
Synthesis, Isotopic Enrichment, and Solid-State NMR
Characterization of Zeolites Derived from the Assembly,
Disassembly, Organization, Reassembly Process
Giulia P. M. Bignami, Daniel M. Dawson, Valerie R. Seymour, Paul S. Wheatley, Russell E. Morris,*
and Sharon E. Ashbrook*

School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St. Andrews, North Haugh, St. Andrews, Fife
KY16 9ST, United Kingdom

*S Supporting Information

ABSTRACT: The great utility and importance of zeolites in fields as
diverse as industrial catalysis and medicine has driven considerable
interest in the ability to target new framework types with novel
properties and applications. The recently introduced and unconven-
tional assembly, disassembly, organization, reassembly (ADOR)
method represents one exciting new approach to obtain solids with
targeted structures by selectively disassembling preprepared hydrolyti-
cally unstable frameworks and then reassembling the resulting products
to form materials with new topologies. However, the hydrolytic
mechanisms underlying such a powerful synthetic method are not
understood in detail, requiring further investigation of the kinetic
behavior and the outcome of reactions under differing conditions. In
this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of 17O- and doubly 17O- and
29Si-enriched UTL-derived zeolites, by synthesis of 29Si-enriched starting Ge-UTL frameworks and incorporation of 17O from
17O-enriched water during hydrolysis. 17O and 29Si NMR experiments are able to demonstrate that the hydrolysis and
rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels
of 17O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive
hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process
and provides insight into the detailed mechanism of the structural changes involved.

■ INTRODUCTION

Zeolites are inorganic porous compounds made up of fully
cross-linked frameworks of corner-sharing SiO4 and AlO4
tetrahedra.1 Owing to their crystalline structure and porosity,
these materials have high surface areas, and so great potential
for catalytic activity. They also possess a narrow range of pore
sizes of molecular dimensions, leading to their well-known
shape selectivity.2−10 Such a unique combination of structural
features accounts for their vast success and variety of
applications over the years, and this has kept the targeting of
new framework types at the forefront of research.11−20 The
recently introduced assembly, disassembly, organization,
reassembly (ADOR) method,21−25 shown schematically in
Figure 1, has proven to be a feasible approach to achieve such a
goal, transforming the way new, stable, and active materials can
be synthesized. This unconventional synthetic approach is
based on the chemically selective disassembly of hydrolytically
unstable parent frameworks and their subsequent controlled
reassembly into solids with predetermined structures. The key
feature characterizing the parent zeolite required for the process
is the presence of a hydrolytically sensitive dopant element
incorporated within the framework at specific sites, which

allows the chemically selective removal of the units that contain
the dopant. Germanosilicates are excellent candidates for this
process as Ge, which has greater flexibility in its coordination
environment than Si, is known to locate preferentially within
certain zeolite subunits and, in particular, occupies tetrahedral-
atom positions within the double four rings (d4rs).26−29

Moreover, germanosilicate zeolites have been shown to be
much more sensitive to hydrolysis than silica or aluminosilicate
materials.29−31 Using germanosilicates that adopt the UTL32,33

framework structure as the parent zeolite, ADOR has enabled
the preparation of two new zeolite materials, IPC-2 and IPC-
4,21,24 whose topologies have been given the three-letter codes
OKO and PCR, respectively, by the International Zeolite
Association. It has also allowed the preparation of other new
zeolite structures IPC-6, IPC-7, IPC-9, and IPC-10,23,24,34 and
some of these are likely to be difficult, or even impossible, to
prepare using standard hydrothermal methods.35,36

Controlling the acidity of the solution used to disassemble
the parent zeolite in the ADOR process enables different final
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materials to be effectively targeted and their porosity tuned over
a wide range.24 Such a control over pore volume/surface area is
difficult to achieve following traditional approaches to zeolite
synthesis, highlighting the notable advance achieved by the
development of the ADOR process. However, a better
understanding of the hydrolytic mechanisms controlling the
ADOR process is required, and, in particular, a more detailed
insight of the interaction of the zeolitic framework with water
would be beneficial. Thanks to its sensitivity to the local,
atomic-scale environment, and its element-specific nature,

solid-state NMR spectroscopy can complement other solid-
state characterization techniques, such as powder X-ray
diffraction (PXRD) and N2 adsorption, used for the
investigation of zeolitic frameworks.1,38−42 For most silica-
based zeolites, 17O and 29Si are the two NMR-active nuclei of
most interest. Despite its low natural abundance of 4.7%, 29Si (I
= 1/2) is routinely employed for the NMR characterization of
zeolites. However, 17O (I = 5/2) is less commonly studied,
owing to the anisotropic quadrupolar broadening of the spectral
line shapes, very low natural abundance (0.037%), and
moderate gyromagnetic ratio.43,44 To enable a complete and
high-resolution spectroscopic investigation of the zeolitic
structures of interest in each step of the ADOR process,
isotopic enrichment is required. Here, we show how hydrolysis
of a 29Si-enriched Ge-UTL zeolite using H2

17O can shed new
light on the role played by water in the ADOR process and
provide insight into the structural changes involved in the
mechanism. The work shows that the detailed mechanistic
pathway, and so the final products, of the ADOR process
depends heavily on the conditions used, including the volume
of the solution used to hydrolyze the initial parent zeolite.

■ EXPERIMENTAL METHODS
Experiments on unenriched zeolites were carried out on materials from
a single starting batch of Ge-UTL (Si/Ge ratio of 4.4), which was
synthesized and calcined following the procedure in ref 24, but using a
shorter reaction time (under static heating conditions) of 7 days. A
similar procedure was followed to synthesize 29Si-enriched Ge-UTL,
starting from 18% 29Si-enriched TEOS, with a longer overall reaction
time of 14 days. The unenriched calcined Ge-UTL starting material
was hydrolyzed with water (natural abundance) for different lengths of
time. Low-volume reactions were carried out using a 10 mL round-
bottomed flask topped with a condenser in refluxing conditions at 95
°C in 6 M HCl (freshly produced from 1.2 mL of natural-abundance
water and 1.2 mL of 12 M HCl) for reaction times ranging from 4 to
48 h. For 17O-enriched and doubly 17O- and 29Si-enriched zeolites,
hydrolysis was carried out using 6 M HCl (produced from 1.2 mL of
water 41% enriched in 17O and 1.2 mL of 12 M HCl) for 16 h.
Materials were washed with only a small volume (2.4 mL) of natural-
abundance water to minimize any loss of 17O (see the Supporting
Information for more detail). Calcination of the hydrolyzed products
was carried out to remove any remaining water from hydrolysis and
allow the condensation of the hydrolyzed layers in the framework.
Typically, the zeolite was heated to 575 °C at a rate of 1 °C/min, held
for 6 h, and cooled to room temperature at a rate of 2 °C/min under
air.

29Si solid-state NMR spectra were acquired using a Bruker Avance
III spectrometer, equipped with a 9.4 T wide-bore superconducting
magnet, at a Larmor frequency of 79.459 MHz. Samples were packed
into 4 mm ZrO2 rotors that were rotated at a rate of 10 kHz, using a 4
mm HX probe. Magic angle spinning (MAS) spectra were acquired
using a radiofrequency (rf) field strength of ∼83 kHz, with a repeat
interval of 120 s. The Q4/Q3 ratio was determined using DMFit,45

with errors estimated from multiple fits. For cross-polarization
(CP)44,46 experiments, transverse magnetization was transferred
(from 1H) using a contact pulse of 5 ms (ramped for 1H), with
two-pulse phase modulation (TPPM) 1H decoupling (using a rf field
strength of ∼70 kHz) during acquisition. The commercial probes used
for these experiments exhibited a small 29Si background signal
(estimated to be ∼8% of the total signal intensity). No correction
has been made to the Q4/Q3 ratios plotted in Figure 3 to account for
this.

17O solid-state NMR spectra were acquired on Bruker Avance III
spectrometers, equipped with 14.1 or 20.0 T wide-bore super-
conducting magnets, at Larmor frequencies of 81.331 and 115.248
MHz, respectively. Samples were packed into 3.2 mm ZrO2 rotors and
rotated at a rate of 20 kHz. MAS NMR spectra were acquired using a

Figure 1. General schematic representation of the ADOR process
when using large volumes of hydrolysis solution. A is the assembly step
for the preparation of the parent Ge-UTL zeolite. D is the full
hydrolysis of the parent material to leave the layered IPC-1P
intermediate. Over time, there is an organization (O) process that
rearranges the structure to produce a new intermediate material, IPC-
2P. Reassembly (R) by calcining the intermediates leads to the fully
connected IPC-2 and IPC-4 zeolite structures. Note that the structures
of IPC-1P, IPC-4, and IPC-2 are well established in the literature but
that IPC-2P is heavily disordered, and the model shown is idealized.
Full details of the structures and conditions used for the processes can
be found in the literature.21,24,37 Color key: blue = Si, red = O, except
for UTL where blue = Si or Ge.
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rf field strength of ∼70 kHz, with a repeat interval of 1 s, using
continuous wave (cw) 1H decoupling (∼100 kHz) where necessary.
For CP experiments, transverse magnetization was transferred (from
1H) using a contact pulse of 1 ms (ramped for 1H), and cw 1H
decoupling (∼100 kHz) was applied during acquisition. Variable-
temperature CP experiments were carried out at the UK DNP MAS
NMR Facility at the University of Nottingham. The neat 17O-enriched
solid was packed in a sapphire rotor, a contact pulse of 1 ms was used,
and swept-frequency TPPM decoupling (∼100 kHz) was applied
during acquisition. Repeat intervals of 1 and 4.3 s were used for
experiments recorded at 298 and 108 K, respectively. 17O MQMAS
experiments were carried out using a triple-quantum z-filtered pulse
sequence47,48 and are shown after a shearing transformation.49 Where
desired, cw 1H decoupling was applied. The indirect dimension is
scaled and referenced according to the convention described in ref 50.
Two-dimensional 17O−29Si heteronuclear correlation spectra were
acquired at 20.0 T using a D-HMQC pulse sequence (with 2−8 loops
of SR421 recoupling),51,52 central-transition selective pulses for 17O
and cw 1H decoupling (∼100 kHz).
Chemical shifts are shown relative to TMS for 29Si and 2H (using

Q8M8 (δ(OSi(OMe)3) = 11.5 ppm) and C2D2O4·2D2O (δ(CO2D) =
16.5 ppm) as secondary references) and H2O for 17O. See figure
captions for further details.
PXRD data were acquired with a PANalytical Empyrean instrument

operated in reflection, Bragg−Brentano, θ-2θ mode, and equipped
with a Cu X-ray tube, a primary beam monochromator (CuKα1), and
X’celerator RTMS detector. Typically, a 5−50° 2θ range was
investigated over 1 h. For all isotopically enriched samples, powders
were sealed in capillaries, and data were collected on a STOE STADIP
instrument operated in Debye−Scherrer mode equipped with a Cu X-
ray tube, a primary beam monochromator (CuKα1), and a scintillation
position-sensitive linear detector. Typically, 5−50° or 5−40° 2θ ranges
were investigated over 1.5 h or overnight, respectively. N2 volumetric
adsorption data were acquired at −196 °C with a Tristar II 3020.
Samples were degassed at 300 °C for 3 h prior to the adsorption
experiment.

■ RESULTS AND DISCUSSION

Samples of unenriched Ge-UTL were hydrolyzed, and the
resulting products calcined and then characterized using 29Si
MAS NMR, PXRD, and N2 adsorption. Owing to the cost of
H2

17O and, therefore, the need to reduce the amount of water
required, the standard hydrolysis procedure (as reported in ref
24) needed to be scaled to use a low volume of water (i.e., 2.4
mL) for hydrolysis to enable 17O-enriched materials to be
produced economically. Hydrolysis reaction times of 4, 8, 12,
16, 24, and 48 h were investigated, initially using unenriched
water, as described in the Experimental Methods section. A
striking difference between these studies and the large volume
studies previously reported is that the formation of the fully
hydrolyzed layered intermediate known as IPC-1P (see Figure
1) is not observed.21,24,37 Under previously reported conditions,
IPC-1P can rearrange, with intercalation of extra silicon, into a
material called IPC-2P where the layers are connected through
O−Si−O links. In the low-volume experiments reported here,
there is no evidence of IPC-1P, and at all stages, the
intermediates have PXRD patterns with reflection positions
consistent with IPC-2P (see the Supporting Information).
Calcination of IPC-2P at 575 °C produces materials with
similar PXRD patterns to IPC-2, and N2 adsorption measure-
ments on the calcined samples are consistent with this result
(see the Supporting Information), which also demonstrates that
the small amounts of washing water used had not affected the
porosity of the framework. The observation that IPC-1P is
never formed points to a different mechanism in low volumes
of hydrolysis solutions compared to that observed in higher

volumes. The NMR experiments described in detail below are
consistent with these observations.
Figure 2a shows 29Si MAS NMR spectra of the starting Ge-

UTL zeolite containing only Q4 (Si(OSi)n(OGe)4−n) species.

CP MAS spectra of this sample contain no signal, confirming
no Q3 species are present. Figure 2b shows the spectrum after
16 h hydrolysis, where both Q4 (Si(OSi)4) and Q3

(Si(OSi)3(OH)) species are present, suggesting the formation
of Si−OH groups. The spectral assignment was confirmed
using a CP MAS experiment, shown by the red line in Figure
2b, where selective enhancement of the peak at δ = −102 ppm
is observed. After calcination, the relative intensities of the
resonances corresponding to Q4 and Q3 species vary slightly, as
shown in Figure 2c, suggesting some Si−OH remain as defects
(and confirmed using CP experiments). Unlike the diffraction
measurements, the 29Si MAS NMR spectra of the zeolites do
show a change with hydrolysis time, revealing an ongoing
hydrolysis and rearrangement process, which is difficult to see
in the average picture provided by PXRD (see the Supporting
Information). Figure 3a shows a plot of the ratio of the
intensities of the Q4 and Q3 species in the hydrolyzed samples
as the reaction proceeds. An initial hydrolytic stage is observed
with an increase in the amount of Q3 (i.e., Si−OH) sites, and a
subsequent decrease in the Q4/Q3 ratio, until 12 h of reaction.
However, Q4/Q3 never reaches the ideal number expected for
the IPC-1P intermediate (Q4/Q3 = 2.5, red dashed line in
Figure 3a) instead reaching a minimum Q4/Q3 of just over 4.
This is consistent with the XRD results described above. After
this point, a rearrangement process (similar to that observed in
previous work)53 begins, resulting in a Q4/Q3 ratio that
increases until it reaches the expected value for the idealized
structure of IPC-2P (Q4/Q3 = 7, blue dashed line in Figure 3a).
This suggests that, under the low volume conditions described
here, the initial hydrolysis process never reaches its conclusion
before the rearrangement phase of the reaction begins. The

Figure 2. 29Si (9.4 T, 10 kHz MAS) NMR spectra of (a) calcined Ge-
UTL starting zeolite, (b) after 16 h hydrolysis, and (c) after
subsequent calcination. In (b), the 29Si (9.4 T, 10 kHz MAS) CP
NMR spectrum is also shown (in red).
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relatively constant PXRD patterns for all reaction times after 12
h of reaction indicate that the interlayer spacing does not
change significantly after this time, but the variation in Q4/Q3

ratio means that there are still significant changes occurring in
the local structure throughout the process. Experiments carried
out with larger volumes of washing water proved the
repeatability and robustness of these results (see the Supporting
Information).
Figure 3b shows a plot of the ratio of the intensities of the Q4

and Q3 species after calcination of the samples shown in Figure
3a. All samples show the expected PXRD patterns for IPC-2. At
the shorter time scales the Q4/Q3 values are approximately the
same as the hydrolyzed samples, but the rearrangement process
(from 12 h onward) leads to calcined IPC-2 samples that have
successively fewer defects (higher Q4/Q3 values). We denote
the disordered/defective nature of the zeolites formed at
shorter times by an asterisk − IPC-2P* for the intermediate
and IPC-2* for the final zeolite after reassembly.
In order to improve sensitivity, enable multidimensional

spectroscopic characterization, and provide insight into the
ADOR mechanism, two isotopically enriched zeolites were
produced. The first involved the hydrolysis (i.e., disassembly)
of Ge-UTL using small volumes of (41% enriched) H2

17O, as
described in the Experimental Methods section. In addition, a
zeolite sample doubly enriched in 17O and 29Si was prepared by
a 16 h hydrolysis (using H2

17O) of a starting Ge-UTL zeolite
synthesized with (18%) 29Si-enriched TEOS.

These materials were confirmed as being IPC-2P by PXRD
(as shown in the Supporting Information). Successful 17O
enrichment was also demonstrated using 17O MAS NMR. The
17O MAS NMR spectra of the hydrolyzed 17O-enriched sample,
shown in Figure 4, reveal that structural changes occur over a

long period after synthesis, with variation in the line shape still
apparent after 30 days (during which period the sample
remained packed within the NMR rotor at room temperature).
After this point, no further change was observed. This indicates
that the hydrolysis/rearrangement process continues even at
room temperature. Two chemically different types of oxygens
are present in the material: “bulk” Si−O−Si species and Si−OH
species found in the interlayer regions after hydrolysis. The Si−
O−Si species can be further categorized by their local
environment as described below. It might be expected that
the enrichment level of the interlayer Si−OH groups would be
much higher as they are formed by direct hydrolysis in the
disassembly step of the ADOR process. The use of enriched
H2

17O provides the opportunity to gain further insight into the
mechanism of hydrolysis if the position and proportion of
enrichment can be determined and/or quantified.
Owing to the second-order quadrupolar broadening in the

17O (I = 5/2) MAS NMR spectrum, it is difficult to resolve the
different species that contribute to the line shape.43,44

Resolution can be improved using MQMAS experiments,47,48

where resonances are separated in the δ1 dimension (after
appropriate processing) on the basis of their isotropic chemical
shifts and quadrupolar shifts (and, therefore, their quadrupolar
coupling). As the second-order quadrupolar broadening is
inversely proportional to field strength, the resolution observed
will vary as B0 changes.

43,44 Figure 5 shows 17O MQMAS NMR
spectra of the 17O-enriched zeolite, acquired at 20.0 T, without
and with 1H decoupling. (MAS and MQMAS spectra acquired
at different B0 field strengths are shown in the Supporting
Information.) A resonance is observed in both MQMAS spectra
at δ1 ≈ 25 ppm, with ⟨PQ⟩ ≈ 5.3 MHz, and ⟨δiso⟩ ≈ 39 ppm,
although a distribution in parameters is apparent. (Note that
PQ

43,44 is a combined quadrupolar parameter (see Supporting
Information) and is given by CQ(1 + ηQ

2/3)1/2 and δiso is the
isotropic chemical shift.) These values are also supported by the
fitting of cross sections extracted from the MQMAS spectra, as
discussed in the Supporting Information. The decoupled
MQMAS spectrum (Figure 5b) shows an additional, lower

Figure 3. Plots of the Q4/Q3 intensity ratio in 29Si (9.4 T, 10 kHz
MAS) NMR spectra of Ge-UTL zeolite as a function of hydrolysis
time under low-volume conditions for samples (a) as prepared and (b)
after calcination. In (a), the red and blue dashed lines show the Q4/Q3

ratios for idealized IPC-1P (2.5) and IPC-2P (7), respectively. Error
bars have been estimated from multiple fits.

Figure 4. 17O (14.1 T, 20 kHz MAS) NMR spectra of Ge-UTL
hydrolyzed with 17O-enriched H2O for 16 h, acquired 2 (black line),
16 (red line), and 30 (green line) days after synthesis.
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intensity, resonance at δ1 ≈ 13 ppm, assumed to result from
Si−OH species. It is difficult to extract accurate NMR
parameters for this resonance, owing to the low sensitivity
and lack of any characteristic quadrupolar broadening, but the
position of the center of gravity would suggest that ⟨PQ⟩ ≈ 3.4
MHz and ⟨δiso⟩ ≈ 23 ppm. The sharp peak at δ = −5.1 ppm in
the MAS spectrum (also shown in Figure 5), which does not
appear in the MQMAS spectrum, can be attributed to water.
The position of this signal varies very little with the B0 field,
suggesting a negligible quadrupolar interaction, as discussed in
the Supporting Information.

To confirm the assignment of the 17O MAS and MQMAS
NMR spectra, CP experiments were performed. This approach
should edit the spectrum on the basis of spatial proximity to 1H,
preferentially enhancing the Si−OH species (as observed for
29Si in Figure 2b). However, CP to quadrupolar nuclei is a
much more challenging experiment than its spin I = 1/2
counterpart, with multiple match conditions of differing
intensity and with sensitivity also depending crucially on the
spin-lock efficiency (determined by the adiabaticity parameter,
α, which depends on the rf field strength of the spin-lock pulse,
the quadrupolar coupling, and the MAS rate).54−56 Con-
sequently, the CP match condition was initially optimized using
a model system (amorphous SiO2 enriched in 17O), as
described in detail in the Supporting Information. From these
experiments, a low-power match condition (enabling spin-
locking in the sudden regime, where α ≪ 1) was selected.
As shown in Figure 6, 17O CP MAS NMR spectra (red lines)

of the hydrolyzed 17O-enriched sample do show selective

enhancement of the Si−OH signal, with the position of the
peak maximum observed at 20.0 T in good agreement with the
weak signal resolved in the 1H-decoupled MQMAS spectrum in
Figure 5b (as shown by the green box in Figure 5), thus
confirming its assignment to Si−OH species. The poor
sensitivity of these experiments, even after lengthy acquisition
times (3 days at 14.1 T and 13 h at 20.0 T), possibly suggests
rapid T1ρ relaxation and/or poor spin-locking behavior.
However, as shown in the Supporting Information, the 1H
T1ρ relaxation is certainly sufficient for CP at the contact times
used, and the Si−OH species exhibit better 17O spin-locking
efficiency at the rf fields applied than the Si−O−Si or water
species, confirming this is not responsible for the poor CP
efficiency observed. Given these observations, it is most likely
that the reduced efficiency of CP results from reduction of the
dipolar interaction that mediates the magnetization transfer,
most probably as a result of motion. Evidence for H dynamics
in the hydrolyzed zeolite structure is provided via 2H NMR, as
shown in Figure 7 and discussed further in the Supporting
Information.

Figure 5. 17O (20.0 T, 20 kHz MAS) triple-quantum NMR spectra of
Ge-UTL hydrolyzed with 17O-enriched H2O for 16 h, acquired using a
z-filtered pulse sequence (a) without and (b) with cw 1H decoupling.
The total acquisition times were (a) 7 and (b) 22 h. Also shown
(above) is the 17O MAS NMR spectrum. The position of the signal
seen in CP experiments is highlighted in green.

Figure 6. 17O (20 kHz MAS) CP NMR spectra (red) of Ge-UTL
hydrolyzed with 17O-enriched H2O for 16 h, acquired at (a) 14.1 T
and (b) 20.0 T. Corresponding MAS spectra are also shown (black)
for comparison.
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The 2H MAS spectrum is dominated by a narrow, isotropic
line shape, suggesting rapidly reorienting D2O is present
between the layers. A broad spinning sideband manifold,
corresponding to Si−OD in the interlayer space, is also
observed, although this cannot be simulated with just a single
quadrupolar line shape, suggesting it is also affected by
dynamics, and possibly suggesting H/D exchange with water.
From the 2H MAS NMR spectra, it can be estimated that the
intensity ratio of the Si−OD:D2O signal is ∼1:4 (suggesting a
1:2 ratio of silanol groups to molecular water). It seems
reasonable to assume this water results from D2O in the
interlayer space and not from surface water (given that samples
are dried prior to study and CP to the interlayer Si−OH species
appears to be affected by dynamics). However, we note that it is
difficult to rule out completely the presence of any strongly
bound surface water. The levels of water in the hydrolyzed
zeolites vary with hydrolysis duration and storage time and
conditions. From the samples studied in this work, the Si−
OH:H2O ratio is estimated to be between 1:2 and 1:4. Further
support for the modulation of the dipolar interaction being
responsible for the poor CP efficiency is provided by the low-
temperature (108 K) CP spectrum in Figure 8. A significant

increase in CP efficiency is observed at the lower temperature,
with a corresponding change in line shape resulting from the
restriction or removal of any dynamics.
From the cross sections extracted from MQMAS experi-

ments (for Si−O−Si species) and the line shapes observed in
CP and spin-lock experiments, where primarily Si−OH species
are observed, it is possible to estimate the relative proportions
of different O species present in the hydrolyzed Ge-UTL from
fitting a quantitative (i.e., short flip angle) 17O MAS NMR
spectrum. As shown in the Supporting Information, the ratio of
Si−17O−Si:Si−17O−H:H2

17O species is ∼8:1:1. The amount of
water present varies between samples hydrolyzed for different

durations and those stored for different times under different
conditions. One can broadly categorize the oxygen atoms in
IPC-2P into four groups (Figure 9): the Si−OH oxygen atoms

and three different types of Si−O−Si units; those in the
interlayer region, those in the layers but which are accessible to
the pore spaces, and those in the layers that are not accessible
to the pores. Using the models shown in Figure 9, one can
calculate the expected ratio of Si−17O−Si:Si−17OH based on
the distributions shown. This is a rather crude calculation as it
takes no account of any difference in probability of any
particular site being occupied by 17O preferentially over
another , but one th ing i s c lear , the observed
Si−17O−Si:Si−17OH ratio of ∼8:1 cannot be explained by
incorporation into only the interlayer oxygen sites (expected
ratio = 2.5:1), and, at the very least, the organization/
rearrangement step in the ADOR process involves oxygen
atoms being introduced into the layers (for example, the model
shown in Figure 9c). This observation is unexpected and, even
when considering that any back exchange may be more rapid
for Si−OH species, suggests a much more substantial
rearrangement process during hydrolysis than previously
thought.21−25 The identification of these resonances also
provides insight into the changes seen previously in the 17O
MAS spectrum in Figure 4, with the Si−O−Si signal reversibly
hydrolyzed to form Si−O−H. Although the low intensity of the
Si−OH signal in the MQMAS experiments prevents accurate
analysis of the relative proportions of each signal at each stage,
it is possible to estimate the relative proportions of different O
species present in the three 17O MAS spectra of hydrolyzed Ge-
UTL shown. As discussed in the Supporting Information, the
proportion of Si−OH increases with time, while that of Si−O−
Si decreases, confirming low-level hydrolysis continues even at
room temperature, most likely as a result of a small amount of
acid remaining between the layers, owing to the reduced
volume of (unenriched) washing water used.

Figure 7. 2H (9.4 T, 10 kHz MAS) NMR spectra of a deuterated 17O-
enriched hydrolyzed (16 h) Ge-UTL zeolite, with an expansion to
show the broad spinning sideband manifold.

Figure 8. 17O (14.1 T, 12.5 kHz MAS) CP NMR spectra of 17O-
enriched hydrolyzed Ge-UTL zeolite, hydrolyzed for 16 h, acquired at
108 K (black line) and 298 K (red line).

Figure 9. A schematic showing hypothetical models of the most likely
17O incorporation patterns into idealized IPC-2P after hydrolysis with
17O-enriched water. The models are (a) where only the Si−OH groups
contain 17O; (b) where 17O is incorporated into the Si−OH and Si−
O−Si units in the interlayer units (expected Si−17O−Si:Si−17OH ratio
is 2.5:1); (c) where 17O is incorporated into Si−OH units, Si−O−Si in
the interlayer unit, and into the first layer of tetrahedra in the layers
(expected Si−17O−Si:Si−17OH is 11.5:1); and (d) where 17O is
equally likely to be incorporated into all possible oxygen sites in the
structure (expected Si−17O−Si:Si−17OH is 16.5:1). Green spheres are
oxygen atoms with a high probability of 17O incorporation, and red
spheres indicate a low probability of 17O incorporation. Silicon is
shown in blue. Note that experiments also indicate water is present in
the interlayer region, but this is not shown.
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This surprising conclusion was investigated further by the
preparation of an IPC-2P sample doubly enriched in both 17O
(during a 16 h hydrolysis) and 29Si (from the initial Ge-UTL
synthesis). Figure 10 shows 17O−29Si HMQC correlation

spectra of this doubly enriched sample (acquired at 20.0 T, with
SR421 recoupling of the Si−O dipolar interaction).51,52 At short
recoupling times, the spectrum contains signal only from Si−
O−Si coordinated to Q4 Si species, while at longer times, the
same 17O species correlate with the Q3 Si (i.e., Si−OH) groups,
confirming these lie in the bulk of the zeolite layers and at a
greater distance to the interlayer spaces. Although little signal is
seen from any Si−O−Si coordinated to Q3 Si species within the
interlayer regions, there are proportionately fewer of these (and
fewer still in the more defective IPC-2P* material), and these
might also experience more rapid relaxation, owing to their
proximity to the dynamic interlayer water.
In both spectra, there is no correlation of the 17O signal at δ

≈ − 6.4 ppm with any Si species, confirming it as nonstructural
water. Interestingly, there are also no signals in the spectrum in

the region where the CP experiments indicated the Si−OH
species could be seen. This probably also results from rapid
relaxation during the transfer step, as suggested above. Even if
some back exchange of Si−OH species does occur when a
sample is stored under ambient conditions, perturbing the
relative intensities of the species, Figure 10, confirms a
significant proportion of 17O resides in the bulk zeolite layers,
rather than being restricted only to the interlayer regions.

■ CONCLUSIONS

The successful synthesis of isotopically enriched IPC-2P ADOR
intermediate and IPC-2 zeolite has been demonstrated, and
mechanistic studies provide new insight into the hydrolytic
rearrangement that underpins the ADOR philosophy. The use
of a lower volume of hydrolysis for the reaction to enable
economic isotopic enrichment varies the reaction rate and the
products obtained at each step, demonstrating the sensitivity of
the ADOR process to a variety of experimental conditions and,
therefore, the fine control of the reaction progression that may
be possible. The work allows us to draw a modified mechanism
(Figure 11) suitable for these low hydrolysis volume situations
that differs from that shown in Figure 1 in that the hydrolysis to
IPC-1P never goes to completion before the organization step
begins. Both 29Si and 17O NMR spectroscopies have
demonstrated that the hydrolysis and rearrangement process
occurs over a much longer time scale than seen by diffraction
(where a constant d spacing is observed at very short
durations). 29Si MAS NMR spectra showed (through a
consideration of the Q4/Q3 intensities) that for the first ∼12
h of reaction, hydrolysis was the dominant process, with
subsequent rearrangement still occurring up to ∼48 h.
However, 17O MAS NMR spectra of zeolites enriched in 17O
during the hydrolysis step showed changes of the spectral line
shape over a much longer time scale (∼30 days), reflecting a
low level of ongoing hydrolysis even at room temperature, most
likely as a result of the small amount of acid remaining between
the layers, owing to the reduced volume of (unenriched)
washing water used.

2H MAS NMR suggested that there are around 2−4 D2O
molecules for every Si−OD species in the interlayer region,
although this amount does vary with reaction duration and
storage conditions. Two main signals were observed in 17O
MAS NMR spectra of the enriched zeolites, attributed to Si−
O−Si and Si−OH species (along with signal for H2O itself).
MQMAS, CP, and spin-locking experiments were able to
provide information on the spectral line shapes of the different
components, enabling their relative proportions (8:1 for
Si−17O−Si:Si−17OH) to be determined from the MAS
spectrum.
The unexpectedly high proportion of Si−O−Si species

enriched in 17O (even allowing for faster back exchange of Si−
OH groups) highlighted a much more extensive hydrolytic
rearrangement than previously thought. Heteronuclear
(17O−29Si) correlation experiments confirmed that a substantial
amount of 17O was incorporated into a bulk of the layers of the
IPC-2P zeolite, rather than being confined only to the
hydrolyzed interlayer regions. The ability to exploit isotopic
enrichment (in both 29Si and 17O) of these materials has not
only enabled a more detailed spectroscopic investigation but
also has provided new insight into the ADOR mechanism and
the possible ways in which zeolite structures could be more
accurately targeted in the future.

Figure 10. 17O−29Si (20.0 T, 20 kHz MAS) D-HMQC correlation
spectra of 29Si-enriched Ge-UTL hydrolyzed with 17O-enriched H2O
for 16 h, acquired using (a) τ = 600 μs and (b) τ = 2400 μs of SR421
recoupling. Also shown (for comparison) are the 17O and 29Si MAS
NMR spectra. The dashed green line denotes the position of
maximum signal intensity for the Si−OH species identified using CP
experiments.
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(32) Corma, A.; Díaz-Cabañas, M. J.; Rey, F.; Nicolopoulus, S.;
Boulahya, K. Chem. Commun. 2004, 1356−1357.
(33) Paillaud, J. L.; Harbuzaru, B.; Patarin, J.; Bats, N. Science 2004,
304, 990−992.
(34) Mazur, M.; Wheatley, P. S.; Navarro, M.; Roth, W. J.; Polozǐj,
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