
Improving Resource Efficiency of
Container-instance Clusters on Clouds

Uchechukwu Awada and Adam Barker
School of Computer Science

University of St Andrews
St Andrews, Scotland, UK

Email: {ua5, adam.barker}@st-andrews.ac.uk

Abstract—Cloud computing providers such as Amazon and
Google have recently begun offering container-instances, which
provide an efficient route to application deployment within a
lightweight, isolated and well-defined execution environment.
Cloud providers currently offer Container Service Platforms
(CSPs), which orchestrate containerised applications.

Existing CSP frameworks do not offer any form of intel-
ligent resource scheduling: applications are usually scheduled
individually, rather than taking a holistic view of all registered
applications and available resources in the cloud. This can result
in increased execution times for applications, resource wastage
through underutilised container-instances, and a reduction in the
number of applications that can be deployed, given the available
resources.

The research presented in this paper aims to extend existing
systems by adding a cloud-based Container Management Service
(CMS) framework that offers increased deployment density,
scalability and resource efficiency. CMS provides additional func-
tionalities for orchestrating containerised applications by joint
optimisation of sets of containerised applications, and resource
pool in multiple (geographical distributed) cloud regions.

We evaluated CMS on a cloud-based CSP i.e., Amazon EC2
Container Management Service (ECS) and conducted extensive
experiments using sets of CPU and Memory intensive con-
tainerised applications against the direct deployment strategy of
Amazon ECS. The results show that CMS achieves up to 25%
higher cluster utilisation, and up to 70% reduction in execution
times.

I. INTRODUCTION

In order to fully exploit cloud computing [1] technologies
organisations require a fast and efficient mechanism to deploy
and manage complex applications across distributed resources.
An increasing and diverse set of applications are now packaged
in isolated user-space instances, on which they are executed.
Such instances are called application or software containers.
Application containers like Docker [2], wrap up a piece of
software in a complete file-system, which contains everything
it requires to run: code, runtime, system tools, system libraries
etc. This packaging of an application also enables flexibility
and portability on where the application can be executed e.g.,
on premises, cloud, bare metal, etc1. A single virtual machine
can run several containers simultaneously. A recent analysis
on Docker adoption in about 10,000 organisations2 found that

1https://linux.com/news/docker-shipping-container-linux-code/
2https://datadoghq.com/docker-adoption/

a typical Docker use case involves running five containers per
host, but that many organisations run 10 or more.

Efficiently deploying and orchestrating containerised ap-
plications across distributed clouds is important to both de-
velopers and cloud providers. Cloud providers (i.e., AWS3,
Google Compute Engine4) currently offer Container Service
Platforms (CSPs)5,6, which support the flexible orchestration
of containerised applications.

Existing CSP frameworks do not offer any form of intelli-
gent resource scheduling: applications are usually scheduled
individually, rather than taking a holistic view of all regis-
tered applications and available resources in the cloud. This
can result in increased execution times for applications, and
resource wastage through under utilised container-instances;
but also a reduction in the number of applications that can be
deployed, given the available resources. In addition, current
CSP frameworks do not currently support: the deployment
and scaling of containers across multiple regions at the same
time; grouping containers into multi-container units in order to
achieve higher cluster utilisation and reduced execution times.

This research aims to extend existing platforms by adding
a cloud-based Container Management Service (CMS), which
offers intelligent scheduling through the joint optimisation
of sets of containerised applications across multiple cloud
regions. Our aim is to maximize the overall Quality of Service
(QoS) for containerised applications; in this paper we focus
primarily on resource utilisation and execution time.

This paper makes the following contributions:

• Capturing high-level resource requirements: a repre-
sentation which captures the high-level resource require-
ments of containerised applications along CPU, memory
and network ports etc.

• Efficient containers co-location: techniques to group
containers into multi-container (multi-task) units. This
grouping serves as a unit of deployment on a container-
instance, such that the aggregate resource requirement of
a multi-container unit cannot exceed the total resources
available on a container-instance.

3https://aws.amazon.com/
4https://cloud.google.com/compute/
5https://aws.amazon.com/ecs/
6 https://cloud.google.com/container engine/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/82920534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Optimal deployment: a scheduling algorithm which
solves the optimal deployment of sets of multi-container
units on best fit container-instances across distributed
clouds, such that to maximize all available resources,
speed up completion time and maximise throughput [3],
[4].

We evaluate CMS on Amazon’s EC2 Container Manage-
ment Service (ECS) platform across multi-region clusters in
Oregon, Ireland, Frankfurt, North California, North Virginia,
Tokyo, Singapore and Sydney. We conducted extensive exper-
iments using sets of CPU and Memory intensive containerised
applications against the direct deployment strategy of Amazon
ECS.

The remainder is as follows. Section II discuss the problem
formulation, Section III introduce CMS, Section IV presents
the evaluation, Section V reviewed the related research and
Section VI discuss the conclusion.

II. THEORETICAL FOUNDATIONS

This paper considers resource and performance efficiency
of containerised applications on a cloud provider. Resources
are any cloud infrastructure components, such as CPU cores,
Memory units, network communication ports etc or combina-
tion of these components in a container-instance. A container-
instance cluster has one or more node instances (container-
instance).

A. Problem Formulation

To connect with the joint optimisation with prior theoretical
work, we cast into general formulations.

Notations: Given a set, C of containerised applications,
each container serves as a task. A task c ∈ C can be divided
into a collection of subtasks {(c, j)}. The jth subtask of the
cth task has resource requirements along three resources: CPU,
memory and network ports, as the total amount of resources
needed for its execution, denoted as d〈c,m,p〉

c,j .
For each subtasks j in a task c, let ts and tc denote its

start and completion times respectively. The execution time of
the jth subtask is thus te = tc − ts. Finally, the aggregate
execution time of a task is given as

∑k
i=1 t

e
i/k.

Given a cluster of container-instances R in a cloud region.
Let r〈c,m,p〉 denote the resource capacity or available, in terms
of CPU, memory and network ports respectively, of each
container-instance r ∈ R.

Next, we capture the resource demands d〈c,m,p〉
c,j of n con-

tainerised application to be orchestrated , and get the update
state of the cluster to obtain the resources available, r〈c,m,p〉.
These information is important in order to make informed
decision on orchestration. Next, we merge the tasks i.e.,∑|r〈c,m,p〉|∑

j d
〈c,m,p〉
c,j with capacity constraints to form new

multi-tasks or multi-container units and deploy them to fully
utilise available resources. A multi-container unit, is therefore
a multi-task denoted as

∑|r〈c,m,p〉|∑
j d
〈c,m,p〉
c,j = d

〈c,m,p〉′
c,j .

The aggregate execution time of a multi-container unit is given
as

∑
n

∑k
i=1 t

e
i/k = te′

The resource utilisation of container-instances and the
cluster is thus ρCI = d

〈c,m,p〉′
c,j /r〈c,m,p〉, and ρC =∑

i d
〈c,m,p〉′
c,j /

∑
i r
〈c,m,p〉
i respectively.

Constraints: First, the cumulative resource requirements
of a multi-container unit at any given time t cannot exceed
the resource capacity or available of container-instances in the
cluster:

d
〈c,m,p〉′
c,j ≤ r〈c,m,p〉,∀c,m,p. (1)

Second, unused container-instance in the cluster would be
shut down:

∀c,m,p r
c,m,p = 0 if t /∈ [ts, tc, te]. (2)

Third, the utilisation of a cluster depends on application
orchestration:

ρC = max

∑|r〈c,m,p〉|∑

j d
〈c,m,p〉
c,j = d

〈c,m,p〉′
c,j ∃,

r〈c,m,p〉 = 0 if t /∈ [ts, tc, te], ∃,
d
〈c,m,p〉′
c,j ≤ r〈c,m,p〉,∀c,m,p,

∀c,m,p

 (3)

Forth, the overall execution times can be minimised depend-
ing on orchestration:

te′ = min

∑|r〈c,m,p〉|∑

j d
〈c,m,p〉
c,j = d

〈c,m,p〉′
c,j ∃,

d
〈c,m,p〉′
c,j → r〈c,m,p〉

∀c,m,p

 (4)

In each term, d〈c,m,p〉′
c,j is the total resource demand (e.g.,

CPU, memory, network ports) of a multi-task.
Objective: Our objective is to maximise the cluster resource

utilisation and minimise the overall execution time of tasks.
We denote the execution time of a multi-container unit as te′.

III. CONTAINER MANAGEMENT SERVICE (CMS)

One of the current state-of-the-art Container Service Plat-
forms (CSPs) is Amazon’s EC2 Container Service (ECS).
Amazon ECS, enables users to provision resources composed
of container-instance clusters and deploy their containerised
applications. First, users need to register these containers
on the platform by providing a JavaScript Object Notation
(JSON) definition, which is passed to the Docker daemon
on a container-instance. The parameters in a container def-
inition include: name, image, CPU and Memory demand,
port-mappings, links etc. It uses the Run Task command
to deploy each registered container randomly onto available
container-instance that meets the parameters specified in its
JSON definition.

This paper presents the Container Management System
(CMS), which improves the current state-of-art in CSPs. The
allocation of multiple tasks onto a machine to share the
resources, can be used to increase resource utilisation [3], [5].
In CMS, we take into account set of containerised applications
and resource pool management. Our algorithm reduces the

Register
Container

s

Pending

CMS
(Joint Optimisation)

execution
time

allocate

container-instance cluster

obtain the update
state, deploy multi-

container units,

capture containers
requirements and
merge JSONs into

multi-container units

Start Task

Containerised
Apps
…

App1

App2

AppN

Developers

Applications
.
.
.

Running Finished

Fig. 1: Orchestration overview of CMS: read from left to right.

number of required resources. We have realized our work on
the Amazon EC2 Container Clusters provisioned at different
geographical locations. Amazon’s ECS cluster provides a
simple solution to cluster management: region-specific and
update state of cluster are exposed through API. The List
and Describe API actions are used to find out what tasks
are running and what instances are available in the cluster.

With reference to Figure 1, a basic flow through CMS is as
follows:
• Preparation of application images

– Developers use Docker to automate their applications
into a container from a Dockerfile. These images
are stored on-line in a container repository such as
Docker Hub.

– They are registered on the platform by providing a
JavaScript Object Notation (JSON) definition.

• Execution of the applications
– CMS captures the resource requirements of all con-

tainerised applications ready to be deployed at a
period t.

– CMS examines the cluster state to quantify the
resource availability, such that we obtain detailed
information of the available resources i.e., tasks (con-
tainers) running on the instances, resource availabil-
ity or occupied (i.e., CPU, memory, network ports
etc).

– CMS deploys these containerised applications tightly
onto available resources by merging their JSON defi-
nitions into multi-JSON definitions (multi-containers
units) with constraints (Equation 3 and 4), such that
resources are fully utilised and execution times are
minimised.

All containers in a multi-JSON definition (multi-container
unit) are deployed on the same container-instance and will be
executed concurrently, thereby reducing the overall execution
times. CMS uses the Start Task command to place these
new multi-container units from a specified task definition,
in a specified cluster and onto specified container-instances.
This way, resources can be highly managed and utilised i.e.,
resources can be added or removed based on current demand.

IV. EXPERIMENTAL EVALUATION

We evaluate CMS using sets of real life CPU and memory
intensive applications in multi-container units with heteroge-
neous resource requirements across multi-region cloud clus-
ters.

A. Setup

Clusters: On the large, we used 114 container-instances.
A container instance has 1, 024 cpu units for every vCPU
core and 995 units for every GiB of Memory. We provisioned
clusters of Amazon container-optimized instances across the
regions, each for our proposed system and Amazon ECS
direct deployment strategy. We conducted extensive exper-
iments and orchestrated sets of multi-container units with
heterogeneous resource requirements across the regional clus-
ters of t2.micro Intel Xeon Processors with Turbo up to
3.3GHz container-instances with RegisteredResources = (1
vCPU, 1 vMem(GiB) and 5 Ports). The multi-region clusters
configurations are shown on Table I.

Connection to Clusters: We have implemented our system
on Amazon ECS clusters with boto37, the Amazon AWS
SDK for Python. Boto3 is a data-driven and modern object-
oriented API with consistent interface that supports JSON
(JavaScript Object Notation) service definition. We import the
boto3 module and create a connection to our Amazon ECS
clusters.

Applications: To evaluate our framework, we illustrated use
cases of real life CPU and memory intensive applications. The
first application, denoted as app1, is a memory intensive 3-
tiered microservice application. This application consists of a
simple frontend, an API and a redis backend. It is a simple
statistics counter that increases every time a page is viewed8, it
runs three containers: frontend, the API and a redis container.
The API communicates to a redis container to store data.

The second application, denoted as app2, is a CPU/memory
intensive word processor application and consists of 2 rake
tasks. It takes in a message, posts a JSON message to a SQS
queue, and polls the queue for messages and output them to
standard output (stdout).

The third application, denoted as app3, is wordpress9 appli-
cation. This a web software and a content management system
based on PHP and MySQL. It communicates to a database
name specified on MySQL container.

The last application, denoted as app4, is nginx10 application.
This is an open source reverse proxy server for HTTP, HTTPS,
SMTP, POP3, and IMAP protocols, as well as a load balancer,
HTTP cache, and a web server.

B. Deployment Results

We discuss the detailed orchestration and results at each re-
gion, specifically focusing on CPU and Memory requirements.

7https://boto3.readthedocs.org/en/latest/
8http://blog.wercker.com/deploying-to-amazon-ec2-container-service-

with-wercker
9https://hub.docker.com/wordpress/

10https://github.com/docker-library/docs/tree/master/nginx

TABLE I: Configuration of Multi-region clusters with aggre-
gate CPU and Memory Capacities

Region Clusters CIs Capacity, r〈c,m〉

us-west-1
CMS
Direct

8
8

〈8192, 7960〉
〈8192, 7960〉

ap-northeast-1
CMS
Direct

6
6

〈6144, 5970〉
〈6144, 5970〉

us-east-1
CMS
Direct

9
9

〈9216, 8955〉
〈9216, 8955〉

ap-southeast-1
CMS
Direct

9
9

〈9216, 8955〉
〈9216, 8955〉

ap-southeast-2
CMS
Direct

2
2

〈2048, 1990〉
〈2048, 1990〉

eu-central-1
CMS
Direct

4
4

〈4096, 3980〉
〈4096, 3980〉

eu-west-1
CMS
Direct

9
9

〈9216, 8955〉
〈9216, 8955〉

us-west-2
CMS
Direct

10
10

〈10240, 9950〉
〈10240, 9950〉

1) Resource Utilisation and Execution Time: Each experi-
ment runs a combination of our applications (described above)
merged into units. We see that CMS improves cluster resource
efficiency, up to 25% and reduced execution times up to 70%
compared to direct deployment.

In the us-west-1 region, we deployed a set of 9 multi-
container units, where each unit is running mixtures of app1,
app2, app3, and app4. First, CMS captures the high-level
resource demands of appi specified in the JSON representa-
tion, gets update state and quantifies the resource availability
at the regions (clusters), matches the resource demands and
obtains a region having requisite capacity to accommodate the
containers. At this period, us-west-1 region has requisite
capacity. Therefore, CMS merges the JSON representations
such that d〈c,m,p〉′

c,j ≤ r〈c,m,p〉 to form new set of (9) multi-
container units, with resource requirements (CPU,Memory)
〈900, 900〉, 〈1000, 850〉, 〈1000, 900〉, 〈950, 800〉, 〈956, 812〉,
〈950, 892〉, 〈1000, 900〉, 〈956, 912〉 and 〈1000, 900〉. CMS
deploys these units onto best fit container-instances (i.e.,
d
〈c,m,p〉′
c,j → r〈c,m,p〉).
Figure 2a shows the details for the first experiment. CMS

achieves higher utilisation (an average of 97%) when com-
pared to the direct deployment (an average of 96%). The
overall resource utilisation of CMS cluster is about 1% higher
than the direct deployment.

It is observed that the CMS method of merging JSON
representations into deployable units is efficient as it not only
allows for resources to be fully utilized at all times but also
reduces the number of container-instances CIs needed for
execution. Here we highlight that the gains are significant
when compared to the direct deployment. In the us-west-1
region, the execution times of applications is 3 times faster
than applications deployed directly as shown in Figure 3.

In the ap-northeast-1 region, we deployed sets of
app1, app2, app3, and app4 and merged (multi-JSON) them
into 5 multi-container units, such that d〈c,m,p〉′

c,j ≤ r〈c,m,p〉 with
each units resource requirements (CPU, Memory) 〈1000, 850〉,
〈956, 812〉, 〈1000, 900〉, 〈950, 800〉 and 〈900, 900〉. Following

the same procedure, CMS deployed these units onto 5 CIs
and shut down the remaining unused CI in the cluster.
Comparatively, we see in figure 2b that the direct deployment
is unable to fully use available resources. CMS is better, it fully
utilised available resources and shut down unused instance.
Overall, CMS achieves about 14% (an average of 95%) higher
utilisation, compared to the direct deployment (an average of
81%) and about 1.2 times faster execution, as shown in Figure
3.

In the us-east-1 region, we deployed sets of app1, app2,
app3, and app4, merged (multi-JSON representations) into
7 multi-container units, such that d〈c,m,p〉′

c,j ≤ r〈c,m,p〉 with
diverse resource requirements (CPU, Memory) 〈950, 892〉,
〈900, 900〉, 〈1000, 900〉, 〈1000, 850〉, 〈956, 912〉, 〈956, 912〉
and 〈950, 800〉. We observe that due to efficient packing, not
only is the resources fully utilised at all times but also the
reduction in the number of used resources. CMS deployed
these units onto 7 container-instances CIs, and shut down free
contain-instances in the cluster. It results to about 20% higher
resource utilisation (an average of 95%) when compared to
direct deployment (an average of 75%), as shown in Figure
2c. The execution time of CMS deployment is 2.2 times faster
than direct deployment, as shown in Figure 3. Overall, CMS
system performs better than direct deployment.

In the ap-southeast-1 region, we deployed sets of
app1, app2, app3, and app4, merged (multi-JSON represen-
tations) into 8 multi-container units, such that d〈c,m,p〉′

c,j ≤
r〈c,m,p〉 with diverse resource requirements (CPU, Memmory)
〈950, 892〉, 〈1000, 850〉, 〈950, 912〉, 〈950, 800〉, 〈900, 900〉,
〈956, 812〉, 〈1000, 900〉 and 〈1000, 900〉. We summarize that
avoiding under-allocation by explicitly packing on available
resources improves efficiency. The gain in this experiment,
are an increase in the number of simultaneously running appli-
cations, reduced overall application execution times, and im-
proved usage of all cluster resources. These units are deployed
into 8CIs, shutting down the free CI in the cluster. The result
in Figure 2d shows about 10% higher cluster utilisation for
CMS deployment (an average of 97%) compared to the direct
deployment (an average of 87%). In addtion, execution time
is 2 times faster for CMS than direct deployment as shown in
Figure 3.

In the ap-southeast-2 region, we deployed a set of
2 multi-container units consisting of app1, app2, app3 and
app4 with diverse resource demands alone (CPU, Memory)
〈956, 912〉 and 〈1000, 900〉. CMS deployed these units onto
2CIs. The result (Figure 2e) shows an average of 93% utili-
sation and faster execution time (43s) of all units compared to
93% utilisation of direct (cluster) deployment and execution
time of 105s. It is observed that there is no improvement
in cluster utilisation. This is because CMS deployed the 2
multi-container units onto the 2 available container-instances
in the cluster. In this case, there are no unused instances, as all
instances are fully utilised in both deployments. However, the
execution time is faster compared to direct deployment (2.4
times). Figure 3 shows the detailed execution times.

CMS Direct

95

100

95 95

99

97

Strategies

U
til

is
at

io
n,
ρ
C

% CPU
Mem

(a) At us-west-1

CMS Direct

70

80

90

100 95

79

94

83

Strategies

CPU
Mem

(b) At ap-northeast-1

CMS Direct

60

80

100 95

74

95

76

Strategies

CPU
Mem

(c) At us-east-1

CMS Direct

80

90

100

110

95

84

99

90

Strategies

CPU
Mem

(d) At ap-southeast-1

CMS Direct

80

90

100

110

93 9393 93

Strategies

U
til

is
at

io
n,
ρ
C

% CPU
Mem

(e) At ap-southeast-2

CMS Direct

90

95
93 93

89 89

Strategies

CPU

Mem

(f) At eu-central-1

CMS Direct

80

90

100 96 96

86 84

Strategies

CPU

Mem

(g) At eu-west-1

CMS Direct

40

60

80

100

76

53

84

59

Strategies

CPU
Mem

(h) At us-west-2

Fig. 2: Resource utilisation at the multi-region clusters

In the eu-central-1 region, we deployed a set of 4
multi-container units consisting of app1, app2, app3 and
app4 with diverse resource demands 〈900, 900〉, 〈950, 800〉,
〈950, 892〉 and 〈1000, 900〉. Figure 2f compares the cluster
utilisation of CMS with direct deployment methods. CMS
achieves an average of 91% utilisation in the cluster and 91%
utilisation in direct deployment method. We observed the same
scenario in ap-southeast-2 deployment. Resource are
fully utilised in both deployments. However, the deployment
of multi-container units guarantees faster execution. At this
region, CMS achieves about 2 times faster execution of
applications compared to direct deployment method. Figure
3 shows cluster wide execution times.

In the eu-west-1 region, following CMS proce-
dure, we deployed a set of 8 multi-container units from
our applications (app1, app2, app3 and app4), with re-
source requirements (CPU, Memoey) 〈950, 892〉, 〈900, 900〉,
〈1000, 900〉, 〈1000, 850〉, 〈956, 912〉, 〈956, 812〉, 〈950, 800〉
and 〈1000, 900〉 onto 8CIs. Figure 2g compares the cluster
utilisation of CMS with direct deployment scheme. The result
shows an average of 91% utilisation in CMS cluster and an an
average of 90% utilization in direct deployment cluster. CMS
achieves about 1% higher utilisation. In addition, the execution
time 1.8 times faster than direct deployment method, as shown
in Figure 3.

In the us-west-2 region, we deployed a set of 7 multi-
container units consisting merges from JSON representations
of app1, app2, app3 and app4, with resource requirements
〈950, 912〉, 〈1000, 850〉, 〈950, 892〉, 〈950, 800〉, 〈1000, 900〉,

〈956, 812〉 and 〈900, 900〉. CMS deployed these units onto 7
CIs and shut down the remaining unused CI in the cluster.
Resources are fully utilised in the CMS cluster and unused
instances are shut down. CMS achieves higher cluster utilisa-
tion compared with direct deployment. It achieves an average
of 80% utilisation with direct deployment of an average of
56% utilisation. Overall, CMS achieves about 24% higher
utilisation, as shown in Figure 2h and 2 times faster execution
time as shown in Figure 3.

2) Discussion: Overall, CMS has demonstrated superior
QoS in container management and orchestration in cloud
clusters. CMS deployment algorithm achieves higher cluster
utilisation and minimized execution time of multi-container
compared to direct Amazon ECS deployment strategy. We see
that CMS contributes to up to 25% cluster utilisation and up to
70% reduced execution times. Increasing utilisation by a few
percentage points can save millions of dollars in large scale
computing [3].

Recall that the direct deployment method do not consider
containerised application grouping and can under-allocate re-
source, causing a reduction in the number of applications
that can be deployed. It also deploys application randomly
on available resource without intelligent mapping. Hence,
CMS gains are from avoiding under-allocation by captur-
ing applications resource requirements, obtaining the update
state of resource availability and carefully merging multiple
JSON representations as a unit of deployment. These units
are deployed to fully utilise available resource on container-
instances. The gains from our experiments are as follows: an

us
-w

est
-1

ap
-no

rth
ea

st-
1

us
-ea

st-
1

ap
-so

uth
ea

st-
1

ap
-so

uth
ea

st-
2

eu
-ce

ntr
al-

1

eu
-w

est
-1

us
-w

est
-2

0

200

400

600

800

254 236
186

251

43

150
226 202

750

276

415

510

105

295

422 403

E
xe

cu
tio

n
Ti

m
e,
te
′

(s
)

Multi-region Container-instance Clusters

CMS Direct

Fig. 3: Multi-containers execution times across multi-region clusters

increase in the number of applications that can be deployed at a
time; reduced execution time of overall applications; improved
usage of cluster resources.

V. RELATED WORK

Recently launched cloud-based CSPs such as Amazon ECS,
Google Container Engine etc, do not offer any form of intel-
ligent resource scheduling: applications are usually scheduled
individually, rather than taking a holistic view of all registered
applications and available resources in the cloud. Throughout
this paper we have demonstrated how this leads to lower
utilisation, higher execution time, which in turn allow less
applications to be deployed on a fixed set of resources. CMS
has taken an early step towards meeting these challenges, by
providing a framework for dynamic container orchestration.
Resource management is an essential aspect of distributed
systems. Reliable state management and flexible scheduling
are essential in running modern distributed applications on
clusters [6], [5], [3]. Academic and industrial researchers have
developed several other cluster management frameworks for
resource efficiency, such as Mesos [7], Omega [8], Borg [3]
etc. Mesos [7] is a tool that abstracts and manages resources
and scheduling in a cloud computing cluster. Omega [8] uses
parallelism, shared state, and optimistic concurrency control,
which is more advanced to [7]. Borg [3], is Google cluster
manager that runs thousands of different applications across
a number of clusters. It achieves high resource utilisation
by packing different tasks together and assigning them to a
machine if there are sufficient available resources that meet
their constraints.

VI. CONCLUSION

This paper presented CMS, an approach for optimising
containerised applications in multi-region cloud container-
instance clusters. CMS takes into account the heterogeneous

requirements of containerised applications, captures their high-
level resource requirements, get an updated state of multi-
region cloud clusters for resource availability, merges con-
tainers JSON representations to form new multi-container
units and deploys these units on container-instances, such
that higher throughput, high resource utilisation and faster
execution times are achieved.

We have implemented CMS on Amazon EC2 Container Ser-
vice (Amazon ECS) clusters and evaluated it against Amazon
ECS direct deployment strategy. CMS has shown higher QoS
(high resource utilisation, up to 25% and minimized execution
time, up to 70%) compared to ECS direct deployment strategy.

REFERENCES

[1] A. Barker, B. Varghese, J. S. Ward, and I. Sommerville, “Academic cloud
computing research: Five pitfalls and five opportunities,” in 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14), USENIX
Association, 2014.

[2] C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32,
pp. 102–c3, May 2015.

[3] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, (New York, NY, USA), pp. 18:1–18:17, ACM, 2015.

[4] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted re-
source management in multi-tenant distributed systems,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15),
(Oakland, CA), pp. 589–603, USENIX Association, May 2015.

[5] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” SIGCOMM Comput.
Commun. Rev., vol. 44, pp. 455–466, Aug. 2014.

[6] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, (New York, NY, USA), pp. 127–144,
ACM, 2014.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.,” in NSDI, vol. 11, pp. 22–22, 2011.

[8] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, (New York, NY, USA), pp. 351–364, ACM, 2013.

