
Comput Stat
DOI 10.1007/s00180-017-0729-z

ORIGINAL PAPER

Efficient importance sampling in low dimensions
using affine arithmetic

Richard G. Everitt1

Received: 20 June 2016 / Accepted: 25 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Despite the development of sophisticated techniques such as sequential
Monte Carlo (Del Moral et al. in J R Stat Soc Ser B 68(3):411–436, 2006), importance
sampling (IS) remains an important Monte Carlo method for low dimensional target
distributions (Chopin and Ridgway in Leave Pima Indians alone: binary regression
as a benchmark for Bayesian computation, 32:64–87, 2017). This paper describes a
new technique for constructing proposal distributions for IS, using affine arithmetic
(de Figueiredo and Stolfi in Numer Algorithms 37(1–4):147–158, 2004). This work
builds on the Moore rejection sampler (Sainudiin in Machine interval experiments,
Cornell University, Ithaca, 2005; Sainudiin and York in Algorithms Mol Biol 4(1):1,
2009) to which we provide a comparison.

Keywords Importance sampling · Monte Carlo methods · Affine arithmetic

1 Introduction

Monte Carlo methods are core techniques in computational statistics, in Bayesian
inference in particular. The three most commonly used techniques are: rejection sam-
pling; importance sampling and Markov chain Monte Carlo. The situations in which
rejection sampling may be used effectively are limited, particularly as the dimension
of the space increases. Markov chain Monte Carlo is the most generally applicable
method, even in high dimensional spaces, and has been at the forefront of methods for
Bayesian computation for the past 25 years. Importance sampling is limited to use for
distributions of low tomoderate dimension, but can be themost effective of anymethod
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under these circumstances (Chopin and Ridgway 2017). The challenge in designing
an effective importance sampler is to design a “proposal” distribution from which
we can simulate points, that is similar to a “target” distribution from which we can-
not, but which is available to evaluate pointwise. This paper describes a new method
for constructing such a proposal distribution, based on the use of auto-validating
methods.

Sainudiin (2005), Sainudiin and York (2009) introduce a newMonte Carlo method
named the Moore rejection sampler. This is an ordinary rejection sampler where the
proposal is constructed automatically using interval methods (Moore 1962, 1966),
a type of auto-validating method. This method for constructing the proposal is more
generally applicable than previous work on “adaptive” rejection sampling (Gilks et al.
1995) and can find a proposal that is near to the target with a small computational cost.
The results presented in Sainudiin (2005), Sainudiin and York (2009) are impressive,
allowing points to be simulated (at a reasonable acceptance rate) from some multi-
modal target densities that present a significant challenge for standard Monte Carlo
methods.

In Sects. 1.1 and 1.2 we summarise the strengths and weaknesses of the Moore
rejection sampler and, based on this, introduce a new way of using auto-validating
methods in Monte Carlo. We then give an overview of the paper in Sect. 1.3.

1.1 What are auto-validating methods?

Auto-validating methods have their roots in numerical analysis, with the original aim
being to describe errors due to performing calculations using thefinite representation of
real numbers in a computer. Themethods have the name“auto-validating” because they
keep track of the errors introduced by the calculation, so it is possible to automatically
decide if it is necessary to refine the calculation in order to reduce the error. The first
work in this field was the introduction of interval analysis (Moore 1962, 1966), and
these ideas have now found application in several different fields, notably ray-tracing
in computer graphics (Enger 1992) and optimisation (e.g. Baker Kearfott 1996; Jaulin
et al. 2001). Interval analysis has its limitations for accurately describing the error
introduced by performing calculations on a computer, but this does not matter for
some types of applications where only a bound on the error is required. The most
notable use is that of Tucker (1999), where the Lorenz attractor is proved to exist
through executing a computer program: interval analysis is used to bound the errors
in the program.

Let us be a little more specific about what interval analysis lets us achieve. Suppose
we have a real valued function f : D → R, with D ⊆ R. The range f (E) ⊆ R

of f over a subset E ⊆ D is defined as: f (E) = { f (x) | x ∈ E}. For any interval
ID ⊆ D, interval analysis gives a computationally cheap way of finding an interval
IR ⊂ R such that f (ID) ⊆ IR , for a large class of functions f . This property is known
as range enclosure. In some cases f (ID) is close enough to IR for us to be able to
use IR as an approximation for f (ID) (in fact, in some cases IR = f (ID)). However,
sometimes it is the case that IR is significantly larger than f (ID), in which case we
say we have a large over-enclosure.
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It is this computationally cheap manner of finding a “range approximation”, an
interval IR such that IR ≈ f (ID), that we make use of in this paper. The major limita-
tion on our use of interval analysis is in the case where we have a large over-enclosure.
It is this case in which the use of an alternative approach called affine arithmetic is
often suitable. Over-enclosure tends to occur when there are many instances of the
same variable in the equation of a function. To see why this is the case, and why affine
arithmetic can help, requires a little knowledge of auto-validating methods, which we
provide in Sect. 2.2.

1.2 When does the Moore rejection sampler perform well?

As we mention above, the key component of the Moore rejection sampler is the
algorithm for finding a dominating proposal function that is a good approximation
to the target. This algorithm is based on the use of the range approximation provided
by interval methods. It is particularly effective (compared to standard methods) when
applied to multi-modal target densities, especially when the modes are narrow and
well-separated.

We will see that there are two limitations on this method:

– Over-enclosure of the target density. The effectiveness of the construction of
the proposal in the Moore rejection sampler is driven completely by the use of
interval methods to approximate the range of the target. Thus, in situations where
interval analysis over-encloses the target significantly, theMoore rejection sampler
is not suitable: the poor quality of such a range approximation adversely affects the
effectiveness of the method in a way that is more precisely described in Sect. 3.1.4.

– High dimensional target densities. The method suffers from the curse of dimen-
sionality in a similar way to numerical integration methods, since it works through
subdividing the domain of the target distribution into pieces. This issue is discussed
further in Sect. 3.1.5.

In this paper we aim to address the first of these limitations, through the use of
affine arithmetic, which is often is less prone to over-enclosure. The second limitation
remains, thus we limit our consideration to low-dimensional target distributions.

1.3 Overview

We begin the paper, in Sect. 2.1, with a review of the relevant literature on importance
sampling. We then introduce auto-validating methods: in Sect. 1 we give the main
results from interval analysis and discuss the problem of over-enclosure, then Sect. 1
we introduce an alternative auto-validating approach, affine arithmetic. In Sect. 3.1
we provide a review of the Moore rejection sampler in Sainudiin (2005), Sainudiin
and York (2009), then in Sect. 3.2 we describe our proposed alternative method that
uses affine arithmetic, and compare its properties with the interval based approach
empirically in Sect. 4. In Sect. 4.4 we draw some conclusions and suggest future
work.
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2 Background

2.1 Importance sampling

In this section we review recent work in importance sampling, and describe where the
approach proposed in this paper fits into the literature.

2.1.1 Measuring the effectiveness of an importance sampler

A quantity at the core of assessing the effectiveness of a Monte Carlo method is the
Monte Carlo variance of expectation estimates. The effectiveness of an importance
sampler is often measured by its relative numerical efficiency (RNE), this being the
relative variance of an independent sampler to the importance sampler. We may esti-
mate the variance from the importance sampling output (its square root being known as
the numerical standard error). However, recent work Chatterjee and Diaconis (2015)
shows that this estimate is unreliable for assessing the convergence of an importance
sampler. This paper discusses the use of the Kullback-Leibler divergence between the
target and proposal distributions for assessing when estimates from an importance
sampler will be accurate.

However, estimating the this Kullback-Leibler divergence is difficult in practice.
Instead, Chatterjee and Diaconis (2015) introduce an alternative estimate of the dis-
tance between the proposal and the target; one that is of a similar type to the effective
sample size (ESS) (Kong et al. 1994), which is commonly used in the sequentialMonte
Carlo literature. The ESS is defined to be

ESS =
(

N∑
i=1

[(w̃(i))2]
)−1

.

We see that the ESS is readily interpretable in a similar fashion to the RNE: in the case
of an independent sampler, theESS is equal to the number ofMonteCarlo points; and as
the ESS reduces (when there is a larger distance between the proposal and the target) it
provides an indication as to howmany points would be required in order for our impor-
tance samplers to be as efficient as an independent sampler (Martino and Read 2013).

The recent review article (Agapiou et al. 2017) describes each of the above mea-
sures of effectiveness of importance sampling, and carefully describes the relationships
between them. They make clear the central role of the second moment ρ of the
Radon-Nikodym derivative of the target with respect to the proposal and describe
how, asymptotically, the ESS may be used to estimate ρ. For this reason, we use the
ESS to evaluate the new algorithms proposal in this paper.

2.1.2 Designing proposal distributions

From the discussion in the previous section it is clear that for importance sampling to be
effective, we require proposal distribution that is close to the target distribution. Much
of the recent research on importance sampling is on different methods for constructing
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proposals; a topic that has received renewed attention since the introduction of the
psuedo-marginal method (Andrieu and Roberts 2009) in which importance sampling
is used within an MCMC algorithm.

Here, in order to set our work in context, we briefly outline some of the approaches
that have recently been proposed to construct importance samplers.

– In situations in which the target distribution is unimodal, it is often appropriate
to use a Gaussian proposal distribution (or a Student-t for heavy tailed targets),
which can often be easily constructed using a Laplace approximation (Geweke
1989; Chopin and Ridgway 2017). In many simple models (e.g. Geweke 1989 this
approach is sufficient), and can be very effective even when the target is on a space
of moderate dimension (i.e. up to dimension 50).

– Methods that automatically construct rejection sampling proposals (Gilks et al.
1995; Marrelec and Benali 2004) may sometimes be suitable. We note they are
usually limited to particular types of target distributions.

– In some situations a target distribution may not be available to evaluate point-
wise directly. For example, consider the situation where the target distribution
is the marginal posterior distribution of a parameter (integrating over a large
number of latent variables) (Tran et al. 2014), or in the situation of a likelihood
with an intractable partition function (Everitt et al. 2017). Along the same lines
as the pseudo-marginal approach, we may use an importance sampler within an
importance sampler, with the internal importance sampler serving to estimate the
unavailable intractable likelihood.

– Where there is no obvious proposal distribution, but there is an obvious sequence
of auxiliary target distribution that form a “path” between a simple proposal dis-
tribution and the target distribution (e.g. through use of annealing). it is possible
to use a sequential importance sampling approach to reduce the effect of a poor
choice of proposal. This is the approach used in annealed importance sampling
(Neal 2001), along with its generalisation, sequential Monte Carlo (SMC) (Del
Moral et al. 2006). These techniques are themselves now a fundamental part of
the Bayesian computation toolbox (e.g. Chopin and Ridgway 2017; Lenormand
et al. 2013).

– In the context of sequential Monte Carlo, Everitt et al. (2016) describes the idea of
using application specific information to construct a deterministic transformation
that brings a proposal distribution closer to a target.

In this paper we are concerned with target distributions that are not unimodal,
thus a Laplace approximation is not appropriate. For low-dimensional problems, it is
computationally expensive to use sequential Monte Carlo if it can be avoided, since
the cost of this algorithm is of the same order as a single importance sampler at every
intermediate target distribution. This paper describes such a way to avoid using SMC,
through using affine arithmetic to construct an accurate proposal.

2.2 Auto-validating methods

Let I ∈ ID be the set of compact intervals in D. Interval analysis allows us to find a
bound on the range of a function f : D ⊂ R → R over an interval I ∈ ID through
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the use of a function F : ID → IR. We obtain such a bound if F satisfies range
enclosure: if ∀X ∈ ID, f (X) ⊆ F(X). Ideally, F will not over-enclose f : it will
satisfy range equivalence, so that f (X) = F(X). Such a function F is known as an
“interval extension” of f .

We leave the precise details of how to construct interval extensions to the “Interval
analysis” section in theAppendix. In this section, we restrict our attention to: outlining,
in intuitive terms, how an interval extensions are constructed; describing the problem
of over-enclosure, which limits the accuracy of range approximations of functions;
and finally, how affine arithmetic may be used to reduce over-enclosure (again leaving
the technical details of arithmetic to the “An introduction to affine arithmetic” section
in the Appendix).

2.2.1 Interval analysis

It is straightforward to construct an interval extension F for monotone functions f :
R → R. For example, suppose f is the exponential function. In this case we obtain an
interval extension F bymapping an interval [a, b] to the interval [exp(a), exp(b)], this
being a function that satisfies range equivalence. It is also straightforward to see that
this approach may be used to find interval extensions to compositions of monotone
functions.

Interval arithmetic describes how to extend this idea to the set of elementary func-
tions, with multivariate domains and multivariate ranges. The main consideration is
how to construct an interval extension to a function with two arguments, such as addi-
tion. The aim of interval arithmetic is to rigorously describe worst-case bounds, thus
we only need consider the most extreme positive and negative results that may occur.
For example, the interval extension of addition of intervals X and Y is defined to be
X × Y = [min{x y, x y, x y, x y},max{x y, x y, x y, x y}]. The details of using inter-
val arithmetic with other functions is omitted here, but is formalised in the “Interval
analysis” section in the Appendix. The Fundamental Theorem of Interval Analysis is
the most important result in the appendix. It says that for any elementary function, we
have a way of finding a bound on its range on any interval (or a box in the multivariate
case).

Since the primary goal of interval arithmetic is range enclosure, it sometimes pro-
duces bounds that are overly conservative, and this is the phenomenon known as
over-enclosure. Over-enclosure is encountered when the rules of interval arithmetic
are applied “blindly” and do not notice when the same argument is encountered twice.
For example, consider the function f (x) = x×x . If an interval extension F to f is con-
structed by using the definition in the previous paragraph, if the input is x = [−1, 1],
we see that F(x) = [−1, 1], even though we know that the minimum possible value
is 0. In this case, the problem is easily solved by using an alternative expression for
the function in which the variable x occurs only once, i.e. f (x) = x2, for which the
interval extension gives the exact range. However, in general, where function is a com-
position of many constituent parts, it may not be possible to rearrange the expression
in such as way, thus the over-enclosure remains.

However, in some cases there is little over-enclosure, and the bound given by an
interval extension is tight enough for us to think of it as an approximation to the true
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range of the function. It is in this sense that we make use of interval analysis (it is
not really of interest to us that we have a bound on the range, only that we have an
approximation to it). To ensure there is no over-enclosure, so that the result is exact, we
require the use of an expressionwhere each variable only occurs once in the expression.
In some cases this is possible: for example, consider a function proportional to a
posterior distribution, obtaining the multiplying a prior and a likelihood. In general
the likelihood is a product of a number of terms, all involving the same parameter
(such as the case considered in Sect. 4.2). However, in practice it is often possible
to rearrange this product in terms of a statistics of the data, so that the parameter
only occurs once. Where it is not possible to find an expression where each parameter
occurs only once, we should minimise the number of times each variable occurs in
the expression.

It is relatively easy to see how this may bring a benefit to Monte Carlo algorithms
that has not been considered previously. When considering Monte Carlo algorithms
we usually treat the target function as a “black box” that converts an input into an
output, rather than considering how it is composed. Thus, in order to be sure about
the range of a function over an interval, we would usually have to resort in swamping
a region with points until we were confident that we knew everything about the range
in that region. Using interval arithmetic we can find out about the range of a function
over an interval only by considering the end points of that interval (the computational
cost of evaluating an interval extension is only twice that of evaluating the original
function). As long as the over-enclosure is not too large, we ought to be able to use
this information to our advantage in Monte Carlo algorithms.

2.2.2 Affine arithmetic

Several ways of countering the dependency problem have been devised. Any of
these alternative methods can be used as a substitute for standard interval methods
to approximate a range: if they yield a smaller over-enclosure with a small additional
computational cost, it is likely that an improvement over the results obtained in this
chapter will be obtained.

Here we consider the use of affine arithmetic (de Figueiredo and Stolfi 2004):
this tackles the dependency problem in the most obvious way, but also provides a
linear approximation to a function over a box. This approximation is obtained in a
computationally cheap way by component-wise operations on a representation of an
elementary function and we will make use of it later in the paper. In this introductory
section on affine arithmetic we emphasise its use as an alternative to interval analysis,
considering the linear approximation to be a side effect.

In practice, we use an affine form as an alternative representation of an interval. If
we define “affine extensions” of arithmetic and standard operations that have affine
forms as their inputs and outputs, then analogous to the natural interval extension we
may define the natural affine extension FA : AR → AR of the representation of an
elementary function f : R → R.

The idea is that the use of affine forms can allow us to keep track of dependencies
between two or more quantities, helping us to avoid the dependency problem and
so reduce over-enclosure. Appendix section “An introduction to affine arithmetic”

123



R. G. Everitt

formalises this concept. The main complication occurs when affine forms are used in
non-affine functions: in these cases the result of applying the function is chosen to
be an affine form that approximates the true result. If this approximation is accurate,
an accurate description of the dependencies is maintained, and over-enclosure is not
large. Therefore, in these cases, we obtain a more accurate approximation to the range
of a function.

2.2.3 Approximating functions using hyper-planes

As well as using affine arithmetic for finding a tighter bound on the range, we can
also use it for another purpose. Whilst an interval extension only gives information
about the range of a function over an interval, an affine extension also also contains
information about the linear dependence of a function on its inputs. For any interval in
the domain, it gives a linear approximation to the function over the interval (or, when
the domain is multi-dimensional, for any box in the domain, it gives a hyper-plane
approximation to the function over that box).

Note that such approximations differ from those that we may find using alternative
methods since they are found by considering the composition of the function (as
opposed to treating it as a “black box”) and they take into account all of the points
in the domain (rather than the finite number that we are forced to consider using
conventional methods). We will use the approximating hyper-plane idea in Sect. 3.2.
The quality of the approximation is governed by the factors we have already discussed.

2.2.4 Computational cost of interval and affine extensions

An interval extension F of a function f only requires the evaluation of the original
function at the upper and lower bounds on an input interval. Therefore, if f is composed
of m component functions, the cost of evaluating both the original function and its
interval extension O(m).

For affine arithmetic, suppose that we are evaluating the affine extension of a func-
tion made of m component functions on an input affine form with only one source
of variability. In general, assuming non-affine operations, we will add a noise term at
each of them component stages. Assuming that each of the component stages is linear
in the number of noise terms, the cost of evaluating the affine extension is O(m2).

There is a way to avoid this cost (Stolfi and de Figueiredo 1997). For the applica-
tions we are interested in, most of the time, the extra noise terms that are introduced
every time we perform a non-affine operation can be amalgamated into a single error
term without any adverse effects. There is a chance that keeping track of the errors
introduced by particular operations is beneficial, but this is rare. If these error terms
are amalgamated, then the cost is much smaller—we need to apply each function to
the constant term, the noise terms corresponding to those in the inputs, and the amal-
gamated error term. In this case, the cost of evaluating the affine extension is O(m)

andmay actually cost only a little more than evaluating the interval extension.We note
that in the applications considered in this paper, we did not in practice find the relative
cost of affine arithmetic compared to interval arithmetic to be prohibitive, therefore
we did not implement this approach.
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2.2.5 Implementation of auto-validating methods

The only non-standard aspect of the new samplers proposed in this paper is in the use
of interval and affine extensions of density functions. Fortunately, the implementa-
tion of auto-validating techniques is straightforward, through the use of free interval
arithmetic libraries available in many high-level programming languages (e.g. pyin-
terval in python, INTLAB in Matlab). The implementations in this paper used C++:
we used the interval library in boost, and the free libaffa library (available from http://
savannah.nongnu.org/projects/libaffa/) for implementing the methods based on affine
arithmetic.

3 Auto-validating samplers

Thework in this chapter wasmotivated by the work in Sainudiin (2005), Sainudiin and
York (2009) on the “Moore rejection sampler”. In this section we present an analysis
of this method, the aim being to discover its advantages and limitations. We suggest
an alternative to the Moore rejection sampler that is based on affine arithmetic.

We begin in Sect. 3.1 by introducing theMoore rejection sampler and follow this by
introducing a variation on the same idea using affine arithmetic in Sect. 3.2. Section 4
contains results of running these methods on several different problems, with Sect. 4.4
reviewing these methods.

3.1 The Moore rejection sampler

3.1.1 Introduction

The Moore rejection sampler is an ordinary rejection sampler where the proposal is
constructed using interval methods. This construction can give a very good approxi-
mation of π . This method of constructing a proposal is more widely applicable than
previous approaches to automating the constructionof the proposal: “adaptive rejection
sampler” of Gilks et al. (1995) can only be used when the target density is one-
dimensional and log-concave. The Moore rejection sampler can be applied whenever
π is an elementary function.

The interval derived approximation can approximate the targetπ verywell, and also
has the property that it dominates the target (or, at least, it is easy to ensure that is does).
The latter characteristic of the interval derived approximation is less important, since
(as described in Sainudiin and York 2009), we can use the same idea in IS andMCMC
with an independence proposal. In these algorithms we do not need the proposal to
dominate the target, but we still obtain the best performance when the proposal is as
close as possible to π .1 There is no particular reason to use the rejection sampler over

1 In general we use the approximation that we construct as a proposal within a Monte Carlo simulation
algorithm, however the approximation is sometimes so good that samples from the approximation could be
used as if they are directly from the target, just as we may with standard numerical approximations such as
Simpson’s rule.
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these other methods: Sainudiin and York (2009) indicates that an importance sampler
that uses the interval-derived approximation as its proposal usually performs well, so
in the remainder of this section we use this method.

The approximation used is a (normalised) step function: a mixture of disjoint uni-
form densities. We begin by examining the properties of this approximating density,
then introduce the basic method for constructing the approximation. We then go on
to describe how interval methods are used within this basic algorithm and highlight
some of the advantages and disadvantages of this approach.

3.1.2 A step function approximation

Let the approximation πa of π have probability density function:

πa

(
x |{li , ui , wi }ki=1

)
=

k∑
i=1

wiUi (xi ; li , ui ),

with
∑k

i=1 wi = 1, wi ≥ 0 and with Ui (xi ; li , ui ) denoting a uniform density on
x with lower bound li ∈ R

m and upper bound ui ∈ R
m , where the domains of the

uniform densities are disjoint.
Such an approximation is useful as a proposal in Monte Carlo algorithms because

of the following properties:

1. It is possible to simulate from the density in constant time, irrespective of the num-
ber of components k (although there is a setup cost). An algorithm for achieving
this (for a discrete density) is presented in Walker (1977).

2. It is computationally cheap to evaluate at a point when used as a proposal inMonte
Carlo algorithms. This is the case since every time the proposal is evaluated at a
point in Monte Carlo algorithms, it is at a point that has been simulated from the
density—in this case we know which component the point has been drawn from
and the value of the density is simply the weight of that component.

3.1.3 The approximation method

Finding an approximation by a mixture of disjoint uniform densities is not difficult—
we can simply divide the domain into pieces (to be the uniform components) and, for
example, take the value of π at the mid-point of each component to be the weight
of the component (then normalise the function). However, implemented naively, this
method is clearly of little use for a large domain. The approach taken in Sainudiin
(2005) is to use the interval extension of the target to decide how to divide the domain.

The basic algorithm for dividing the domain is given below in algorithm 1. There are
many sensible choices for the weight of each component in the approximation found
by algorithm 1: for example, choosing the value ofπ at themidpoint of the component.
Sainudiin (2005) suggests the upper bound of the evaluation of the interval extension
on the domain of the component since this guarantees a dominating proposal for use
in rejection sampling (note that usually we would normalise the weights to ensure that
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we have a probability density, but we would not do this when using the approximating
proposal in rejection sampling). In this chapter we always choose the midpoint of the
evaluation of the interval extension on the domain of the component.

Input: A target density π , a maximum number of iterations M and a domain D ∈ IR
m (an

m-dimensional box).
Output: A step function approximation to π ..
Initialise the partition with the original domain, P = D.
for i = 1 : M
Choose a member p of P to partition (using a priority queue to implement this efficiently) and

remove p from P .
Split p into two pieces (for example, pick a dimension d randomly in proportion to the lengths of

the dimensions of p, then split p into two equally sized pieces p1 and p2 along this dimension).
Add p1 and p2 to P .

end
Make a mixture of disjoint uniforms from P and π .

Algorithm 1: A general method for finding an approximation to a target density.

3.1.4 Prioritising the partitions

The following idea represents the point atwhichwebenefit fromusing intervalmethods
in this algorithm. The guiding principle is that we ought to choose to split the member
of the partition overwhich a constant function is in some sense theworst approximation
to the true target. There are different ways that we could measure this, but we choose
the “integral-based” score from Sainudiin (2005), Sainudiin andYork (2009). Suppose
for a moment that the interval extension Π of π gives the range of π exactly for any
interval in the domain. For a member of the partition p, the integral-based score is
the range of the interval Π(p) multiplied by the length (area, or volume in multi-
dimensional cases) of p as a score for describing the quality of this approximation. In
Sainudiin and York (2009) this score is compared with other scores that do not take
into account either the range of the function on a piece of the domain, or the size of
the piece of the domain (unsurprisingly, the integral-based score outperforms both of
these ideas).

In practice, the interval extension will not give the exact range. For the above
criterion to work well, the enclosure of the range should be as tight as possible.
Although the over-enclosure is likely to be large when we begin the algorithm, as the
partition is refined the effect of the over-enclosure lessens. Therefore, if early on in
the algorithm we partition because of over-enclosure rather than true variation in the
range, this effect should be killed off to some degree as the partition is refined.

3.1.5 Review

Sainudiin and York (2009) presents impressive results when applying this method to
some probability densities that are difficult to sample fromusing conventionalmethods
(including multivariate witch’s hat, Rosenbruck and bivariate Levy densities). The
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main problem with these densities is that we must sample from a large number of
modes: it is usually difficult to ensure that all of the modes are found without the
sampler being very inefficient. Through the methods described above, the use of an
interval extension helps to locate thesemodes quickly and leads to an efficient sampler.

When using this method, the computational cost of sampling from a target is best
considered in two separate parts: constructing the approximating target; then gen-
erating samples from the target using a rejection/importance/MCMC algorithm. For
some applications we may need only to find the approximation once (it can be “pre-
enclosed”), but perform the sampling several times.

This method should work well when the target’s domain only has a small number of
dimensions, or when the target density has its mass concentrated in only a few regions.
If we require a large number of partitions in order to find a good approximation to
the target density (the curse of dimensionality means that high-dimensional targets
almost always fall into this category) this method may not be appropriate. There are
two reasons why performing a large number of partitions may be a problem:

– Performing a large number of partitions in the pre-enclosure stage of the algorithm
requires a lot of computational effort;

– There is a practical limit on the method imposed by the random access memory
(RAM) available, since we need to store the details of a large number of mixture
components.

Despite these constraints, the results in Sainudiin (2005) indicate that the method
can be useful in up to 10-11 dimensions. Indeed, for low dimensional targets, this
method may outperformmost standardMonte Carlo algorithms and has the advantage
of requiring little or no tuning.

Sainudiin (2005) focuses on the use of this technique inMonte Carlomethods, how-
ever the key idea is in the construction of the approximating target and this has a lot in
common with numerical integration, adaptive quadrature (Kuncir 1962) in particular.
The approximating function may be used directly to estimate integrals, without the
use of Monte Carlo. However, to provide a direct comparison with Sainudiin (2005),
and to provide unbiased estimates of integrals in order that these techniques may be
used within other simulation algorithms (Andrieu and Roberts 2009), we also study
the approach as a means for providing proposals for Monte Carlo algorithms.

3.2 An auto-validating sampler based on affine arithmetic

We now consider the use of affine arithmetic, rather than interval arithmetic, in the
method in the previous section. There are two obvious ways that affine arithmetic (or
mixed interval-affine arithmetic) may be used:

– As a direct substitute for interval arithmetic, to obtain a tighter bound on the
range of the function over an interval. We expect this to outperform the interval
arithmetic approach for functions where the dependency problem is our main
reason for over-enclosure. From hereon we refer to this approach, where mixed
interval-affine arithmetic is used to find the bound as the standard-affine auto-
validating sampler. We refer to the original auto-validating sampler of Sainudiin
(2005) as the standard-interval approach.
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– If we use affine arithmetic, we automatically get information about how the target
function varies linearly with its inputs. We can use this to construct an alterna-
tive approximation to the mixture of disjoint uniforms in the previous section.
We will refer to this as the fully-affine approach. The relationship between the
standard-affine approach and the fully-affine approach is analogous to the relation-
ship between the rectangle rule and the trapezoidal rule in numerical integration.

It is the fully-affine approach that we describe in this section. We use the partitioning
method in algorithm 1, but some of the details are different. Firstly we talk about the
new approximating density, then how it is constructed.

3.2.1 A mixture of disjoint wedge densities

The approximating density we use in this section is non-standard, although the details
are straightforward.Wefirst define amultivariate generalisation of the triangular distri-
bution, then define awedge distribution,which is the sumof thismultivariate triangular
distribution and a multivariate uniform distribution. We then describe the mixture of
disjoint wedge densities and discuss its properties.

Definition 1 Multivariate triangular distribution
The multivariate triangular distribution has probability density function p :

[l1, u1] × · · · × [ln, un] → R given by:

p(x1, . . . , xn|α1, . . . , αn) =
⎛
⎝ n∑

i=1

αi

2
(u2i − l2i )

∏
j 	=i

(u j − l j )

⎞
⎠ (α1x1 + · · · + αnxn).

Definition 2 Wedge distribution
The wedge distribution has a probability density that is a weighted sum of a mul-

tivariate triangular distribution T and a multivariate uniform distribution U that have
the same domain, [l1, u1] × · · · × [ln, un]:

p(x1, . . . , xn) = v1T (x1, . . . , xn) + v2U(x1, . . . , xn)

where v1 + v2 = 1.

The wedge density is simply the equation of a hyperplane, restricted to a box in the
domain and normalised.

Then the mixture of disjoint wedge densities is:

p(x) =
k∑

i=1

wiWi (xi ),

with
∑k

i=1 wi = 1, wi ≥ 0 and where the Wi (xi ) are wedge densities with disjoint
domains and x ∈ R

m . The appealing properties of the mixture of disjoint uniform
densities still hold for this new approximating density.
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Constructing this new approximating distribution using the evaluation of an affine
extension is simple. Consider the affine extension FA of a function f : D → R,
where D ⊂ R

m . We first describe how to construct a wedge distribution on a box in
the domain. Let XA ∈ AD (a box written in affine form, in the affine extension of the
set D), where the j th element of XA has error term ε j . Then:

FA(XA) = a0 +
m∑
i=1

aiεi +
ne∑
j=1

a jεm+ j ,

where the error terms m + 1 to m + ne are the error terms introduced by the affine
extension, as outlined in the “An introduction to affine arithmetic” section in the
Appendix.

We construct awedge density on the box XA by finding the equation of a hyperplane
pl(x1, . . . xm) = α0 + ∑m

j=1 α j x j given by FA(XA) as follows:

– Find each coefficient α j for j = 1, . . . ,m from the corresponding coefficient a j

in FA(XA) and the lower bound l j and upper bound u j of dimension j in XA:

α j = 2a j (u j − l j ).

– We use the hyperplane whose height at the centre of XA is a0, thus we find the
constant term α0 in the equation of the plane using:

α0 = a0 −
m∑
j=1

α j c j ,

where (c1, . . . , cm) is the centre point of the box XA. In the following section
we also make use of “upper” and “lower” approximating hyperplanes, which are
the hyperplanes whose heights at the centre of XA are a0 + ∑ne

j=1 |a j | and a0 −∑ne
j=1 |a j | respectively.

The wedge density on XA is simply the normalisation of this hyperplane:
(1/VXA )pl(x1, . . . xm), where VXA is the volume under the hyperplane on XA. Our
approximating distribution is given by the mixture of disjoint wedge densities, with a
wedge density for each element in the partition of the domain, and the weights in the
mixture given by the relative volumes under the hyperplanes from which the wedge
densities are constructed.

3.2.2 When to partition

The important part of the interval based autovalidating sampler was the criterion by
which we choose the element of the current partition to split. We use a similar method
for the affine case. A suitable (integral-based) measure of the quality of the affine
approximation is given by the volume enclosed by the upper and lower approximating
hyperplanes given by FA(XA) (as described in the previous section). For an example
of this region, see the area between the green lines in Fig. 5a.
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The main advantage over the original standard-interval auto-validating sampler is
that we may require fewer partitions to find a function that is a good approximation
of the target (since the approximation in the affine approach includes as a special case
the step function approximation in the standard-interval approach). The result of this
may be a computational saving in the pre-enclosure stage of the algorithm (since we
do not need to refine the partition as many times) and a reduced requirement on the
storage of the approximation in the RAM of the computer.

4 Examples

In this section we give some examples of applications of the auto-validating samplers
presented in this paper. We begin with the very simple example of approximating then
sampling from a gamma density in order to illustrate the application of both the interval
and affine approaches.We thenmove ontomore challenging examples to illustrate that
these methods can be applied to problems of practical interest.

In all of our experiments we use the approximaton constructed by auto-validating
methods in an importance sampler, for which we now define our notation. Let π be
the target distribition and q be the importance proposal. IS constructs estimates of
properties of the target distribution using points simulated from the proposal, e.g.
using the property we may estimate the expectation of π using

Êπ [X ] = 1

N

N∑
i=1

w̃(i)x (i),

where x (i) ∼ q and

w̃(i) = w(i)∑N
i=1 w(i)

with w(i) = π
(
x (i)

)
q

(
x (i)

) .

In all cases the results are based on N = 10,000 points, and we use the ESS tomeasure
the distance between the proposal and target distribution, as described in Sect. 2.1.

4.1 Gamma density

First we consider simulating points from a gamma density with scale 1 and shape 5:

p(x) = x4 exp(−x)/Γ (5), (1)

where Γ is the gamma function.
There are standard functions in most software packages that let us sample from a

gamma density. However, it is a good illustrative example on which to apply the new
fully-affine approach, since the expression involves the composition of two non-affine
functions—multiplication and the exponential. In fact, the performance of the method
is improved considerably by rewriting the density as follows:
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Fig. 1 Approximations of a gamma density constructed using auto-validating methods. a The gamma
density with scale 1 and shape 5 (in blue), with an approximation by the standard-interval method in red
and an approximation produced by the standard-affine method. Both approximations are based on refining
the domain 10 times. b The gamma density with scale 1 and shape 5 (in blue), with an approximation (based
on 10 refinements of the domain) by the fully-affine auto-validating sampler in red (color figure online)

p(x) = exp(4 log(x) − x − log(Γ (5))). (2)

The affine extension of Eq. 2 gives improved bounds over the affine extension of
Eq. 1 since the addition of the terms 4 log(x) and −x in Eq. 2 allows some resolution
of the dependency problem, whereas the multiplication of x4 and exp(−x) in Eq. 1
does not (since it is a non-affine operation).

In this problem the affine approaches outperform the standard-interval approach.
Figure 1a shows the approximations constructed by the standard-interval approach
(with 10 refinements of the initial domain, [0.001, 25]), and the same standard-affine
approach. Here we see clearly the advantage of using mixed interval-affine arithmetic.
Figure 1b shows an approximation (again for 10 refinements of the domain) found by
the fully-affine approximation.

Figure 2 shows the results of applying importance sampling to the gamma example,
with proposals constructed via the three auto-validated approaches. Figure 2a–c shows,
respectively, the ESS, the estimated mean and the estimated variance, against the
number of refinements of the domain used to find the approximation (the true mean
and variance are both 5). The standard-interval (red) is outperformed by the standard-
affine approach (green). The results illustrate the benefit of using affine arithmetic
over standard interval arithmetic in the standard approach, with both of these methods
being outperformed by the fully-affine approach.

4.2 Mixture of Gaussians

We now consider simulating points from a mixture of Gaussians:

π(x) = N (x;−20, 2) + N (x; 20, 0.1). (3)

123



Efficient importance sampling in low dimensions using…

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

partition refinements

ef
fe

ct
iv

e 
sa

m
pl

e 
si

ze

0 5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

12

14

partition refinements

sa
m

pl
e 

m
ea

n

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

partition refinements

sa
m

pl
e 

va
ria

nc
e

(a)

(b)

(c)

Fig. 2 Auto-validating importance sampling, using 10,000 points, applied to a gamma density. a Effective
sample size against number of partition refinements when using the standard-interval (in red), standard-
affine (in green) and fully-affine (in black) approximations. b Estimated mean against number of partition
refinements when using the standard-interval (in red), standard-affine (in green) and fully-affine (in black)
approximations. c Estimated variance against number of partition refinements when using the standard-
interval (in red), standard-affine (in green) and fully-affine (in black) approximations (color figure online)
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Again, we can simulate directly from this density. However, it exhibits a characteristic
that leads to poor efficiency in some Monte Carlo simulation methods: it contains a
mode with small support in relation to the gap between the modes. In this case it is
not difficult to design a Monte Carlo algorithm to simulate points from both modes,
but it is a useful example for illustrating how auto-validating samplers deal with this
problem very efficiently.

Figure 3a shows an approximation constructed by the standard-interval approach
(with 20 refinements of the initial domain, [−100, 100]), with Fig. 3b showing the
approximation (again for 20 refinements of the domain) found by the fully-affine
approach. Figure 3c shows the ESS (using 10,000 points) of IS against the number of
refinements of the domain used to find the approximation. A better ESS is achieved
for the fully-affine approach. with both approaches achieving a very high ESS with
relatively few partitions.

4.3 The posterior of the means of a mixture of Gaussians

Consider the problem of estimating the parameters of a mixture of Gaussian distribu-
tions. Let {y j }Mj=1 be a data set with y j ∈ R. We use the model that the y j are i.i.d.
with density:

f (y|μ1, μ2,Σ1,Σ2, w1, w2) = w1N (y;μ1,Σ1) + w2N (y;μ2,Σ2),

where N (y;μk,Σk) denotes a normal density on y with mean μk and variance Σk .
We consider the case where the Σk and wk , are fixed. The target function we consider
is be the posterior:

π (μ1, μ2|y) ∝ p (μ1, μ2)

M∏
j=1

f (y|μ1, μ2,Σ1,Σ2, w1, w2) . (4)

We choose p (μ1, μ2) to be a multivariate Gaussian distribution centred at (0, 0) with
covariance 109 I . This example is of interest since the large product of terms means
the variables μ1 and μ2 occur many times in a naive representation of the function,
and over-enclosure (due to the dependency problem) potentially becomes influential.

Consider a posterior based on 10 points from the two component model, where the
true means of the components are 0 and 3 and the variance of both components is
0.52. The true posterior is shown in Fig. 4a, with Fig. 4b showing an approximation
constructed by the standard-interval approach (with 900 refinements of the original
domain of [−50, 50]× [−50, 50]) and with Fig. 4c showing the approximation (again
for 900 refinements of the domain) found by the fully-affine approach. The standard-
interval approximation yields an ESS of 9076 whilst the fully affine approach yields
an ESS of 9274.

Note that we require many more partition refinements to obtain a high ESS than in
the previous examples. This could be due either to this being a bivariate rather than a
univariate example, or to an inefficient partition method due to a large over-enclosure.
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Fig. 3 Approximations of amixture ofGaussians constructed using auto-validatingmethods. aThemixture
density in Eq. 3, with an approximation by the standard-interval method based on refining the domain 20
times. bThemixture density in Eq. 3, with an approximation by the fully-affinemethod based on refining the
domain 20 times. c Effective sample size against number of partition refinements for the standard-interval
(in red) and fully-affine (in black) approximations, for the mixture example (color figure online)
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(a)

(b) (c)

Fig. 4 Approximations of a posterior distribution of the means of mixture of Gaussians constructed using
auto-validating methods. a The (unnormalised) posterior of the means of a two component mixture of
Gaussians. bAn approximation by the standard-interval method based on refining the domain 900 times, of
the posterior of the means of a two component mixture of Gaussians. cAn approximation by the fully-affine
method based on refining the domain 900 times, of the posterior of the means of a two component mixture
of Gaussians

We first examine how the size of the representation of the posterior (which is
linear in the number of data points) affects the number of partitions we require.
We do this simply by changing the number of terms in the likelihood. More than
a few terms in the likelihood results in a very large over-enclosure by the interval
extension.

For a likelihood based on 50 data points in the same two component example, the
standard-interval method finds an approximation that gives an ESS of 5292 after 600
partition refinements. For 100 data points 600 refinements provides an approxima-
tion that gives an ESS of 5080. A larger number of terms makes the peaks in the
likelihood narrower, so we expect a lower ESS for a fixed partition size for a larger
representation. It is likely that this effect largely accounts for the effect that we see,
and that the over-enclosure because of the larger representation has little effect. This
conclusion is supported by other experiments conducted using this likelihood with
different numbers of data points. The lack of dependence on the size of the representa-
tion in this case is probably because the over-enclosure is at its worst where the mass
of the posterior is found (although we note this is not likely be true for every target
function).
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This lack of dependence on the size of the the representation is in contrast to the
results presented in Sainudiin and York (2009) where the performance of the Moore
rejection sampler on a likelihood is very poor. The cause of this is probably the use
of rejection sampling rather than importance sampling. When we use importance
sampling, we can normalise the approximating proposal, so it is only the relative
heights of the uniform components in the approximation that matter. However, when
used as a dominating function in rejection sampling the over-enclosures are very
significant and lead to a high rejection rate.

To investigate the effect of the dimension of the target, we used the standard-
interval approach on the posterior of the means of a 3 component mixture model
(based on 15 data points, 5 points from each of three components, with the same
variances as before, and with true means of 0, 3 and 6). On this example it
takes 20,000 partition refinements to obtain an ESS of 6608 (compared with 480
refinements to obtain an ESS of 6502 in the 2-d case). This result gives some
evidence for requiring an exponential increase in refinements with the increase in
dimension.

4.4 Conclusions

Based on the empirical investigation in this paper, and taking into account the pre-
vious work of Sainudiin (2005), Sainudiin and York (2009), we make the following
conclusions about the auto-validating samplers presented in this paper.

– For a low-dimensional elementary target function (sometimes up to 10 dimen-
sions), the methods in this paper give a way to simulate points from the target
with a computational cost that is small compared to many other approaches. The
use of interval arithmetic ensures that multi-model target functions present few
problems. The method also requires little or no tuning.

– The approximating proposals are found prior to sampling, which may be useful in
some situations. The approximations may also be used directly to give numerical
approximations to integrals.

– Over-enclosure of a target function (such as that observed with likelihood func-
tions) is not necessarily a barrier to using the approach. The approximating
proposal can sometimes be used profitably in importance samplers and indepen-
dent MCMC algorithms. However, the original approach of finding a dominating
proposal for use in a rejection sampler is severely affected.

– The new fully-affine method often yields a more accurate approximating density
than the original standard-interval approach, for the same number of partitions of
the domain.

Auto-validating methods are not widely used in statistics, although there has been
much recent interest in a related field of automatic differentiation; another field in
which the representation of a function is exploited.
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Appendix: An introduction to auto-validating methods

Interval analysis

In this section we introduce the basic concepts of interval analysis, the original auto-
validatingmethod.Most of our definitions are taken fromTucker (2005) and Sainudiin
(2005). The most important result in interval analysis from our perspective concerns
a computationally cheap way of finding an interval IR ⊂ R such that f (ID) ⊆ IR , for
a large class of functions f . This section is devoted to explaining how to achieve this
result.

Definitions

The interval extension of the real numbers, IR, is the set of compact intervals in R:
IR := {[a, b] | a, b ∈ R, a < b}. We define the interval extension of a subset D ⊂ R

to be ID := {[a, b] | a, b ∈ D, a < b}. Interval analysis allows us to find a bound
on the range of a function f : D ⊂ R → R over an interval I ∈ ID through the use
of a function F : ID → IR. We obtain such a bound if F satisfies range enclosure:
if ∀X ∈ ID, f (X) ⊆ F(X). Ideally, F will not over-enclose f : it will satisfy range
equivalence, so that f (X) = F(X). In this section, for any f that is a composition of
commonly used functions, we give the definition of a function F that satisfies range
enclosure and also inclusion isotony: ∀X, X ′ ∈ ID with X ⊆ X ′, F(X) ⊆ F(X ′).
We say that a function F : ID → IR that satisfies these two properties is called an
interval extension of f .

The interval extension that we define is a “natural” interval extension. To do this we
need to consider a “representation” of f : that is, we need to express it as a composition
of its constituent operations. We then define the natural interval extension to be the
composition of natural interval extensions of each of these simple functions. This idea
of operating on a function “component-wise” is also used in other subjects, notably
automatic differentiation, where a computer automatically finds the expression for the
derivative of a function by applying the chain rule of differentiation.We first introduce
an arithmetic on IR, then define a set of “standard” functions, and go on to define a
class of functions that are compositions of these operations. We denote the minimum
value of an interval X ∈ IR by x and its maximum by x .

Each of the arithmetic operators {+,−,×, /} on IR is defined such that the out-
put interval covers the entire range of possible outcomes yielded by applying the
equivalent operator on R to any members of the input intervals. For example, for
X,Y ∈ IR, addition is defined as, X + Y = [x + y, x + y] and multiplication
X × Y = [min{x y, x y, x y, x y},max{x y, x y, x y, x y}]. We define the operation of a
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set of standard functions on IR in an analogous way. Let the set standard functions
be

G = {ax , logb(x), xa, ax, x + a, |x |, sin(x), cos(x), tan(x), sinh(x), cosh(x),
tanh(x), arcsin(x), arccos(x), arctan(x)},

where a ∈ R and b ∈ R≥0,	=1 are constants. For each of the functions in G that is
monotone, the interval extension can be defined in terms of the boundary points of an
input interval (just as for the arithmetic operations). For example, for X ∈ IR:

exp(X) = [exp(x), exp(x)].

It is also simple to define interval extensions of themembers ofG that are notmonotone
but piecewise monotone (e.g. cos(x)). It is easy to see that functions on IR defined in
this way satisfy both inclusion isotony and range equivalence.

The set of elementary functions, E , is defined on f : D ⊆ R → R is a function that
may be expressed as a finite combination of constants, variables, arithmetic operations,
standard functions and compositions. We refer to a particular expression of f ∈ E as
a finite combination of constants, variables, arithmetic operations, standard functions
and compositions as a representation for f . Every member of E has an infinite number
of representations. For example f (x) = 1 − 1

x+1 can be rewritten as f (x) = x
x+1 +

5 − 5. A representation may be drawn as a graph, in which each operation is a node.
We refer to the number of nodes in this graph as the size of the representation.

The natural interval extension of an elementary function f ∈ E depends on the
representation of the function: it is defined to be the function F : ID → IR where
every constant, variable, operation and standard function in the representation of f is
replaced by its interval counterpart.

The Fundamental Theorem of Interval Analysis, whose proof is in Moore (1966),
gives the important result that natural interval extensions of elementary functions
satisfy inclusion isotony and range enclosure. In general, range equivalence is not
satisfied and the size of the over-enclosure depends on the representation of f that
is used. We discuss over-enclosure in Sect. 1, but first we extend the definition to
multi-dimensional elementary functions.

Define IRn to be the set of compact boxes (Cartesian products of intervals) in Rn :

IR
n := {(X1, . . . , Xn) | for i = 1, . . . , N , Xi = [ai , bi ] with ai , bi ∈ R, ai < bi }.

It is trivial to extend our definition of an elementary function to include functions
with a domain D ⊆ R

m for any m ∈ N. The multivariate version of the Fundamental
Theorem of Interval Analysis also holds in this setting.

Over-enclosure

In general, a natural interval extension of f ∈ E will over-enclose f . We first give
some general results about the extent of the over-enclosure of elementary functions,
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then discuss the dependency problem, which is the main cause of over-enclosure in
practice.

Definition 3 Order of an interval extension.
We say that an interval extension F : IRm → IR

n of a representation of f : Rm →
R
n is of order α if there exists a constant K , independent of the box X where:

w(F(X)) − w( f (X)) ≤ Kw(X)α

with w(X) denoting the maximum of each the widths of each of the dimensions of
the box X .

Natural interval extensions of elementary functions, as defined above, are of order
1 (Baker Kearfott 1996), meaning that the size of an over-enclosure increases linearly
with the volume of the box in the domain. In the literature on interval methods it is
usually advantageous to use an interval extension that has the largest order possible,
since the behaviour of the interval extension as the size of the domain decreases is
usually of interest. The result that natural interval enclosures are first-order is signifi-
cant for the applications we consider: it tells us that the over-enclosure is independent
of the dimension of the domain.

The extent of the over-enclosure of a function f ∈ E by a natural interval extension
F depends on the representation used for f . Over-enclosure does not occur if each
variable only occurs once in a representation for a function. When the same variable
occurs more than once, an over-enclosure due to the dependency problem is often the
result. A simple illustrative example is evaluating the interval extension of the function
f (x) = x × x on the interval [−1, 1]. We obtain a bound on the range of [−1, 1]. We
do not obtain the true range of [0, 1], since we do not acknowledge that the arguments
of the × operation are the same (if we used the function x2 we would not have this
problem). To avoid the dependency problem and thus minimise over-enclosure, a good
“rule of thumb” is to use a representation that minimises the number of occurrences
of each variable.

This lack of acknowledgement of dependency is a major limitation of basic interval
arithmetic. It is one of the primarymotivations for the development of affine arithmetic
defined in the following section.

An introduction to affine arithmetic

Introduction

In Sect. 1 we introduce the affine form and run through the basics of using affine
arithmetic as an alternative to interval analysis, then consider the main problem with
affine arithmetic: the overshoot problem. We then briefly outline how to use affine
arithmetic to construct approximating hyperplanes in Sect. 2.2.3, and compare its
computational cost with interval arithmetic in Sect. 2.2.4.
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The basic principles of affine arithmetic

Affine arithmetic is an extension of interval arithmetic, where the use of an interval
is replaced by a different object; an affine form. In this section we define affine forms
and the affine extension of the real numbers.

An affine form x̂ is defined to be a first degree formal polynomial in {εi }ni=1:

x̂ = x0 + x1ε1 + · · · + · · · xnεn,

where the coefficients xi are in R and the εi are all different instances of the interval
[−1, 1] ∈ R, each with a different index i .

Each of the εi can be thought of as different “sources of variability” in the affine
form. The εi are often referred to as “noise terms” in the literature. The affine extension,
AR, of R is defined to be:

AR := {x0 + x1ε1 + · · · + · · · xnεn | n ∈ N ∪ {0}, xi ∈ R, εi = [−1, 1]}.

A multivariate version of affine forms can be defined in an analogous way to the
multivariate generalisation of intervals described in the previous section.

In practice, we use an affine form as an alternative representation of an interval. If
we define “affine extensions” of arithmetic and standard operations that have affine
forms as their inputs and outputs, then analogous to the natural interval extension we
may define the natural affine extension FA : AR → AR of the representation of an
elementary function f : R → R. The idea is that the use of affine forms can allow us
to keep track of dependencies between two or more quantities, helping us to avoid the
dependency problem and so reduce over-enclosure.

It can be shown that an analogous form of the Fundamental Theorem of Interval
Arithmetic holds for affine extensions. The remainder of this section describes how
this is achieved, and describes how to implement an affine extension, by addressing
the following points:

– converting an interval into an affine form (to find the inputs to the affine extension);
– converting an affine form into an interval (to express the output of the affine
extension as an interval);

– giving the affine extensions of arithmetic and standard operations.

Consider a representation of an elementary function f : Rd → R with d inputs with
natural affine extension FA. Suppose we wish to evaluate the affine extension on the
input (I1, . . . , Id) where each I j = [a j , b j ] ∈ IR. In this case we may convert each
interval I j to an affine form A j as follows:

A j = 0.5(a j + b j ) + 0.5(b j − a j )ε j .

Note that we use a different noise term ε j for each input interval. In some cases, we
may know that the inputs are dependent. For example, we may know that I2 = f (I1),
where f is some monotone function. In this, case we would express this dependence
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through the noise terms and convert I1 and I2 to affine forms as follows:

A1 = 0.5(a1 + b1) + 0.5(b1 − a1)ε1,

A2 = 0.5( f (a1) + f (b1)) + 0.5( f (b1) − f (a1))ε1.

Expressing this dependence explicitly allows us to avoid the dependency problem
between I1 and I2.

Converting an affine form to an interval is simple:we simply use the interval addition
andmultiplication operations on the affine form to amalgamate each of the noise terms
εi . The result of this operation in general is (using the representation of an affine form
with n noise terms from above):

X =
[
x0 −

n∑
i=1

|xi |, x0 +
n∑

i=1

|xi |
]

.

Affine extensions of affine transformations (addition, subtraction, multiplication by
a constant and addition of a constant) are easy to define. The important characteristic
of these transformations is that the result can also be expressed as an affine form. As
an example, the affine extension of the subtraction operator is defined as follows for
inputs X = x0 + x1ε1 + · · · + · · · xnεm and Y = y0 + y1ε1 + · · · + · · · ynεn (where
m > n):

X − Y = x0 + x1ε1 + · · · + · · · xmεm − (y0 + y1ε1 + · · · + · · · ynεn)
= (x0 − y0) + (x1 − y1)ε1 + · · · + (xn − yn)εn + xn+1εn+1 + · · · + xmεm .

The important point about this operation is that if two affine forms contain the same
source of variability (the coefficients of εi are non-zero in both inputs for some i) this
is recognised when performing the operation, thus we avoid the dependency problem.

The result of applying a non-affine transformation f to an affine form x̂ with n
noise terms cannot be expressed as an affine form containing only these n terms. The
approach taken in affine arithmetic is to find an affine form in these n terms, f a(x̂),
that approximates the true answer plus an error term xkεk . The error term is introduced
to ensure that the answer bounds the range of f . The coefficient xk is the maximum
distance between the approximation f a and the true f and the new noise term εk is
not used in any other affine form. εk is actually a function of ε1, . . . , εn , however no
operations from this point on are “aware” of this, and εk is treated as an independent
source of variability. The consequence of this is that subsequent operations are affected
by the dependency problem to some degree, since there is an unseen dependence of
εk on every other noise term.

If a composition of many non-affine operations is performed on an affine form,
or if the approximating affine form f a is poor and gives a large error, significant
dependency on the sources of variability in the input is lost and affine arithmetic offers
little advantage over interval arithmetic.

The choice of approximation f a(x̂) is significant: any approximation is valid, as
long as we can find the error between the approximation and the true function. For the
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(a) (b)

Fig. 5 Approximations of the exponential function (blue) on [−1, 1]. a The Chebyshev approximation (in
red) and its error bounds (green). b The min-range approximation (in red) and its error bounds (green)
(color figure online)

approximation to be of any use in practice we need to be able to find the approximation
and its error in a computationally efficientmanner (preferablywith a linear cost in terms
of the number of noise terms of the input) and for the error of the approximation to be as
simple as possible. we discuss the twomost important choices of approximation (Stolfi
and de Figueiredo 1997), theChebyshev (orminimax) andmin-range approximations,
then discuss the error resulting from the approximation of a non-affine operation.

TheChebyshev approximation is defined to be the affine function thatminimises the
maximumabsolute error of the approximation over an interval I in the domain. Finding
the approximation and the size of the error is trivial using results from Chebyshev
approximation theory (Stolfi and de Figueiredo 1997)—the only restrictions are that
the function to be approximated is bounded, twice differentiable and that the sign of
the second derivative does not change on I . A plot of the Chebyshev approximation
for exp(x) on [−1, 1] is shown in Fig. 5a.

The Chebyshev approximation is the optimal choice in terms of minimising the
error, whichmeans that we have the best possible information about the way the output
depends on the ε in the input. This means that in subsequent operations we have the
best chance of combating the dependency problem. However, Fig. 5a illustrates clearly
that the Chebyshev approximation actually gives a worse bound on the range of exp(x)
than interval arithmetic (in some cases it may even give a negative lower bound)! This
is known as the overshoot problem.

To counter the overshoot problem, rather than the Chebyshev approximation, we
can use the affine approximation that yields the minimum range of the output: the
min-range approximation. This approximation and its error are also easy to compute
(Stolfi and de Figueiredo 1997) and we avoid the overshoot problem. Figure 5b shows
the min-range approximation for exp(x) on [−1, 1].

Any terms that are not linear in the noise of the inputs are amalgamated into an error
term in affine arithmetic. As the size of the input intervals decreases the quadratic terms
in the error will dominate. Thus the error of an affine approximation is quadratic in the
size of the input intervals (Stolfi and de Figueiredo 1997). This gives it an advantage
over interval arithmetic (where the error is linear) for small intervals. However, as the
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size of the input intervals increases there will be a point where the benefits of using
affine arithmetic are lost because of the increased computation time required by affine
arithmetic.

Finally, Stolfi and de Figueiredo (1997) suggests a way to use the Chebyshev
approximation (so that we do our best to avoid the dependency problem) and still
avoid the overshoot problem. Their suggestion is to combine interval arithmetic and
affine arithmetic (this does not add a large computational cost to using affine arith-
metic alone). This suggestion means more than performing the interval and affine
operations in parallel for each component operation in some function f , then picking
the intersection of the results at the end. The best interval at the end of each operation
is the intersection of the results obtained by the interval and affine methods, and the
construction of an affine approximation for the next operation can be based on this
intersection.
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