t information

set, ct is consumption, and st denotes units of an asset whose price at date t is pt with

dividends dt. The discount factor is β ∈ (0, 1), and the coeffi cient of relative risk aversion

is γ > 0 and γ 6= 1. The growth rate of dividends, denoted xt ≡ log (dt/dt−1), is assumed

to follow a Gaussian AR (1) process,

xt = x+ ρ (xt−1 − x) +
√
ηtεt, (3)

where x is the steady-state growth rate of dividends, ρ ∈ (−1, 1) is the persistence para-

meter, and εt is a sequence of independently and identically distributed (iid) innovations

from the standard normal distribution. The innovations to xt are scaled by
√
ηt. ηt is

therefore the conditional variance of dividend growth and is time varying. In particular,

it follows an AR (1) process,

ηt = η + ρη
(
ηt−1 − η

)
+ ωεη,t, (4)

where η is its steady state, ρη ∈ (−1, 1) is the persistence of the stochastic volatility

process, ω is a scalar, and εη,t is a sequence of iid innovations with a given distribution

function Fη and an MGF given by

M (τ) ≡ E exp (τεη) =
∫∞
−∞ exp (τεη) dFη (εη) , τ ∈ R.

The first-order equilibrium condition of the agent’s maximization problem, equations (1)

and (2), is

c−γt pt = Etβc
−γ
t+1 (pt+1 + dt+1) . (5)
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Market clearing, st = 1, implies that ct = dt,4 and, in defining the price-dividend ratio as

yt ≡ pt/dt, the first-order equilibrium condition becomes

yt = Etβ

(
dt+1

dt

)1−γ

(yt+1 + 1) . (6)

Iterating forward and making use of xt, we are left with

yt =
∑∞

i=1 β
iEt exp

(
(1− γ)

∑i
j=1 xt+j

)
. (7)

3 The model solution

Equation (7) shows that, in this asset pricing model, the price-dividend ratio at time t is

simply a function of expected future dividend growth. Finding an exact solution for yt
means finding a closed-form expression for Et exp

(
(1− γ)

∑i
j=1 xt+j

)
for i = 1, 2, ... in

terms of the current state, xt and ηt. In the case without stochastic volatility, Burnside

(1998) derived such a solution. The theorem below shows an exact solution with stochastic

volatility.

Theorem 1 Suppose that the MGF of εη exists. Then the solution to equation (7) is

yt =
∑∞

i=1 β
i exp (Aix+Bi (xt − x) + Ciη +Di (ηt − η) +Hi) , (8)

where

Ai ≡ (1− γ) i, Bi ≡
(

1−γ
1−ρ

)
ρ (1− ρi) ,

Ci ≡ 1
2

(
1−γ
1−ρ

)2 (
i− 2ρ1−ρi

1−ρ + ρ2 1−ρ2i
1−ρ2

)
,

Di ≡
ρη
2

(
1−γ
1−ρ

)2 (
φ1 + φ2ρηρ

i−1
η + φ3ρ

i−1 + φ4ρ
2(i−1)

)
,

Hi ≡
∑i

j=1 logM

(
ω
2

(
1−γ
1−ρ

)2 (
φ1 + φ2ρηρ

i−j
η + φ3ρ

i−j + φ4ρ
2(i−j))) ,

and where

φ1 ≡
1

1− ρη
, φ2 ≡

−ρη
(
ρη + ρ

)
(1− ρ)2(

ρ2 − ρη
) (
ρ− ρη

) (
1− ρη

) , φ3 ≡
−2ρ2

ρ− ρη
, and φ4 ≡

ρ4

ρ2 − ρη
.

Proof. See Appendix A.1.
4The assumption that, in equilibrium, ct = dt is not a necessary assumption to generate a closed-form

solution. In the online Appendix B.4, I present a closed-form solution for the price-dividend ratio when
the consumption and dividend growth processes follow the specificiation in Bansal and Yaron (2004).
Specifically, in Bansal and Yaron (2004), consumption and dividends are driven by a common small
predictable component but have (potentially) different steady-state growth rates and have independent
iid innovations.
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Bansal and Yaron (2004) consider the case in which εη is drawn from a Gaussian distri-

bution, and I will focus on this case because of its near ubiquity in the finance literature.

However, a drawback of the Gaussian distribution, though, is that it does not prevent

the standard deviation of the dividend growth rate from turning negative. One solution

to enforcing the nonnegativity constraint is to use a truncated normal distribution. A

symmetrically truncated normal distribution, for example, has the following MGF:

MTrN (τ) = exp

(
τ 2

2

)(
Φ
(
−εmin

η − τ
)
− Φ

(
εmin
η − τ

)
1− 2Φ

(
εmin
η

) )
,

where εmin
η denotes the least restrictive truncation that ensures nonnegativity of ηt (ε

min
η

is explicitly defined in the online Appendix B.1.1). Alternatively, one could model εη as

drawn from a distribution with a nonnegative support but with an existing MGF, such

as the gamma distribution.5 The gamma distribution has the following MGF:

MΓ (τ) = (1− g1τ)−g2 for τ <
1

g1

,

where g1 and g2 are the scale and shape parameter, respectively. The value of a closed-

form solution with the gamma distribution for the stochastic volatility innovations –

as opposed to the Gaussian distribution – is that there is plenty of empirical evidence

(see for example, Geweke (1994) and Gallant et al. (1997)) in favor of fat tails in the

stochastic volatility process for many financial series. The gamma distribution features

both positive skew and excess kurtosis. Despite this fact, it is beyond the scope of the

current paper to explore this avenue of research in more detail.

The result in Theorem 1 nests the solution for the model when εη is drawn from a

standard normal distribution, with an MGF of MN (τ) = exp
(
τ2

2

)
, which I show in the

following corollary:6

Corollary 2 When εη ∼ N.i.d. (0, 1), then Hi in the solution in equation (8) becomes

Fiω
2, where

Fi ≡
1

8

(
1− γ
1− ρ

)4


iφ2

1 + φ2
2

1−ρ2iη
1−ρ2η

+ φ2
3

1−ρ2i
1−ρ2 + φ2

4
1−ρ4i
1−ρ4

+2φ1φ2
1−ρiη
1−ρη

+ 2φ1φ3
1−ρi
1−ρ + 2φ1φ4

1−ρ2i
1−ρ2

+2φ2φ3

1−(ρηρ)
i

1−ρηρ
+ 2φ2φ4

1−(ρηρ2)
i

1−ρηρ2
+ 2φ3φ4

1−ρ3i
1−ρ3

 ,

5The inverse-gamma, another distribution popular in the finance stochastic volatility literature, does
not have a well defined MGF.

6This formulation of the stochastic volatility process could technically cause the standard deviation of
dividend growth to become negative. However, under reasonable calibrations of the process, this result
happens rarely. Bansal and Yaron (2004) use the same process and choose the following parameter values
based on a monthly frequency: η = 6.08 × 10−5, ρη = 0.987, and ω = 0.23 × 10−5. Simulating this
process 105 times for 840 months results in the process turning negative in 0.14% of the simulations.
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Proof. See Appendix A.2.
For the remainder of the paper, unless otherwise stated, I will be using the model

with Gaussian stochastic volatility. In Burnside (1998), the solution without stochastic

volatility is

yt =
∑∞

i=1 β
i exp (Aix+Bi (xt − x) + Ciη) ;

therefore, it is the term Di (ηt − η) +Fiω
2 inside the exponential function in equation (8)

that is novel. It is straightforward to show (see equations (A.5) and (A.11) in Appendix

A.1) that both Di > 0 and Fi > 0.7 It follows that ∂yt
∂(ηt−η)

> 0 and ∂yt
∂ω2

> 0: A rise in the

volatility of dividend growth unambiguously increases the price-dividend ratio, as does a

rise in the volatility of the stochastic volatility process itself. This outcome is mechanically

a consequence of the standard result that a rise in the volatility of a log-normal process

increases its mean. It also follows that ∂|∂yt/∂(xt−x)|
∂(ηt−η)

> 0 and ∂|∂yt/∂(xt−x)|
∂ω2

> 0: The

price-dividend ratio responds more to movements in the dividend growth rate in a high-

volatility state than in a low-volatility state, as well as in an environment with greater

stochastic volatility. The insight from this result is that the heteroskedasticity (inherent

in the exogenous dividend growth process) will be more pronounced in the endogenous

price-dividend ratio. Equations (A.5) and (A.11) also show clearly that ∂Di
∂ρη

, ∂Fi
∂ρη

> 0: A

rise in the persistence of the stochastic volatility process increases the sensitivity of the

price-dividend ratio to both changes in dividend growth and volatility.

4 Application and further discussion

This section presents several applications of the closed-form solution derived in Section

3. First, I derive closed-form expressions for several other variables of interest, such as

the unconditional mean price-dividend ratio, the risk-free rate, the conditional-expected

return on equity and the conditional equity risk premium. Second and third, since the

price-dividend ratio is the sum of an infinite sequence, I show the conditions under which

the price-dividend ratio exits (i.e. is finite) and I show how to choose an appropriate

truncation point when calculating the price-dividend ratio. Fourth, I use the model

to compare the numerical accuracy of several low-order polynomial approximations in

capturing the effects of stochastic volatility.

7The exception is logarithmic preferences (γ = 1) in which case Ai = Bi = Ci = Di = Fi = 0 and
the price-dividend ratio becomes constant. With logarithmic preferences, Bi = 0 because the wealth
and substitution effects of a change in the dividend growth rate exactly offset each other. Since the
price-dividend ratio remains constant in response to dividend growth movements, it follows that the
price-dividend ratio is also invariant to changes in the volatility of those movements.
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4.1 Additional variables of interest

Once we have a closed-form solution for the price-dividend ratio in hand, it is possible

to construct closed-form expressions for several other variables of interest, including the

unconditional mean price-dividend ratio, risk-free rate, conditional-expected return on

equity, and the conditional equity risk premium. Derivations are contained in the online

Appendix B.2.

Unconditional mean price-dividend ratio The unconditional mean price-dividend

ratio is

Eyt =
∑∞

i=1 β
i exp

(
Aix+

(
Ci +

B2
i

2 (1− ρ2)

)
η +

(
1

2

(
γ2
i,1

1− ρ2
η

−
2γi,1γi,2
1− ρηρ2

+
γ2
i,2

1− ρ4

)
+ Fi

)
ω2

)
,

where

γi,1 ≡
(
B2
i

2

ρη
ρη − ρ2

+Di

)
, γi,2 ≡

B2
i

2

ρ2

ρη − ρ2
.

The unconditional mean price-dividend ratio is increasing in both the volatility ω and

the persistence ρη of the stochastic volatility process (as is made clear by the quadratic

expression in (B.3) in Appendix B.2.1). The unconditional mean price dividend-ratio is

also higher than the price-dividend ratio evaluated at the steady state (xt, ηt) = (x, η) .

Risk-free rate The risk-free rate is defined as

Rrf
t =

(
Et

(
β

(
ct+1

ct

)−γ))−1

and has the following solution:

Rrf
t = β−1 exp

(
γx+ γρ (xt − x)− γ2

2
η −

γ2ρη
2

(ηt − η)− γ4

8
ω2

)
.

Higher dividend growth increases the risk-free rate, while higher stochastic volatility lowers

the risk-free rate. Thus, the risk-free rate puzzle (see Weil (1989)) may be partly resolved

by the addition of stochastic volatility.8 As is typical in this class of models, when the

risk-aversion parameter, γ is large, the risk-free rate can become counterfactually high.

8In online Appendix B.5, I quantitatively assess the ability of stochastic volatility to lower the risk-free
rate. In this model with CRRA preferences, a counterfactually large standard deviation of the stochastic
volatility innovations is required to generate an economically meaningful reduction in the risk-free rate.
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Conditional-expected return on equity and the equity risk premium The

conditional-expected return on equity is defined as

EtRt+1 = Et

(
dt+1 + pt+1

pt

)
and can be rewritten as

EtRt+1 =
Et exp (xt+1) + Etyt+1 exp (xt+1)

yt
.

The solution replaces Et exp (xt+1) with

exp

(
x+ ρ (xt − x) +

1

2
η +

ρη
2

(ηt − η) +
1

8
ω2

)
and Etyt+1 exp (xt+1) with

∑∞
i=1 β

i exp


(Ai + 1)x+ (Bi + 1) ρ (xt − x)

+
(
Ci + 1

2
(Bi + 1)2) η + 1

2
(Bi + 1)2 ρη (ηt − η)

+
(
Fi + 1

2

(
1
2

(Bi + 1)2 +Di

)2
)
ω2

 .

Since the conditional-expected return on equity is the ratio of two objects involving a sum

of exponential terms in xt and ηt, it is, unfortunately, not possible to derive a closed-form

expression for the unconditional mean return on equity or for the unconditional equity

risk premium. The conditional-equity risk premium is EtRt+1 −Rrf
t .

4.2 Existence

Since the price-dividend ratio is the sum of an infinite sequence, it is not clear from

equation (8) whether the price-dividend ratio is finite. The following theorem states the

parameter conditions under which the price-dividend ratio is finite:

Theorem 3 The series in equation (8) with Hi = Fiω
2 converges if and only if

β exp

(
(1− γ)x+

1

2

(
1− γ
1− ρ

)2

η +
(1− γ)4

8 (1− ρ)4 (1− ρη)2ω
2

)
< 1. (9)

Proof. See Appendix A.3.
In Burnside (1998), the convergence criterion is

β exp

(
(1− γ)x+

1

2

(
1− γ
1− ρ

)2

η

)
< 1
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and thus less demanding than the condition in Theorem 3, conditional on the same para-

meters for β, γ, x, ρ, and η.9

To get a better understanding of the restriction the condition in Theorem 3 places on

the parameters of the stochastic volatility process, I followed Schmitt-Grohé and Uribe

(2004) and Bansal and Yaron (2004) in parameterizing the asset pricing model as follows:

Based on an annual frequency, β = 0.95, x = 0.0179, and η = 0.0012. In addition,

I consider three different parameterizations of the pair (ρ, γ) using ρ = {−0.137, 0.868}
and γ = {2.5, 21}. I ignore the high-persistence, high-risk-aversion combination since

the price-dividend ratio is never finite in this case. Figure 1 shows the
(
ρη, ω

)
pairs (the

two parameters describing the stochastic volatility process) for which the condition for a

finite price-dividend ratio (in Theorem 3) holds. The plots show that, when both the

persistence of the endowment growth process and risk aversion are low (left panel), the

conditions on the stochastic volatility process to ensure that the price-dividend ratio is

finite are relatively weak. Bansal and Yaron (2004) choose parameter values for ρη and ω

(indicated in the figure), significantly inside the convergent parameter space.10 However,

as either the level of risk aversion (middle panel) or the persistence of the dividend growth

process (right panel) increases, the parameter space for the stochastic volatility process

consistent with a finite price-dividend ratio shrinks considerably.

4.3 Accuracy of calculating the price-dividend ratio

Despite a closed-form solution, the solution in equation (8) is that of an infinite sum,

which means that when the model is calibrated and the price-dividend ratio is calculated,

some level of truncation, and therefore inaccuracy, is inevitable. Here I show how to

choose an appropriate truncation point. Denote yNt as the truncated solution

yNt =
∑N

i=1 β
i exp (Zi +Bi (xt − x) +Di (ηt − η)) ,

where, for parsimony, Zi ≡ Aix+Ciη+Fiω
2. Then select N such that P

(
∆yNt ≥ ξ

)
≤ ψ,

where ∆yNt ≡ yNt − yN−1
t and ξ, ψ > 0. In words, select a truncation point N such that

the probability of an error greater than some value ξ is smaller than some probability ψ.

Since

∆yNt = βN exp (ZN +BN (xt − x) +DN (ηt − η)) ,

Markov’s inequality implies that

P
(
∆yNt ≥ ξ

)
<
E
(
∆yNt

)
ξ

=
βN

ξ
exp

(
ZN +

1

2

B2
Nη

1− ρ2
+
ω2

2

(
γ2
N,1

1− ρ2
η

−
2γN,1γN,2
1− ρηρ2

+
γ2
N,2

1− ρ4

))
.

9It is straightforward to show that the unconditional mean price-dividend ratio is also finite if and
only if the condition in Theorem 3 holds (see the online Appendix B.2.1).
10Bansal and Yaron (2004) use a monthly calibration with ρη = 0.987 and ω = 0.23× 10−5. Figure 1

reports the annualized-equivalent values of ρη = 0.855 and ω = 0.74× 10−5.
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Figure 1: Regions of convergence in the parameter space
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It is then possible to select an N such that

βN

ξ
exp

(
ZN +

1

2

B2
Nη

1− ρ2
+
ω2

2

(
γ2
N,1

1− ρ2
η

−
2γN,1γN,2
1− ρηρ2

+
γ2
N,2

1− ρ4

))
< ψ,

where ξ can be set to machine precision and ψ can be a desirably low probability.

4.4 Low-order polynomial approximations

While the model presented in this paper is too stylized to provide a strong quantitative

description of asset prices, the closed-form solution of the model provides a useful bench-

mark to compare the properties of numerical solution techniques that one may wish to

employ for richer, quantitative models with stochastic volatility. As an example, this sec-

tion compares the results from a perturbation solution around the deterministic steady

state (up to sixth order) with a linear approximation that exploits the Gaussian nature

of the shocks.

4.4.1 The perturbation solution

Perturbation methods, popular in macro-DSGE models, create a polynomial approxima-

tion around the deterministic steady state. Since Schmitt-Grohé and Uribe (2004) show

that perturbation methods generate accurate approximations, I can work directly with

a Taylor expansion around the known decision rule.11 The perturbation method incor-

porates a scale parameter, which I denote σ, that scales the stochastic processes in the

model. When σ = 0, we have the deterministic counterpart of the model, and, when

σ = 1, we have the full stochastic model. The solution of the model, with the inclusion

of the perturbation parameter, can therefore be rewritten as

yt =
∑∞

i=1 β
i exp

(
Aix+Bi (xt − x) + Ciσ

2η +Diσ
2 (ηt − η) + Fiσ

6ω2
)
, (10)

and, in general, the decision rule can written as

yt = g (xt, ηt, σ) .

The perturbation method constructs a polynomial expansion of g (xt, ηt, σ) around (xt, ηt, σ) =

(x, η, 0). Since the following coeffi cients, when evaluated at the deterministic steady-state,

are all zero
gη = gσ = gη2 = gxη = gxσ = gησ = 0,

gη3 = gσ3 = gx2η = gx2σ = gη2x = gη2σ = gxησ = 0,

11In this instance, accuracy means that the perturbed approximate solution around the deterministic
steady state delivers the same decision rule as if one had done a Taylor expansion of the exact decision
rule.
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the third-order solution is

yt = g + gx (xt − x) + 1
2

(
gx2 (xt − x)2 + gσ2

)
+1

6

(
gx3 (xt − x)3 + 3gσ2x (xt − x) + 3gσ2η (ηt − η)

)
,

(11)

where, for example, gσ2x ≡ ∂3g(x,η,0)
∂σ2∂x

. The non-zero coeffi cients are

gx =
∑∞

i=1 β
i exp (Aix)Bi,

gx2 =
∑∞

i=1 β
i exp (Aix)B2

i , gσ2 =
∑∞

i=1 β
i exp (Aix) 2ηCi,

gx3 =
∑∞

i=1 β
i exp (Aix)B3

i , gσ2x =
∑∞

i=1 β
i exp (Aix) 2ηBiCi, gσ2η =

∑∞
i=1 β

i exp (Aix) 2Di.

It is a well known result in the macro literature, that a third-order approximation around

the deterministic steady state is required for the first-order effects of stochastic volatility

to appear. That is, the first occurrence of (ηt − η) in the approximate solution, equation

(11), is for the third order term gσ2η. Less well known is the following theorem:

Theorem 4 The price-dividend ratio in a model with a dividend growth process described
by (3) and (4) is only affected by the standard deviation of the stochastic volatility process,

ω if the perturbed approximation around the deterministic steady state is taken up to sixth

order.

The coeffi cients of the approximations for fourth to sixth orders are unwieldy and are

therefore relegated to the online Appendix B.3.1. However, the parameter ω is absent in

all the terms except for

gσ6 =
∑∞

i=1 β
i exp (Aix)

(
η3C3

i + 720Fiω
2
)
.

This result is also clear from equation (10) since the perturbation parameter raised to

the power six, σ6, premultiplies ω2. While the role of ω is not very powerful in this

simple model with CRRA utility, in Bansal and Yaron (2004), the addition of stochastic

volatility is crucial in raising the mean equity premium from 4.20% to 6.84% in their

preferred specification. Theorem 4 may explain some of the relative success of endowment

economy models like Bansal and Yaron (2004) versus production economy models in

capturing the observed equity risk premium. Bansal and Yaron (2004) show that adding

stochastic volatility to a model with recursive preferences can significantly increase the

equity risk premium. In contrast, when Andreasen (2012) adds stochastic volatility to the

New Keynesian model with recursive preferences presented by Rudebusch and Swanson

(2012), he still requires a coeffi cient of relative risk aversion in excess of 150 in order to

match observed term premiums. In both papers, the model is solved using perturbation
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methods up to only third order.12

4.4.2 The first-order solution exploiting normality

An alternative to perturbation methods is to follow Campbell and Shiller (1988) and

to exploit the conditional-log-normality of the dividend growth process. The detailed

derivation is in the online Appendix B.3.2. The log-price-dividend ratio in this case is

specified as

log yt = log y + κ1 (xt − x) + κ2 (ηt − η) ,

where

κ1 ≡
(1− γ) ρ

1− y
1+y

ρ
, κ2 ≡

1
2

(
(1− γ) + y

1+y
κ1

)2

ρη

1− y
1+y

ρη
,

and y solves

y

1 + y
= β exp

(
(1− γ)x+

(1− γ)2 (1 + y)2 η

2 (1 + (1− ρ) y)2 +
(1− γ)4 (1 + y)6 ω2

8 (1 + (1− ρ) y)4 (1 +
(
1− ρη

)
y
)2

)
.

With the approximate solutions using the two alternative methods in hand, it is pos-

sible to compare accuracy relative to the closed-form solution, which can be calculated to

machine precision. Figure 2 presents accuracy results using the benchmark calibration

employed in the previous subsection (with (ρ, γ) = (−0.137, 2.5)). Since the state space

is two dimensional, I present several different cuts of the accuracy statistic. The top row

shows the accuracy of the price-dividend ratio as xt changes, holding ηt fixed at 0, η, and

4η, respectively, as one moves from the left to right panels. When comparing the left and

right panels with the middle panel, the second-order approximation does poorly when the

volatility of the dividend growth process is away from its steady state. Looking across

all six panels, it is clear that the Campbell and Shiller (1988) approximation (denoted

c-s approx.) does very well. A fourth-order solution performs well close to the steady

state, but deteriorates relative to the Campbell and Shiller (1988) approximation as ηt
moves further from η. Following Theorem 4, it is also not surprising that a sixth-order

approximation generates another large improvement in terms of accuracy (the fifth-order

approximation was excluded, as it showed little improvement over the fourth-order one).

12However, it is worth noting that the form of the stochastic volatility process in Rudebusch and
Swanson (2012) and Andreasen (2012) is different from the one specified here. In their case, it is possible
that a fourth-order approximation would be suffi cient to capture the standard deviation parameter of the
stochastic volatility process in the solution.
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Figure 2: Accuracy of approximated solutions

0.2 0 0.2

6

4

2

1 0 1 2 3

6

4

2

1 0 1 2 3

6

4

2

1 0 1 2 3

6

4

2

lo
g 10

(y
ap

pr
ox

/y
ex

ac
t1

)

0.2 0 0.2

6

4

2
1oa 2oa 3oa 4oa 6oa cs approx.

0.2 0 0.2

6

4

2

lo
g 10

(y
ap

pr
ox

/y
ex

ac
t1

)

Note: 1-o-a to 6-o-a denotes the first- to sixth-order approximations in the neighbourhood of the

deterministic steady state using perturbation methods. c-s approx. denotes the approximation utilized

first by Campbell and Shiller, exploiting the normality of the stochastic processes.

ηmin = 0, ηmax = 4η, xmin = −0.25, xmax = 0.25.
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5 Conclusion

This paper provides an exact expression for the price-dividend ratio in an endowment asset

pricing model with CRRA preferences, Gaussian autoregressive shocks, and stochastic

volatility with innovations from any distribution for which the moment generating function

exists. The solution provides a useful benchmark against which to test the performance of

alternative numerical solution algorithms that one may wish to use to solve more elaborate

macro-finance models with stochastic volatility. In particular, I show that perturbation

methods may have to go higher than third order in order to fully capture the implications

of stochastic volatility.

Since the structure of the model with stochastic volatility shares many of the properties

of the basic Burnside asset pricing model, it should be possible to derive an exact solution

for this stochastic volatility model with the addition of multivariate and higher-order

autoregressive processes, as in Burnside (1998), or with habits in consumption, as in

Chen et al. (2008) and Collard et al. (2006). This topic would be a fruitful direction for

future research, as would a more thorough investigation of modelling stochastic volatility

with the gamma distribution.
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A Appendix

A.1 The solution: Proof of Theorem 1

The ultimate aim is to rewrite the expression

Et exp
(

(1− γ)
∑i

j=1 xt+j

)
for i = 1, 2, ... (A.1)

in terms of the time t state variables, xt and ηt. Iterating forward the dividend growth

process, equation (3), so that xt+j is in terms of xt gives

xt+j = x+ ρj (xt − x) +
∑j

k=1 ρ
j−k√ηt+kεt+k.

Substituting this into (A.1) gives

Et exp
(

(1− γ)
∑i

j=1

(
x+ ρj (xt − x) +

∑j
k=1 ρ

j−k√ηt+kεt+k
))

.

Collecting terms for x, (xt − x) and each εt+j gives

Et exp

(
(1− γ)

( ∑i
j=1 (x+ ρj (xt − x))

+
∑i

j=1

(∑i−j+1
k=1 ρk−1

)√
ηt+jεt+j

))
.

Using the standard results of geometric progressions gives

Et exp

(
(1− γ) ix+ (1− γ) ρ1−ρi

1−ρ (xt − x)

+ (1−γ)
1−ρ

∑i
j=1 (1− ρi−j+1)

√
ηt+jεt+j

)
.

Since the first row in the previous expression is only in terms of x and (xt − x), the

expectations operator can be moved, leaving

exp (Aix+Bi (xt − x))Et exp
(
θ
∑i

j=1

(
1− ρi−j+1

)√
ηt+jεt+j

)
, (A.2)

where

Ai ≡ (1− γ) i, Bi ≡ θρ
(
1− ρi

)
and θ ≡

(
1− γ
1− ρ

)
.
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At this stage it is instructive to rewrite the expression with the expectations operator in

(A.2) as an integral of probabilistic outcomes

∫
· · ·
∫

εη,t+1 εη,t+i

∫
· · ·
∫

εt+1 εt+i

exp
(
θ
∑i

j=1

(
1− ρi−j+1

)√
ηt+jεt+j

)
dF
εt+1
· · · dF

εt+i
dFη
εη,t+1

· · · dFη
εη,t+i

,

where F and Fη are the density functions for the i.i.d. random variables ε and εη, respec-

tively. Since the ε innovations are independent, we can rewrite the problem as

∫
· · ·
∫

εη,t+1 εη,t+i

(∏i
j=1

∫
εt+j

exp
(
θ
(
1− ρi−j+1

)√
ηt+jεt+j

)
dF
εt+j

)
dFη
εη,t+1

· · · dFη
εη,t+i

,

Using a standard result for random variables, namely that if z ∼ N (0, 1) and k is a scalar,

then E (exp (kz)) = exp
(
k2

2

)
, we get

∫
· · ·
∫

εη,t+1 εη,t+i

(∏i
j=1 exp

(
θ2

2

(
1− ρi−j+1

)2
ηt+j

))
dFη
εη,t+1

· · · dFη
εη,t+i

,

or ∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2

2

∑i
j=1

(
1− ρi−j+1

)2
ηt+j

)
dFη
εη,t+1

· · · dFη
εη,t+i

. (A.3)

If we assumed ηt+i = η for all i = 1, 2, ... the expectations operator would disappear from

the above expression and with a little further manipulation we would recover the solution

in Burnside (1998). Instead, with stochastic volatility there is more work to do. Iterating

forward the stochastic volatility process, equation (4), so that ηt+j is in terms of ηt gives

ηt+j = η + ρjη (ηt − η) +
∑j

k=1 ρ
j−k
η ωεη,t+k.

Substituting this expression into (A.3) gives

∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2

2

∑i
j=1

(
1− ρi−j+1

)2
(
η + ρjη (ηt − η) +

∑j
k=1 ρ

j−k
η ωεη,t+k

))
dFη
εη,t+1

· · · dFη
εη,t+i

.

Collecting terms for η, (ηt − η) and each εη,t+j gives

∫
· · ·
∫

εη,t+1 εη,t+i

exp

θ2

2


∑i

j=1 (1− ρi+1−j)
2
η

+
∑i

j=1 (1− ρi+1−j)
2
ρjη (ηt − η)

+ω
∑i

j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k)2

ρk−1
η

)
εη,t+j


 dFη

εη,t+1

· · · dFη
εη,t+i

.
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Since the first two rows in the previous expression are only in terms of η and (ηt − η), the

integral can be moved, leaving

exp (Ciη +Di (ηt − η)) (A.4)

×
∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2ω

2

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k)2

ρk−1
η

)
εη,t+j

)
dFη
εη,t+1

· · · dFη
εη,t+i

,

where

Ci ≡
θ2

2

∑i
j=1

(
1− ρi+1−j)2

and Di ≡
θ2

2

∑i
j=1

(
1− ρi+1−j)2

ρjη. (A.5)

Notice that Di ≥ 0, ∂Di
∂ρ
≤ 0 and ∂Di

∂ρη
≥ 0. Expanding the quadratic terms in Ci and Di

gives
Ci = θ2

2

∑i
j=1

(
1− 2ρiρ−(j−1) + ρ2iρ−2(j−1)

)
,

Di = θ2

2

∑i
j=1

(
ρηρ

j−1
η − 2ρηρ

i
(
ρηρ

−1
)j−1

+ ρηρ
2i
(
ρηρ

−2
)j−1

)
,

and using the standard results of geometric progressions gives

Ci = θ2

2

(
i− 2ρ1−ρi

1−ρ + ρ2 1−ρ2i
1−ρ2

)
Di = θ2

2

(
ρη

1−ρiη
1−ρη
− 2ρiηρ

1−(ρ−1η ρ)
i

1−ρ−1η ρ
+ ρiηρ

2 1−(ρ−1η ρ2)
i

1−ρ−1η ρ2

)
Collecting terms in Di gives

Di =
θ2ρη

2

(
φ1 + φ2ρηρ

i−1
η + φ3ρ

i−1 + φ4ρ
2(i−1)

)
where

φ1 ≡
1

1− ρη
, φ2 ≡

−ρη
(
ρη + ρ

)
(1− ρ)2(

ρ2 − ρη
) (
ρ− ρη

) (
1− ρη

) , φ3 ≡
−2ρ2

ρ− ρη
, and φ4 ≡

ρ4

ρ2 − ρη
.

The final expression left to evaluate is the integral expression in (A.4),

∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2ω

2

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k)2

ρk−1
η

)
εη,t+j

)
dFη
εη,t+1

· · · dFη
εη,t+i

, (A.6)

which can be rewritten as

∏i
j=1

∫
εη,t+j

exp

(
θ2ω

2

(∑i−j+1
k=1

(
1− ρi−j+2−k)2

ρk−1
η

)
εη,t+j

)
dFη
εη,t+j

. (A.7)

Let the moment generating function (MGF) for the i.i.d. random variable εη be

M (τ) = E exp (τεη) =
∫∞
−∞ exp (τεη) dFη (εη) , τ ∈ R.
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Rewriting expression (A.7) using the MGF notation gives

∏i
j=1M (τ j) , (A.8)

where

τ j =
θ2ω

2

(∑i−j+1
k=1

(
1− ρi−j+2−k)2

ρk−1
η

)
.

Using the results of geometric progressions,
∑i−j+1

k=1

(
1− ρi−j+2−k)2

ρk−1
η can be rewritten

as

φ1 + φ2ρηρ
i−j
η + φ3ρ

i−j + φ4ρ
2(i−j).

The term Hi in equation (8) from the main text is therefore given by

∑i
j=1 logM

(
θ2ω

2

(
φ1 + φ2ρηρ

i−j
η + φ3ρ

i−j + φ4ρ
2(i−j))) .

This completes the proof. �

A.2 The standard normal distribution: Proof of Corollary 2

The MGF of the standard normal distribution is

MStN (τ) = exp

(
τ 2

2

)
. (A.9)

Applying (A.9) to Hi in equation (8) gives Fiω2 where

Fi =
θ4

8

∑i
j=1

(
φ1 + φ2ρηρ

i−j
η + φ3ρ

i−j + φ4ρ
2(i−j))2

, (A.10)

It is also possible to apply the standard normal MGF to (A.7), which gives

Fi =
θ4

8

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k)2

ρk−1
η

)2

. (A.11)

and makes it clear that Fi ≥ 0, ∂Fi
∂ρ
≤ 0 and ∂Fi

∂ρη
≥ 0. Equation (A.10) is another

geometric progression (albeit a more tedious one). It is useful to reverse the indexation

for j = 1, ..., i by rewriting i− j as j − 1, in which case

Fi =
θ4

8

∑i
j=1

(
φ1 + φ2ρ

j−1
η + φ3ρ

j−1 + φ4ρ
2(j−1)

)2
.
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Multiplying out the quadratic term gives

Fi =
θ4

8

∑i
j=1

 φ2
1 + φ2

2ρ
2(j−1)
η + φ2

3ρ
2(j−1) + φ2

4ρ
4(j−1)

+2φ1φ2ρ
j−1
η + 2φ1φ3ρ

j−1 + 2φ1φ4ρ
2(j−1)

+2φ2φ3

(
ρηρ
)j−1

+ 2φ2φ4

(
ρηρ

2
)j−1

+ 2φ3φ4ρ
3(j−1)

 .

Using (for the final time) the results of geometric progressions gives

Fi =
θ4

8


iφ2

1 + φ2
2

1−ρ2iη
1−ρ2η

+ φ2
3

1−ρ2i
1−ρ2 + φ2

4
1−ρ4i
1−ρ4

+2φ1φ2
1−ρiη
1−ρη

+ 2φ1φ3
1−ρi
1−ρ + 2φ1φ4

1−ρ2i
1−ρ2

+2φ2φ3

1−(ρηρ)
i

1−ρηρ
+ 2φ2φ4

1−(ρηρ2)
i

1−ρηρ2
+ 2φ3φ4

1−ρ3i
1−ρ3

 .

This completes the proof. �

A.3 Existence: Proof of Theorem 3

The aim is to show that the infinite summation

∑∞
i=1 β

i exp
(
Aix+Bi (xt − x) + Ciη +Di (ηt − η) + Fiω

2
)
,

convergences to a finite number. First, I define

zi ≡ βi exp
(
Aix+Bi (xt − x) + Ciη +Di (ηt − η) + Fiω

2
)
,

so that the price-dividend ratio given by yt =
∑∞

i=1 zi. To test convergence, it is suffi cient

to show that lim
i→∞

∣∣∣ zi+1zi ∣∣∣ < 1. It follows that

∣∣∣∣zi+1

zi

∣∣∣∣ = β exp
(
Ãx+ B̃i (xt − x) + C̃iη + D̃i (ηt − η) + F̃iω

2
)
,

where the notation, X̃i ≡ Xi+1 −Xi is used, and where

Ã ≡ 1− γ, B̃i ≡ (1− γ) ρi+1

C̃i ≡ θ2

2

(
1− 2ρi+1 + ρ2(i+1)

)
,

D̃i ≡
θ2ρη

2

(
φ2ρη

(
1− ρ−1

η

)
ρiη + φ3ρ

i (1− ρ−1) + φ4ρ
2i (1− ρ−2)

)
,

and F̃i ≡ θ4

8

 φ2
1 + φ2

2ρ
2i
η + φ2

3ρ
2i + φ2

4ρ
4i

+2φ1φ2ρ
i
η + 2φ1φ3ρ

i + 2φ1φ4ρ
2i

+2φ2φ3

(
ρηρ
)i

+ 2φ2φ4

(
ρηρ

2
)i

+ 2φ3φ4ρ
3i

 .
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Taking the limit of these terms gives

lim
i→∞

Ã = 1− γ, lim
i→∞

B̃i = 0

lim
i→∞

C̃i = 1
2

(
1−γ
1−ρ

)2

,

lim
i→∞

D̃i = 0, and lim
i→∞

F̃i = θ4

8(1−ρη)
2 .

It then follows that

lim
i→∞

∣∣∣∣zi+1

zi

∣∣∣∣ = β exp

(
(1− γ)x+

1

2

(
1− γ
1− ρ

)2

η +
θ4

8
(
1− ρη

)2ω
2

)
.

This completes the proof. �

B Online appendix (not for publication)

B.1 Alternative moment generating functions

This section applies and discusses two alternative distributions for εη for which the MGF

exists: The truncated normal and gamma distribution, respectively.

B.1.1 Non-negative volatility with the truncated normal distribution

Drawing the εη innovations from the standard normal distribution creates the technical

possibility that we get negative values for ηt. One solution to this problem is to draw

from a truncated standard normal distribution which, with appropriate truncation, can

guarantee non-negative values for ηt. To find the natural truncation point, calculate the

value of ηt+i (without loss of generality, we set ηt = η) following a sequence of lowest-

possible realizations of εη, namely εmin
η to give

ηmin
t+i = η + ρi−1

η ωεmin
η + · · ·+ ωεmin

η .

The non-negativity constraint requires lim
i→∞

ηmin
t+i > 0, in which case

η + lim
i→∞

1− ρiη
1− ρη

ωεmin
η > 0 or εmin

η > −
η
(
1− ρη

)
ω

.

This expression implies that for a small ω relative to a large η (and low persistence, ρη),

the probability of ηt becoming negative can be small and of no practical concern. Bansal

and Yaron (2004) use the following parameterization for the stochastic volatility process:

η = 6.08×10−5, ρη = 0.987, and ω = 0.23×10−5. In this case εmin
η = −0.344. However,

drawing from this distribution would also lower the volatility of the process that Bansal
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and Yaron (2004) targeted since

var
(
εTrNη

)
= 1 +

2εmin
η φ

(
εmin
η

)
1− 2Φ

(
εmin
η

) < 1,

where the TrN superscript denotes that it is the truncated random variable and the 1

on the right-hand side of the expression is the variance of the non-truncated standard

normal. With εη drawn from a symmetrically truncated standard normal distribution

with εmin
η = −η(1−ρη)

ω
, the MGF is given by

MTrN (τ) = exp

(
τ 2

2

)(
Φ
(
−εmin

η − τ
)
− Φ

(
εmin
η − τ

)
1− 2Φ

(
εmin
η

) )
.

In the limit,
η(1−ρη)

ω
→∞, the moment generating function would be exp

(
τ2

2

)
, recovering

the solution for the standard normal distribution.

B.1.2 Fat tails with the gamma distribution

Another possible solution to the above problem of non-negativity is the gamma distribu-

tion since the support is εΓ
η ∈ (0,∞). This gamma distribution’s MGF is given by

MΓ (τ) = (1− g1τ)−g2 for τ <
1

g1

.

An additional benefit of the gamma distribution is that it generates both positive skew,
2√
g2
and excess kurtosis, 6

g2
. Suppose that the shape parameter, g2 is used to match some

moment in the data that captures skewness or kurtosis. The scale parameter, g1 can then

be calibrated as follows: The gamma distribution has the following properties

E
(
εΓ
η

)
= g1g2 and V

(
εΓ
η

)
= g2

1g2.

Assume that the parameter pair
(
ηStN , ωStN

)
were calibrated to match E (ηt) and V (ηt),

the unconditional mean and variance of the stochastic volatility process, respectively,

where StN denotes the calibration for the standard normal distribution. These formula

for unconditional mean and variance is given by

E (ηt) = η +
ω(

1− ρη
)E (εη) and V (ηt) =

ω2(
1− ρ2

η

)V (εη)

We therefore have the following two expressions

ηStN = ηΓ +
ωΓ(

1− ρη
)g1g2 and

(
ωStN

)2
=
(
ωΓ
)2
g2

1g2.
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Normalizing ωΓ = ωStN , we have the restriction that g1 = 1√
g2
. Substituting this into the

first equation determines the appropriate value for η:

ηΓ = ηStN − ωΓ(
1− ρη

)g1g2.

In the online Appendix B.5, the model is solved with both a standard normal and gamma

distribution under a given calibration and the price-dividend ratio and risk-free rate are

reported.

B.2 Additional variables

This section derives closed-form solutions for several additional variables of interest, in-

cluding the mean price-dividend ratio, the risk-free rate and the conditional-expected

equity return and conditional-expected equity risk premium.

B.2.1 Unconditional mean price-dividend ratio

In order to calculate the unconditional mean, it is necessary to appropriately capture the

autocorrelation created by the εη innovations in the dividend growth process. Iterating

backward the stochastic volatility process, equation (4), so that ηt is in terms of a sequence

of past εη realizations gives

ηt − η = ρkη
(
ηt−k − η

)
+ ω

∑k
s=1 ρ

s−1
η εη,t+1−s. (B.1)

Taking the limit gives

lim
k→∞

ηt − η = ω
∑∞

s=1 ρ
s−1
η εη,t+1−s,

in which case

ηt+1−j − η = ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s.

Similarly, xt can be written as

xt − x = ρk (xt−k − x) +
∑k

j=1 ρ
j−1√ηt+1−jεt+1−j,

and

lim
k→∞

xt − x =
∑∞

j=1 ρ
j−1√ηt+1−jεt+1−j.

Substituting in for equation (B.1) gives

xt − x =
∑∞

j=1 ρ
j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j. (B.2)
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The unconditional mean of yt is

E (yt) =
∑∞

i=1 β
i exp (Zi)E exp (Bi (xt − x) +Di (ηt − η)) ,

where

Zi ≡ Aix+ Ciη + Fiω
2,

which means we need only evaluate the expectations term

E exp (Bi (xt − x) +Di (ηt − η)) .

To do this, first substitute using equation (B.2), which gives

E exp
(
Bi

(∑∞
j=1 ρ

j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j

)
+Di

(
ω
∑∞

j=1 ρ
j−1
η εη,t+1−j

))
.

At this stage it is instructive to rewrite the expectations operator as an integral of prob-

abilistic outcomes

∫
· · ·
∫

εη,t εη,t−∞

∫
· · ·
∫

εt εt−∞

exp

 Bi

∑∞
j=1 ρ

j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j

+Diω
(∑∞

j=1 ρ
j−1
η εη,t+1−j

)  dF
εt
· · · dF

εt−∞
dFη
εη,t

· · · dFη
εη,t−∞

,

Rearranging the above expression gives

∫
· · ·
∫

εη,t εη,t−∞

(∏∞
j=1

∫
· · ·
∫

εt εt−∞

exp
(
Biρ

j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j

)
dF
εt
· · · dF

εt−∞

)
× exp

(
Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dFη
εη,t

· · · dFη
εη,t−∞

.

Using the same result as before for standard normal distributions gives

∫
· · ·
∫

εη,t εη,t−∞

∏∞
j=1 exp

(
B2
i

2
ρ2(j−1)

(
η + ω

∑∞
s=1 ρ

s−1
η εη,t+2−j−s

))
× exp

(
Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dFη
εη,t

· · · dFη
εη,t−∞

,

which can be rewritten as

∫
· · ·
∫

εη,t εη,t−∞

exp

(
B2
i

2

∑∞
j=1 ρ

2(j−1)
(
η + ω

∑∞
s=1 ρ

s−1
η εη,t+2−j−s

)
+Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dFη
εη,t

· · · dFη
εη,t−∞

,
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Removing the constants term from the integral gives

exp (Ki)
∫
· · ·
∫

εη,t εη,t−∞

exp

 B2i ω

2

∑∞
j=1 ρ

2(j−1)
(∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
+Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

)  dFη
εη,t

· · · dFη
εη,t−∞

,

where

Ki ≡
B2
i η

2 (1− ρ2)
.

Focussing on the integral term, the above expression is rearranged in order to bring

together εη innovations with the same time subscript:

∫
· · ·
∫

εη,t εη,t−∞

exp

(∑∞
j=1

(
B2
i ω

2
ρj−1
η

(∑j
s=1

(
ρ−1
η ρ2

)s−1
)

+Diωρ
j−1
η

)
εη,t+1−j

)
dFη
εη,t

· · · dFη
εη,t−∞

.

Again, using the results of standard normals and geometric series gives

exp

ω2

2

∑∞
j=1

(
B2
i

2
ρj−1
η

(
1−

(
ρ−1
η ρ2

)j
1− ρ−1

η ρ2

)
+Diρ

j−1
η

)2
 .

This can be rewritten as

exp

(
ω2

2

∑∞
j=1

(
γ1ρ

j−1
η − γ2ρ

2(j−1)
)2
)
, (B.3)

where

γi,1 ≡
(
B2
i

2

ρη
ρη − ρ2

+Di

)
and γi,2 ≡

B2
i

2

ρ2

ρη − ρ2
.

Multiplying out the quadratic term in expression (B.3) gives

exp

(
ω2

2

∑∞
j=1

(
γ2
i,1ρ

2(j−1)
η − 2γi,1γi,2

(
ρηρ

2
)j−1

+ γ2
2ρ

4(j−1)
))

,

And using the standard results of geometric series gives

exp

(
ω2

2

(
γ2

1

1− ρ2
η

− 2γ1γ2

1− ρηρ2
+

γ2
2

1− ρ4

))
.

Thus, the unconditional mean price-dividend ratio is

Eyt =
∑∞

i=1 β
i exp

(
Aix+

(
Ci +

B2
i

2 (1− ρ2)

)
η +

(
1

2

(
γ2
i,1

1− ρ2
η

−
2γi,1γi,2
1− ρηρ2

+
γ2
i,2

1− ρ4

)
+ Fi

)
ω2

)
.
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Next, it is necessary to show that the condition for convergence of the infinite summation

in the expression above is the same as the condition stated in Theorem 3. Let

zi = βi exp

(
Aix+

(
Ci +

B2
i

2 (1− ρ2)

)
η +

(
1

2

(
γ2
i,1

1− ρ2
η

−
2γi,1γi,2
1− ρηρ2

+
γ2
i,2

1− ρ4

)
+ Fi

)
ω2

)
,

so that Eyt =
∑∞

i=1 zi. Then

∣∣∣∣zi+1

zi

∣∣∣∣ = β exp

 Ãx+
(
C̃i +

B2i+1−B2i
2(1−ρ2)

)
η

+

(
1
2

(
γ2i+1,1−γ2i,1

1−ρ2η
− 2(γi+1,1γi+1,2−γi,1γi,2)

1−ρηρ2
+

γ2i+1,2−γ2i,2
1−ρ4

)
+ F̃i

)
ω2

 .

The parameters Ã, C̃i, and F̃i are the same as in Section A.3. Since Section A.3 also

shows that lim
i→∞

B̃i = lim
i→∞

D̃i = 0, it follows naturally (or after much tedious manipulation)

that this result also implies that

lim
i→∞

(
B2
i+1 −B2

i

)
= lim

i→∞
(Di+1 −Di) = 0,

lim
i→∞

(
γ2
i+1,1 − γ2

i,1

)
= lim

i→∞

(
γi+1,1γi+1,2 − γi,1γi,2

)
= lim

i→∞

(
γ2
i+1,2 − γ2

i,2

)
= 0.

This completes the proof. �

B.2.2 Risk-free rate

The price of a risk-free bond, prft , is given by

prft = Et

(
β

(
ct+1

ct

)−γ)
, or prft = βEt exp (−γxt+1) .

Substituting out xt+1 gives

prft = βEt exp

(
−γ
(
x+ ρ (xt − x) +

√(
η + ρη (ηt − η) + ωεη,t+1

)
εt+1

))
.

Expressing the expectation using integrals gives

prft = β exp (−γx− γρ (xt − x))
∫
εη,t+1

∫
εt+1

exp

(
−γ
√(

η + ρη (ηt − η) + ωεη,t+1

)
εt+1

)
dFdFη.

Taking expectations with respect to εt+1 gives

prft = β exp (−γx− γρ (xt − x))
∫
εη,t+1

exp

(
γ2

2

(
η + ρη (ηt − η) + ωεη,t+1

))
dFη,
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and bringing time t terms outside the integral gives

prft = β exp

(
−γx− γρ (xt − x) +

1

2
γ2η +

γ2ρη
2

(ηt − η)

)∫
εη,t+1

exp

(
γ2

2
ωεη,t+1

)
dFη.

Taking expectations with respect to εη,t+1 gives

prft = β exp

(
−γx− γρ (xt − x) +

1

2
γ2η +

γ2ρη
2

(ηt − η) +
γ4

8
ω2

)
.

Since the risk-free rate is the inverse of the price of the risk-free bond, Rrf
t+1 =

(
prft

)−1

,

the risk-free rate is

Rrf
t+1 = β−1 exp

(
γx+ γρ (xt − x)− 1

2
γ2η −

γ2ρη
2

(ηt − η)− γ4

8
ω2

)
.

B.2.3 Conditional-expected return on equity

The conditional-expected return on equity, EtRt+1, is defined as

Et

(
dt+1 + pt+1

pt

)
,

and can be rewritten as

Et exp (xt+1) + Et (yt+1 exp (xt+1))

yt
.

Thus, there are two expectations terms to evaluate. The first, Et exp (xt+1), is

exp

(
x+ ρ (xt − x) +

1

2
η +

ρη
2

(ηt − η) +
1

8
ω2

)
.

The second, Et (yt+1 exp (xt+1)), can initially be rewritten as

∑∞
i=1 β

i exp (Zi + x)Et exp
(
(Bi + 1) (xt+1 − x) +Di

(
ηt+1 − η

))
where

Zi ≡ Aix+ Ciη + Fiω
2.

Focusing on only the expectations term, substituting in for the exogenous processes and

using the integral notation gives

exp
(
(Bi + 1) ρ (xt − x) +Diρη (ηt − η)

)
×
∫
εη,t+1

∫
εt+1

exp

(
(Bi + 1)

√(
η + ρη (ηt − η) + ωεη,t+1

)
εt+1

)
dF exp (Diωεη,t+1) dFη.

29



Taking expectations with respect to εt+1 gives

exp

(
(Bi + 1) ρ (xt − x) +

1

2
(Bi + 1)2 (η + ρη (ηt − η)

))
×
∫
εη,t+1

exp

((
1

2
(Bi + 1)2 +Di

)
ωεη,t+1

)
dFη.

Next, taking expectations with respect to εη,t+1 gives

exp

(
(Bi + 1) ρ (xt − x) +

1

2
(Bi + 1)2 (η + ρη (ηt − η)

)
+

1

2

(
1

2
(Bi + 1)2 +Di

)2

ω2

)
.

The term, Et (yt+1 exp (xt+1)), can therefore be written as:

∑∞
i=1 β

i exp


(Ai + 1)x+ (Bi + 1) ρ (xt − x)

+
(
Ci + 1

2
(Bi + 1)2) η + 1

2
(Bi + 1)2 ρη (ηt − η)

+
(
Fi + 1

2

(
1
2

(Bi + 1)2 +Di

)2
)
ω2

 .

B.3 Low-order polynomial approximations

This section derives approximate solutions for the price-dividend ratio using, first, the

perturbation method (up to sixth order), and second, the Campbell and Shiller (1988)

first-order approximation exploiting the normality of the shock processes.

B.3.1 The perturbation solution

The sixth order perturbation approximate solution is

yt = g + gxx̂t + 1
2!

(gσ2 + gx2x̂
2
t ) + 1

3!
(3gσ2xx̂t + 3gσ2ηη̂t + gx3x̂

3
t )

+ 1
4!

(gσ4 + 6gσ2x2x̂
2
t + 12gσ2xηx̂tη̂t + gx4x̂

4
t )

+ 1
5!

(5gσ4xx̂t + 5gσ4ηη̂t + 10gσ2x3x̂
3
t + 30gσ2x2ηx̂

2
t η̂t + gx5x̂

5
t )

+ 1
6!

(
gσ6 + 15gσ4x2x̂

2
t + 30gσ4xηx̂tη̂t + 15gσ4η2 η̂

2
t + 60gσ2x3ηx̂

3
t η̂t + gx6x̂

6
t

)
,

where x̂t ≡ xt − x, η̂t ≡ ηt − η, and

gσ4 =
∑∞

i=1 β
i exp (Aix) 12η2C2

i , gσ2x2 =
∑∞

i=1 β
i exp (Aix) 2ηB2

iCi,

gσ2xη =
∑∞

i=1 β
i exp (Aix) 2BiDi, gx4 =

∑∞
i=1 β

i exp (Aix)B4
i ,

gσ4x =
∑∞

i=1 β
i exp (Aix) 12η2BiC

2
i , gσ4η =

∑∞
i=1 β

i exp (Aix) 24ηCiDi,

gσ2x3 =
∑∞

i=1 β
i exp (Aix) 2ηB3

iCi, gσ2x2η =
∑∞

i=1 β
i exp (Aix) 2B2

iDi,

gx5 =
∑∞

i=1 β
i exp (Aix)B5

i , gσ6 =
∑∞

i=1 β
i exp (Aix) (η3C3

i + 720Fiω
2) ,

gσ4x2 =
∑∞

i=1 β
i exp (Aix) 12η2B2

iC
2
i , gσ4xη =

∑∞
i=1 β

i exp (Aix) 24ηBiCiDi,

gσ4η2 =
∑∞

i=1 β
i exp (Aix) 24D2

i , gσ2x4 =
∑∞

i=1 β
i exp (Aix) 2ηB4

iCi,

gσ2x3η =
∑∞

i=1 β
i exp (Aix) 2B3

iDi, gx6 =
∑∞

i=1 β
i exp (Aix)B6

i .
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B.3.2 The first-order solution exploiting normality

Defining the log-price-dividend ratio as ỹt ≡ log yt, we are searching for a solution of the

form

ỹt = ỹ + κ1 (xt − x) + κ2 (ηt − η) , (B.4)

where κ1 and κ2 are as yet undetermined coeffi cients. The Euler equation from the main

text, in terms of the log-price-dividend ratio, is given by

exp ỹt = βEt exp ((1− γ)xt+1 + log (1 + exp ỹt+1)) .

The first step is to take a first-order approximation of log (1 + exp ỹt+1) around ỹt+1 = ỹ

as follows

log (1 + exp ỹt+1) ' log (1 + y) +
y

1 + y
(ỹt+1 − ỹ) ,

and substitute this approximation into the Euler equation:

exp ỹt = βEt exp

(
(1− γ)xt+1 + log (1 + y) +

y

1 + y
(ỹt+1 − ỹ)

)
.

Moving terms outside the expectations operator gives

exp ỹt = β (1 + y)Et exp

(
(1− γ)xt+1 +

y

1 + y
(ỹt+1 − ỹ)

)
, (B.5)

and, substituting in equation (B.4) with undetermined coeffi cients κ1 and κ2, changes the

right-hand side to

β (1 + y)Et exp

(
(1− γ)xt+1 +

y

1 + y

(
κ1 (xt+1 − x) + κ2

(
ηt+1 − η

)))
.

Collecting the (xt+1 − x) terms gives

β exp ((1− γ)x) (1 + y)Et exp

((
1− γ +

yκ1

1 + y

)
(xt+1 − x) +

yκ2

1 + y

(
ηt+1 − η

))
,

and substituting in the process for dividends gives

β exp ((1− γ)x) (1 + y)Et exp

((
1− γ +

yκ1

1 + y

)(
ρ (xt − x) +

√
ηt+1εt+1

)
+

yκ2

1 + y

(
ηt+1 − η

))
,

which can then be rewritten as

β exp

(
(1− γ)x+

(
1− γ +

yκ1

1 + y

)
ρ (xt − x)

)
(1 + y)

×Et exp

((
1− γ +

yκ1

1 + y

)
√
ηt+1εt+1 +

yκ2

1 + y

(
ηt+1 − η

))
.
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Taking only expectations over εt+1 gives

β exp

(
(1− γ)x+

(
1− γ +

yκ1

1 + y

)
ρ (xt − x)

)
(1 + y)

×Et exp

(
1

2

(
1− γ +

yκ1

1 + y

)2

ηt+1 +
yκ2

1 + y

(
ηt+1 − η

))
,

Collecting
(
ηt+1 − η

)
terms gives

β exp

(
(1− γ)x+

(
1− γ +

yκ1

1 + y

)
ρ (xt − x) +

1

2

(
1− γ +

yκ1

1 + y

)2

η

)
(1 + y)

×Et exp

((
1

2

(
1− γ +

yκ1

1 + y

)2

+
yκ2

1 + y

)(
ηt+1 − η

))
,

and substituting in the stochastic volatility process gives

β exp

 (1− γ)x+
(

1− γ + yκ1
1+y

)
ρ (xt − x) + 1

2

(
1− γ + yκ1

1+y

)2

η

+

(
1
2

(
1− γ + yκ1

1+y

)2

+ yκ2
1+y

)
ρη (ηt − η)

 (1 + y)

×Et exp

((
1

2

(
1− γ +

yκ1

1 + y

)2

+
yκ2

1 + y

)
ωεη,t+1

)
.

Taking expectations gives

exp



log β + (1− γ)x+ log (1 + y) + 1
2

(
1− γ + yκ1

1+y

)2

η

+1
2

(
1
2

(
1− γ + yκ1

1+y

)2

+ yκ2
1+y

)2

ω2

+
(

1− γ + yκ1
1+y

)
ρ (xt − x)

+

(
1
2

(
1− γ + yκ1

1+y

)2

+ yκ2
1+y

)
ρη (ηt − η)


.

The left-hand side of equation (B.5) is

exp (ỹ + κ1 (xt − x) + κ2 (ηt − η)) .

Hence, it is possible to match coeffi cients. First,

κ1 =

(
1− γ +

yκ1

1 + y

)
ρ, which implies κ1 =

(1− γ) ρ

1− yρ
1+y

.

Second,

κ2 =

(
1

2

(
1− γ +

yκ1

1 + y

)2

+
yκ2

1 + y

)
ρη,
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which implies

κ2 =

(
1− γ + yκ1

1+y

)2

ρη

2
(

1− yρη
1+y

) .

Third,

log y = log β + (1− γ)x+ log (1 + y) +
1

2

(
(1− γ) +

y

1 + y
κ1

)2

η

+
1

2

(
1

2

(
(1− γ) +

y

1 + y
κ1

)2

+
y

1 + y
κ2

)2

ω2.

Substituting for κ1 and κ2, y solves

y

1 + y
= β exp

(
(1− γ)x+

(1− γ)2 (1 + y)2 η

2 (1 + (1− ρ) y)2 +
(1− γ)4 (1 + y)6 ω2

8 (1 + (1− ρ) y)4 (1 +
(
1− ρη

)
y
)2

)
.

B.4 Bansal & Yaron without recursive preferences

The model in the main text is an extension of Burnside (1998) to allow for stochastic

volatility in the dividend growth process. Alternatively, it may be of interest to solve

a variant of the model presented in Bansal and Yaron (2004). Relative to the model

in the main text, the model in Bansal and Yaron (2004) features long-run risk, recursive

preferences and differential processes for consumption and dividends. While it is not

possible to find a closed-form solution with recursive preferences, it is possible to find

the closed-form solution of the model with CRRA preferences, plus long-run risk and

separate consumption and dividend processes. In this section, I solve the model, and use

the calibration in Bansal and Yaron (2004) to report some several moments of the model

solution.

B.4.1 The model

The Euler equation is as it was in equation (5):

c−γt pt = Etβc
−γ
t+1 (pt+1 + dt+1) .

Denoting the log-growth rate of consumption and dividends as

gc,t ≡ log (ct/ct−1) and gd,t ≡ log (dt/dt−1) ,

respectively, the forward iterated Euler equation can be rewritten as follows:

yt =
∑∞

i=1 β
iEt exp

(∑i
j=1 (gd,t+j − γgc,t+j)

)
. (B.6)
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Notice that if gc,t = gd,t as in the main text, we recover (7). The exogenous processes for

consumption and dividends are modelled as follows

gc,t+1 = µc + xt + σtεc,t+1,

gd,t+1 = µd + φxt + ϕdσtεd,t+1,

where

xt+1 = ρxt + ϕxσtεx,t+1,

σ2
t+1 = σ2 + ρσ

(
σ2
t − σ2

)
+ σωεσ,t+1.

This follows the specification in Bansal and Yaron (2004). The four shocks, εc,t+1, εd,t+1, εx,t+1,

and εσ,t+1 are all independent standard normals. Notice that the notation is slightly al-

tered from the main text – xt is no longer the growth rate of dividends but the persistent-

predictable component of both consumption and dividend growth. The timing of sto-

chastic volatility is also slightly altered from the main text. The two state variables are

xt and σ2
t .

B.4.2 The solution

The solution is of the form

yt =
∑∞

i=1 β
i exp

(
ABYi +BBY

i xt + CBY
i σ2 +DBY

i

(
σ2
t − σ2

)
+ FBY

i σ2
ω

)
,

where ABYi , BBY
i , CBY

i , DBY
i , and FBY

i are coeffi cients to be determined. Substituting

the consumption and dividend process into the expectations component of equation (B.6)

and collecting like terms gives

Et exp
(
i (µd − γµc) + (φ− γ)

∑i
j=1 xt+j−1 +

∑i
j=1 σt+j−1 (ϕdεd,t+j − γεc,t+j)

)
,

where it becomes immediately clear that

ABYi ≡ i (µd − γµc) .

As I progress with the solution, I will focus only on the expectations term that is yet to

be determined. Thus, I drop ABYi and focus on

Et exp
(

(φ− γ)xt + (φ− γ)
∑i−1

j=1 xt+j +
∑i

j=1 σt+j−1 (ϕdεd,t+j − γεc,t+j)
)
.

Iterating forward the process for xt gives

xt+j = ρjxt + ϕx
∑j

k=1 ρ
j−kσt+k−1εx,t+k.
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Substituting this into the above expression and collecting terms gives

Et exp

(
(φ− γ)

∑i
j=1 ρ

j−1xt + ϕx (φ− γ)
∑i−1

j=1

(∑j
k=1 ρ

j−kσt+k−1εx,t+k

)
+
∑i

j=1 σt+j−1 (ϕdεd,t+j − γεc,t+j)

)
,

which makes it clear that

BBY
i ≡ (φ− γ)

1− ρi
1− ρ ,

leaving only the following:

Et exp
(
ϕx (φ− γ)

∑i−1
j=1

(∑j
k=1 ρ

j−kσt+k−1εx,t+k

)
+
∑i

j=1 σt+j−1 (ϕdεd,t+j − γεc,t+j)
)
.

Next, it is necessary to collect εx terms with the same time subscript, which requires

rewriting the expression above as follows:

Et exp

(
(φ− γ)ϕx

1− ρ
∑i−1

j=1

(
1− ρi−j

)
σt+j−1εx,t+j +

∑i
j=1 σt+j−1 (ϕdεd,t+j − γεc,t+j)

)
.

Taking expectations over the three fundamental (and independent) shocks, εc, εd, and εx,

(but not εσ yet) gives

Et exp

(
1

2

(
(φ− γ)ϕx

1− ρ

)2∑i−1
j=1

(
1− ρi−j

)2
σ2
t+j−1 +

1

2

(
ϕ2
d + γ2

)∑i
j=1 σ

2
t+j−1

)
,

Removing the σ2
t term from the expectations operator gives

exp

(
1

2

((
(φ− γ)ϕx

1− ρ

)2 (
1− ρi−1

)2
+
(
ϕ2
d + γ2

))
σ2
t

)

×Et exp

(
1

2

(
(φ− γ)ϕx

1− ρ

)2∑i−1
j=2

(
1− ρi−j

)2
σ2
t+j−1 +

1

2

(
ϕ2
d + γ2

)∑i
j=2 σ

2
t+j−1

)
.

Iterating forward the stochastic volatility process gives

σ2
t+j−1 = σ2 + ρj−1

σ

(
σ2
t − σ2

)
+ σω

∑j−1
k=1 ρ

j−1−k
σ εσ,t+k,

and substituting into the above expression and collecting terms for σ2 and (σ2
t − σ2) gives

Et exp



1
2

((
(φ−γ)ϕx

1−ρ

)2∑i−1
j=1 (1− ρi−j)2

+
∑i

j=1 (ϕ2
d + γ2)

)
σ2

+1
2

((
(φ−γ)ϕx

1−ρ

)2∑i−1
j=1 (1− ρi−j)2

ρj−1
σ + (ϕ2

d + γ2)
∑i

j=1 ρ
j−1
σ

)
(σ2

t − σ2)

+1
2

(
(φ−γ)ϕx

1−ρ

)2∑i−1
j=2 (1− ρi−j)2

σω
∑j−1

k=1 ρ
j−1−k
σ εσ,t+k

+1
2

(ϕ2
d + γ2)

∑i
j=2 σω

∑j−1
k=1 ρ

j−1−k
σ εσ,t+k


.
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The first line above can be rewritten as CBY
i σ2, where

CBY
i ≡ 1

2

((
(φ− γ)ϕx

1− ρ

)2(
(i− 1)− 2ρ

1− ρi−1

1− ρ + ρ2 1− ρ2(i−1)

1− ρ2

)
+ i
(
ϕ2
d + γ2

))
,

and the second line can be rewritten as DBY
i (σ2

t − σ2), where

DBY
i ≡ 1

2

 (
(φ−γ)ϕx

1−ρ

)2
(

1−ρi−1σ

1−ρσ
− 2ρi−1 1−(ρ−1ρσ)

i−1

1−(ρ−1ρσ)
+ ρ2(i−1) 1−(ρ−2ρσ)

i−1

1−(ρ−2ρσ)

)
+1−ρiσ

1−ρσ
(ϕ2

d + γ2)

 .

This leaves the expression

Et exp

 σω
2

(
(φ−γ)ϕx

1−ρ

)2∑i−2
j=1 (1− ρi−j)2

(∑j
k=1 ρ

j−k
σ εσ,t+k

)
+σω

2
(ϕ2

d + γ2)
∑i−1

j=1

(∑j
k=1 ρ

j−k
σ εσ,t+k

)


yet to be evaluated, where, for convenience, I have rewritten the indexing in the summa-

tion. Next, it is necessary to collect εσ terms with the same time subscript, rewriting the

expression as follows:

Et exp

 σω
2
κ1

∑i−2
j=1

(∑i−j−1
k=1

(
1− ρi−j−k+1

)2
ρk−1
σ

)
εσ,t+j

+σω
2

(ϕ2
d + γ2)

∑i−1
j=1

(∑i−j
k=1 ρ

k−1
σ

)
εσ,t+j

 .

And, using the standard results of geometric progressions gives

Et exp

 σω
2
κ1

i−2∑
j=1

(
1−ρi−j−1σ

1−ρσ
− 2ρi−j

1−(ρ−1ρσ)
i−j−1

1−(ρ−1ρσ)
+ ρ2(i−j) 1−(ρ−2ρσ)

i−j−1

1−(ρ−2ρσ)

)
εσ,t+j

+σω
2
κ2

∑i−1
j=1 (1− ρi−jσ ) εσ,t+j

 ,

where

κ1 ≡
(

(φ− γ)ϕx
1− ρ

)2

and κ2 ≡
(
ϕ2
d + γ2

1− ρσ

)
.

Combining εσ terms with the same time subscripts gives

Et exp

 σω
2

i−2∑
j=1

(
κ1

(
1−ρi−j−1σ

1−ρσ
− 2ρi−j

1−(ρ−1ρσ)
i−j−1

1−(ρ−1ρσ)
+ ρ2(i−j) 1−(ρ−2ρσ)

i−j−1

1−(ρ−2ρσ)

)
+ κ2 (1− ρi−jσ )

)
εσ,t+j

+1
2
σωκ2 (1− ρσ) εσ,t+i−1

 .

Using standard results for random variables gives

Et exp

 σ2ω
8

i−2∑
j=1

(
κ1

(
1−ρi−j−1σ

1−ρσ
− 2ρi−j

1−(ρ−1ρσ)
i−j−1

1−(ρ−1ρσ)
+ ρ2(i−j) 1−(ρ−2ρσ)

i−j−1

1−(ρ−2ρσ)

)
+ κ2 (1− ρi−jσ )

)2

+1
8
σ2
ωκ2

2 (1− ρσ)2

 .

(B.7)
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The final task is to rewriting the expression

i−2∑
j=1

(
κ1

(
1− ρi−j−1

σ

1− ρσ
− 2ρi−j

1− (ρ−1ρσ)
i−j−1

1− (ρ−1ρσ)
+ ρ2(i−j) 1− (ρ−2ρσ)

i−j−1

1− (ρ−2ρσ)

)
+ κ2

(
1− ρi−jσ

))2

,

more parsimoniously. To do this, it is first convenient to reverse the indexation for

j = 1, ..., i by rewriting i− j − 1 = j as follows:

i−2∑
j=1

(
κ1

(
1− ρjσ
1− ρσ

− 2ρj+1 1− (ρ−1ρσ)
j

1− (ρ−1ρσ)
+ ρ2(j+1) 1− (ρ−2ρσ)

j

1− (ρ−2ρσ)

)
+ κ2

(
1− ρj+1

σ

))2

,

Next, we can rewrite the expression as follows

i−2∑
j=1

(
κ1

(
χ1 + χ2ρ

j−1
σ + χ3ρ

j−1 + χ4ρ
2(j−1)

)
+ κ2

(
1 + χ5ρ

j−1
σ

))2
,

where

χ1 ≡
1

1− ρσ
, χ2 ≡ −ρσ

(
1

1− ρσ
− 2ρ2

ρ− ρσ
+

ρ4

ρ2 − ρσ

)
,

χ3 ≡ −
2ρ3

ρ− ρσ
, χ4 ≡

ρ6

ρ2 − ρσ
, χ5 ≡ −ρ2

σ.

Multiplying out the squared term once gives

i−2∑
j=1

(
κ2

1

(
χ1 + χ2ρ

j−1
σ + χ3ρ

j−1 + χ4ρ
2(j−1)

)2
+ κ2

2 (1 + χ5ρ
j−1
σ )

2

+2κ1κ2

(
χ1 + χ2ρ

j−1
σ + χ3ρ

j−1 + χ4ρ
2(j−1)

)
(1 + χ5ρ

j−1
σ )

)
,

and a second time gives

i−2∑
j=1


κ2

1

(
χ2

1 + χ2
2ρ

2(j−1)
σ + (χ2

3 + 2χ1χ4) ρ2(j−1) + χ2
4ρ

4(j−1) + 2χ1χ2ρ
j−1
σ

+2χ1χ3ρ
j−1 + 2χ2χ3 (ρσρ)j−1 + 2χ2χ4 (ρσρ

2)
j−1

+ 2χ3χ4ρ
3(j−1)

)
+κ2

2

(
1 + 2χ5ρ

j−1
σ + χ2

5ρ
2(j−1)
σ

)
+2κ1κ2

(
χ1 + (χ2 + χ1χ5) ρj−1

σ + χ3ρ
j−1 + χ4ρ

2(j−1)

+χ2χ5ρ
2(j−1)
σ + χ3χ5 (ρσρ)j−1 + χ4χ5 (ρσρ

2)
j−1

)


,

Using the standard results of geometric progressions for the final time gives

κ2
1

 (i− 2)χ2
1 + χ2

2
1−ρ2(i−2)σ

1−ρ2σ
+ (χ2

3 + 2χ1χ4) 1−ρ2(i−2)
1−ρ2 + χ2

4
1−ρ4(i−2)

1−ρ4 + 2χ1χ2
1−ρi−2σ

1−ρσ

+2χ1χ3
1−ρi−2

1−ρ + 2χ2χ3
1−(ρσρ)i−2

1−ρσρ
+ 2χ2χ4

1−(ρσρ2)
i−2

1−ρσρ2
+ 2χ3χ4

1−ρ3(i−2)
1−ρ3


+κ2

2

(
(i− 2) + 2χ5

1−ρi−2σ

1−ρσ
+ χ2

5
1−ρ2(i−2)σ

1−ρ2σ

)
+2κ1κ2

 (i− 2)χ1 + (χ2 + χ1χ5) 1−ρi−2σ

1−ρσ
+ χ3

1−ρi−2
1−ρ + χ4

1−ρ2(i−2)
1−ρ2

+χ2χ5
1−ρ2(i−2)σ

1−ρ2σ
+ χ3χ5

1−(ρσρ)i−2

1−ρσρ
+ χ4χ5

1−(ρσρ2)
i−2

1−ρσρ2

 ,

37



Bringing back the final term in B.7 means that

Fi ≡
1

8



κ2
1

 (i− 2)χ2
1 + χ2

2
1−ρ2(i−2)σ

1−ρ2σ
+ (χ2

3 + 2χ1χ4) 1−ρ2(i−2)
1−ρ2 + χ2

4
1−ρ4(i−2)

1−ρ4 + 2χ1χ2
1−ρi−2σ

1−ρσ

+2χ1χ3
1−ρi−2

1−ρ + 2χ2χ3
1−(ρσρ)i−2

1−ρσρ
+ 2χ2χ4

1−(ρσρ2)
i−2

1−ρσρ2
+ 2χ3χ4

1−ρ3(i−2)
1−ρ3


+2κ1κ2

 (i− 2)χ1 + (χ2 + χ1χ5) 1−ρi−2σ

1−ρσ
+ χ3

1−ρi−2
1−ρ + χ4

1−ρ2(i−2)
1−ρ2

+χ2χ5
1−ρ2(i−2)σ

1−ρ2σ
+ χ3χ5

1−(ρσρ)i−2

1−ρσρ
+ χ4χ5

1−(ρσρ2)
i−2

1−ρσρ2


+κ2

2

(
(i− 1) + 2χ5

1−ρi−1σ

1−ρσ
+ χ2

5
1−ρ2(i−1)σ

1−ρ2σ

)


.

B.5 Model implied data moments

This subsection examines the model’s ability to match stylized asset pricing facts. Table

B.1 presents various calibrations of the model’s parameters and the corresponding mo-

ments from the model solution. The moments I report are the price-dividend ratio, the

risk-free rate and the equity risk premium, conditional on (xt, ηt) = (x, η). Thus, these

model moments are not the analogous unconditional means in the data.13 To provide

a guide to the data on asset prices, I report the unconditional mean risk-free rate and

equity risk premium value that Bansal and Yaron (2004) match. The risk-free rate is a

little below 1% and the equity risk premium is a little over 600 basis points.

For this exercise, I hold β, x, and η at the values used in the main text. Rows 1-3

present the model without stochastic volatility (i.e. Burnside (1998)). A comparison of

rows 1 and 2 show the standard risk-free rate and equity premium puzzles (see Mehra

and Prescott (1985) and Weil (1989)). First, it is clear that the risk-aversion parameter,

γ, has to be significantly greater than 11 to generate a 600 basis point equity premium.

Second, as one does increase γ, the risk-free rate becomes counterfactually large.

Rows 4-6 add stochastic volatility. Using the parameter value for the stochastic

volatility process from Bansal and Yaron (2004) to solve the model has no impact on

the moments relative to the no-stochastic volatility case (rows 1-2 and 4-5 are virtually

identical).

Rows 7-10 ask whether there are any parameter values that can generate a reasonable

equity risk premium. Row 9 shows that with a risk aversion parameter of 11, the model

can generate a reasonable equity risk premium if the standard deviation of the stochastic

volatility process, ω is three orders of magnitude larger than the benchmark value. This

value can be reduced somewhat by making the persistence parameter, ρη large and neg-

ative. While none of the rows 7-9 produce a risk-free rate close to the data, the model

with stochastic volatility does have a risk-free rate significantly lower than, for example,

rows 1 and 2. By increasing stochastic volatility, the equity risk premium increases be-

13For the price-dividend ratio and the risk-free rate – for which we do have closed-form unconditional
mean expressions – the differences between those unconditional means and the ones reported in the
table are not of first order importance.
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cause the risk-free rate falls whereas when we use the risk-aversion parameter to generate

a reasonable equity risk premium, the risk-free rate is also large. Thus, the addition of

stochastic volatility goes in the right direction of resolving the two asset pricing puzzles.

However, with CRRA preferences, the effects are simply not powerful enough.

Finally, rows 11-12 use a gamma distribution in which the mean and variance of the

stochastic volatility process are the same as rows 6 and 10 respectively. However, unlike

the Gaussian distribution, the gamma distribution generates positive skew (a value of

4.77) and excess kurtosis (a value of 34.1). Relative to the Gaussian distribution, the

model with the gamma distribution generates a higher price-dividend ratio and a lower

risk-free rate. Thus, the gamma distribution moves the model moments towards the data

moments.
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Table B.1: Model implied data moments

Parameters Moments
γ ρ ρη ω y rf (%) erp (bp)

Data: – 0.86 633

No Stochastic Volatility:

1. 2.5 0 – – 12.53 9.67 33
2. 11 0 – – 5.39 19.19 158
3. 2.5 0.7 – – 14.63 9.67 -61

Stochastic Volatility:

4. 2.5 0 0 ×1 12.53 9.67 33
5. 11 0 0.855 ×1 5.39 19.20 158
6. 11 0 0 ×500 5.94 16.25 278

Targeting the ERP:

7. 2.5 0 0 ×15000 13.89 3.27 610
8. 2.5 -0.2 0 ×14500 13.12 3.67 636
9. 11 0 0 ×1100 10.07 5.58 640
10. 11 0 -0.9 ×650 5.77 14.25 625

Gamma distribution:

11. 11 0 0 ×500 6.58 13.31 –
12. 11 0 -0.9 ×650 6.24 3.49 –

Note: The parameters β, x, η are held constant at .95, .0179, and .0012, respectively. rf and erp
denote the risk-free rate and equity risk premium, respectively, and bp denotes basis points. The

moments are evaluated at (xt, ηt) = (x, η). Data estimates from Bansal and Yaron (2004). The

column for ω reports multiples of the benchmark calibrated value, ω = 0.75× 10−5. The gamma
distribution has the following parameters: ωΓ= ω, ηΓ= 0, g1= 2.3855, g2= 0.1757.
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