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Abstract

A growing body of evidence indicates that the progression of cancer can be viewed as an eco-

evolutionary process. Under this perspective, we present here a space- and phenotype-structured

model of selection dynamics between cancer cells within a solid tumour. In the framework of

this model, we combine formal analyses with numerical simulations to investigate in silico the

role played by the spatial distribution of abiotic components of the tumour microenvironment

in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on

the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an

in vivo human hepatic tumour, which was imaged using computerised tomography. The results

obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed

in solid tumours, can promote the creation of distinct local niches and lead to the selection of

different phenotypic variants within the same tumour. This process fosters the emergence of

stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic

therapy prior to treatment. Our theoretical results demonstrate the importance of integrating

spatial data with ecological principles when evaluating the therapeutic response of solid tumours.

Introduction

Significant progress in understanding the mechanisms behind cancer development and progres-

sion has been achieved in recent years by using molecular-based sequencing techniques [1–7].

Despite this growing knowledge, we are far from a complete understanding of the principles that

govern the emergence of intratumour heterogeneity. This poses a major obstacle to successful

cancer chemotherapy and management of disease relapse [8–10].

A novel perspective on cancer therapeutics can be obtained from the accumulating evidence

indicating that the progression of solid tumours is, in essence, an eco-evolutionary process [11–

13]. Firstly, new phenotypic variants emerge in the tumour via mutations and epimutations.

Afterwards, these variants are subject to natural selection and they proliferate and die under
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the selective pressures of the tumour microenvironment. From this evolutionary viewpoint,

spatial variations in the distribution of abiotic components of the tumour microenvironment

(e.g., nutrients and therapeutic agents) may lead to the creation of distinct local niches and

thus provide ecological opportunities for diversification [14–17].

To explore in silico the validity of such an ecological argument linking heterogeneity in

the distribution of abiotic components of the tumour microenvironment to the development

and maintenance of phenotypic heterogeneity between cancer cells, we present here a space-

and phenotype-structured model of selection dynamics in a solid tumour. Our model consists

of an integro-differential equation (IDE) for the spatiotemporal evolution of the phenotypic

distribution of cancer cells [18–21] coupled to a system of partial differential equations (PDEs)

for the dynamics of abiotic factors [22–24].

Recent studies based on various mathematical modelling approaches support related hy-

potheses concerning the emergence of intratumour heterogeneity. For instance, Fu et al. [25]

have proposed a model based on a multi-type stochastic branching process describing growth

of cancer cells in multiple spatial compartments characterised by different environmental con-

ditions. Further, Lorz et al. [26] have developed an IDE model of phenotypic selection in a

radially symmetric tumour spheroid viewed as a population structured by a phenotypic trait

and a 1D spatial variable. More recently, Lloyd et al. [27] have considered an evolutionary game

theory model of habitat heterogeneity where the tumour is composed of two compartments – the

tumour core and the tumour edge – treated as two different habitats. Although these studies

provide a valuable proof of concept for the hypothesis that spatial gradients of abiotic factors

cause the selection of different phenotypic properties in distinct regions within the same solid

tumour, they are based on mathematical models that rely on rather strong simplifying modelling

assumptions. On the contrary, our mathematical model requires no specific assumptions on the

tumour geometry, and its parameters can be linked to experimentally measurable quantities.

For these reasons, the model presented here offers a more flexible and realistic mathematical

framework for studying phenotypic selection between cancer cells within solid tumours.



4

In this paper, integrating the results of formal analyses with numerical simulations, we show

that inhomogeneities in the spatial distribution of oxygen, which are recurrently observed in solid

tumours, can promote the creation of distinct local niches and lead to the selection of different

phenotypic variants within the same tumour. This process fosters the emergence of stable phe-

notypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy

prior to treatment. Moreover, our theoretical results reveal how intratumour heterogeneity can

reduce the efficacy of cytotoxic drugs, leading to poor treatment outcomes, and demonstrate the

importance of integrating spatial data with ecological principles when evaluating the therapeutic

response of solid tumours.

Model description

We identify the tumour geometry with a spatial domain Ω ⊂ R3. At time t and for each point

x ∈ Ω, the function n(t,x, y) ≥ 0 describes the phenotypic distribution of cells. The vector

x denotes the position in the tumour and the continuous scalar variable y ∈ [0, 1] represents

the normalised expression level of a hypoxia-responsive gene [28, 29]. Cells within the tumour

proliferate and die due to competition for limited space. Moreover, a cytotoxic drug can be

administered which acts by increasing the death rate of cells. We assume increasing values of

the phenotypic state y to be correlated with a progressive switch towards a hypoxic phenotype,

which, in turn, implies a progressive reduction in the proliferation rate [27, 30]. Additionally,

given that cytotoxic agents target mostly rapidly proliferating cells, we assume higher values of

the phenotypic state y correspond to higher levels of resistance to the cytotoxic drug [31,32].

Given the local population density of cells in the tumour n(t,x, y), we define the local density

of cells ρ(t,x) and the total number of cells N(t) as follows

ρ(t,x) =

∫ 1

0
n(t,x, y) dy, N(t) =

∫
Ω
ρ(t,x) dx. (1)
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The mean cell phenotypic state at position x and time t can be computed as

µ(t,x) =
1

ρ(t,x)

∫ 1

0
y n(t,x, y) dy. (2)

Finally, we introduce the functions s(t,x) ≥ 0 and c(t,x) ≥ 0 to model the local concentration

of oxygen and cytotoxic drug at position x and time t, respectively.

Dynamics of cancer cells

The dynamics of the local population density n(t,x, y) is governed by the following nonlinear

IDE

∂n

∂t
(t,x, y) = R

(
y, ρ(t,x), s(t,x), c(t,x)

)
n(t,x, y). (3)

In (3), the function R
(
y, ρ(t,x), s(t,x), c(t,x)

)
represents the fitness of cells with phenotypic

state y at position x and time t, given the local environmental conditions . These are determined

by the local cell density ρ(t,x) as well as by the concentrations of abiotic factors s(t,x) and

c(t,x). Throughout the paper, we define the fitness landscape of the tumour as

R
(
y, ρ(t,x), s(t,x), c(t,x)

)
= p(y, s(t,x))− k(y, c(t,x))− dρ(t,x). (4)

The definition given by (4) relies on the idea that a higher cell density ρ(t,x) at position x

corresponds to a more intense competition for space. We assume cells located at position x

die with rate dρ(t,x), where the parameter d > 0 represents the death rate due to intratumour

competition between cells. The function k(y, c) ≥ 0 models the additional death rate due to the

cytotoxic drug. Since increasing values of the phenotypic state y correspond to higher levels of

cytotoxic-drug resistance, we assume the function k to be decreasing in y. Moreover, since the

death rate increases with higher drug concentrations, we assume the function k to be increasing

in the drug dose c. The function p(y, s) ≥ 0 represents the cell proliferation rate, which we
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define as

p(y, s(t,x)) = f(y) + r(y, s(t,x)). (5)

The function f(y) is the proliferation rate under hypoxic conditions and is, therefore, an increas-

ing function of the phenotypic state y [33]. The function r(y, s) is decreasing in the phenotypic

state y and increasing in the oxygen concentration s, since it models the rate of cell proliferation

in oxygenated environments [14]. In this paper we consider

f(y) = ζ
[
1− (1− y)2

]
, (6)

r(y, s(t,x)) = γs
s(t,x)

αs + s(t,x)

(
1− y2

)
, (7)

k(y, c(t,x)) = γc
c(t,x)

αc + c(t,x)
(1− y)2. (8)

These definitions satisfy the generic properties listed above and ensure analytical tractability

of the model. The definitions (7) and (8) rely on the assumption that the consumption of

oxygen and cytotoxic drug is governed by Michaelis-Menten kinetics with constants αs > 0 and

αc > 0, respectively [22, 24]. The parameter γc > 0 is the maximum cell death rate induced

by the cytotoxic drug. The parameters ζ > 0 and γs > 0 represent the maximum proliferation

rate under hypoxic conditions and in oxygenated environments, respectively. Previous empirical

studies suggest that cancer cells inhabiting hypoxic regions in solid tumours proliferate more

slowly than cells populating oxygenated regions [27, 31, 34]. In our modelling framework this

observation is captured by the additional assumption ζ � γs.

Dynamics of abiotic factors

The abiotic factors (i.e., oxygen and cytotoxic drug) diffuse in space, decay and are consumed

by cells. We note that the dynamics of abiotic factors is faster than cellular proliferation and

death [35,36]. From a mathematical viewpoint, this means that we can assume oxygen and the

cytotoxic drug to be in quasi-stationary equilibrium. Under these assumptions, the dynamics of
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the functions s(t,x) and c(t,x) are described by the following elliptic PDEs that are coupled to

the IDE (3)

βs∆s(t,x) = ηs

∫ 1

0
r
(
y, s(t,x)

)
n(t,x, y) dy + λss(t,x), (9)

βc∆c(t,x) = ηc

∫ 1

0
k
(
y, c(t,x)

)
n(t,x, y) dy + λcc(t,x). (10)

In the above equations, the parameters βs > 0 and βc > 0 represent the diffusion constants of

oxygen and the cytotoxic drug. The parameters ηs > 0 and ηc > 0 are the scaling factors for

the consumption rate of abiotic factors by cells in the tumour. The parameters λs > 0 and

λc > 0 represent the decay rates of oxygen and the cytotoxic drug. Focussing on the biological

scenario in which the concentrations of abiotic factors in the medium surrounding the tumour

are constant in time, we make use of the following boundary conditions for (9) and (10)

s(·,x) = S(x) and c(·,x) = C(x), x ∈ ∂Ω. (11)

The functions S(x) and C(x) model the concentrations of oxygen and cytotoxic drug on the

tumour boundary ∂Ω.

Table 1. Parameter values used to perform numerical simulations

Parameter Biological meaning Value Reference
αc Michaelis-Menten constant of cytotoxic drug 2× 10−6 g cm−3 [22, 37]
αs Michaelis-Menten constant of oxygen 1.5× 10−7 g cm−3 [38]
βc Diffusion coefficient of cytotoxic drug 5× 10−6 cm2 s−1 [22, 39]
βs Diffusion coefficient of oxygen 2× 10−5 cm2 s−1 [40]
γc Maximum cell death rate induced by cytotoxic drug 1.8× 10−4 s−1 [22, 37]
γs Maximum cell proliferation rate in oxygenated environments 1× 10−5 s−1 [24, 38]
ζ Maximum cell proliferation rate under hypoxic conditions 1× 10−6 s−1 [30]
d Rate of cell death due to competition for space 2× 10−14 cm3 s−1 cell−1 [41]
ηc Scaling factor for cell consumption of cytotoxic drug 4× 10−12 g cell−1 [22, 37]
ηs Scaling factor for cell consumption of oxygen 2× 10−12 g cell−1 [38]
λc Decay rate of cytotoxic drug 0.1 s−1 [42]
λs Decay rate of oxygen 0.3 s−1 [23]
ρ0 Reference value for the local cell density 109 cells cm−3 [41]
s0 Reference value for the local concentration of oxygen 6.3996× 10−7 g cm−3 [43]
c0 Reference value for the local concentration of cytotoxic drug 10−5 g cm−3 [22]
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Formal analysis of phenotypic selection

To obtain an analytical description of phenotypic selection, we assume that all possible pheno-

typic variants exist in the tumour at time t = 0, i.e., we set n(0,x, y) > 0 for all x ∈ Ω and

all y ∈ [0, 1]. Additionally, we assume that the number of cells in the tumour is bounded above

and below. Given this scenario, for every position x ∈ Ω, the local cell density at equilibrium

ρ(x) satisfies the following condition

max
y∈[0,1]

R
(
y, ρ(x), s(x), c(x)

)
= 0,

where s(x) and c(x) stand for the steady-state distributions of oxygen and cytotoxic drug,

respectively. Since the fitness landscape R is a monotonically decreasing function of the local

number of cells, for every x, there is a unique value of ρ(x) that satisfies the above relation.

Moreover, given Eqs. (6)-(8), the fitness landscape R is a strictly concave function of y for all

values of ρ(x), s(x) and c(x). This implies that, for all values of x, there exists one single

phenotypic state y(x) which maximises the fitness landscape R at equilibrium. Therefore, for

each x there is a unique dominant phenotypic state y(x) (i.e., at each position x in the tumour,

the equilibrium phenotypic distribution is unimodal). Given the phenotypic state y(x), the

following conditions are simultaneously satisfied

R
(
y(x), ρ(x), s(x), c(x)

)
= max

y∈[0,1]
R
(
y, ρ(x), s(x), c(x)

)
= 0

and

∂R

∂y

(
y(x), ρ(x), s(x), c(x)

)
= 0.
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Together, the above considerations allow us to conclude that, given s(x) and c(x), there exists

a unique pair (ρ(x), y(x)) which solves the following system of equations


R
(
y(x), ρ(x), s(x), c(x)

)
= 0,

∂R

∂y

(
y(x), ρ(x), s(x), c(x)

)
= 0.

(12)

For every position x ∈ Ω, the pair
(
ρ(x), y(x)

)
characterises the local cell density and the

dominant phenotypic state at equilibrium. The formal arguments presented above are consistent

with the asymptotic analysis recently developed by Mirrahimi and Perthame for a system of

equations modelling selection dynamics in a population structured by a phenotypic trait and a

1D spatial variable [44].

Solving the system given by (12) we obtain

ρ(x) =
1

d

As(x)−Ac(x) +

(
ζ +Ac(x)

)2

ζ +As(x) +Ac(x)

 (13)

and

y(x) =
ζ +Ac(x)

ζ +As(x) +Ac(x)
, (14)

where

As(x) = γs
s(x)

αs + s(x)
and Ac(x) = γc

c(x)

αc + c(x)
.

Here, (13) and (14) demonstrate that the local cell density ρ and the phenotypic state y which

maximises the cellular fitness at position x are determined by the concentration of oxygen s and

cytotoxic drug c at the same position. This is illustrated by the heat maps in Fig. 1, which show

how, for the parameter values listed in Table 1, the values of ρ and y vary as functions of s and

c.

Together, these results suggest that local variations of abiotic factors in the tumour mi-

croenvironment determine spatial variations of selected phenotypic variants and cell densities.
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Figure 1. Plot of the local cell density ρ and the dominant phenotypic state y at equilibrium as functions of

the local concentration of oxygen s and cytotoxic drug c. The quantities ρ, s and c are scaled by the reference

values ρ0, s0 and c0 given in Table 1.

Specifically, lower values of the oxygen concentration s and higher values of the drug concen-

tration c correspond to higher values of the phenotypic state y and lower values of the local

cell density ρ. Biologically, this means that local environments hostile to highly proliferative

cells (i.e., environments characterised by lower oxygen availability and higher concentration of

the cytotoxic agent) promote the selection of cells characterised by higher levels of expression

of the hypoxia-responsive gene, which in turn leads to smaller cell numbers. On the contrary,

higher values of s and lower values of c correspond to lower values of y and higher values of

ρ. Biologically, this means that highly proliferative cells are selected for in regions with higher

oxygen and lower drug concentration, which in turn leads to larger cell densities.

Numerical solutions

We integrate the formal results established in the previous section with numerical simulations of

the coupled system given by Eqs. (3), (9) and (10). First, we consider the case where the spatial

domain Ω is an in silico tumour spheroid. Second, we consider the case where Ω corresponds

to the three dimensional geometry of an in vivo human hepatic tumour, imaged using 3D

computerised tomography. The image data were obtained from the 3D-IRCADb-01 database
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(http://www.ircad.fr/).

For the numerical simulations, we use the parameter values from the existing literature which

are listed in Table 1. Further details of numerical simulations are provided as SI. In particular, a

complete description of the numerical methods used in this work can be found in SI Appendix C.

Primarily, we report here on results obtained under the assumption that the tumour is avascular

and the concentrations of oxygen and cytotoxic drug on the boundary ∂Ω are constant (i.e.,

S(x) = s0 and C(x) = c0 for all x ∈ ∂Ω). For the sake of completeness, we performed additional

numerical simulations both in the case where abiotic factors are non-uniformly distributed on

the boundary and in the case where blood vessels are enclosed within the tumour mass. The

results obtained are presented and discussed at the end of this section.

In silico tumour spheroid simulations

The results obtained with and without the cytotoxic drug are presented in Fig. 2, where the

local concentrations of abiotic factors, the local mean phenotypic state and the local cell density

at equilibrium are shown.

Figure 2. Plots of the local concentration of cytotoxic drug c(t,x), the local concentration of oxygen s(t,x),

the local mean cell phenotypic state µ(t,x) and the local cell density ρ(t,x) at t = 70 days [i.e., close to the

steady state of Eqs. (3), (9) and (10)] in an in silico tumour spheroid of radius 800µm. The top and bottom

rows refer to the cases when the cytotoxic drug is absent and present, respectively. For visualisation, only the

bottom half of the spheroid is shown. The quantities c, s and ρ are scaled by the reference values c0, s0 and ρ0

given in Table 1.
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The concentrations of oxygen and cytotoxic drug, when present, decrease monotonically from

the edge to the centre of the spheroid. As a consequence, in the absence of drug (vid. top row

of Fig. 2), the local cell density decays radially with maximum value on the spheroid boundary.

We observe the formation of a necrotic core, with very few living cells, surrounded by a hypoxic

region, then by a more densely populated rim with more living cells present. Biologically, our

results suggest that the outer part of the spheroid becomes colonised by highly proliferative

cells, while slow-proliferating cells with a hypoxic phenotype are selected for in the interior of

the spheroid. Accordingly, the local mean phenotypic state is a radially decreasing function

from the centre to the boundary of the spheroid.

When the cytotoxic drug is present (vid. bottom row of Fig. 2), the number of living cells

is consistently reduced throughout the whole tumour spheroid. The selective pressure exerted

by the drug drives the mean phenotypic state towards drug-resistance. Moreover, the local cell

density and the local mean phenotypic state are no longer monotonic functions of the distance

from the centre of the spheroid. In this case, the density of living cells is close to zero at both

the boundary and the core of the tumour. Therefore, most of the surviving cells are found in

a thin band in the interior of the spheroid where the local mean phenotypic state attains its

minimum.

Both with and without the cytotoxic drug, at each position x the phenotypic distribution

n(t,x, y) has a Gaussian-like profile (vid. Fig. S1 in the SI); therefore, the local mean phenotypic

state coincides with the locally dominant phenotypic state. To this end, Movie S1 in the SI

demonstrates that after a short time period of transient behaviour, the local cell density ρ(t,x)

and the local mean phenotypic state µ(t,x) converge, respectively, to the equilibrium values of

the local cell density ρ(x), given by (13), and of the dominant phenotypic state y(x), given by

(14).
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In vivo human hepatic tumour simulations

Figure 3 illustrates the computerised tomography scan of the human liver tumour which we

selected as the spatial domain Ω.

Figure 3. Computerised tomography scan of a human tumour (blue) shown in situ within the liver (red).

The maximum diameter of the tumour is approximatively 3200µm. The inset shows a magnification of the

tumour with a portion made transparent, as in Fig. 4, in order to visualise the tumour bulk.

Our numerical simulations indicate that the spatial distributions of cells, oxygen and cyto-

toxic drug as well as the spatial patterns of phenotypic selection for the hepatic tumour are

qualitatively similar to those observed in the in silico tumour spheroid (compare the results in

Fig. 3 with the results of Fig. 2, and the results of Movie S1 with the results displayed by Movie

S2 in the SI).

Effects of tumour vasculature and non-uniform boundary distributions of abi-

otic factors

The results presented in Fig. 5 and Fig. 6 show that similar conclusions apply both to the case

with tumour vasculature and to the case with non-uniform boundary distributions of abiotic fac-

tors. Specifically, when the cytotoxic drug is not present, highly proliferative cells are selected

for in the tumour areas where oxygen concentration is higher. Conversely, poorly oxygenated

regions are colonised by slow-proliferating cells which express hypoxic phenotypes. These hy-

poxic cells, characterised by lower levels of drug-sensitivity, become dominant within the tumour

upon delivery of the cytotoxic drug.
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Figure 4. Plots of the local concentration of cytotoxic drug c(t,x), the local concentration of oxygen s(t,x),

the local mean cell phenotypic state µ(t,x) and the local cell density ρ(t,x) at t = 70 days [i.e., close to the

steady state of Eqs. (3), (9) and (10)] in the human hepatic tumour of Fig. 3. The top and bottom row refer to

the cases when the cytotoxic drug is absent and present, respectively. For better visualisation, only a portion of

the tumour is shown. The quantities c, s and ρ are scaled by the reference values c0, s0 and ρ0 given in Table 1.

Figure 5. Plots of the local concentration of cytotoxic drug c(t,x), the local concentration of oxygen s(t,x),

the local mean cell phenotypic state µ(t,x) and the local cell density ρ(t,x) at t = 70 days [i.e., close to the

steady state of Eqs. (3), (9) and (10)] in a slice of the in silico tumour spheroid shown in the inset. The top

and bottom row refer to the cases when the cytotoxic drug is absent and present, respectively. The quantities c,

s and ρ are scaled by the reference values c0, s0 and ρ0 given in Table 1.
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Figure 6. Plots of the local concentration of cytotoxic drug c(t,x), the local concentration of oxygen s(t,x),

the local mean cell phenotypic state µ(t,x) and the local cell density ρ(t,x) at t = 70 days [i.e., close to the

steady state of Eqs. (3), (9) and (10)] in the human hepatic tumour of Fig. 3. These results have been obtained

in the case of spatially varying boundary conditions for the abiotic factors. The top and bottom row displays

the results obtained in the absence and in the presence of cytotoxic drug, respectively. For better visualisation,

only the bottom half of the tumour is shown. The quantities c, s and ρ are scaled by the reference values c0, s0

and ρ0 given in Table 1.

Discussion

Our analysis and numerical simulations support the hypothesis that spatial variations in oxygen

levels can foster the emergence of phenotypic heterogeneity by promoting the creation of distinct

local niches within the same tumour. Our model predicts that well-oxygenated regions of the

tumour – such as the tumour periphery and areas close to blood vessels – will be densely

populated by highly proliferative cancer cells characterised by higher oxygen uptake. Conversely,

hypoxic cells with lower proliferation rates colonise tumour regions hostile to fast-proliferating

cells – such as the inner regions of the tumour where oxygen concentration is lower.

Our modelling framework offers a plausible theoretical basis for recent experimental re-

sults suggesting that the periphery and the centre of solid tumours represent distinct ecological

niches [27, 31, 45–47]. Furthermore, our findings agree with observations made in mathematical

modelling and experimental studies [31,48–51] which suggest that hypoxia favours the selection
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for cancer cells resistant to cytotoxic therapy prior to treatment. Consequently, this facilitates

the development of resistance following drug exposure.

Our analysis and numerical simulations also address the open question of how phenotypic

heterogeneity in a solid tumour changes under cytotoxic therapy. Our results complement those

of Robertson-Tessi et al. [52] by demonstrating that cytotoxic agents decrease the number of

living cancer cells and select for more resistant phenotypic variants throughout the whole tumour.

In particular, since cytotoxic drugs kill more proliferative cells in regions of the tumour with

higher oxygen concentration, the drug exposure removes the selective barrier limiting the growth

of less proliferative and more resistant cells. This reduces drug efficacy, and ultimately leads to

poor treatment outcomes and low patient survival rates [53–55].

In summary, our mathematical study highlights the role that the spatial distribution of

abiotic components in the tumour microenvironment play in mediating phenotypic heterogeneity

in solid tumours. Our results strongly support the need for spatial data when performing

phenotypic profiling of solid tumours, as single tumour biopsies are unlikely to fully represent

the complete phenotypic landscape of the tumour [4–7,56].

Histological analyses indicate that solid tumours contain cancer cells with a wide spectrum

of gene expression. However, our theoretical work provides support for the ideas proposed by

Alfarouk et al. [14], who have noted that the phenotypes of cancer cells result, to an extent,

from predictable spatial gradients in the concentrations of abiotic factors which can be mapped

out via non-invasive imaging techniques [57]. This may open up new avenues of research for

exploiting ecological principles to design innovative therapeutic protocols according to adaptive

therapy [58,59].

Additional strengths of the present study are that the parameter values used to perform

numerical simulations come from existing literature, and the outcomes of our formal analysis

are characterised by broad structural stability under parameter changes. Our framework can

accommodate parameter values for any solid tumour and the method we have used to construct

numerical solutions of the model is applicable to arbitrary geometries. Therefore, while we
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performed numerical simulations on the geometry of a given in vivo human hepatic tumour as

an illustrative example, our in silico approach can be applied to studying phenotypic selection

between cancer cells in a wide range of neoplasms.

Finally, while we have assumed multiple phenotypic variants to be present in the tumour from

the beginning of simulations and we have considered the tumour size to remain constant over

time, the modelling framework presented here can be extended to incorporate mutations and

epimutations [20, 21] as well as growing tumour spatial domains [60–64]. Given the robustness

and structural stability of our results, we expect the main conclusions of this work to hold even

after the inclusion of these additional layers of biological complexity.
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