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Bifurcation of the roots of the
characteristic polynomial and the
destabilization paradox in friction

induced oscillations

O.N. Kirillov ∗

Theoret. Appl. Mech., Vol.34, No.2, pp. 87–109, Belgrade 2007

Abstract
Paradoxical effect of small dissipative and gyroscopic forces on the
stability of a linear non-conservative system, which manifests it-
self through the unpredictable at first sight behavior of the critical
non-conservative load, is studied. By means of the analysis of bi-
furcation of multiple roots of the characteristic polynomial of the
non-conservative system, the analytical description of this phe-
nomenon is obtained. As mechanical examples two systems pos-
sessing friction induced oscillations are considered: a mass sliding
over a conveyor belt and a model of a disc brake describing the
onset of squeal during the braking of a vehicle.
Keywords : Friction-induced oscillations, circulatory system, desta-
bilization paradox due to small damping, characteristic polyno-
mial, multiple roots, bifurcation, stability domain, Whitney um-
brella singularity.

1 Introduction

1. Consider a linear autonomous non-conservative mechanical system

d2y

dt2
+ D(k)

dy

dt
+ A(q)y = 0, (1)
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88 O.N. Kirillov

where y is a vector of generalized coordinates and D and A are real square
matrices of order m, determining dissipative and gyroscopic and noncon-
servative positional forces, respectively. It is assumed that the matrix D
is a smooth function of the vector of parameters k = (k1, . . . , kn−1) and
D(0) = 0, while the matrix A smoothly depends on the load parameter
q ≥ 0.

Finding a solution to equation (1) in the form y=u exp(λt) we get the
generalized eigenvalue problem

(λ2I + λD(k) + A(q))u = 0, (2)

where I is a unit matrix of order m, u is an eigenvector, and λ is an
eigenvalue. Non-conservative system without gyroscopic and dissipative
forces (k = 0)

d2y

dt2
+ A(q)y = 0 (3)

is called circulatory [1, 2]. The spectrum of the circulatory system is
symmetrical with respect to the real and imaginary parts of the complex
plane; if λ is an eigenvalue of the linear operator λ2I + A(q), then −λ,
λ, and −λ, where the overbar indicates complex conjugation, are the
eigenvalues too. As a consequence, the circulatory system is stable (in
the sense of Lyapunov) if and only if all the eigenvalues λ are purely
imaginary and semi-simple [3].

Let us assume that at q = 0 the circulatory system (3) is stable. With
the increase of the load parameter its eigenvalues move along the imag-
inary axis. When the parameter q reaches some critical value q0, two
simple purely imaginary eigenvalues merge and originate a double eigen-
value λ0 = iω0 with the Jordan chain of length 2. The further increase
in the load yields in general the splitting of λ0 into two simple complex
eigenvalues, one of which has a positive real part (flutter instability),
Fig 1a. Therefore, the interval 0 ≤ q < q0 belongs to the stability domain
of the circulatory system (3).

As it was revealed in various mechanical problems [1]–[9], [17]–[23], a
perturbation of the circulatory system by small dissipative and gyroscopic
forces (k 6= 0) generally destroys the interaction of eigenvalues. By that
reason at some critical load q = qcr(k1, . . . , kn−1) one of the eigenvalues
moves to the right hand side of the complex plane without interaction
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Figure 1: Trajectories of the eigenvalues for undamped and weakly
damped non-conservative systems.

with the other eigenvalue, Fig 1b. Moreover, assuming k = εk̃, where the
vector k̃ is fixed, and rushing the parameter ε to zero one has

q̃cr ≡ lim
ε→0

qcr(εk̃) ≤ q0. (4)

The inequality similar to (4) was obtained first by Ziegler [1] for the
double-linked pendulum loaded by the follower force. He came to an
unexpected conclusion, that the critical force of the non-conservative sys-
tem with infinitely small dissipation is essentially lower, than that of un-
damped system. This phenomenon has received the name destabilization
paradox [1]–[9], [22].

Later, it has been noticed on examples of various mechanical systems
that the limit of the critical load q̃cr depends on a choice of the vector
k̃. In particular, changing the ratios between the parameters k1, . . . , kn−1

it is possible to avoid the jump in the critical load and, hence, desta-
bilization (Bolotin’s effect [2]). In the works [10, 11, 12, 19, 20, 21, 22]
the destabilization paradox was studied for the general finite-dimensional
and continuous non-conservative systems. Explicit asymptotic expres-
sions for the critical load q as a function of the vector of parameters k
describing a jump in the critical load were derived. Behavior of eigen-
values of weakly-damped non-conservative systems was analytically de-
scribed. In the work [10] the structure of the matrix of dissipative and
gyroscopic forces stabilizing the circulatory system was determined and
the necessary and sufficient stability conditions were found. The results
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of the works [10, 11, 12] were obtained by means of the perturbation the-
ory of linear non-self-adjoint operators [13] and used the eigenvectors and
associated vectors of the operator of circulatory system.

In the present paper the study of the destabilization paradox is based
on the sensitivity analysis of the roots of the characteristic polynomial
of the system (1) with coefficients expressed by means of the modified
Leverrier algorithm [14]. This allows one avoid computation of the eigen-
vectors and associated vectors and obtain expressions for the critical load
by means of the derivatives of the characteristic polynomial with respect
to parameters. In the case of two-dimensional systems the results are
expressed directly through the invariants of the matrices D and A.

2 Bifurcation of the roots of the character-

istic polynomial

The effect of small dissipative and gyroscopic forces on the stability of
the non-conservative system (1), which is on the boundary between the
stability and flutter domains, is stabilizing or destabilizing depending on
the behavior of the eigenvalues of the circulatory system due to variation
of the parameters q and k.

The eigenvalues of the system (1) are the roots of the characteristic
polynomial

P (λ,p) = λ2m +
2m∑
s=1

asλ
2m−s = det(Iλ2 + D(k)λ + A(q)). (5)

The coefficients of the polynomial (5) are smooth functions of the real
vector of parameters p = (k1, k2, . . . , kn−1, q) and are expressed through
the invariants of the matrices D and A by means of the modified Leverrier
algorithm [14]

C0 = I, a1 = trD(k), C1 = −D(k) + a1I,

aj =
1

j
tr(D(k)Cj−1 + 2A(q)Cj−2), Cj = −D(k)Cj−1−A(q)Cj−2 + ajI,

j = 2, 3, . . . , 2m− 2,
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D(k)C2m−2 + A(q)C2m−3 = a2m−1I, A(q)C2m−2 = a2mI. (6)

Let for p = p0 the function P (λ,p0) have a root λ = λ0. Let us study
the behavior of this root with the variation of the vector of parameters p
along a smooth curve

p(ε) = p0 + εṗ +
ε2

2
p̈ + o(ε2), ε ≥ 0, (7)

where the dot indicates differentiation with respect to the parameter ε and
the derivatives are evaluated for ε = 0. Then, the polynomial P (λ,p(ε))
is represented in the form

P (λ,p(ε)) =
2m∑
r=0

(λ−λ0)
r

r!

(
∂rP

∂λr
+ε

∂rP1

∂λr
+ε2∂rP2

∂λr
+ o(ε2)

)
, (8)

where

∂rP1

∂λr
=

n∑
s=1

∂r+1P

∂λr∂ps

ṗs,
∂rP2

∂λr
=

1

2

n∑
s=1

∂r+1P

∂λr∂ps

p̈s +
1

2

n∑
s,t=1

∂r+2P

∂λr∂ps∂pt

ṗsṗt,

(9)
and the partial derivatives are evaluated at p = p0, λ = λ0. For r = 0
the formulas (9) give expressions for the quantities P1 and P2.

Let λ0 = iω0 be a double eigenvalue of the system (1) with the Jordan
chain of length 2. Then the splitting of λ0 due to perturbation (7) is
described by the Puiseux series [13]

λ = λ0 + λ1ε
1/2 + λ2ε + λ3ε

3/2 + λ4ε
2 + . . . . (10)

Substituting expansions (8) and (10) into the equation P (λ,p) = 0 and
collecting the terms with the same powers of ε we get the expressions
determining the coefficients in the series (10)

P (λ0,p0) = 0, (11)

λ1
∂P

∂λ

∣∣∣∣
λ=λ0
p=p0

= 0, (12)

(
P1 +

1

2
λ2

1

∂2P

∂λ2
+ λ2

∂P

∂λ

)∣∣∣∣
λ=λ0
p=p0

= 0, (13)
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(
λ1λ2

∂2P

∂λ2
+ λ3

∂P

∂λ
+ λ1

∂P1

∂λ
+ λ3

1

1

6

∂3P

∂λ3

)∣∣∣∣
λ=λ0
p=p0

= 0. (14)

Equations (11), (12) are satisfied since λ0 is a double root of the
characteristic polynomial (5). Taking into account the equation (12) in
the expressions (13) and (14) we find the coefficients λ1 and λ2

λ2
1 = −P1

(
1

2

∂2P

∂λ2

)−1

, λ2 =

(
1

3

∂3P

∂λ3
P1 − ∂P1

∂λ

∂2P

∂λ2

) (
∂2P

∂λ2

)−2

, (15)

where the derivatives are evaluated for p = p0, λ = λ0.
Thus, with the variation of the parameters (7) the double eigenvalue

λ0 = iω0 with the Jordan chain of length 2 splits according to the formula

λ = iω0 ± i

√
εP1

(
1

2

∂2P

∂λ2

)−1

−

− ε

2

(
∂P1

∂λ

(
1

2

∂2P

∂λ2

)−1

− 1

3!

∂3P

∂λ3

(
1

2

∂2P

∂λ2

)−1

P1

(
1

2

∂2P

∂λ2

)−1
)

+ o(ε),

(16)
if for ε 6= 0 the radicand in expression (16) is not zero [9].

Consider a degenerate case when P1 = 0 and the coefficient λ1 in the
series (10) is zero. Keeping this in mind, substituting the expansions (8)
and (10) into the equation P (λ,p) = 0, and collecting the terms with the
same powers of ε we find

(
P1 + λ2

∂P

∂λ

)∣∣∣∣
λ=λ0
p=p0

= 0, (17)

λ3
∂P

∂λ

∣∣∣∣
λ=λ0
p=p0

= 0, (18)

(
P2 + λ2

2

1

2

∂2P

∂λ2
+ λ2

∂P1

∂λ
+ λ4

∂P

∂λ

)∣∣∣∣
λ=λ0
p=p0

= 0. (19)

By virtue of the condition of the existence of the double eigenvalue and
the degeneration condition the equations (17) and (18) are satisfied. The
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equation (19) gives the quadratic equation, which serves for determining
the coefficient λ2 in expansion (10)

λ2
2

1

2

∂2P

∂λ2
+ λ2

∂P1

∂λ
+ P2 = 0, (20)

where all the derivatives are evaluated for λ = λ0, p = p0. Thus, in the
degenerate case when P1 = 0 the double eigenvalue λ0 splits according to
the formula λ = λ0 + λ2ε + o(ε) with the coefficient λ2 determined by the
equation (20).

Analogously it can be shown that the behavior of simple eigenvalues
λ0,s due to the variation of parameters (7) is described by the formula [9]

λ = λ0,s + µ1ε + o(ε), µ1 = −P1

(
∂P

∂λ

)−1
∣∣∣∣∣

λ=λ0,s
p=p0

. (21)

Therefore, the asymptotic formulas (10), (16), (20) and (21) with
the coefficients expressed through the derivatives of the characteristic
polynomial describe the behavior of simple and double eigenvalues due to
variation of parameters in regular and degenerate cases.

3 Stability analysis of the non-conservative

system

In n-dimensional space of parameters k1, . . . , kn−1, q of the system (1) we
consider a point p0 = (0, . . . , 0, q0), assuming that ±λ0 = ±iω0, ω0 > 0,
are double eigenvalues of the operator A(q0)+λ2I with the Jordan chain of
length 2, while other eigenvalues±λ0,s = ±iω0,s, ω0,s > 0, s = 1, . . . , m−2
are simple and purely imaginary. The non-conservative system corre-
sponding to k = 0, q = q0 is circulatory and the point p0 belongs to the
stability boundary [2, 3].

From the equations (6) it follows that the odd coefficients of the char-
acteristic polynomial a2r−1(p) and the matrices C2j−1(p) satisfy the ex-
pressions

a2r−1(p0) = 0, C2j−1(p0) = 0, r = 1, 2, . . . , m, j = 1, 2, . . . , m− 1,
(22)
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where p0 = (0, . . . , 0, q0). Besides, by means of the induction argument
we have

∂a2r

∂ks

(p0) = 0,
∂a2r−1

∂q
(p0) = 0, r = 1, 2, . . . , m,

∂C2j

∂ks

(p0) = 0,
∂C2j−1

∂q
(p0) = 0, j = 1, 2, . . . , m− 1. (23)

Consider now the formula (21) describing the behavior of the simple
eigenvalue λ0,s = iω0,s with the variation of the parameters. Let us define
the scalar g̃s and the vector gs = (gs

1, g
s
2, . . . , g

s
n−1)

g̃s = −i
∂P

∂q

(
∂P

∂λ

)−1
∣∣∣∣∣

λ=iω0,s
p=p0

, gs
j =

1

ω0,s

∂P

∂kj

(
∂P

∂λ

)−1
∣∣∣∣∣

λ=iω0,s
p=p0

. (24)

According to the equations (22) and (23) the quantities g̃s and gs
j are real.

With the use of the expressions (7) and (24) equation (21) takes the form

λ = iω0,s − ig̃s(q − q0)− ω0,s〈gs,k〉+ . . . , (25)

where the angular brackets denote scalar product of real vectors: 〈a,b〉 =∑n−1
j=1 ajbj.
Thus, a small variation of the load parameter q keeps the simple eigen-

values λ0,s = iω0,s on the imaginary axis, while the variation of the vector
of parameters k corresponding to dissipative and gyroscopic forces moves
the eigenvalues λ0,s out of the imaginary axis. The eigenvalues are in the
left hand side of the complex plane if the vector k satisfies the inequalities

〈gs,k〉 > 0, s = 1, 2, . . . , m− 2. (26)

Splitting of the double eigenvalue λ0 = iω0 in the regular case is
described by the formula (16). Let us define the scalar f̃ and the vector
f = (f1, f2, . . . , fn−1) as

f̃ =
∂P

∂q

(
1

2

∂2P

∂λ2

)−1
∣∣∣∣∣

λ=iω0
p=p0

, fs =
1

iω0

∂P

∂ks

(
1

2

∂2P

∂λ2

)−1
∣∣∣∣∣

λ=iω0
p=p0

, (27)

and the vector h = (h1, h2, . . . , hn−1) and a scalar h̃ as

hs =
1

ω0

(
1

2!

∂2P

∂λ2

)−1 (
2α0

iω0

∂P

∂ks

− ∂2P

∂λ∂ks

)∣∣∣∣
λ=iω0
p=p0

,
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h̃ =

(
1

2!

∂2P

∂λ2

)−1 (
α0

ω0

∂P

∂q
− i

∂2P

∂λ∂q

)∣∣∣∣
λ=iω0
p=p0

, α0 = iω0
1

3!

∂3P

∂λ3

(
1

2!

∂2P

∂λ2

)−1

,

(28)
s = 1, 2, . . . , n− 1.

According to the equations (22) and (23) the quantities given by expres-
sions (27) and (28) are real. Taking into account expressions (27) and
(28) we rewrite the equation (16) in the form

λ = iω0 ± i

√
εiω0〈f , k̇〉+ εf̃ q̇ − ε

1

2
(〈α0f − ω0h, k̇〉+ ih̃q̇) + o(ε). (29)

It follows from the equation (29) that in the generic case the double
eigenvalue λ0 = iω0 splits into two complex eigenvalues, one of them with
positive real part (flutter instability). However, under the conditions

〈f , k̇〉 = 0, f̃ q̇ > 0 and 〈h, k̇〉 < 0 the double eigenvalue splits into two
simple eigenvalues with negative real parts (asymptotic stability). Taking
into account that in the first approximation k = εk̇ and q = q0 + εq̇ and
assuming f̃ < 0, we rewrite the stability conditions as

〈f ,k〉 = 0, q < q0, 〈h,k〉 < 0. (30)

In the space of parameters conditions (26) and (30) define a set of di-
rections, which lead from the point p0 to the asymptotic stability domain,
i.e. the tangent cone to the domain at the point p0. The tangent cone
given by expressions (26) and (30) is degenerate, because its dimension is
n−1, which is less than the dimension of the asymptotic stability domain
(n) [9, 15].

To obtain more detailed approximation of the asymptotic stability
domain we consider behavior of eigenvalues with the variation of the
parameters along the curves (7), assuming that the direction vector of
the curves is tangent to the set (30) and orthogonal to the q–axis:

〈f , k̇〉 = 0, q̇ = 0, (31)

As a consequence, the radicand in formula (29) is zero. In such a degen-
erate case the splitting of the double eigenvalue λ0 is described by the
formula (10) with λ1 = 0 and with the coefficient λ2, which is determined
by the equation (20).
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Taking into account expressions (27) and (28), and conditions (31) we
rewrite equation (20) in the form

λ2
2−ω0〈h, k̇〉λ2 +

1

2
f̃ q̈ +ω2

0〈Gk̇, k̇〉+ iω0

(
1

2
〈f , k̈〉+ 〈Hk̇, k̇〉

)
= 0, (32)

where the elements of the real matrices H and G are determined by the
expressions

Hst =
1

2ω0

Im

(
∂2P

∂ks∂kt

)(
1

2

∂2P

∂λ2

)−1
∣∣∣∣∣

λ=iω0
p=p0

, (33)

Gst =
1

2ω2
0

Re

(
∂2P

∂ks∂kt

)(
1

2

∂2P

∂λ2

)−1
∣∣∣∣∣

λ=iω0
p=p0

, s, t = 1, 2, . . . , n− 1. (34)

The conditions for the roots of the complex polynomial (32) to have
negative real parts are given by the Bilharz criterion [16]. Taking into
account expressions (7) and (31) we write these conditions as

q < qcr(k), 〈h,k〉 < 0, (35)

qcr(k) = q0 +
(〈f ,k〉+ 〈Hk,k〉)2

f̃〈h,k〉2
− ω2

0

f̃
〈Gk,k〉. (36)

The conditions (35) together with the inequalities (26) approximate
the asymptotic stability domain of the weakly damped non-conservative
system (1) in the vicinity of the point p0 = (0, . . . , 0, q0). If to assume,
that at performance of conditions (35) inequalities (26) are automatically
satisfied, then equation (36) approximates the boundary of the asymptotic
stability domain near the point p0.

In important particular case, when the non-conservative system (1)
has only two degrees of freedom (m = 2), the stability conditions (26)
corresponding to simple eigenvalues are absent, and stability is deter-
mined only by the splitting of the double eigenvalue λ0. It follows from
expressions (5) and (6) that the characteristic polynomial of the system
with two degrees of freedom has the form

P = λ4+λ3trD(k)+λ2(trA(q)+detD(k))+λ(trA(q)trD(k)−tr(A(q)D(k)))+
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+ detA(q). (37)

In the absent of the dissipative and gyroscopic forces (k = 0) the
solutions to equation (37) are

λ = ±
√
−trA(q)

2
± 1

2

√
(trA(q))2 − 4 detA(q). (38)

For the critical value of the load parameter q = q0 the radicand in equation
(38) is zero. This yields a pair of double complex-conjugate eigenvalues

±λ0 = ±iω0, ω0 =

√
trA(q0)

2
> 0. (39)

Splitting of these eigenvalues at the account of small dissipative and gy-
roscopic forces (k 6= 0) results in the stability conditions (35).

In case of m = 2 degrees of freedom the quantities f̃ , h̃ and the
components of the vectors f and h are expressed directly through the
invariants of the matrices A and D

f̃=
1

4ω2
0

tr

(
(A(q0)− ω2

0I)
∂A

∂q

)
, fs=

1

4ω2
0

tr

(
(A(q0)− ω2

0I)
∂D

∂ks

)
,

h̃=
1

4ω3
0

tr

(
(A(q0)− 3ω2

0I)
∂A

∂q

)
, hs=

1

4ω3
0

tr

(
(A(q0)− 3ω2

0I)
∂D

∂ks

)
.

(40)
Components of the real matrices H and G are given by the formulas

Hst =
1

8ω2
0

tr

(
(A0 − ω2

0I)
∂2D

∂ks∂kt

)
, Gst=

1

8ω2
0

(
tr

∂D

∂ks

tr
∂D

∂kt

− tr

(
∂D

∂ks

∂D

∂kt

))
,

s, t = 1, 2, . . . , n− 1. (41)

Derivatives in the expressions (40) and (41) are evaluated for k = 0 and
q = q0.

Finally we notice that the equation (32) gives also the equations de-
scribing the evolution of the eigenvalues on the complex plane

(Imλ−ω0 − Reλ− a/2)2 − (Imλ−ω0 + Reλ + a/2)2 = 2d, (42)

(Reλ+a/2)4 +
(
c−a2/4

)
(Reλ+a/2)2 =d2/4, (43)

(Imλ−ω0)
4− (

c−a2/4
)
(Imλ−ω0)

2 =d2/4, (44)

where the coefficients a, c and d are

a=−ω0〈h,k〉, c=f̃(q− q0) + ω2
0〈Gk,k〉, d=ω0(〈f ,k〉+ 〈Hk,k〉). (45)
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Figure 2: A mass sliding over a conveyor belt.

4 Effect of viscous damping on the stability

of a mass sliding over a conveyor belt

As it was mentioned in [17], in a broad variety of engineering systems with
sliding contact self-excited friction induced oscillations lead to the genera-
tion of strong noise, which in most cases is unacceptable. Among the most
well known systems of this class are squealing railway wheels, squeaking
door hinges, and automotive braking systems. One of the mechanisms of
the noise generation is the mode coupling, i.e. interaction of eigenvalues.

As a simple model of a system possessing friction induced oscillations
we consider a single point mass sliding over a conveyor belt (Fig 2), mainly
held in position by two linear springs k1 and k2 parallel and normal to
the belt surface [17, 19]. Parameter k2 may be regarded as the physical
contact stiffness between the objects in relative sliding motion. Moreover,
there is another linear spring k oriented at an oblique of 45o relative to
the normal direction, see Fig 2. For the friction a Coulomb model is
assumed, where the frictional force Ft is proportional to the normal force
Fn exerted, Ft = µFn, where µ is the kinetic coefficient of friction taken to
be constant. Since the normal force is linearly related to the displacement
of the mass normal to the contact surface, the equations for perturbations
around steady sliding state form the system of equations (1) with two
degrees of freedom where the vector y and the matrices D and A are
[17, 19]

y =

[
x1

x2

]
, D =

[
2d1ω1 0

0 2d2ω2

]
,
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A =

[
ω2

1 −k/2m + µ(ω2
2 − k/2m)

−k/2m ω2
2

]
. (46)

The coefficients of linear viscous damping d1 and d2 are defined by the
expressions

dj =
cj

2ωjm
, ω2

j =
2kj + k

2m
, j = 1, 2. (47)

Let us first consider the system without damping (d1 = 0, d2 = 0).
Then, solving the equation (trA)2−4 detA = 0 we find the critical value
µ0 of the friction coefficient

µ0=

(
k

2m
+

2m

k

(
ω2

1−ω2
2

2

)2
)(

ω2
2−

k

2m

)−1

, (48)

and from (21) we get the corresponding critical frequency ω0 as

ω0 =
√

(ω2
1 + ω2

2)/2. (49)

If the system parameters are set to arbitrary but fixed values

ω1 = 4s−1, ω2 = 5s−1, k/(2m) = 5s−2, (50)

then µ0=0.4525 and ω0=
√

41/2∼=4.52769s−1. The critical value of the
friction coefficient of the damped system is found directly from the Routh-
Hurwitz conditions applied to the characteristic polynomial of the system
(1), (46)

µcr = µ0 − m2(ω2
1 − ω2

2)
2

k(2ω2
2m− k)

(d1ω1 − d2ω2)
2

(d1ω1 + d2ω2)2
+

+
16m2d1d2ω

2
1ω

2
2

k(2ω2
2m− k)

d1ω2 + d2ω1

d1ω1 + d2ω2

. (51)

Let us now find the approximation of the critical friction using the
approach of section 3. For the matrices (46) formulae (40), (41) yield

f̃ = − k

4m

ω2
2 − k

2m

ω2
1 + ω2

2

, f =
1

2

ω2
1 − ω2

2

ω2
1 + ω2

2

[
ω1

−ω2

]
,

h=
−1

(ω2
1+ω2

2)
√

2(ω2
1+ω2

2)

[
ω1(ω

2
1+3ω2

2)
ω2(ω

2
2+3ω2

1)

]
, H = 0, G =

ω1ω2

ω2
1 + ω2

2

[
0 1
1 0

]
.

(52)
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Figure 3: The boundary of the asymptotic stability domain and its ap-
proximation.

Using (52) in the expression (36) we find for the values of parameters (50)
the critical value of the friction coefficient of the damped system as

µcr=
181

400
−136161

100

(4d1−5d2)
2

(364d1+365d2)2
+

82

5
d1d2. (53)

Equation (53) defines the boundary of asymptotic stability domain if
〈h,k〉 < 0 or equivalently

364d1 + 365d2 > 0. (54)

Approximation of the stability boundary given by equations (53), (54) in
comparison with the exact solution (48), (51) is shown in Fig. 3. One
can see that the difference between the two surfaces is remarkably small.
The critical friction coefficient as a function of the damping parameters d1

and d2 has a singularity at the point, corresponding to the system without
dissipation at q = q0. This singularity is responsible for the jump in the
critical load due to small damping [3, 5–7].

Finally, we find approximate expressions for the trajectories of the
eigenvalues of the system with non-zero damping. According to expres-
sions (45) and (52) for the values of the parameters (50) we get

a =
364d1 + 365d2

82
, c = −50

41
(µ−µ0)+20d1d2, d = −9

√
82

164
(4d1− 5d2).

(55)
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Figure 4: Trajectories of eigenvalues and their approximations for d1 =
0.03 and d2 = 0.075.

With the expressions (55) the equation (42) describes approximately the
movement of eigenvalues in the complex plane, and equation (43) gives
the real part of the eigenvalues as a function of parameters. For d1 = 0.03
and d2 = 0.075 these trajectories are shown in Fig. 4 by the bold lines. For
comparison, the precise numerical solutions of the characteristic equation
of the system are presented in Fig. 4 by the dashed lines. We conclude that
the approach developed in our paper gives rather good approximation of
the critical parameters and eigenvalue trajectories of the non-conservative
system with small damping.

5 Two-dimensional model of a disk brake

In [18] a simple two-dimensional model of the squealing disc brake was
considered. The rotating disk with the sickness 2h is clamped on both
sides by springs with an overall stiffness c3. The rotating speed v0 of the
disc is assumed to be constant, and both springs always remain in contact
with the disc. Coulomb friction at the contacts creates a resistant force,
which is proportional to the normal pressure with the coefficient µ. The
kinetic friction coefficient µ is taken to be constant and does not depend
on relative velocity and pressure.

A cross-section of an element of the disc in the plane orthogonal to
the disc radius is shown in Fig. 5. It is assumed that the element of mass
m with the moment of inertia J can rotate about its center of mass by
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Figure 5: Two-degrees-of-freedom model of a disc brake [18].

angle ϕ, while the center of mass can be displaced in vertical direction by
the quantity x with respect to the equilibrium position. The springs are
attached off-centered with a distance s from the center of rotation, Fig. 5.
Viscoelastic properties of the disc are modelled by the restoring forces and
torques with the stiffness coefficients c1, c2 and damping coefficients d1,
d2, corresponding to the translational and rotational degrees of freedom,
Fig. 5.

Clamping of a rotating flexible disc can cause its transverse vibrations
yielding an unpleasant sound (squeal). Small vibrations of the system
around the equilibrium position are described by the linear differential
equation (1), where y = [x, ϕ]T , and the matrices D and A have the form
[18, 20].

D=
1

mJ

[
Jd1 0
0 md2

]
, A=

1

mJ

[
J(c1+c3) −Jc3s

m(µh−s)c3 m(s−µh)c3s+mc2

]
.

(56)
As in the previous example we find first the critical value of the friction

coefficient µ0 of the undamped system (d1 = 0, d2 = 0)

µ0 =
s

h
+

mc2 + J(c3 − c1)− 2
√

c3J(mc2 − Jc1)

hsmc3

. (57)

When the parameter µ approaches its critical value (57), two eigenfre-
quencies merge and originate a double eigenfrequency ω0:

ω2
0 =

c1

m
+

√
c3J(mc2 − Jc1)

Jm
. (58)
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Figure 6: Critical value of the friction coefficient µ as a function of the
parameters d1 and d2 and its level curves for the values of parameters
(59).

With the further increase in the friction coefficient the double eigenvalue
iω0 splits into two simple, one of them having positive real part (squeal).

For the values of the parameters given in [18, 20]

m=50kg, J=10kgm2, c1=10Nm−1, c2=10Nm, c3=60Nm−1, s=1m, h=2m.
(59)

the critical friction coefficient and the critical frequency are

µ0 =
2

3
− 1

15

√
6 ' 0.50337, (60)

ω0 =
1

5

√
5 + 10

√
6 ' 1.08618s−1. (61)

The critical value of the friction coefficient µcr for the damped system
(d1 6= 0, d2 6= 0) is found with the use of the Routh-Hurwitz criterion
applied to the characteristic polynomial of the system (1), (56)

µcr =
s

h
+

mc2 − Jc1

mhsc3

+
Jd2

1 + md1d2

2m2hsc3

+
J2d2

1 + m2d2
2

2m2hsd1d2

−

−(Jd1 + md2)
√

(c3(Jd1 −md2) + d2d2
1)

2 − 4md1d2(c1c3J −mc2c3 + d1d2c1)

2d1d2m2hsc3

.

(62)
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The surface (62) and its level curves are shown in Fig. 6. For the values
of parameters given by equations (59) and d1 = 1Nsm−1, d2 = 1Nms
equation (62) yields

µcr =
24803

30000
−
√

10553201

10000
' 0.50191 < µ0 ' 0.50337. (63)

The inequality (63) reflects the destabilization of the non-conservative
system by small dissipative forces because the critical value of the fric-
tion coefficient falls abruptly. Substituting expressions (59) and (63) into
the characteristic equation of the system (1), (56), we find the critical
frequency corresponding to the critical friction coefficient (63)

ωcr ' 1.15304s−1. (64)

Comparing (61) and (64) one concludes that the critical frequency of the
disc vibrations also jumps due to the influence of small dissipative forces.

To find the approximations of the critical load and frequency we should
first calculate the quantity f̃ , the matrix G

f̃ =
c3sh(J(ω2

0m− c1)− 2
√

c3J(mc2 − Jc1))

4mJ2ω2
0

, G =
1

8ω2
0mJ

(
0 1
1 0

)

(65)
and the vectors f and h

f =

(
c1 + c3 − ω2

0m

4ω2
0m

2
,

J(c1 − c3 − ω2
0m) + 2

√
c3J(mc2 − Jc1)

4ω2
0mJ2

)
, (66)

h =

(
c1 + c3 − 3ω2

0m

4ω3
0m

2
,

J(c1 − c3 − 3ω2
0m) + 2

√
c3J(mc2 − Jc1)

4ω3
0mJ2

)
.

(67)
Using expressions (66) and (67) in the equation (36) and taking into
account (59) we find the critical friction coefficient in the form

µcr(d1, d2) = µ0 − 1153
√

6− 2448

3000

(d1 − 5d2)
2

(5d1 + (13 + 7
√

6)d2)2
+

12 +
√

6

72000
d1d2.

(68)
The surface of the critical friction coefficient (62) and its approximation
(68) are shown in Fig. 6
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Figure 7: Trajectories of the eigenvalues and their approximations for
d1 = 1Nsm−1, d2 = 1Nms.

From the expression (68) it follows that the critical friction coefficient
does not decrease when d1 = 5d2. For the damping coefficients d1 =
1Nsm−1, d2 = 1Nms equation (68) gives

µcr =
119777

6000
− 63559

8000

√
6 ' 0.50194. (69)

The corresponding critical frequency obtained from the asymptotic for-
mula (42) is

ωcr =
14
√

6− 29

25

√
5 + 10

√
6 ' 1.14980s−1. (70)

Comparison of expressions (63), (64) and (69), (70) shows that the ap-
proximations of the critical values of parameters obtained from the study
of the bifurcation of the multiple roots of the characteristic polynomial
are in a good agreement with the exact solutions.

Using the expressions (65)–(67) in the equations (42)–(44) one can find
an approximation of the trajectories of the eigenvalues on the complex
plane. For the values of the parameters (59) the coefficients (45) take the
form

a =
38− 7

√
6

2300
d1 +

43 + 6
√

6

920
d2, c =

6(
√

6− 12)

23
(µ− µ0) +

d1d2

2000
,
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d =

(
−33 + 3

√
6

2300
d2 +

−15 + 7
√

6

11500
d1

)√
5 + 10

√
6. (71)

The trajectories of the eigenvalues calculated numerically in [18] for
d1 = 1Nsm−1, d2 = 1Nms and their approximations (42), (43), (71) are
shown in Fig. 7 by the dashed and solid lines, respectively.
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Bifurkacija korena karakterističnog polinoma i
destabilizacioni paradoks u vibracijama izazvanim

trenjem

Proučava se paradoksalni efekt malih disipativnih i žiroskopskih sila na
stabilnost linearnog nekonzervativnog sistema. Ovaj se manifestuje, na
prvi pogled, nepredvidivim ponašanjem kritične nekonzervativne sile. Anal-
itički opis ove pojave se dobija analizom bifurkacije vǐsestrukih korenova
karakterističnog polinoma nekonzervativnog sistema. Dva sistema koji
poseduju vibracije izazvane trenjem se posmatraju kao mehanički primeri
i to: masa koja klizi preko konvejerske trake kao i model disk kočnice koji
opisuje početak cviljenja tokom kočenja vozila.
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