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SECOND-ORDER ACCURATE ENSEMBLE TRANSFORM PARTICLE FILTERS

WALTER ACEVEDO ∗, JANA DE WILJES† , AND SEBASTIAN REICH‡

Abstract. Particle filters (also called sequential Monte Carlo methods) are widely used for state and parameter estimation
problems in the context of nonlinear evolution equations. The recently proposed ensemble transform particle filter (ETPF) (S. Reich,
A non-parametric ensemble transform method for Bayesian inference, SIAM J. Sci. Comput., 35, (2013), pp. A2013–A2014)
replaces the resampling step of a standard particle filter by a linear transformation which allows for a hybridization of particle
filters with ensemble Kalman filters and renders the resulting hybrid filters applicable to spatially extended systems. However,
the linear transformation step is computationally expensive and leads to an underestimation of the ensemble spread for small and
moderate ensemble sizes. Here we address both of these shortcomings by developing second-order accurate extensions of the ETPF.
These extensions allow one in particular to replace the exact solution of a linear transport problem by its Sinkhorn approximation.
It is also demonstrated that the nonlinear ensemble transform filter (NETF) arises as a special case of our general framework. We
illustrate the performance of the second-order accurate filters for the chaotic Lorenz-63 and Lorenz-96 models and a dynamic scene-
viewing model. The numerical results for the Lorenz-63 and Lorenz-96 models demonstrate that significant accuracy improvements
can be achieved in comparison to a standard ensemble Kalman filter and the ETPF for small to moderate ensemble sizes. The
numerical results for the scene-viewing model reveal, on the other hand, that second-order corrections can lead to statistically
inconsistent samples from the posterior parameter distribution.

Keywords. Bayesian inference, data assimilation, particle filter, ensemble Kalman filter, Sinkhorn approxima-
tion
AMS(MOS) subject classifications. 65C05, 62M20, 93E11, 62F15, 86A22

1. Introduction. Data assimilation (DA) denotes the broad topic of combining evolution models with
partial observations of the underlying dynamical process [10, 15, 22]. DA algorithms come in the form of
variational and/or ensemble-based methods [15]. In this paper, we focus on ensemble-based DA methods and
their robust and efficient implementation. The ensemble Kalman filter (EnKF) [10] is by far the most popular
ensemble-based DA method and has found widespread application in the geosciences. However, EnKFs lead
to inconsistent approximations for partially observed nonlinear processes. On the contrary, particle filters
(PF) (also called sequential Monte Carlo methods) [8] lead to consistent approximations but typically require
ensemble sizes much larger than those required for EnKFs in order to track the underlying reference process [2].

In order to overcome these shortcomings, we are currently witnessing a strong trend towards hybrid filters
which combine EnKFs with PFs and which are applicable to strongly nonlinear systems under small or moderate
ensemble sizes. We mention here the Gaussian mixture filters (such as, for example, [24]), the rank histogram
filter [1, 19], moment matching ensemble filters [28, 16, 25], the ensemble Kalman particle filter [11], and the
hybrid ensemble transform particle filter [6].

In this paper, we focus on improved implementations of the ensemble transform particle filter (ETPF) [21,
22] and its hybridrization with the EnKF [6]. The ETPF requires the solution of a linear transport problem in
each assimilation step, which renders the methods substantially more expensive than an EnKF. Computationally
attractive alternatives, such as the Sinkhorn approximation [7], lead to unstable implementations since the
ensemble becomes underdispersive. We address this problem by introducing a variant of the ETPF, which
is second-order accurate independent of the actual solution procedure for the underlying optimal transport
problem. An ensemble filter is called second-order accurate if the posterior mean and covariance matrix of the
ensemble are in agreement with their importance sampling estimates from a Bayesian inference step. Second-
order accurate particle filters have first been proposed in [28] and since then several variants of it have been
developed [16, 25]. Here we instead consider second-order corrections to the ETPF. Such corrections require the
solution of a continuous-time algebraic Riccati equation [27, 14]. The correction term vanishes as the ensemble
size approaches infinity in agreement with the consistency of the ETPF [21].

The paper is organized as follows. The general framework of ensemble transform filters is summarized in
Section 2. Section 3 summarizes the ETPF and introduces the second-order correction step. Numerical solution
procedures for the associated continuous-time algebraic Riccati equation are discussed in Sectionsec:Riccati.
The Sinkhorn approximation to the optimal transport problem of the ETPF is introduced in Section 5 and
the overall second-order accurate implementation of the ETPF is summarized in Section 6. Numerical results
are provided in Section 7, where the behavior of the new method is demonstrated for the highly nonlinear and
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chaotic Lorenz-63 [17] and Lorenz-96 [18] models. Here we repeat the experiments from [6] with the ETPF being
replaced by a second-order accurate variant based on the Sinkhorn approximation to the underlying optimal
transport problem. We finally also demonstrate the behavior of the new filters for parameter estimation of the
scene-viewing model SceneWalk [9].

2. Ensemble-based forecasting-data assimilation systems. Let us assume that observations yobs(tk) ∈
RNy become available at time instances tk, k = 1, . . . ,K, and are related to the state variables z ∈ RNz of an
evolution model

z(tk) =M(z(tk−1)) (2.1)

via the likelihood function

π(y|z) =
1

(2π)Ny/2|R|1/2
exp

(
−1

2
(h(z)− y)TR−1(h(z)− y)

)
, (2.2)

where R ∈ RNy×Ny denotes the measurement error covariance matrix.
An ensemble-based forecasting-data assimilation (FOR-DA) systems will produce two sets of ensembles of

size M at any tk. First we have the forecast ensemble {zf
i}Mi=1 which approximates the conditional distribu-

tion π(z, tk|yobs
1:k−1) and, second, we have the analysis ensemble {za

i }Mi=1, which approximates the conditional

distribution π(z, tk|yobs
1:k ). Here

yobs
1:l = (yobs(t1),yobs(t2), . . . ,yobs(tl)) ∈ RNy×l (2.3)

denotes the complete set of observations from t = t1 to t = tl. Also note that

zf
i(tk) =M(za

i (tk−1)) (2.4)

and that FOR-DA systems primarily differ in the employed data assimilation algorithms.
The data assimilation algorithms considered in this paper are all of the form of a linear ensemble transform

filter (LETF) [22]:

za
j (tk) =

M∑
i=1

zf
i(tk) dij(tk) (2.5)

where the entries dij(tk) of the M ×M transformation matrix D(tk) = {dij(tk)} are subject to the constraint

M∑
i=1

dij(tk) = 1 (2.6)

for all j = 1, . . . ,M . In other words, provided that M ≤ Nz, the members za
j (tk) of the analysis ensemble lie in

the (M − 1)-dimensional hyperplane spanned by the forecast ensemble zf
i(tk) with i ∈ {1, . . . ,M}. Note that

the entries of D can be negative. See [22]. One well known exemplary class of DA algorithms that has the
LETF structure is the family of EnKFs [10, 22]. It has long been acknowledged that EnKFs are very robust
yet the underlying Gaussianity and linearity assumptions limit their applicability to more general systems. To
address the shortcomings of traditional techniques such as the EnKFs, other algorithms that are applicable
for nonlinear model scenarios and are computational feasible when employed to high-dimensional systems have
been proposed. For example, the nonlinear ensemble transform filter (NETF) of [28, 25] provides an example
of a particle filter in the form of an LETF based upon the normalized importance weights

wi(tk) :=
ŵi(tk)∑M
j=1 ŵj(tk)

(2.7)

with ŵi(tk) = π(y(tk)|zf
i(tk)), which reproduces the first and second-order moments of the posterior distribution.

The main focus of this paper is, however, on the ETPF which can also be formulated in the form of (2.5) [10, 22]
with D(tk) = {dij(tk)} being defined via minimization of the cost functional

J(D(tk)) =

M∑
i,j=1

dij(tk)‖zf
i(tk)− zf

j(tk)‖2 (2.8)
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subject to dij(tk) ≥ 0, (2.6) and

1

M

M∑
j=1

dij(tk) = wi(tk) (2.9)

[21]. The key idea of the ETPF is to approximate a transfer map between the random variable, Zf(tk),
distributed according to πZf (z, tk) and the random variable, Za(tk), associated with πZa(z, tk). This map
induces a coupling of the respective densities that is optimal in the sense that it minimizes the expected
distance between the two random variables, i.e.,

µ∗Z = arg inf
µ∈Π(π

Zf ,πZa )

√
E||Zf(tk)− Za(tk)||2. (2.10)

Intuitively it is clear that the correlation between the forecast and the analysis random variable is increased via
optimization of (2.10) and thus creates a strong relation between the prior and the posterior. Since we only rely
on importance weights, our filter is also applicable to non-Gaussian likelihood functions. The ETPF can also
be applied to spatially extended systems using the idea of localization [5] and has been combined with EnKFs
in an hybridization approach [6]. While the ETPF convergence to the true posterior distribution in the limit of
M →∞ [21], this is not the case for the EnKF or the NETF, in general. However, the ETPF is computationally
expensive and underestimates the ensemble spread (covariance matrix) for finite ensemble sizes (see example
8.11 in [22]). Both of these shortcomings will be addressed by the LETFs proposed in Sections 3 and 5.

3. Second-order accurate LETFs. We now derive second-order accurate LETFs. Here second-order
accuracy refers to reproducing the first and second-order moments exactly according to the importance sampling
approach.

Definition 3.1. An LETF (2.5) is called second-order accurate if the analysis mean satisfies

za(tk) =
1

M

M∑
i=1

za
i (tk) =

M∑
i=1

wi(tk)zf
i(tk) (3.1)

and the analysis covariance matrix

P̂a(tk) =
1

M

M∑
i=1

(za
i (tk)− za(tk))(za

i (tk)− za(tk))T (3.2)

is equal to the covariance matrix defined by the importance weights, i.e.

Pa(tk) =

M∑
i=1

wi(tk)(zf
i(tk)− za(tk))(zf

i(tk)− za(tk))T. (3.3)

Remark 3.1. The covariance matrix (3.3) derived via importance sampling leads to the denominator M in
case of equal weights wi = 1/M . In line with this, the biased version of the empirical covariance (3.2) is used
in this paper. Another option is to introduce the factor M

M−1 in (3.3) to obtain the unbiased variant (as is used,
for example, in the NETF see [25]).

Since only the DA step of a FOR-DA system is considered in this and the following sections, we drop the
explicit time-dependence for notational convenience from now on. We introduce the Nz ×M matrix of the
forecast ensemble

Zf = (zf
1, z

f
2, . . . , z

f
M ) ∈ RNz×M (3.4)

and an analog expression

Za = (za
1, z

a
2, . . . , z

a
M ) ∈ RNz×M (3.5)

for the analysis ensemble. Then an LETF (2.5) can be represented in the form

Za = ZfD. (3.6)
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We also introduce the vector 1 = (1, 1, . . . , 1)T ∈ RM×1, the vector

w = (w1, . . . , wM )T ∈ RM×1 (3.7)

of normalized importance weights (2.7), and the diagonal M ×M matrix W = diag (w). Since the analysis
mean is provided by (3.1), an LETF is first-order accurate if

1

M
Za1 = Zfw. (3.8)

Equation (3.8) holds if D satisfies (2.9), i.e.

1

M
D1 = w. (3.9)

Recall that the transformation matrix is also subject to (2.6), which is equivalent to DT1 = 1 [22]. In the
following, the focus is on first-order accurate LETF characterized by transformation matrices, D, in the class

D1 = {D ∈ RM×M |DT1 = 1, D1 = Mw }. (3.10)

These conditions are, for example, satisfied by the transformation matrix

D0 = w1T, (3.11)

which leads to the analysis ensemble

Za = za1T. (3.12)

Remark 3.2. An EnKF also leads to transformations of the form (3.6) with the associated DEnKF satisfying
DT

EnKF1 = 1 but in general not (3.9) [22]. Hence DEnKF /∈ D1, in general. The simple modification

D̂EnKF = DEnKF

(
I− 1

M
11T

)
+ D0 (3.13)

leads to D̂EnKF ∈ D1.
Note that the analysis covariance matrix (3.2) can be equivalently written in the form

P̂a =
1

M
Zf(D−w1T)(D−w1T)T(Zf)T (3.14)

for any D ∈ D1. In order to achieve second-order accuracy, (3.14) has to be equal to the importance sampling
estimate of the posterior covariance matrix (3.3) which can now be expressed in the following form

Pa = Zf(W −wwT)(Zf)T. (3.15)

The class of second-order accurate LETFs, considered in this paper, is now characterized by the set

D2 = {D ∈ D1| (D−w1T)(D−w1T)T = W −wwT }. (3.16)

Remark 3.3. There is an important subclass D+
1 ⊂ D1 that satisfies the additional constraint dij ≥ 0, i.e.

D+
1 = {D ∈ D1| dij ≥ 0 for all i, j = 1, . . . ,M}. (3.17)

Then D ∈ D+
1 are left stochastic matrices and thus can be interpreted as resampling schemes that produce

realizations zaj with respect to the transition probabilities in column j in D for j ∈ 1, . . . ,M . However, if
such a stochastic matrix is used deterministically to produce an analysis ensemble, such as in the ETPF, then
the particles zaj are associated with the expected value of the random variable induced by each column j of D.

Consider, for example, the simple transformation matrix D0 ∈ D+
1 given in (3.11). In this case, za

j = za for
all j ∈ {1, . . . ,M} and the implied analysis covariance matrix (3.14) becomes identical to zero, which is clearly
undesirable, and D0 /∈ D2. The ETPF is designed such that this effect is minimized and vanishes asymptotically
as M →∞ [21, 22]. More broadly speaking, one has D+

1 ∩ D2 = ∅ generically.
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We now propose a general methodology of how to turn a transformation matrix D ∈ D1 into a transformation
matrix D̂ ∈ D2. We start from the ansatz

D̂ = D + ∆ (3.18)

with D ∈ D1, ∆ ∈ RM×M such that ∆1 = 0, ∆T1 = 0, and Pa = P̂a with

P̂a =
1

M
Zf(D̂−w1T)(D̂−w1T)T(Zf)T . (3.19)

The condition

0 = Pa − P̂a = Zf

{
(W −wwT)− 1

M
(D̂−w1T)(D̂−w1T)T

}
(Zf)T, (3.20)

together with (3.18) lead to the following quadratic equation in the correction ∆:

M(W −wwT)− (D−w1T)(D−w1T)T = (D−w1T)∆T + ∆(D−w1T)T + ∆∆T. (3.21)

If we also choose ∆ to be symmetric, then the special case (3.11) leads to

M(W −wwT) = ∆∆ (3.22)

and a solution of (3.21) is simply given by the symmetric square root

∆ =
√
M(W −wwT)1/2, (3.23)

which recovers the NETF [25, 28]. Note that ∆Q with Q an M ×M orthogonal matrix such that Q1 = 1 also
provide a solution to (3.21) if D = w1T.1 The following lemma states how to choose the orthogonal matrix Q
in an optimal way.

Lemma 3.2. Let ∆ be any M ×M matrix such that (i) ∆1 = 0 and (ii)

1

M
∆∆T = W −wwT (3.24)

and let us assume that M ≤ Nz + 1. Define the M ×M orthogonal matrix

Qopt := UoptV
T
opt (3.25)

with the two M×M orthogonal matrices Uopt and Vopt given by the singular value decomposition of the M×M
matrix

S = ∆(Ẑf)TẐf , Ẑf := Zf − 1

M
Zf11T, (3.26)

i.e. S = UoptΛoptV
T
opt. Then the transformation matrix

Dopt = w1T + ∆Qopt (3.27)

results in a second-order accurate LETF, which minimizes

Ĵ(D) =
1

M

M∑
i=1

‖za
i − zf

i‖2 (3.28)

over all second-order accurate transformation matrices D ∈ D2.
Proof. Since Ẑf1 = 0, the matrix S also satisfies S1 = 0 in addition to ST1 = 0, which implies that

Qopt1 = 1 and (3.27) is second-order accurate. Also note that(
∆(Ẑf)TẐf(Ẑf)TẐf∆

)−1/2

∆(Ẑf)TẐf =
(
SST

)−1/2
S (3.29)

=
(
UoptΛ

−1
optU

T
opt

)
UoptΛoptV

T
opt (3.30)

1The NETF, as proposed in [25], uses randomly chosen orthogonal matrices which satisfy Q1 = 1 while the NETF of [28] is
based on a non-symmetric square root of W −wwT.
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which has been shown in [20] to minimize (3.28) for given forecast and analysis means and covariance matrices
and the optimality of Qopt = UoptV

T
opt follows. See also [22].

A couple of comments should be made on the requirement of M ≤ Nz + 1 in Lemma 3.2. First, if the
number of samples, M , exceeds the dimensions of state space, Nz, then it is computationally preferable to
implement the optimal transformation in the form

za
i = za + T(zf

i − zf), (3.31)

where T ∈ RNz×Nz is an appropriately defined symmetric matrix [20, 22]. Second, one could still proceed
with (3.25) but should multiply Qopt by the projection matrix I− 11T/M from the right in order to keep the
resulting transformation matrix (3.27) mean preserving, i.e., Dopt1 = w. This additional operation arises from
the fact that the matrix S will have multiple zero singular values.

4. Continuous-time algebraic Riccati equation. We now return to the general case of a first-order
accurate transformation matrix D. Then (3.21) leads to a continuous-time algebraic Riccati equation in the
symmetric correction ∆. More specifically, upon introducing

B = D−w1T, A = M(W −wwT)−BBT (4.1)

and assuming that ∆ is symmetric, equation (3.21) can be expressed as the continuous-time algebraic Riccati
equation

A = B∆ + ∆BT + ∆∆. (4.2)

Note that (4.2) arises as the stationary solution of the dynamic Riccati equation

d

dτ
∆ = −B∆−∆BT + A−∆∆. (4.3)

Since (4.3) is controllable [27], solutions, ∆(τ), of (4.3) with initial condition ∆(0) = 0 will converge to a
solution of (4.2) as τ → ∞ [4]. Hence numerical time-stepping of (4.3) with the explicit Euler method for
sufficiently many iterations will result in an approximate solution to (4.2). This approach has been used for the
numerical results displayed later in this paper.

Remark 4.1. Alternatively, (4.2) can be solved by applying the Schur vector approach of [14]. The Schur
vector approach is based on the extended Hamiltonian matrix

H =

(
BT I
A −B

)
(4.4)

and its upper triangular Schur decomposition

UTHU =

(
S11 S12

0 S22

)
(4.5)

with the real part of the spectrum of S11 being negative and the real parts of the spectrum of S22 being positive.
With the orthogonal matrix U partitioned accordingly, the solution of (3.21) is given by

∆ = U21U
−1
11 . (4.6)

This computational approach requires that the matrix pair (A1/2,B) is detectable [27, 14]. Since this condition
may not always be satisfied for (4.2), we recommend to use (4.3) in order to find approximative solutions to
(4.2). Alternatively, one could exploit more general Lagrangian invariant subspace techniques as discussed in
[12].

We can now either use the D from the ETPF and derive a second-order accurate version of the ETPF or
we compute an approximate solution D ∈ D+

1 to the optimal transport problem (2.8) and are still able to turn
it into a second-order accurate PF. This aspect will be discussed in more detail in Section 5.
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5. Sinkhorn approximation to the optimal transport problem. The Sinkhorn approximation to
the optimal transport problem defined by the cost functional (2.8) and D ∈ D+

1 is provided by the regularised
cost functional

Dmin(λ) = arg min JSH(D) =

M∑
i,j=1

{
dij‖zf

i − zf
j‖2 +

1

λ
dij ln

dij
d0
ij

}
(5.1)

where λ > 0 is a regularization parameter and d0
ij are the entries of D0 defined in (3.11). Each parameter λ is

associated with a specific Dmin(λ) ∈ D+
1 and λ→∞ leads back to the original cost function (2.8). While, one

the other hand, the choice λ → 0 leads to (3.11) as the unique minimizer. This follows from the fact that the
regularization term in (5.1) is minimal for dij = d0

ij , i.e., limλ→0 Dmin(λ) = D0.
Remark 5.1. After determining Dmin(λ) it is possible to add an appropriate corresponding second-order

correction term ∆(λ) which, depending on λ, leads to different second-order accurate particle filters, e.g., λ→ 0
leads to the NETF and λ → ∞ to the second-order corrected ETPF. In other words, varying λ allows one to
naturally bridge between the NETF and the second-order corrected ETPF.

There exists a straightforward iterative method for finding the minimizer of (5.1). First one notes that the
minimizer is of the form

Dmin(λ) = diag(u) K diag(v), (5.2)

where u ∈ RM×1 and v ∈ RM×1 are two non-negative vectors and K has entries

kij = e−λ‖z
f
i−z

f
j‖

2

. (5.3)

The unknown vectors u and v can be computed by Sinkhorn’s fixed point iteration

{Mwi/(Kv)i} → u, {1/(Ku)i} → v. (5.4)

The Sinkhorn approximation requires O(M2) operations. See [7] for an efficient implementation and additional
details.

Let us denote the iterates of u and v by ul and vl, respectively, where we always update u first according
to the formula to the left in (5.4). Then the associated

Dl = diag(ul) K diag(vl) (5.5)

satisfies (Dl)T1 = 1 and the weights

wl =
1

M
Dl1 (5.6)

converge to w as l → ∞. If we stop the iteration at an index l∗, then we define the associated transformation
matrix by

D = Dl∗ − (wl∗ + w)1T. (5.7)

The index l∗ can be determined by the condition

‖wl∗ −w‖ ≤ ε (5.8)

for sufficiently small ε > 0, e.g. ε = 10−8.

6. Algorithmic summary. We summarise the key steps of the second-order accurate ETPF implemen-
tation based upon the Sinkhorn approximation to the optimal transport problem. The Sinkhorn approximation
can, of course, be replaced by any available direct solver for the optimal transport problem.

We assume that a set of forecast ensemble members, Zf , and a vector of importance weights, w, are given.
Then the following steps are performed:

(i) Select a regularization parameter λ > 0 for the Sinkhorn approximation to the optimal transport
algorithm. Compute the matrix K according to (5.3). Normalize the entries of K such that all entries
satisfy −λ−1 ln kij ≤ 1. Recursively compute vectors ul and vl according to the update formula (5.4).
Start with v0 = 1. Iterate till the transformation matrix (5.5) and its associated weight vector (5.6)
satisfy (5.8). Note that (5.5) should satisfy 1TDl = 1T in each iteration. We used ε = 10−8 in our
experiments. One finally obtains the transform matrix D using (5.7).

7



Fig. 7.1. RMS errors (left panel) and CRPS (right panel) for various second-order accurate LETFs compared to the ETPF
and the ESRF as a function of the ensemble size, M , for the Lorenz-63 model. We also provide the RMS error and the CRPS
obtained from a standard particle filter with resampling and M = 1000 ensemble members.

(ii) Solve the Riccati equation (4.2) for the correction ∆ by solving the dynamic Riccati equation (4.3)
with the explicit Euler method, step-size ∆τ = 0.1, and initial condition ∆(0) = 0. The iteration is
stopped whenever

‖∆((k + 1)∆τ)−∆(k∆τ)‖∞ ≤ 10−3 (6.1)

and we set ∆ = ∆((k + 1)∆τ).
(iii) The analysis ensemble is given by

Za = ZfD̂ = Zf(D + ∆). (6.2)

We mention that the proposed second-order accurate ETPF can be used instead of the standard ETPF
in a hybrid filter, as described in [6], and, when applied to spatially extended system, can also be used with
localization. More specifically, a hybrid filter is based on factorizing the likelihood (2.2) into

π(y|z) = π(y|z)α × π(y|z)1−α (6.3)

and applying different filters to each of the two factors. R-localization, on the other hand, leads to different
transformation matrices D(xk) at each grid point xk of the computational domain. See [5, 22] for further details.

7. Numerical examples. We now demonstrate the numerical behavior of the proposed second-order
accurate ETPF as summarized in Section 6. The first two experiments are based on the Lorenz-63 and Lorenz-
96 models, respectively, and its data assimilation setting of [6]. We finally apply the second-order accurate
filters to parameter estimation of the scene-viewing model SceneWalk [9].

7.1. Lorenz-63. We use the chaotic Lorenz-63 system [17] with the standard parameter setting σ = 10,
ρ = 28, and β = 8/3, and observe the first component of the three dimensional system in observation intervals of
∆tobs = 0.12 with observation error variance R = 8. A total of K = 500, 000 assimilation steps are performed.
Since the model dynamics is deterministic, particle rejuvenation

za
j → za

j +

M∑
i=1

(zf
i − z̄f)

βξij√
M − 1

(7.1)

is applied with β = 0.2 and ξij independent and identically distributed Gaussian random variables with mean
zero and variance one. Simulations with β = 0.15 and β = 0.25 gave similar results to those reported here.
This data assimilation setting has already been used in [6] and [5] since it leads to non-Gaussian forecast and
analysis distributions and a particle filter is able to outperform EnKFs in the limit of large ensemble sizes.
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Fig. 7.2. Hybrid filter with standard EPTF (left panel) and second-order accurate ETPF (right panel) applied to the Lorenz-63
model. Time-averaged RMS errors are displayed as a function of the bridging parameter α. Please note that α = 0 corresponds to
the standard ESRF, while α = 1 corresponds to the ETPF and the second-order corrected ETPF, respectively.

Fig. 7.3. Second-order hybrid ETPF-ESRF with the optimal transport problem solved by the Sinkhorn approximation with
λ = 10 (left panel) and hybrid NETF-ESRF with the the orthogonal matrix Q as defined in (3.25) (right panel) applied to the
Lorenz-63 model. Time-averaged RMS errors are displayed as a function of the bridging parameter α.

A comparison between a standard particle filter with resampling, the EnKF, and the ETPF can be found
in [5]. Here we are, however, interested in the performance of second-order accurate filters for small ensemble
sizes in the range M ∈ {15, 20, . . . , 35}. See Figure 7.1 for the resulting time-averaged RMS errors. It can be
clearly seen that the second-order corrected ETPF and the NETF with optimally chosen rotation matrix leads
to the smallest RMS errors for M ≥ 25, while the standard ensemble square root filter (ESRF) [10] is optimal
for smaller ensemble sizes. It can be seen that the standard ETPF is not competitive except for M = 35.
The same findings apply for the continuous ranked probability score (CRPS) [3], which we computed for the
observed component of the Lorenz-63 system. The results can be found in Figure 7.1.

We also display the RMS errors for implementations of the NETF with randomly chosen orthogonal matrices,
Q, as suggested by [25], and with Q = I in Figure 7.1. It can be seen that both choices lead to substantially
increased RMS errors.

We now test the second-order accurate transform filters within the hybrid filter framework proposed in [6].
More specifically, the hybrid filter of [6] with a second-order accurate transform filter applied first is implemented
for ensemble sizes varying between M = 15 and M = 35. The bridging parameter, α, of the hybrid filter
approach is chosen such that α = 0 corresponds to the standard ESRF while α = 1 leads to a purely second-
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Fig. 7.4. Second-order hybrid ETPF-LETKF with the optimal transport problem solved by the Sinkhorn approximation with
λ = 10 (left panel) and hybrid NETF-LETKF with the the orthogonal matrix Q at each grid point defined as in (3.25) (right
panel) applied to the Lorenz-96 model. Time-averaged RMS errors are displayed as a function of the bridging parameter α. The
choice α = 0 corresponds to the LETKF

order accurate ETPF. We perform experiments for fixed bridging parameters α ∈ {0, 0.1, 0.2, . . . , 0.9, 1.0} and
compare the resulting RMS errors to those from a hybrid method based on the standard ETPF in Figure 7.2.
The improvement achieved by the second-order correction is clearly visible. In both cases, the ETPF has been
implemented using a direct solver for the underlying optimal transport problem.

We next replace the direct solver for the optimal transport problem by the Sinkhorn approximation with
regularization parameters λ = 10 and λ = 40. The RMS errors for the resulting hybrid filter with λ = 10 can
be found in Figure 7.3, while λ = 40 leads to RMS errors which are very close to those displayed in the right
panel of Figure 7.2, which are based on a direct solver for the optimal transport problem.

We also implement the hybrid filter of [6] with the ETPF being replaced by the second-order accurate NETF
with the rotation matrix, Q, defined as in (3.25). We denote this hybrid filter by NETF-ESRF. The numerical
results can also be found in Figure 7.3. Overall, we find that a second-order corrected hybrid ETPF-ESRF
and the NETF-ESRF with optimally chosen rotation matrix perform quite comparable in terms of their RMS
errors. The same holds true for the associated CRPS (not displayed).

7.2. Lorenz-96. We now implement the spatially-extended Lorenz-96 system [18] with the standard pa-
rameter setting of p = 40 grid points and forcing F = 8. We observe every second grid point in observation
intervals of ∆tobs = 0.11 with observation error variance R = 8. A total of K = 50, 000 assimilation steps are
performed. Contrary to the Lorenz-63 experiments, no particle rejuvenation is applied, i.e., β = 0 in (7.1). We
also apply localization [22] with the localization radius rloc set equal to four grid points and compute separate
transformation matrices D(xk) for each grid point xk = k, k = 1, . . . , 40. Localization is necessary for this test
problem as the ensemble sizes, M ∈ {20, 25, 30}, are smaller than the number of grid points, p = 40. This
specific DA setting has already been used in [5] and [6].

We compare two hybrid methods based on a combination of second-order accurate filters and the local
ensemble transform Kalman filter (LETKF) [13]. All filters use R-localization [13, 22] and the transportation
cost at each grid point xk = k, k = 1, . . . , 40, is given by

J(D(xk)) =

M∑
i,j=1

dij(xk)|uf
i(xk)− uf

j(xk)|2, (7.2)

where uf
i(xk) ∈ R denotes the forecast value of the ensemble member zf

i ∈ R40 at grid point xk and D(xk) =
{dij(xk)} ∈ RM×M .

The results for the hybrid NETF-LETKF filter and the hybrid second-order corrected ETPF-LETKF can
be found in Figure 7.4. The hybrid second-order corrected ETPF-LETKF is implemented using the Sinkhorn
approximation with λ = 10 and leads to significant improvements over the hybrid NETF-LETKF and also over
the hybrid ETPF-LETKF of [6]. The CRPS leads to a qualitatively similar assessment.
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7.3. Estimating parameters for a dynamic scene viewing model. The scene-viewing model Sce-
neWalk, as recently proposed by [9], provides a relatively simple mathematical model for a sequence of eye
fixations during scene viewing. The model dynamically evolves a two-dimensional array of probabilities, πij(t),
for the next fixation target, which is conditioned on past fixations. More specifically, the model consists of two
sets of ordinary differential equations

dAij(t)

dt
= −ωAAij(t) + ωA

Sij ·GA(xi, yj ;xf , yf )∑
kl Skl ·GA(xk, yl;xf , yf )

(7.3)

dFij(t)

dt
= −ωFFij(t) + ωF

GF (xi, yj ;xf , yf )∑
klGF (xk, yl;xf , yf )

(7.4)

for the spatial attention and fixation, respectively, together with a set of transformation rules

uij(t) =
[Aij(t)]

λ∑
kl[Akl(t)]

λ
− cinhib

[Fij(t)]
γ∑

kl[Fkl(t)]
γ
, (7.5)

u∗(u) =

{
u u > η

ηe
u−η
η u ≤ η

, (7.6)

which finally produce the desired array of fixation probabilities

πij(t) = (1− ζ)
u∗ij(t)∑
kl u
∗
kl(t)

+ ζ
1∑
kl 1

. (7.7)

The functions GA/F in (7.3)-(7.4) are Gaussians given by

GA/F (x, y;xf , yf ) =
1

2πσ2
A/F

exp

(
− (x− xf )2 + (y − yf )2

2σ2
A/F

)
(7.8)

and {Sij} is a static saliency map. See [9, 23] for a detailed description of the model. The SceneWalk model
contains 9 parameters, which have been estimated in [23] using maximum likelihood estimates. Here we estimate
σF in (7.8) and ωF in (7.4) with the remaining seven parameter values taken from [23]. We start from a uniform
prior over the interval [1, 5] for the first variable and a uniform prior over the interval [8, 16] for the second
variable, respectively.

Our experiments consist of first computing the importance weights for each sample from the prior under
given pool of fixation paths and then using an LETF to transform those samples into equally weighted samples
from the posterior parameter distribution. We wish to demonstrate the impact of different LETFs in terms
statistical consistency and distribution of their posterior samples.

The importance weights resulting from a given pool of scan paths and M = 500 samples from the prior
distribution can be found in Figure 7.5. The effective sample size is about ninety.

We implement the NETF method with Q = I (symmetric NETF), the NETF with the optimal Q (optimal
NETF), the ETPF, and the second-order accurate ETPF. The distribution of transformed versus prior sample
values for each of the two parameters separately can be found in Figure 7.6. While the optimal NETF leads
to a nearly linear relation between the prior and transformed samples, the symmetric NETF leads to a rather
non-regular structure. At the same time we find that the second-order accurate ETPF leads to large fluctuations
in the transformed samples with some samples leaving the prior range. Since this behavior is violating Bayes’
law, it must be seen as a undesirable effect of enforcing strict second-order accuracy. The associated two-
dimensional scatter plots of the prior and transformed samples can be found in Figure 7.7. These plots show
even more clearly that second-order accurate methods can lead to transformed samples, which violate Bayes’
law. Nevertheless, all methods consider qualitatively capture the posterior distribution.

8. Conclusions. We have proposed and tested second-order variants of the ETPF. These modifications are
computationally attractive since it allows one to replace the computationally expensive solution of an optimal
transport problem by its Sinkhorn approximation. Furthermore, if the regularization parameter, λ, in the
Sinkhorn approximation is set to zero, then we recover the NETF [25] with an optimally chosen orthogonal
matrix Qopt in (3.25, while λ→∞ leads formally back to the optimal transport implementation of the ETPF.
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Fig. 7.5. Importance weights for M = 500 samples in two-dimensional parameter space for the Scene Walk model. The
effective sample size is Meff ≈ 90.

Fig. 7.6. Prior vs posterior samples for Scene Walk model: optimal NEFT (left panel, top row), symmetric NETF (right
panel, top row). The two panels also show the ETPF (right panel, bottom row) and the 2nd order corrected ETPF (left panel,
bottom row) for comparison. Both the optimal NETF and the ETPF lead to relatively concentrated sample sets, following nearly
liner relationships.

As a byproduct, we also found that the NETF with an optimally chosen orthogonal matrix, Q, leads to smaller
RMSEs compared to a random choice, as suggested in [25].

The second-order accurate ETPF can be put into the hybrid ensemble transform particle framework of [6]
and can be combined with localization as necessary for spatially extended evolution equation [10, 22, 5] such as
the Lorenz-96 model.

The numerical findings for the Lorenz-63 and Lorenz-96 models confirm that the methodology proposed in
this paper together with the hybrid approach of [6] provides a powerful framework for performing sequential
data assimilation. We mention that all methods considered in this paper can be combined with alternative
proposal densities, which lead to more balanced importance weights (2.7) [26].

It should be noted though, that second-order accuracy comes at a price, i.e., the entries of the transformation
matrix D̂ are not necessarily non-negative, as it is the case for the ETPF transformation matrix D. Hence
the analysis ensemble is not necessarily contained in the convex hull spanned by the forecast ensemble. This
can cause non-physical states if, for example, the states should only take values in a bounded interval or
semi-interval, as has been demonstrated for the SceneWalk model.
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Fig. 7.7. Prior vs posterior samples for Scene Walk model: optimal NEFT (left panel), symmetric NETF (right panel). Both
panels show the ETPF and the 2nd-order corrected ETPF, respectively, for comparison. It can be clearly seen that the symmetric
NETF and the 2nd order corrected ETPF lead to posterior samples which are outside the range of the prior samples.
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