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Much progress has been made in understanding the structure-property relationship

over the past few decades. This is partly due to our improved ability to measure the

subtle structural distortions which are either linked to the development of a specific

physical property or that lead to its suppression. A very significant contribution in

this field has also been the development of the language required to formally describe

such symmetry-breaking events that characterise the order parameters that drive these

phase transitions. However, until now, the tools available have only allowed for the

exploration of the symmetry implications of order parameters corresponding to com-

mensurate modulations. In this issue, Stokes and Campbell (REF) present an algo-

rithm and practical implementation for computing the allowed subgroups resulting

from the action of an order parameter consisting of up to three arbitrary indepen-

dent incommensurate modulations. This work provides key tools for understanding

the structure-property relationships of the many technologically important materials

which display incommensurate modulations in their atomic and/or magnetic struc-

ture.
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While Landau theory has been widely used since the 60s to describe second-order

phase transitions (Cowley, 1980), often the starting point has been to use an order

parameter that is phenomenological. That is to say, the order parameter is related

to an observation of the physical property, such as the magnitude of the measured

electrical or magnetic polarization. However, this need not be the case, and indeed

formally the order parameter of the phase transition (leading to a child structure)

must transform as an irreducible representation (Campbell et al., 2006) of the high-

symmetry (parent) structure. Or put another way, it must be an allowed excitation of

the parent structure, which in the harmonic approximation will in general transform as

a single irreducible representation of the parent space group. With the use of invariant

analysis (Hatch & Stokes, 2003), this allows a full expansion of the free energy to be

performed about the parent structure in terms of the the allowed excitation(s) beyond

just the harmonic (second) order, provided that the secondary ”symmetry-allowed”

couplings of the primary order parameter can be elucidated.

As crystallographers, experimentally what we determine is the positions of the atoms

above and below a phase transition. If we are to pursue the analysis described above,

then we must identify the set of atomic displacements that lead to a continuous phase

transition from parent to child structure. One may then decompose these symmetry-

breaking distortions into transforming as irreducible representations of the parent

space group. This process may simply be thought of as a change of basis to one which is

orthogonal in the symmetry space of the parent structure rather than being orthogonal

in the fractional coordinate space of the child structure. A substantial bottle neck to

all of this analysis is hence not just our ability to measure subtle structural distortions,

but our ability to classify these subtle orderings in terms of irreducible representations.

Although the first complete tabulation of (time even) irreducible representations (for

special points in k-space) was made in the 70s (Bradley & Cracknell, 1972), the analysis
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of structural distortions in terms of these remained the preserve of experts in the field

of group theory. The development of the online tool ISODISTORT by Campbell,

Stokes, Tanner and Hatch in 2006 (Campbell et al., 2006) finally bridged this gap,

making this analysis trivial even for structures undergoing the most complicated phase

transitions driven by order parameters that consist of multiple superposed irreducible

representations.

The success of this analysis is evident in the literature. A large number of complex

phase transitions have been interpreted thanks to these tools, giving physical insight

into process such as charge ordering, ferroelectricity, magnetic exchange anisotropy

and negative thermal expansion (Senn et al., 2012; Kocsis et al., 2014; Khalyavin et al.,

2015a; Orlandi et al., 2016; Khalyavin et al., 2015b; Senn et al., 2015). Other works

have devised approaches based on this analysis to effectively search and determine

space groups of materials that have undergone complex phase transitions (Kerman

et al., 2012; Lewis et al., 2016). Rietveld and single-crystal refinement programs such

as Topas and FullProf can now refine models directly in this symmetry-adapted

basis, and more recently this approach has even been applied to directly fitting pair

distribution function data (Senn et al., 2016).

Crucially, it is only the assignment of the full (isotropy) subgroup symmetry which

allows identification of all of the secondary order parameters. This is vital not only

for correctly constructing the Landau-style free energy expansion as mentioned above,

but also for identifying and predicting coupling mechanisms within the solid state that

can give rises to unexpected physical properties. The recent resurgence of interest in

improper ferroelectrics, where the polarisation forms only a secondary order parameter

of two antiferrodistortive primary order parameters, is a good example of this, and

undoubtedly this has been driven to a great part by the ease with which such couplings

can now be ascertained (see Refs. (Benedek et al., 2015; Young et al., 2015) for some
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recent review articles).

However, there remains a final frontier. Many crystal structures display incom-

mensurate phase transitions that are related to unusual lattice dynamics and charge

modulations where phonons go soft at general points in reciprocal space, rather than

at commensurate wave vectors. Here in ”A general algorithm for generating isotropy

subgroups in Superspace” by Stokes and Campbell, not only is the first algorithm

presented for enumerating all of the possible subgroups associated with the action of

an order parameter with an incommensurate propagation vectors, but the machinery

is also provided so that it may be undertaken by a non-expert in the field. Undoubt-

edly this work will inspire renewed efforts to tackle problems associated with incom-

mensurate crystallography. Where solutions exist, they may be decomposed in terms

of irreducible representations of the parent space groups, and new physical insights

gained into secondary couplings. Where structural models have yet to be found, possi-

ble subgroups can be enumerated thanks to these new online tools (Stokes et al., 2016)

and tested systematically against diffraction data (Lewis et al., 2016).

The importance of using the full space group symmetry to describe incommensu-

rate magnetic structures has been highlighted recently (Perez-Mato et al., 2012). Here

magnetic superspace groups not only provide a complete description of the ordering

with a minimum number of refinable parameters, but they also serve to reveal any

secondary magneto-structural couplings such as are vital for understanding type-II

multiferroic mechanisms. But may be the most significant challenge to be under-

taken in this field is in modelling the incommensurate charge density wave (CDW)

phases found in many layered cuprates, that is now generally accepted as being asso-

ciated with a suppression of the superconducting state (Wu et al., 2011; Ghiringhelli

et al., 2012). Ultimately a full symmetry analysis of these systems in their CDW state

should reveal the spin-lattice coupling interactions that are responsible for mediating
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superconductivity. Equipped with these new tools for exploring the consequences of

symmetry-lowering phase transitions, we can now tackle such problems and bravely

go ”to superspace and beyond”.
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Fig. 1. An exaggerated illustration of a possible incommensurate modulation of CuO4

planes (Cu in blue, O in red) such as found in the layered cuprate superconduc-
tors La2−xSrxCuO4 with parent I4/mmm symmetry. Although weak superstructure
peaks have been measured that are associated with a charge density wave with a
propagation vector k = [0.23, 0 , 1

2
] (Croft et al., 2014), the limited number of weak

observed reflections, the large number of possible isotropy subgroups, and the num-
ber of degrees of freedom within each of these models, means that the symmetry
of the CDW phase in this and other related systems is still in question. The figure
is drawn using ISODISTORT (Campbell et al., 2006) and V ESTA (Momma &
Izumi, 2011).
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