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ABSTRACT 1 

 2 

When animals compete, hierarchies can emerge. If the outcome of competition under different 3 

conditions is dependent upon different sets of attributes, then we may expect to see hierarchies 4 

that are domain-specific, rather than domain general. We tested this idea by comparing prey 5 

share hierarchies within shoals of sticklebacks (Gasterosteus aculeatus) as they foraged for 6 

patchily-distributed or for drifting prey. We found that prey share was correlated across pairs of 7 

patch- and pairs of drift-foraging trials, but not between the two conditions, suggesting that 8 

separate repeatable but independent prey share hierarchies arise for each for each type of prey 9 

distribution. We discuss possible underlying mechanisms and ecological implications of this 10 

finding. 11 
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INTRODUCTION 1 

 2 

Competition is a largely inevitable consequence of living in groups (Krause & Ruxton 2002; 3 

Ward & Webster 2016). When social animals compete amongst themselves for resources or 4 

dominance, hierarchies can emerge. The structure of hierarchies may be influenced both by 5 

individual differences in ability to compete effectively, or through self-organising processes, 6 

such as through winner and loser effects (Chase et al. 2002; Franz et al. 2015). Hierarchies form 7 

in markedly different contexts, from leadership and travel initiation (Sueur 2011; Nagy et al. 8 

2013), to access to mating opportunities (Chen et al. 2011), to competition over food resources 9 

(David et al. 2007). The mechanisms which determine an individual’s place within the hierarchy 10 

may well differ between these different contexts. Ability to compete for mating opportunities 11 

may be to a lesser or greater extent under hormonal control for example (e.g. Beehner et al. 12 

2006; Oliveira et al. 2009) , while the ability to lead groupmates may depend more upon 13 

experience, assertiveness or sociability (Flack et al. 2010; Burns et al. 2012; Ioannou et al. 2015). 14 

Given this, we might reasonably predict that hierarchy structure should be context-specific. 15 

Indeed, this was found to be the case in pigeons (Columba livia), where hierarchies based upon 16 

leadership whilst in flight, and aggression during foraging were seen to be completely 17 

independent of one another (Nagy et al. 2013).    18 

 19 

Travelling and foraging are clearly separate domains, but even within broad, functional contexts 20 

we might expect to see a degree of condition-dependency of hierarchy structure, if performance 21 

under different conditions depends upon different attributes. We explored this idea by comparing 22 

the prey-share hierarchies seen within shoals of stickleback fish (Gasterosteus aculeatus) as they 23 
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compete for sequentially arriving, drifting food, and for food arranged in static patches. Previous 1 

work has shown that stable prey-share hierarchies characterised by a minority of fish consuming 2 

most of the prey can form and persist for several weeks in this species (Webster & Hart 2006; 3 

2007). Prey intake under the scramble-competition conditions associated with drifting food 4 

(Ward et al. 2006) is known to positively correlate with individual activity and boldness 5 

(Webster et al. 2007; 2009). Effectively competing for patchily-distributed food may also entail 6 

elements of scramble competition, however aggression may also play more of a role too; in an 7 

earlier study, aggressive contest competition and kleptoparasitsm rates declined over time in 8 

groups held under drift foraging conditions, but remained constant when groups are presented 9 

with patchily distributed prey, suggesting that these play a more important role in determining 10 

prey share under such conditions (Webster & Hart 2006). In this study we tested groups of fish 11 

multiple times in patch- and drift-foraging trials, predicting that prey share hierarchies would be 12 

stable within patch- and drift-foraging trials, but not between them.  13 

 14 

METHODS 15 

 16 

Sticklebacks were collected from the Kinnessburn stream, St Andrews, UK using mesh traps in 17 

October 2014. In the laboratory they were initially housed in groups of 40 in 90L aquaria for one 18 

month. They were maintained at 8°C on a 12h light:12h darkness cycle and fed daily with 19 

bloodworms. The aquaria contained a layer of gravel, artificial plants, and were equipped with 20 

external filters. Following this, unsexed, non-reproductive fish were divided into 16 groups of 21 

five fish each and each group was moved to its own visually isolated 45L aquarium, furnished as 22 

described above. Fish within each group were familiar to one another, and were size matched to 23 
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within 5mm length (range across groups 35–45mm). Each fish was fitted with a non-invasive, 1 

uniquely coloured 5mm diameter plastic disc tag on its left pelvic spine (Webster & Laland 2 

2009). Fish were given one week to acclimate, before being tested the following week. 3 

 4 

Each group was tested in four foraging trials, two in which the prey were presented 5 

simultaneously in a single patch, and two in which the prey were presented sequentially, 6 

simulating drifting food. The order of these foraging trials was randomised for each group. Both 7 

patch- and drift-foraging trials were conducted in an aquarium measuring 45cmx30cmx30cm 8 

(Figure 1). The aquarium contained a 1cm deep layer of sand and was filled with water to a 9 

depth of 25cm. The two short sides and one long side of the aquarium were screened with black 10 

plastic sheets to minimise external disturbance. A 4cm wide strip of black plastic was placed 11 

above the tank down the long side with four 5mm holes placed 8cm apart to allow prey to be 12 

delivered (in the drift-foraging trials only). A removable 10 cm diameter, 30 cm tall perforated 13 

colourless plastic cylinder was placed against one of the short side of the tank, equidistant from 14 

either longer side. This was used to hold the group of five fish prior to the start of the trial. A 15 

black plastic hide was placed in front of the unscreened side of the tank. Within this we placed a 16 

Logitech C600 web-camera connected to a laptop computer.  17 

 18 

In both types of foraging trial 15 dead bloodworms were used as prey. In the patch-foraging 19 

trials these were arranged within a 10cm diameter patch next to the short wall of the tank 20 

opposite the starting position of the test subjects. The prey were added to the tank one minute 21 

before the fish were added. The group of five fish were carefully netted from their housing tank 22 

placed into the holding cylinder and allowed to settle for ten minutes. Following this, the holder 23 
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was gently removed from the tank, beginning the trial. The trial ran for a further 10 minutes, 1 

after which the fish were removed and return to their holding tank. In the drift-foraging trials, 2 

prey were introduced through the four holes in the plastic strip attached to the top of the tank 3 

(described above). As in the patch-foraging trials, the group of five fish was first held within the 4 

holding cylinder for 10 minutes. Following their release, we began to add the prey items. Each 5 

prey item was delivered in 1cm³ of tank water using a pipette. One prey item was dropped every 6 

30 seconds through one of the holes and a randomly predetermined order. The fish typically 7 

consumed the prey as it sank to the bottom of the tank. After the final prey item had been 8 

delivered the trial continued for a further 150 seconds, allowing the fish to find any uneaten prey, 9 

giving a total trial time of 10 minutes. Each group was tested once a day over a 4 day period. 10 

Immediately after being tested, fish groups were returned to their holding tanks. All were given 11 

access to food after testing, in order to standardise hunger levels between trials. 12 

 13 

Statistical analysis 14 

 15 

From the trial videos we recorded the number of prey items eaten by each fish. We compared the 16 

amount of food eaten per group in each of the four trials using a Friedman test. We investigated 17 

whether prey share within groups varied between the four trials by calculating the coefficient of 18 

variation of prey share for each group and trial, and comparing these, also using a Friedman test. 19 

 20 

With respect to stability in individual prey share, we first performed exploratory analyses by 21 

calculating the Pearson product moment correlation coefficient for individual prey share within 22 

groups between the two patch-foraging trials, between the two drift-foraging trials and between 23 
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the mean patch- and mean drift-foraging prey shares for each group, enabling us to estimate the 1 

degree to which performance was repeatable across these trials. These were meta-analysed using 2 

Stouffer’s weighted Z method, in order to obtain a single test statistic for each comparison 3 

(Whitlock 2005).  4 

 5 

We then used maximum likelihood estimation to fit six statistical models describing variation 6 

and consistency in individual foraging ability to the data on individual prey share across groups, 7 

using corrected Akaike’s information criterion (AICc) to select the models which best described 8 

the observed patterns of prey share (Burnham & Anderson 2002).  9 

 10 

Model 1 described our prediction that prey share hierarchies would be stable within patch- and 11 

drift-foraging trials, but not between them. Models 2-5 describe alternatives to this prediction. 12 

Model 2, with individual differences in prey capture ability that acted identically across both 13 

foraging modes, corresponded with the alternative hypothesis that prey share hierarchies would 14 

be stable both within and between foraging modes. The previous work of Webster & Hart (2006) 15 

largely ruled out two other alternative predictions, namely that there would be no individual 16 

differences in prey capture ability in the foraging tasks (the scenario described by our Model 3), 17 

and that there would be individual differences in prey capture ability, but that these differences 18 

would not be stable over time (our Model 4). Our Models 5 & 6 were a mixture of Models 1 and 19 

3, in that fish were modelled as having individual differences in prey capture ability in one of the 20 

foraging modes, patch or drift, but not in the other. 21 

 22 
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We chose to model these various hypotheses as mixtures of multinomial distributions. Although 1 

more complicated models may have provide better fits to the data, testing our hypotheses 2 

required fitting individual level parameters, and as there were relatively few observations per 3 

individual, we decided to use a simple family of models. The number of prey capture 4 

observations was 960, 16 groups with 4 trials per group and 15 prey items per group, and the 5 

number of individual fish was 80, 16 groups with 5 fish per group, for a total of 12 observations 6 

per individual. 7 

 8 

Model 3 sat at one extreme where each trial by each group was modelled as coming from the 9 

same multinomial distribution, and Model 4 sat at the other extreme where a different 10 

multinomial distribution was posited and fitted for each trial by each group. Model 1 posited and 11 

fitted two multinomial distributions for each group, one for their patch trials and one for their 12 

drift trials. Model 2 posited a single mulitinomial distribution for each group which applied to 13 

both patch and drift trials. Models 5 and 6 were a blend of Models 1 and 3, positing a single 14 

multinomial distribution for all groups on patch (Model 5) or drift (Model 6) trials respectively, 15 

while positing a different multinomial distribution for each group on the alternative trial type 16 

(drift or patch). 17 

 18 

RESULTS 19 

 20 

Total prey intake per group did not vary across the four trials (Friedman test:  n=16, X
2
=2.64, 21 

df=3, P=0.450). Prey share within groups was unequal but did not vary across the four trials 22 

(Friedman test of coefficient of variation of individual prey intake, n=16, X
2
=4.90, df=3, 23 
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P=0.179, Figure 2a & 2b).Prey share within groups was positively correlated within the pairs of 1 

patch and drift trials (Stouffer’s Z trend, P= <0.001 and 0.027 respectively). Between patch and 2 

drift trials however we saw no evidence of any correlation (P=0.751, Figure 3).  3 

 4 

Of the six models that we fitted to the data, Model 1 was the best supported (Table 1), 5 

minimising information loss when approximating the true prey share distribution. This allows us 6 

to infer with confidence that there are persistent individual differences in prey capture ability, 7 

and that these individual differences in ability are distinct across food distribution types.  8 

 9 

DISCUSSION 10 

 11 

In line with our prediction, we found prey share hierarchies to be specific to prey distribution; 12 

individual prey shares were largely positively correlated within the two patch- and the two drift-13 

foraging trials, however there was little support for any relationship in prey-share hierarchy 14 

between the two prey provision treatment types. Given that individual prey intake varied 15 

between prey distribution treatments, it seems unlikely that individual differences in metabolic 16 

rate or energy requirements alone can account for our findings. One plausible explanation for 17 

this finding is that performance under different foraging conditions is determined by different 18 

combinations of behavioural attributes or behavioural syndromes (Sih et al. 2004). Such a link 19 

has already been demonstrated in sticklebacks, where more active and bolder individuals also 20 

tend to be superior competitors under drift feeding conditions, possibly because such individuals 21 

are simply more likely to encounter drifting food sooner than their less active group mates or 22 

because they are more willing move into the open to reach food once they have detected it 23 
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(Webster et al. 2007; 2009). Boldness and activity may be less important in shaping performance 1 

when competing for patchily-distributed prey, though it is interesting to note that boldness was 2 

positively correlated with prey intake in sticklebacks that were tested alone (Jolles et al 2016). 3 

Here then there is scope for further research that builds in the current study by identifying the 4 

behavioural correlates of social foraging performance under these different conditions.  5 

 6 

It is conceivable that resource defence may play a role in determining foraging success for 7 

patchily distributed resources. Resource of food patches has been widely observed in a range of 8 

species (Garber 1988; Bryant & Grant 1995; Vahl et al. 2005). It is not clear whether any form of 9 

resource defence was employed by the fish in our study. We saw no differences in total prey 10 

intake, nor any differences in disparity in prey share, (measured as the coefficient of variation in 11 

prey intake within each group) between patch and drift prey delivery treatments, as might be 12 

expected if patchy prey were defended. Moreover we saw very little evidence of contest 13 

competition or overt aggression, though we note that agonistic behaviours such as these may be 14 

poor indicators of the kinds of social interference effects that might limit food intake at patches 15 

(Vahl et al. 2005). For species where defence of food resources by dominant individuals does 16 

occur (Grant & Guha 1993; Grand & Grant 1994), prey distribution, the degree to which it is 17 

clumped in space and time, is likely to have significant implications for the effectiveness of 18 

resource defence strategies. Further research into the use of defence tactics across a continuously 19 

varied range of prey distributions in such species would be valuable, since it would allow 20 

researchers to test predictions about the effectiveness of such strategies and the flexibility with 21 

which they are deployed and abandoned.  22 

 23 
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The findings of our study imply that for groups of generalist species that forage for different food 1 

types, we may not be able to build an accurate picture of individual relative foraging 2 

performance based upon foraging performance observed only under a narrow set of conditions. 3 

Instead, it may be necessary to gather data on performance across a range of different foraging 4 

types, and to take into account the competitive abilities of all group members across these, given 5 

that social foraging interactions are known to depend strongly upon the combinations of 6 

behavioural phenotypes present within the group (Giraldeau & Caraco 2000). A number of 7 

studies have recently addressed the question of how expression of individual personality traits 8 

influences and is influenced by that of the group (reviewed by Webster & Ward 2011; 9 

Magnhagen 2012) and it would be useful to extend this work further by exploring the expression 10 

of traits affecting food competition across different food distributions. Taking such an approach 11 

may enable researchers to explain a greater proportion of the variation seen in competitive 12 

interactions among social animals. 13 

 14 

Skew theory, largely applied to competition over opportunities to reproduce, has also been 15 

suggested to apply to foraging interactions; dominant individuals may punish effective 16 

competitors for food resources, while poorer competitors may quit groups in order to seek better 17 

access to food (Hamilton 2000). High rates of fission and fusion, coupled with low group fidelity 18 

have been described for some animal groups, including some shoaling fishes (Hoare et al. 2000), 19 

and it would be interesting to determine the extent to which this reflects poor competitors 20 

moving between areas containing differently prey distributions or groups containing individuals 21 

with different competitive abilities. Conceivably, the rules governing patch quitting likelihoods 22 

invoked by classic foraging models (Charnov 1976) may also apply to group membership, with 23 
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individuals being more likely to switch groups if their prey intake drops below some threshold 1 

level.  2 

 3 

Finally, it would be useful to determine how broadly these findings apply to other modes of 4 

foraging, and more generally still, when groups of animals are faced with different tasks or 5 

problems within other broad behavioural contexts, such as navigation through different types of 6 

environment. 7 

 8 
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 6 

FIGURE LEGENDS 7 

 8 

Figure 1. Test arena, consisting of a glass tank (a) screened on three sides with black plastic 9 

sheeting and measuring 45x30 cm, water depth 20cm. A black plastic strip (b), 4cm wide was 10 

present in both drift- and patch foraging trials. This contained four holes, at equal intervals, used 11 

to deliver prey in the drift foraging trials. A removable 10cm perforated plastic holding unit (c) 12 

was used to house the fish during the settling period at the start of the trial. In the patch-foraging 13 

trials only, prey were provided within a 10cm diameter patch, located at (d). The uncovered front 14 

of the tank was abutted by a black plastic shelter (e), containing a webcam (f), used to record the 15 

trials. 16 

 17 

Figure 2. (a) Median prey (+/- quartiles) intake by rank (mean of both trials within each prey 18 

delivery treatment).  (b) Coefficient of variation of individual prey intake across the four trials 19 

(median +/- quartiles). 20 

 21 

Figure 3. Pearson correlation coefficients of individual prey share within groups (median +/- 22 

quartiles). To obtain median scores, individual correlation coefficients were converted to 23 
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Fisher’s z scores. These were ranked and the 9
th

 highest value was taken as the median, with the 1 

5th and 13th highest values were used as the quartiles. These were then converted back from 2 

Fisher’s z scores to correlation coefficients and used to produce the figure. 3 

 4 

 5 

 6 

 7 

TABLE LEGEND 8 

 9 

Table 1. Support (AICc) for the six models fitted to our data. Model 1, in which feeding 10 

performance was consistent within feeding modes but independent between them, was the best 11 

supported.  12 
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Table 1.  1 

 2 

Model Parameters 

(Estimated) 

Negative Log 

Liklihood 

AICc Δ (AICc - AICc*) 

1. Individual, unrelated 

differences across modes. 

192 (160) 429.38 1243.00 0 

2. Individual differences, 

consistent across modes. 

96 (80) 575.00 1324.69 81.68 

3. No individual differences. 2 (1) 

 

686.74 1375.48 132.48 

4. Individual differences 

never consistent. 

384 (320) 291.52 1543.05 300.05 

5. Individual differences in 

Patch, but not Drift. 

98 (81) 553.50 1284.09 41.09 

 

6. Individual differences in 

Drift, but not Patch. 

98 (81) 565.10 1307.27 64.27 

 3 

 4 

 5 

 6 

 7 

 8 
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Figure 1. 

 

 
 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 



23 

 

Figure 2. 
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Figure 3. 

 

 

P
ea

rs
o
n
 p

ro
d
u
ct

 m
o
m

en
t 

co
rr

el
at

io
n
  

co
ef

fi
ci

en
t 

 

  

 
 1 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Drift 1: Drift 2 Patch 1: Patch 2 Mean Drift: Mean Patch


