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Abstract

With the proliferation of touch screens, sketching input has become popular among many soft-

ware products. This phenomenon has stimulated a new round of boom in free-hand sketch re-

search, covering topics like sketch recognition, sketch-based image retrieval, sketch synthesis

and sketch segmentation. Comparing to previous sketch works, the newly proposed works are

generally employing more complicated sketches and sketches in much larger quantity, thanks

to the advancements in hardware. This thesis thus demonstrates some new works on free-hand

sketches, presenting novel thoughts on aforementioned topics.

On sketch recognition, Eitz et al. [32] are the first explorers, who proposed the large-scale

TU-Berlin sketch dataset [32] that made sketch recognition possible. Following their work, we

continue to analyze the dataset and find that the visual cue sparsity and internal structural com-

plexity are the two biggest challenges for sketch recognition. Accordingly, we propose multiple

kernel learning [45] to fuse multiple visual cues and star graph representation [12] to encode the

structures of the sketches. With the new schemes, we have achieved significant improvement

on recognition accuracy (from 56% to 65.81%). Experimental study on sketch attributes is per-

formed to further boost sketch recognition performance and enable novel retrieval-by-attribute

applications.

For sketch-based image retrieval, we start by carefully examining the existing works. After

looking at the big picture of sketch-based image retrieval, we highlight that studying the sketch’s

ability to distinguish intra-category object variations should be the most promising direction to

proceed on, and we define it as the fine-grained sketch-based image retrieval problem. De-

formable part-based model which addresses object part details and object deformations is raised

to tackle this new problem, and graph matching is employed to compute the similarity between

deformable part-based models by matching the parts of different models. To evaluate this new

problem, we combine the TU-Berlin sketch dataset and the PASCAL VOC photo dataset [36] to

form a new challenging cross-domain dataset with pairwise sketch-photo similarity ratings, and

our proposed method has shown promising results on this new dataset.
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Regarding sketch synthesis, we focus on the generating of real free-hand style sketches for

general categories, as the closest previous work [8] only managed to show efficacy on a single

category: human faces. The difficulties that impede sketch synthesis to reach other categories

include the cluttered edges and diverse object variations due to deformation. To address those

difficulties, we propose a deformable stroke model to form the sketch synthesis into a detection

process, which is directly aiming at the cluttered background and the object variations. To al-

leviate the training of such a model, a perceptual grouping algorithm is further proposed that

utilizes stroke length’s relationship to stroke semantics, stroke temporal order and Gestalt princi-

ples [58] to perform part-level sketch segmentation. The perceptual grouping provides semantic

part-level supervision automatically for the deformable stroke model training, and an iterative

learning scheme is introduced to gradually refine the supervision and the model training. With

the learned deformable stroke models, sketches with distinct free-hand style can be generated for

many categories.
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Chapter 1

Introduction

Free-hand sketches are an instinctive means of people to depict their perceptions of the objects

and scenes existing in their daily life. This tradition commonly exists in informal discussions in

everyday life and can be traced back to prehistoric times in the form of cave paintings. Therefore,

as early as in the 1990s, sketches had already attracted research attentions from the computer vi-

sion community as the sketch-based image retrieval problem [37, 48, 60, 77]. But during a very

long period, i.e. before 2010, most sketch datasets only employed very few sketches that mostly

were just contour depictions due to the difficulty to collect sketches of the electronic format. But

in the past several years, with the proliferation of the touchscreens, the sketches of the electronic

format are getting more and more abundant, obtained either by styluses or just human fingers.

This phenomenon has brought the study of the free-hand sketches to a whole new era whose

symbol is the proposals of the datasets with more complicated sketches and more diverse cate-

gories [32–34, 53, 57, 94]. Among these datasets, the largest TU-Berlin dataset [32] has already

included 250 categories and 80 sketches in each category, contrasting to fewer than a dozen

sketches common in the previous works. A comparison of recently proposed TU-Berlin dataset

to some previous datasets is shown in Figure 1.1. With these new datasets, our understanding

of the sketches is profoundly deepened. Existing applications are further pushed to more realis-

tic scenarios, and novel and interesting applications keep emerging. This thesis sits on the new

sketch booming era, and starts from interpreting the existing works and datasets in order to ob-

tain new understandings of them. Based on these new understandings, novel methods are raised

to improve existing applications, and new applications are proposed as well to expand the free-
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(a) (b)

Figure 1.1: The representative sketches of (a) the previous sketch datasets [9, 20] and (b) the
newly proposed TU-Berlin dataset [32].

hand sketch territory. The contents of this thesis are organized under three applications: sketch

recognition, sketch-based image retrieval and sketch synthesis. .

1.1 Sketch Recognition

The first application we will look into is sketch recognition, as it is the novel application only

made possible by the large-scale sketch datasets. Sketch recognition tries to identify the given

sketch’s category and can be used to establish some human-computer interaction systems based

on sketches. This kind of sketch input system will benefit for the illiterate people and in the case

that typing is not convenient. An demonstration of sketch recognition is available in Figure 1.4.

Eitz et al. [32] were the first to study both humans’ and computers’ sketch recognition abili-

ties. They found that humans were good at interpreting sketches of different objects, but different

people’s sketches of the same object were quite different in terms of abstraction level and draw-

ing style. More importantly, the sketches were iconic representations of the objects and thus

were very different from images and 3D models. So to realize sketch recognition, a specific

large-scale sketch dataset that could represent general humans’ sketching skills was mandatory.

They thus collected the large-scale TU-Berlin dataset which comprised sketches drawn by thou-

sands of ordinary people and included enough variations on abstraction level and drawing style.

They finally achieved good recognition accuracy (56%) with support vector machine (SVM) [2]

classifiers trained on this dataset.

As their emphases were to realize sketch recognition and on various analyses, they did not

give any in-depth thinking on the sketch recognition challenges for the computers. Following
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Figure 1.2: A demonstration of sketch recognition.

their lead, we look into the dataset with great caution and have found that the visual cue sparsity

and internal structural complexity are the biggest challenges for sketch recognition. Acknowl-

edging those challenges, multiple kernel learning [45] and star graph representation [12] are

proposed accordingly to address them, which greatly increase the sketch recognition accuracy

to 65.81%. Furthermore, we perform a preliminary study on how sketch attributes can benefit

sketch recognition, and demonstrate some novel applications enabled by sketch attributes.

1.2 Sketch-based Image Retrieval

New features are also injected into the long-standing sketch-based image retrieval (SBIR) prob-

lem. SBIR aims to enhance text-based image retrieval by employing the shape information ex-

pressed by the query sketch. Some typical SBIR examples are illustrated in Figure 1.3.

As only simple sketches considered, the previous SBIR works [9, 20, 37, 48, 60, 72, 77, 83]

are generally weak at addressing sketch details, and some works [9, 37, 72] only study single

contours. Thus, they are not suitable to deal with more complicated sketches that come with

the advancement of touchscreens. To address the complicated sketch details as well as the large

scale, sophisticated edge matching and indexing methods [15, 80] and descriptor based methods

[33, 34, 51] have been proposed.

However, we have further discovered that one advantageous feature of the sketches is gen-

erally ignored by the existing works but very promising to explore: their ability to distinguish

intra-category object variations. And the definition of the object variations here goes beyond just

holistic contour variations studied in [9] to articulated body part deformations and fine local de-

tails. Large intra-category sketch variations exist in the newly proposed TU-Berlin dataset, which

provides us a handy condition to experiment on. We thus propose a fine-grained SBIR system
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Figure 1.3: The sketch-based image retrieval examples [34].

specially to solve this new problem. We employ deformable part-based model as the representa-

tion for both domains, counting on its ability to deal with part details and object deformations.

Graph matching is used to compare the similarity of different deformable part-based models.

Borrowing some sketches from the TU-Berlin dataset and some photos from the PASCAL VOC

dataset [36], we propose a new challenging cross-domain dataset to evaluate our proposed fram-

work, and the results have shown promising future for SBIR towards commercial scenarios.

1.3 Sketch Synthesis

Sketch synthesis is another application being dramatically changed recently. Belonging to the

non-photorealistic animation and rendering (NPAR) realm, sketch synthesis renders the photos

into sketch-like drawing style while still keeps high similarity between the generated sketches

and the original photos.

By utilizing a new source of information coming with the recently proposed sketch datasets

– the sketch strokes (the stroke temporal order is also recorded), Berger et al. [8] are able to

synthesize free-hand style sketches with natural stroke compositions for the first time. Previ-

ous methods [22, 46, 47, 66, 82, 101, 102, 104] have not considered using real human strokes as

composing units, so make it easy for us to spot the artifacts in the synthesized sketches. The

comparison of [8] and some previous works is shown in Figure 1.4. Although groundbreaking,

their work is currently limited to one single category: human faces.

We manage to break the category boundary by studying the stroke data over again. The stroke

data is moderately explored by several works [32,42,57,85] previously. Although some insights

and usages on stroke data and stroke temporal order are demonstrated, none of them is from a

human perceptive point of view. Yet we specifically analyze the relationship between the stroke
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(a) (b) (c) (d)

Figure 1.4: The synthesis results on human faces of (a) Chen et al. [22], (b) Liang et al. [66],
(c) Wang and Tang [102] and (d) Berger et al. [8]. It can be clearly observed that (d) has an
obviously distinct free-hand style: the sketch is composed of many sketchy strokes rather than a
few bold and regulated strokes.

length and the stroke semantics (i.e. within what kind of length a stroke turns to denote an object

part), and find out that there does exist a range for the length within which the strokes normally

correspond to some object parts. We also find that a lot of consecutively drawn strokes are very

likely depicting different portions of the same object part. Based on these observations and by

synergizing Gestalt principles [58], we propose an unsupervised method to segment sketches into

proper semantic parts. And built on these semantic parts, a generative deformable stroke model

can be learned for a specific category which is further refined by iterative learning. Free-hand

style sketches can be synthesized for the given images with the learned deformable stroke model

and through a detection process at last.

1.4 Contributions

The contributions of this thesis are:

1) For sketch recognition:

We propose a star graph representation that captures both the holistic structure and local features

to address the internal structural complexity problem. To further account for the lack of visual

cue problem, we employ a multiple kernel learning framework that fuses several popular features

known to work with sketches. Extensive experiments on the TU-Berlin dataset show significant

improvement over the state-of-the-art, from 61.5% to 65.81% (human accuracy being 73.1%).

Over and above that, we for the first time study attributes for sketches, and demonstrate their

effectiveness in reducing confusion inside one super-category (a super-category is a set of cate-

gories having similar properties, like animal super-category including cat, dog, etc.). Moreover,

we show how the high-level semantic nature of the attribute feature allows novel applications
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such as query by attribute or class-attribute description.

2) For sketch-based image retrieval:

We raise the fine-grained sketch-based image retrieval concept for the first time and define it to

reflect the real-life scenario. A system based on deformable part-based models and graph match-

ing is proposed to specifically tackle the newly proposed problem. Furthermore, a challenging

real-life dataset with sketch-image pair similarity ratings is proposed to offer an effective bench-

mark for the fine-grained sketch-based image retrieval problem, on which the efficacy of our

proposed system has been evidently proven.

3) For sketch synthesis:

We performed a comprehensive and empirical analysis of sketch stroke data, highlighting the

relationship between stroke length and stroke semantics, as well as the reliability of the stroke

temporal order. Based on the analysis, a perceptual grouping algorithm is proposed, which for

the first time synergistically accounts for multiple cues, notably stroke length and stroke temporal

order. By employing our perceptual grouping method, a deformable stroke model is automati-

cally learned in an iterative process. This model encodes both the common topology and the

variations in structure and appearance of a given sketch category. Afterwards a novel and general

sketch synthesis application is derived from the learned sketch models.

1.5 Outline

The whole thesis is then organized as follows. Chapter 2 offers a thorough literature review with

respect to the three sketch applications. Chapter 3 demonstrates our proposed sketch recognition

method. Chapter 4 introduces our fine-grained sketch-based image retrieval system. Chapter 5

shows our sketch synthesis framework and finally Chapter 6 concludes this thesis.
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Chapter 2

Literature Review

This thesis overall looks into three major applications related to free-hand sketches: sketch recog-

nition, sketch-based image retrieval and sketch segmentation. Therefore, this literature review

chapter tries to cover as many materials to date as possible related to these three applications.

Through the reviewing process, we aim to discover new understandings about the applications,

and use them as the starting points to motivate our works. In terms of order, this chapter starts

from the sketch recognition works, and then moves onto sketch-based image retrieval works and

sketch synthesis works consecutively.

2.1 Sketch Recognition

As a newly proposed application, free-hand sketch recognition rose from the proposal of the

large-scale TU-Berlin sketch dataset [32] and has experienced fast improvement during the last

3 years which our work took part in. In this section, we look through the literature of sketch

recognition and the background of the techniques that we propose to improve sketch recognition.

The motivations of sketch recognition include: exploring general humans’ sketching ability,

testing humans’ and computers’ sketch recognition ability and making human-computer interac-

tion systems with sketch input. The TU-Berlin dataset includes 250 categories with 80 sketches

in each category, making it overall 20,000 sketches. This dataset is the largest sketch dataset to

date and includes the most complicated and diverse sketches, in terms of number of category,

sketch details, sketching style and abstraction level. With the proposal of this data, standard

HOG feature [29], bag-of-words (BOW) representation [89] and support vector machine (SVM)
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classifiers [27] were used for sketch recognition in [32], and the published recognition rates for

humans and computers were 73.1% and 56% respectively.

Later on, Schneider and Tuytelaars [85] boosted the sketch recognition performance further

to 68.9% by employing Fisher Vectors [81]. By pruning similar categories that were hard to be

distinguished by sketches and poor sketches that were too challenging for humans to recognize in

TU-Berlin dataset, they proposed a pruned version of TU-Berlin dataset where human recogni-

tion rate was 100%. Very soon, Yu et al. [110], empowered with deep learning technique, boosted

the sketch recognition performance to a new state-of-the-art 74.9%, that really ‘beats human’ on

sketch recognition. However, that is partially due to the flaws existing in the TU-Berlin dataset

and their performance on the new pruned TU-Berlin dataset will be interesting to see.

Right after Eitz et al. [32], but before Schneider and Tuytelaars [85], we also proposed to

improve sketch recognition with star graph ensemble matching [12] and multiple kernel learn-

ing [79], and achieved a good performance of 65.81%. We also explored using sketch attributes

to perform some novel applications, e.g., retrieval sketches with a specific attribute. The proposal

of the star graph is to encode the structures of sketches. Thus we provide a review for relevant

structured representations below, and explain their limitations in sketch encoding. Comprehen-

sive reviews for multiple kernel learning and attribute learning are also presented.

2.1.1 Structured Feature Representation

The concept of spatially structured feature representation is not new in the computer vision com-

munity. Many applications such as category recognition [63] and landmark image retrieval [14]

have already proposed the general concept of structured feature representation. Nevertheless,

most of these structure encoding methods are quite specific to the problem domain they are de-

signed to address, so are not directly applicable to the sketch encoding problem. Many of them

are designed for the image domain and work with BOW representations. For example, the spatial

pyramid matching method [63] employs a series of grids over the image with increasingly coarse

level. Then the matches at each grid level are summed up with an attached weight to form the final

similarity. It is designed for scene categorization and optimized for capturing frequently emerg-

ing local patterns in each scene category. However, this scheme is not effective for sketches, due

to the large deformations and variations in highly abstract sketches resulting in weak structure

information being captured by fixed-position cells. Another spatial BOW method [14] projects

the 2D features onto certain lines or circles which are 1D space and then group the features by
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sectors in the 1D space. This concept of 1D encoding of local 2D features works well for land-

mark images where a dominant direction(s) may be readily obtained, but this property cannot

be found generally in sketches. Only a few works have proposed structured representation of

sketches, in which topological relationships between sketch parts were utilized for improving

matching accuracy [41, 91]. However, these methods are strictly restricted to some simple CAD

and clip-art drawings and are thus not directly applicable to human sketches. On the other hand,

a standard star graph has an assigned center with each feature point represented as a node in

the graph and connected to the center. A star graph model encodes both direction and distance

of each feature point to the graph center, and therefore provides a richer and more flexible rep-

resentation of spatial structures than other alternative schemes (see the experiments in Section

3.2).

2.1.2 Multiple Kernel Learning

Previous studies either focus on one feature, e.g. HOG [32], or selecting the best performing

feature [65] for sketch recognition. However, this ignores the potentially complementary cues

contained in other features. SVM multiple-kernel learning (MKL) [4, 45, 97, 99] ( [45] offers a

good review on MKL) provides a route to discriminative recognition that can exploit multiple

complementary features. MKL achieves state-of-the-art performance in a variety of vision ar-

eas [45, 79], for example: winning the PASCAL VOC 2009 [35] object detection challenge by

balancing dense and sparse textures and self-similarity; or color, shape and texture in recogniz-

ing flowers [79]. This is due to discriminatively learning how to weight features according to

their informativeness. Moreover, they can automatically fuse multiple kernel metrics, which has

also been a subject of comparative evaluation for sketches [53]. Recent MKL optimizers have

improved computational efficiency [79], making them applicable for the large scale dataset [32]

addressed here. We therefore in Chapter 3 go beyond existing work [32] and use MKL to dis-

cover not just the best single feature, but how each cue and kernel metric can be combined for

best overall recognition performance.

2.1.3 Attribute Learning

Going beyond traditional structured and unstructured low-level features, attribute learning [62]

has recently gained prominence in image [43, 62] and video [43, 68] recognition. Attributes aim

to provide a powerful representation by computing a high-level semantic description of images.
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For example, bears have fur and claws, while zebras have fur and stripes. Computing this rep-

resentation involves a category-level annotation of attribute properties, and an additional step of

supervised learning where classifiers are trained to predict each attribute, after which the vector

classifier posteriors for each attribute becomes the new representation for an instance. This is

effective because the resulting representation is low-dimensional and discriminative by design,

as human designed attributes are exactly those which humans use to distinguish categories. In

Chapter 3 we investigate for the first time the use of attributes for sketch understanding. Not only

do attributes provide a novel representation with which sketch categories can be distinguished,

but this representation is synergistic with low-level features [68]. Moreover the semantic na-

ture of attribute representation will allow novel tasks that go beyond sketch recognition, such as

attribute-query and ranking.

2.2 Sketch-based Image Retrieval

The researches on sketch-based image retrieval (SBIR) can be traced back to the early 1990s.

While the basic concepts are generally consistent across the years, the contents are highly affected

by the corresponding technologies of each period. As a result, we decide to organize those works

in a chronological way (i.e. divided into 3 eras). To be noticed, we do not intend to exhaust all

the ever existing SBIR works, but to summarize those works that can represent the trend in each

era. In the end, we present critical thoughts for previous SBIR works from multiple perspectives

and use them to motivate a new fine-grained sketch-based image retrieval problem. The relevant

techniques that we propose to address the fine-grained SBIR are also referred in this section.

2.2.1 A History of Sketch-based Image Retrieval

The 1st era came between 1992-1994, when the concept of content-based image retrieval was

first raised by Hirata and Kato [48] and Kato et al. [60], in which sketch-based image retrieval

was especially focused on. The symbols of the 1st era are the establishment of the basic concepts

of the SBIR framework and the using of rigid or coarse similarity metrics. In [48,60], to compare

the similarity between a sketch and an image edge map, they firstly divided the sketch and the

image into blocks and then compared the block-to-block pixel correlations. The blocks of the

sketch were shifted within a small range during the comparison to address small distortions, but

the overall corresponding blocks based metric was still quite rigid. Right after this thread of
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works, the QBIC (Query By Image Content) project [37,77] was published by IBM research. As

another early and important work in content-based image retrieval, the QBIC project comprised

SBIR, yet went beyond by also emphasizing color and texture. It used global shape features

including area, circularity, eccentricity, major axis orientation and moment invariants to encode

the shapes in the sketches and the images rather than just raw pixels. The similarity comparison

of QBIC on shapes was performed with weighted Euclidean distance on the constructed global

shape features, and thus was quite coarse and cannot address the object details. It manually or

semi-automatically circled out the objects to facilitate more accurate object-oriented retrieval.

And in indexing, it focused on dimension reduction to enable more efficient retrieval and less

storage occupation for some standard indexing schemes, e.g., R-trees, grid files, etc.

The 2nd era was between 1994-2000, and the symbols are the considerations of distortion

and abstraction for the sketches, and to achieve invariances in several aspects. Bimbo et al. [9–11]

employed elastic matching to allow the query sketch to deform according to the given image ob-

ject, and used both the deformation energy and the matching extent between the deformed sketch

and the image to measure the similarity. The elastic matching was expected to approximate hu-

man visual perception and be robust to distortion. Multi-object query was also considered by

using a signature file to encode the rough spatial relationships between the objects, and individ-

ual objects’ shapes would be compared only if the signature files of the sketch and the image

had matched. In the single object scenario, their method achieved invariances to translation and

scaling by cropping out the image object manually and normalizing the sketch and image objects

with similar aspect ratios to the same size. Specially, to the best of our knowledge, in [9], Bimbo

and Pala for the first time quantitatively evaluated sketches’ ability to rank similar images using

ranked image list that was constructed from human rated sketch-image pairs. While Bimbo et

al. [9–11] utilized edge maps directly obtained from an edge detector, e.g., Canny edge detector,

Rajendran and Chang [83] and Chans et al. [20] thought that the edge maps needed to be pro-

cessed to react to the special characteristics of human sketches. More specifically, Rajendran and

Chang [83] employed a multi-scale representation for images to address the variations of level-

of-detail of human sketches. Accompanying the multi-scale representation, curvature-directions

histograms were used as features to achieve invariances to translation, scaling and rotation. On

the other hand, Chans et al. [20] extracted the prominent edges of the images by employing a

curvelet model to evolve and encode the image edges, as they believed that the users tended to
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ignore details when drawing the sketches. Their method was able to cope with global and local

translations to some extent and had the similar potential to cope with scaling and rotation. Align-

ing with Rajendran and Chang [83], Matusiak et al. [72] also tried to achieve total invariances to

translation, scaling and rotation by employing the Curvature Scale Space (CSS) representation,

which was inherently invariant to translation, scaling and rotation. However, for [72,83] to work,

an assumption that the object of the image could be clearly segmented was either implicitly or

explicitly made, thus rendering those methods only effective to simple datasets.

The 3rd era started from 2009 and lasts heretofore, and the most significant symbol is work-

ing towards large-scale datasets as assumed to be in favor of real-life applications. As a contin-

uous trend of the 2nd era, contour based matching was adopted by Cao et al. [15] and Parui et

al. [80]. However, there is an obstacle for contour based methods to scale up to large datasets:

the computational cost to match the contour representations while addressing the deformations

in the meantime. To increase the computational efficiency, the system’s expressive power on

the sketch-image similarity has to be compromised. Cao et al. [15] employed Oriented Chamfer

Matching as the contour matching method. An indexing scheme that organized images by the

individual edge pixels shared by images, was proposed to achieve efficient retrieval. However,

as the rigidity of Oriented Chamfer Matching and the normalization needed for the indexing, the

system can retrieval only objects at the exact position as the sketch, and only very small local de-

formations are allowed. Parui et al. [80] opted for another extreme. In their work, only the salient

contours (chains) were extracted, and each chain was represented as straight line-like segments

and further encoded by the length ratios and the joint angles of the adjacent segments. Finally, a

fast Dynamic Programming-based approximate substring matching algorithm was used to match

two sets of contours and a hierarchical k-medoids based indexing was used to index the images

by its contours. Although this representation is invariant to translation, scaling and rotation and

facilitates fast retrieval, it has lost dramatically the originally smooth and detailed shape proper-

ties of both the sketches and the images. Therefore, the retrieved results generally have rather low

visual similarity to the query sketch in terms of shape, which is exactly the biggest merit of SBIR.

Concerning about the possible drawbacks of contour based methods, Eitz et al. [33,34] and Hu et

al. [51,53,56] have explored popular feature descriptors to scale up SBIR, counting on their con-

venience for large-scale indexing. In [33], Eitz et al. evaluated histograms of oriented gradients

(HOG) [29] and tensor descriptor [61] against angular radial partitioning (ARP) [17] and edge
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histogram descriptor (EHD) [108] (including a semiglobal variant version), all in a global feature

fashion. They also evaluated 3 grid resolution variants for feature sampling, and a masked and an

unmasked version for each grid resolution. A k-means tree [44] and a best-bin-first strategy [76]

were employed for indexing the descriptors. The results concluded that as global features, HOG

and tensor significantly outperform ARP and EHD, with tensor slightly better than HOG. Right

after, by going beyond the global features and including several popular local features, Eitz et

al. [34] proposed a benchmark for SBIR. The local features included shape context (SC) [7],

spark feature [34] and HOG (as local feature), and bag-of-words (BOW) representation [89] was

used to encode the features. For indexing, the standard inverted index that indexes images by

the visual words [113] was directly employed. In their comparison, although the local feature

SHOG (HOG computed on edge maps) obtained the best performance, the other local features

were outperformed by the global features. Worth noticing, in this work, the sketch’s power to

discriminate similar images (from both the same category and other categories) is quantitatively

evaluated again after Bimbo and Pala [9]. Human ranked image lists that were based on sets of

sketch-image pairs manually rated according to visual similarities, were used for retrieval evalu-

ation. In the meantime, Hu et al. [51] was doing similar evaluations for local features and BOW

representation, yet with a slightly different set of features. They proposed to compute gradient

field images for the edge maps in advance of computing HOG features. The gradient field is

composed of interpolations of edge pixels, so physically, it expands the width of the prominent

edges and increases the generality of the representation. In a later journal version [53], Hu and

Collomosse increased their feature set which finally included gradient field HOG (GF-HOG),

HOG, scale-invariant feature transform (SIFT) [70, 71], self-similarity descriptor (SSIM) [86],

SC and tensor descriptor (global feature). Their results confirmed that local features, especially

GF-HOG and HOG were obviously better than global features in SBIR. However, their evalu-

ation is category level retrieval, which does not take care of the perceptual similarity between

the sketch and the image, so it provides relatively limited insight on the similarity discrimination

power of different features. k-d tree was mentioned in their work for indexing, yet the k-d tree

excluded some distance metrics, like histogram intersection and chi square, and thus should be

used accordingly. Continuing the local feature evaluation, Hu et al. [56] considered the object

localization problem as an exceptional work in the 3rd era. A hierarchical segmentation algo-

rithm [3] was used to obtain the regions of the image, and the object’s contour was contained in
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some of those regions. Afterwards, each region was encoded by local features for retrieval.

2.2.2 Sketch-based Video Retrieval

Besides sketch-based image retrieval, there are also a considerable amount of works on sketch-

based video retrieval (SBVR). The early works [6,49,87,103] used sketched object trajectories to

retrieve video clips containing specific motion patterns. Since the only focus is on the trajectory,

the appearance and semantic properties of the videos are entirely ignored by these methods.

VideoQ [19] was one of the first works to combine motion cues with appearance cues, but its

region segmentation relied majorly on color and thus was quite preliminary. Instead, Collomosse

et al. [26] proposed to aggregate super-pixels to sketched objects and did not assume ‘ideal’

segmentation of the video. Their method has significantly improved the precision yet at the

expense of a computationally costly inference procedure which assigns the super-pixels to the

sketch objects. Therefore, Hu et al. [52] tried an alternative approach to match tokenized motion

trajectories with a trellis-based edit distance. And Hu et al. [54] futher considered to integrate the

semantic labels on both the sketch side and the video side, in order to enhance the system’s ability

to interpret the semantics of the video content. A more robust motion clustering algorithm was

employed in [54] as well to improve the retrieval performance. Given all the works above, the

segmentation procedures for the video frames were performed offline as a pre-processing step.

But uniquely, Hu et al. [55] performed segmentation at query-time with a Markov Random Field

(MRF) optimization which could also rank the relevant clips and localize the sketched objects.

2.2.3 Deformable Part-based Model

To encode the sketch appearance with local features as well as addressing abstractions/distortions,

we employ deformable part-based model (DPM) as the representation, as it is a two-layer struc-

ture encoding both holistic shape and local parts. The DPM [38] is designed for object detection

and obtains state-of-the-art performance on the challenging PASCAL VOC dataset [36]. Yang

and Ramanan [109] and Sun and Savarese [93] have used strongly supervised DPM for human

pose estimation. However, their methods need a pre-defined pose model for each specific cate-

gory and extensive part annotations are mandatory, which make them non-scalable in the general

case for numerous diverse categories. Therefore, we adopt the original DPM [38] to encode

the objects in two domains. To bridge the DPMs from different domains, we further employ an
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effective graph matching method to measure the cross-domain similarity of DPMs.

2.2.4 Graph Matching

Graph matching is widely used in computer vision applications such as object categorization [31],

face recognition [106] and tracking [90]. Graph matching has the advantage of flexibly encoding

topological object structure, and coping with relatively large structural deformations. There has

been a great body of research to date on graph matching. Cho et al. [24] establish matches by per-

forming random graph walk on an association graph whose nodes represent candidate matches,

which is later extended to cope with node progression by iteratively examining homography pro-

jection errors [25]. Very recently, supervised learning techniques have also shown prominence

towards graph matching [23, 50]. Despite offering state-of-the-art results on standard datasets,

they require explicit training a priori. Therefore, we employ Cho et al. [24] to match DPM parts.

2.3 Sketch Synthesis

In this section, we review the sketch synthesis, sketch segmentation and stroke analysis literature.

The stroke analysis is brought up as we are looking at sketch synthesis with stroke data, and the

sketch segmentation serves as a first step for our general sketch synthesis framework.

The non-photorealistic animation and rendering (NPAR) field has intensively studied sketch

synthesis, yet majorly focuses on mimicking the sketchy feeling for the lines or the textures. Hu-

mans’ behaviors (especially amateur drawers’) of sketching the central object without irrelevant

background and imposing high-level abstraction on the objects are seldom modeled by them.

High quality inputs are often desired by these methods as well. Winkenbach and Salesin [104]

introduced “stroke textures” to simulate both texture and tone of line drawing and demonstrated

quite realistic architectural drawings with sophisticated details. A highly descriptive interactive

system was established based on the stroke textures by Salisbury et al. [84], which could greatly

alleviate human labor on sketching detailed textures. AlMeraj et al. [1] employed a physically-

based mathematical model to render input point data directly into lines that resembled human-

drawn style. Their user studies had supported that their generated lines were perceptually indis-

tinguishable from human-drawn lines. Gooch et al. [46] considered human facial illustration and

created the sketchy illustrations with a human brightness perception model. They also considered

holistic abstraction by converting the sketchy illustrations into caricatures yet with an interactive
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technique. Another interesting work presented by Winnemöller et al. [105] carefully reviewed

the difference-of-Gaussians (DoG) operator and its extensions, and their connections to other im-

age processing techniques. Especially, they demonstrated many new results on a variety of styles

just using the extended DoG (XDoG) formulation, including pencil-shading, pastel, hatching and

woodcut. Kang et al. also proposed an important extension for DoG [59]. They computed edge

tangent flow (ETF) to offer edge direction guidance for the DoG filtering (originally computed

isotropically) and named it FDoG.

Other attempts convert images to sketch-like edge maps, which despite being more ab-

stract still closely resemble natural image statistics ( [47, 82]). And sketch tokens [112] is a

recently proposed contour detection work which utilized human traced contours in images to

learn mid-level stroke-like representations. They have achieved very competitive contour detec-

tion performance with considerably low computational cost. Data-driven approaches have been

introduced to generate more human-like sketches, exclusively for one object category: human

faces. [22,66] took simple exemplar-based approachs to synthesize faces and used holistic train-

ing sketches. [101, 102] decompose training image-sketch pairs into patches, and train a patch-

level mapping model. All face synthesis systems above work with professional sketches and

assume perfect alignment across all training and testing data. As a result, image and patch-level

replacement strategies are often sufficient to synthesize sketches.

Moving onto free-hand sketches, [8] directly use strokes of a portrait sketch dataset col-

lected from professional artists, and learn a set of parameters that reflect style and abstraction

of different artists. They achieved this by building artist-specific stroke libraries and perform-

ing stroke-level study on them with multiple characteristics accounted. Upon synthesis, they

first convert image edges into vector curves according to a chosen style, then replace them with

human strokes measuring shape, curvature and length. Although these stroke-level operations

provided more freedom during synthesis, the assumption of rigorous alignment, in the form of

manually fitting a face-specific mesh model to both images and sketches, is still made making

extension to wider categories non-trivial. Their work laid a solid foundation for future study on

free-hand sketch synthesis, yet extending it to many categories presents three major challenges:

(i) sketches with fully annotated parts/feature points are difficult and costly to acquire, especially

for more than one category; (ii) intra-category appearance and structure variations are larger in

categories other than faces, and (iii) a better means of model fitting is required to account for
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noisier edges. Yet the model proposed in Chapter 5 is flexible enough to account for all these

highlighted problems.

2.3.1 Sketch Segmentation

Sketch segmentation was originally proposed to enhance SBIR by extracting clear sketch ob-

ject(s) from cluttered sketches or segmenting semantic sketch components out for part-level re-

trieval. But in the context of this thesis, we employ it to discover semantic parts of a category

and thus facilitate sketch synthesis. As still a newly emerged topic, the literature keeps coarse.

Sun et al. [94] studied the object-level sketch segmentation using basic perceptual principles,

e.g., proximity, similarity, symmetry, direction and closure, and a web-scale clipart database to

check the semantic meaningfulness of segmented objects. Huang et al. [57] remains the single

study on stroke-level segmentation on free-hand sketches to date. They worked with sketches of

3D objects, assuming that sketches do not possess noise or over-sketching (obvious overlapping

strokes). Annotated 3D models are mandatory as guidance, and the specific perspective that suits

a query sketch needs to be manually selected. These limitations make their method hard to use

in practice. In this thesis, we look at stroke-level/part-level free-hand sketch segmentation when

noise and over-sketching are pervasive and needs minimal guidance (the proper stroke length).

And a novel perceptual grouping algorithm is proposed to address this.

2.3.2 Stroke Analysis

Similar as the status of sketch segmentation, stroke-level analysis of human sketches remains

sparse. Existing studies ( [8, 32, 85]) have mentioned stroke ordering, categorizing strokes into

types, and the importance of individual strokes for recognition. However, a detailed analysis has

been lacking especially towards: (i) level of semantics encoded by human strokes, and (ii) the

temporal sequencing of strokes within a given category.

[32] proposed a dataset of 20,000 human sketches and offered anecdotal evidence towards

the role of stroke ordering. [42] claimed that human generally sketch in a hierarchical fashion,

i.e., contours first, details second. Yet as can be seen later in Chapter 5, we found this does not al-

ways hold, especially for non-expert sketches. More recently, [85] touched on stroke importance

and demonstrated empirically that certain strokes are more important for sketch recognition.
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While interesting, none of the work above provided means of modeling stroke ordering/saliency

inside a computational framework, thus making potential applications unclear. [57] was first in

actually utilizing temporal ordering of strokes as a soft grouping constraint. Similar to them,

we also employ stroke ordering as a cost term in our grouping framework. Yet while they only

took the temporal order grouping cue as a hypothesis, we move on to provide solid evidence to

support this usage in Chapter 5.

A more comprehensive analysis of strokes was performed by [8] aiming to decode the style

and abstraction of different artists. They claimed that stroke length correlates positively with

abstraction level, and in turn categorized strokes into several types based on their geometrical

characteristics. Although insightful, their analysis was constrained to a dataset of professional

portrait sketches, whereas in Chapter 5 we perform an in-depth study into non-expert sketches of

many categories as well as the professional portrait dataset and we specifically aim to understand

stroke semantics rather than style and abstraction.

2.3.3 Contour Models and Pictorial Structure Analysis

Our deformable stroke model that will be introduced in Chapter 5 is inspired by contour (

[28, 40, 78, 88]) and pictorial structure models ( [39]). Both have been shown to work well in

the image domain, especially in terms of addressing holistic structural variation and noise ro-

bustness. The idea behind contour models is learning object parts directly on edge fragments.

And a by-product of the contour model is that via detection an instance of the model will be left

on the input image. Despite being able to generate sketch-like instances of the model, the main

focus of that work is on object detection, therefore synthesized results do not exhibit sufficient

aesthetic quality. Major drawbacks of contour models in the context of sketch synthesis are:

(i) duplicated parts and missing details as a result of unsupervised learning, (ii) rigid star-graph

structure and relatively weak detector are not good at modeling sophisticated topology and en-

forcing plausible sketch geometry, and (iii) inability to address appearance variations associated

with local contour fragments. On the other hand, pictorial structure models are very efficient at

explicitly and accurately modeling all mandatory parts and their spatial relationships. They work

by using a minimum spanning tree and casting model learning and detection into a statistical

maximum a posteriori (MAP) framework. Yet the much desired model accuracy is achieved at

the cost of supervised learning that involves intensive labeling a priori.

In Chapter 5, by integrating pictorial structure and contour models, we propose a deformable
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stroke model that: (i) employs our proposed sketch segmentation algorithm and an iterative

learning scheme, and thus yields accurate models with minimum human effort, (ii) customizes

the model learning and detection framework of pictorial structure to address more sophisticated

topology possessed by sketches and achieve more effective stroke to edge map registration, and

(iii) augments contour model parts from just one uniform contour fragment to multiple stroke

exemplars in order to capture local appearance variations.

The And-Or graph is a hierarchical-compositional model which has been widely applied for

sketch modeling. An And-node indicates a decomposition of a configuration or sub-configuration

by its children, while an Or-node serves as a switch among alternative sub-configurations. Both

the part appearance and structure variations can be encoded in the And-Or graph. Wu et al. [107]

proposed an active basis model, which employed the And-Or graph and could be applied to

general categories. The active basis model consists of a set of Gabor wavelet elements which look

like short strokes and can slightly perturb their locations and orientations to form different object

variations. A shared sketch algorithm and a computational architecture of sum-max maps were

employed for model learning and model recognition respectively. Our model in essence is also an

And-Or graph with an And-node consisting the parts and Or-nodes encoding stroke exemplars.

Our model learning and detection share resemblance to the above work but dramatically differ

in that we learn our model from processed real human strokes and do not ask for any part-level

supervision.

2.4 Summary

2.4.1 Sketch recogntion

By observing the TU-Berlin sketch dataset [32], we consider the complexity of internal structures

as opposed to simple shapes (demonstrated later in Figure 3.1) and obvious visual cue sparsity as

opposed to images are the two biggest challenges for the general free-hand sketches. Moreover,

sketch attributes could be an interesting exploring direction towards novel applications.

In Chapter 3, we will employ star graph representation and multiple kernel learning to tackle

these two big challenges. Thorough evaluations on different features, representations and kernel

metrics are also performed. And interesting sketch retrieval by attribute application is presented

to demonstrate the efficacy of sketch attributes.
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2.4.2 Sketch-based image retrieval

After looking through the 3 past eras, we draw some conclusions for SBIR as follows:

i) The applying scenarios: Two scenarios are possible for SBIR: 1) sketching the scene and 2)

sketching the object. In the first scenario, the user is delivering a holistic description of the im-

age (usually coarse), a holistic matching scheme, e.g., global feature and edgel index [15], is

sufficient for the purpose. Therefore, it may not be the focus of SBIR research. In the second

scenario, focusing on objects, more details and more complex structures could be expected in the

sketches. Moreover, when the objects are not the only things in the image, object localization

could be helpful for reliable retrieval. The most foreseeable real-life application for SBIR is com-

modity retrieval, like retrieving clothes and furniture. Therefore, the second scenario, especially

towards intra-category fine-grained SBIR, is a more promising and worthwhile direction.

ii) The representations: Two types of representations are existing in the SBIR literature. Contour

based representation, due to its limited descriptive power and high computational cost to com-

pare, is only effective when the sketches are generally simple and/or the gallery is not large. But

its ability to address abstraction and distortion is profound especially when an elastic matching

scheme is employed. On the contrary, descriptor based representation, especially local feature

based representation, can capture rich details and is easy to scale up. But its ability to address

abstraction and distortion is limited due to the hand-crafted and rigid design. Some descriptors

are designed to address distortion, like SC and SSIM, but they did not perform well in the SBIR

evaluations, comparing to more rigid descriptor like HOG. The possible explanation is that there

is a trade-off between the ability to address abstraction and distortion and the ability to be dis-

criminative. And for large-scale SBIR, the ability to be discriminative seems more important.

This is however intuitive, because if it goes to higher abstraction level, many things will look

alike. Above all, local feature based representation is more suitable for future SBIR, yet an extra

scheme to address the unrealistic abstractions/distortions due to unlimited drawing styles is still

desirable.

iii) The dataset and the evaluation metric: As concluded above to proceed to intra-category

fine-grained SBIR, a dataset that can evaluate the intra-category fine details and with multiple

categories and moderate size, is necessary to facilitate future research. The human ranked image

list evaluation strategy [9,33] should be adopted for this dataset, as it can accurately evaluate the

fine-grained discrimination power of the approaches.
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In Chapter 4, we raise up the fine-grained sketch-based image retrieval concept for the first

time and employ deformable part-based model and graph matching to solve it.

2.4.3 Sketch synthesis

Free-hand sketch synthesis that resembles human habits of using sketchy strokes, abstracting the

objects and tending to ignore the background, is still challenging to apply on general categories

other than human faces. We argue that a detection model learned on sketch strokes and account-

ing object localization and object deformation variations could possibly address these issues and

simulate the human sketching behavior well.

In Chapter 5, a deformable stroke model which is inspired by the pictorial structure and the

contour models is learned and utilized for the general category free-hand sketch synthesis. The

model supervision cost is alleviated by a novel sketch segmentation method called perceptual

grouping, and this segmentation method is benefited from a thorough stroke analysis on stroke

semantics and stroke temporal order.
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Chapter 3

Sketch Recognition

Given the design of the TU-Berlin sketch dataset [32], we consider that the two biggest challenges

for the general free-hand sketches are the complexity of internal structures as opposed to simple

shapes (see Figure 3.1) and obvious visual cue sparsity as opposed to images.

To address the complexity of internal structures, we propose a mid-level representation to

capture the holistic structure of sketches. More specifically, we employ a star graph to encode

both local features and holistic structure of a sketch and exploit ensemble matching as a similarity

measure. With the star graph, popular local features are carefully evaluated and compared for

sketch recognition, and star graph has the best performance.

Furthermore, although different features or representations have different levels of perfor-

mance, we argue that all features contain some potentially complementary information, at least

for some classes, and should ideally be used together. We therefore address the cue sparsity

problem via Multiple Kernel Learning (MKL), aiming at fully utilizing the discriminative power

of all features and eliminating the both bias imposed by any single feature. Our experiment con-

firms much better performance of MKL on sketch recognition over Eitz et al. [32], and different

kernel metrics are fairly compared.

The TU-Berlin dataset has as many as 250 categories. In order to show how different repre-

sentations benefit certain categories more clearly, we introduce the concept of super-categories,

which is defined as a superset of basic categories that share a higher-level semantic property (e.g.,

animal, plant). We found that although the star graph is generally best, different representations

tend to favor different super-categories. An interesting finding from the super-category analysis is
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(a) (b)

Figure 3.1: (a) Typical inputs of shape matching are generally silhouettes with quite simple inter-
nal structures, and are quite photo-realistic (extracted from [7]): three rows each corresponding
to one object category; (b) Free-hand sketches are likely to have more complicated internal struc-
tures. Some sketches can exhibit similar silhouettes, but their internal structures can be quite
different, e.g., the alarm clock, the pizza, and the face shown in the first row. In addition, the
abstraction/distortion level and the diversity of drawing styles of free-hand sketches can both be
higher than shapes.

that the confusions inside super-categories are much bigger than those between super-categories.

This is especially true for large super-categories such as animal and vehicle. It is hypothesized

that higher-level semantic properties shared among categories (e.g., spots on the body of a gi-

raffe or butterfly) could help to remove ambiguity within a super-category – a hypothesis that

was found to be successful in the image domain [62, 64]. Inspired by Lampert et al. [62], this

work performs a preliminary study on how sketch attributes can benefit sketch recognition by

constructing an attribute kernel within the MKL framework. The experiment is carried out on

the animal super-category with classic animal attributes from [62] as well as additional attributes

obtained from WordNet [74]. Experimental results show attributes to be effective in improving

recognition performance inside super-categories.

Finally, going beyond simple recognition of sketch categories, we show how the high-level

semantic nature of attribute features can be used to enable novel applications. We demonstrate

attribute-based sketch retrieval (query by description rather than category; e.g., stripy), and joint

category-attribute sketch retrieval (find a long-leg ant, etc).
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3.1 Methodology

This section introduces the features, representations and classification models utilized for our

sketch recognition study.

3.1.1 Features

A. Histogram of Oriented Gradients (HOG)

HOG was first proposed by [29] for pedestrian detection. The gradients in each cell on a dense

uniform grid are quantized into orientation bins that are then formed into a histogram. This

feature is commonly reported to have best performance with sketches [32–34, 51].

B. Self-Similarity (SSIM)

SSIM was proposed by [86]. For a feature point p, it compares a patch centered at p to nearby

patches within a local region also centered at p, thus extract the “local self-similarity” for p.

Then, the local SSIM descriptors are formed into a star graph model, and ensemble matching

is employed to match the star graph models. SSIM has already been used on some very simple

colored sketches [86], thus it is worthwhile to evaluate it with human sketches.

C. Daisy

Daisy is based on histograms of gradients, like SIFT and GLOH [73], but utilizes a Gaussian

weighting and circularly symmetrical kernel. It is very fast and efficient to compute densely [96].

Recent work of sketch tokens [67] has shown its effectiveness with sketches.

D. Attributes

Unlike the previous features, the high-level attribute representation is itself the output of a super-

vised learning procedure. Attribute ground truth is defined by a binary class-attribute association

matrix A (Figure 3.6), where each column specifies the attributes for that class. Given this matrix,

a bank of M binary SVM attribute classifiers are independently trained to predict the presence or

absence of each attribute. That is, for each attribute m, sketches from all categories with am = 1

are positive and sketches from categories with am = 0 are negative. The posterior p(am|x) then

reports the probability of a given sketch x having attribute m. The attribute representation of a

sketch is then the M dimensional vector stacking the posterior probabilities for the presence of

each attribute A(x) = [p(a1|x), . . . , p(aM|x)]. Rather than utilizing these posteriors directly to

predict the category as in [62], we use A(x) as a new representation to be combined with the



3.1. Methodology 39

previous features by MKL. Details of SVM and MKL are described in Section 3.1.3.

3.1.2 Representations

A. Bag-of-words Representation

Bag-of-words BOW is used as the baseline for sketch recognition and multiple features are em-

ployed to evaluate its performance, including HOG, SSIM and Daisy. We apply normalization to

all the sketches by scaling them into a fixed size. The features of a sketch are extracted on local

patches. And the patches are centered in the intersections of a regular grid on top of the sketch.

We use relatively large-sized patches, due to the limited information contained by the sketch,

thus those patches have overlapping areas. To construct the BOW, we first collect a large set of

n features by random sampling. Those n features are clustered into H clusters via k-means. The

mean values of the clusters are used to form a visual codebook : U = {ui}k
i=1. After the codebook

is obtained, a feature f is then represented by a vector of the weights of f to all the words ui. The

weight is the distance between the f and a word ui measured by Gaussian kernel, with parameter

σ .

B. Star Graph and Ensemble Matching

For the star graph representation, we apply the same normalization and grid as for BOW. The

nodes of the graph are grid intersections close to the sketch strokes, so they can depict the struc-

ture of the sketch and different sketches have different numbers of nodes. In practice, we choose

the grid intersections that have valid SSIM features, as they are just the intersections close to the

strokes. Those grid intersections are applied to other features afterwards. The center of the star

graph is the center of mass of those nodes.

We denote star graph as G = (V,E,A), where V,E,A represent the graph nodes, edges and

properties respectively. More specifically, V = {vi}Ns
i=1 ∪ c denotes all Ns sample points {vi}Ns

i=1

and the graph center c, while ei ∈ E is the edge between vi and c. Besides, aic ∈ A is a relative

location vector describing ei, and ai ∈ A denotes the feature descriptor corresponding to node vi.

Ensemble Matching is the similarity metric employed here to compare star graphs. Like in

Boiman and Irani [12], we assume that given a dataset ensemble patch with a descriptor at
i and

a relative location at
ic, the corresponding query patch descriptor aq

i is independent to other query

patch descriptors and the corresponding query patch relative location aq
ic is independent to other

query patch locations. The assumption on descriptor independence although is not valid in case
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of overlapping patches, it is still a useful approximation [12]. And the assumption on location

independence offers the flexibility to accommodate small variations on translation, scale and

rotation. We also adopt [12]’s strategy to model the relation between a patch descriptor at
i and

its location at
ic from the dataset ensemble non-parametrically using examples from the dataset to

achieve generality:

P(at
i|at

jc) =


1, i=j, i.e. this pair exists in the dataset.

0, otherwise.
.

We then formulate the similarity between two star graphs q (query) and t (target) as below:

P(Gq|Gt) = ∏
i

(
P(aq

i |a
t
i)P(a

q
ic|a

t
ic)P(a

t
i|at

ic)
)
= ∏

i

(
P(aq

i |a
t
i)P(a

q
ic|a

t
ic))
)
. (3.1)

where Gq = (V q,Eq,Aq) and Gt = (V t ,Et ,At) are the corresponding star graphs q and t.

P(aq
i |at

i) calculates the similarity between feature descriptors aq
i and at

i using a sigmoid func-

tion [86]:

P(aq
i |a

t
i) =

1
1+‖aq

i −at
i‖1

. (3.2)

P(aq
ic|at

ic) computes the similarity of relative location vectors aq
ic and at

ic using a Gaussian func-

tion [12]:

P(aq
ic|a

t
ic)∝ exp(−(aq

ic−at
ic)

T S−1
L (aq

ic−at
ic)) (3.3)

where SL is a covariance matrix to allow for some deviations in the node locations. Figure 3.2

illustrates the nodes and edges of the star graph and the ensemble matching concept.

We modify traditional ensemble matching in several ways to accelerate the matching process

and improve the matching performance. First, a two step algorithm is employed to find the best

match in the target for each node in the query. Multiple nodes in the query are allowed to match

to the same node in the target, which we found to be better than a one-to-one matching policy.

For a query node, the algorithm first finds the most similar D target features {at
j}D

j=1 in terms

of feature descriptors (D is much smaller than the total feature amount in the target) among

all the nodes by exhaustive searching. Then, calculate the location correlations only for these D

features and select the node having the maximum overall similarity score. Second, to penalize the
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C

C

Figure 3.2: An illustration of star graphs for sketches and their ensemble matching. Patches are
extracted from the sketch to construct the star graph, and each patch is connected to the graph
center. The connections represent the patches’ relative locations to the center. Different sketches
can have different patch numbers. For two star graphs, both the patches and their corresponding
relative locations are matched. Note that for illustrative clarity, only a few patches and matchings
are shown for demonstration.

points not matched in the target, a penalty factor w is added which is defined as the proportion

of the matched points in the target. Third, to generate the overall matching score above each

node’s matching score, we obtain the logarithm for computational convenience. The final score

is normalized by the number of nodes Ns in the query star graph. The new function for ensemble

matching is then:

P(Gq|Gt) =
w∑i∈Ns log

(
max j P(aq

j |at
i)P(a

q
jc|at

ic)
)

Ns
. (3.4)

Using Equation 3.4, the matching scores from Gq to Gt and from Gt to Gq are often different.

To improve the stability of the final score, we average the scores for both directions:

P f (Gq,Gt) = (P(Gt |Gq)+P(Gq|Gt))/2 (3.5)

It is worth noting that if considered as a kernel function, Equation 3.5 is symmetric, and

empirically we found it was always positive semi-definite in each cross-validation fold of our

experiments. If we assume that there are in average n sampling points in each star graph, the

computational complexity of the ensemble matching between two star graphs is then O(2n(n+

D)). Several detailed examples of ensemble matching are shown in Figure 3.3. Only those points

having both similar features and similar locations will be matched. It can be seen that ensemble

matching addresses the holistic structure similarity well in the successful cases, and finds similar
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Successful examples Failure examples
Query Target Query Target Query Target Query Target

Figure 3.3: A visualization of ensemble matching. The left column includes successful examples
and the right column includes failure cases. The image pair with red points indicates matched
points. Multi-colored pairs indicate the detailed matching correspondence, where points with the
same color are matched.

object parts in terms of structure in the failure cases.

3.1.3 Classification methods

A. Support Vector Machines

The SVM classifiers are trained for each category to classify sketches. For category l with x

being the sketch representation, the score function used to decide the class of a query x is:

cl(x) =
S

∑
s=1

α
l
sk(xl

s,x)+bl (3.6)

where αs are the coefficients, b is the bias, k is a kernel function and s indexes support vectors

xs. The response cl(x) measures how likely the query belongs to the lth category.

Radial basis function (RBF) kernel is used for k in the case of BOW representation:

k(xl
s,x) = exp(−γ‖xl

s−x‖2
2). (3.7)

In the star graph case, the RBF kernel is replaced with Equation 3.5:

k(xl
s,x) = P f (xl

s,x). (3.8)

And one-vs-all approach is employed for the multiclass classification task.



3.1. Methodology 43

B. Multiple Kernel Learning

Different features and representations have varying values for each category. In conventional

SVMs, the kernel is defined on one feature type. Some features are more informative, but each

feature may provide some complementary information. A weighted sum of kernels is therefore

desirable to best utilize the discriminative power of each feature and representation. If we have a

few kernels : k1,k2, ...kM, using the same notation as Section A., their weighted linear combina-

tion is then formulated as:

k(xl
s,x) =

M

∑
m=1

βmkm(xl
s,x) (3.9)

where {βm}M
m=1 are weights reflecting the contribution of each kernel. The classifier score func-

tion is then:

f l(x) =
M

∑
m=1

βmcl
m(x). (3.10)

cm(x) are the score functions for m different features and defined in Equation 3.6. MKL is

used to select the inter-kernel weights {βm}M
m=1 and the coefficients {αs} for each feature kernel

which maximize the accuracy using Equation 3.10.

We use four kinds of kernels as described below. Besides ensemble matching, each kernel is

applied to all BOW features. And the dimension of x is t.

1. Linear kernel

k(xl
s,x) = 〈xl

s,x〉 (3.11)

2. RBF kernel, described in Equation 3.7.

3. Chi square kernel

k(xl
s,x) = ∑

t

2xl
stxt

xl
st + xt

(3.12)

4. Histogram intersection kernel

k(xl
s,x) = ∑

t
min(xl

st ,xt) (3.13)

5. Ensemble matching kernel, described in Equation 3.8 (for star graph only).
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3.2 Experiments

This sections first evaluates SVM’s performance with different features and representations.

Then a thorough evaluation of fusing the features and representations using a MKL model fol-

lows, which delivers the state-of-the-art performance at the time of publication. Finally, the

attribute experiments and applications are demonstrated.

3.2.1 Dataset and General Settings

Dataset We evaluate our methods on the sketch dataset with the most categories to date proposed

by Eitz et al. [32], which has 250 categories and 20,000 sketches. The dataset was collected on

Amazon Mechanical Turk from 1,350 non-expert subjects, thus the drawing style and sophisti-

cation level are diverse. Following [32], the sketches are normalized to 256×256 pixels.

Super-categories To define super-categories, we refer to WordNet [74]. The original category

names is used to search their inherited hypernyms in WordNet. Then a few hypernyms that are

representative and intuitive are chosen to be the super-categories’ names, and each of them is

used to group several original categories. Finally, 14 super-categories are defined to analyze

different representations’ performances. The specific super-categories’ names and the number of

categories in each are shown in Table 3.3.

Features Three basic types of features are evaluated in the proposed methods, including HOG,

SSIM and Daisy. SSIM is computed with VGG’s implementation [21]. The ’var noise’ parameter

is set to 50,000, and the radical bins and angular bins are set to 5 and 12 respectively. On top of

the 256×256 pixels sketch, a 51×51 grid is used to extract the sample points, and the local patch

size is 90× 90. VGG’s saliency checking, homogeneity checking and second-nearest neighbor

checking are all disabled, as they are not suitable for sketches. We sample the feature points along

the sketch contours and use the same sampling points for all the features. HOG is computed using

the VLFeat [98] implementation with each patch divided into 4× 4 cells and the orientation is

set to 4. Daisy is computed with CVLAB’s implementation [96] with all the default settings as

well.

Bag-of-words representation For all the mentioned features, a codebook of 1,000 visual words

are used to obtain the BOW representation. 1,000,000 features are randomly sampled to gener-

ate the codebook via k-means clustering. The σ parameter for the Gaussian kernel is searched

between [0.001,1].
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Star graph representation As described in Section 3.1.2, SSIM is used to decide which grid

intersections are used to construct the star graph, and other features will adopt these intersections.

The center of the star graph is the center of mass of these intersections.

Parameter searching and training data size We employ 4-fold cross validation scheme to

search for parameters. For both SVM and MKL, the γ and C parameters are searched between

[2−2,28]. A coarse grid search is performed with an interval of 22 to find a best value X , followed

by a fine grid search with an interval of 20.25 among [2−1X ,2X ]. To evaluate the impact of training

dataset size, the dataset is also separated into growing subsets (i.e., 20,40,60,80 sketches per

category), and on each of the subset, the average 4-fold cross validation accuracy is calculated.

Support Vector Machines and Multiple Kernel Learning For single-kernel experiments we

use the libsvm optimiser [18], and for multi-kernel experiments we use the UFOMKL optimiser

[79].

3.2.2 Comparing Different Features’ Performances on SVM

We compare the BOW representation of HOG, SSIM and Daisy, and the star graph representation

on HOG (due to the computational cost of ensemble matching, we just select HOG to work with

star graph as it is the reported best performing feature), with SVM classifiers. Figure 3.4 shows

their performance with incrementally increased training set size. Table 3.1 shows the recogni-

tion accuracies of each feature when using the full training set. It can be seen that star graph

representation performs better than BOW representation, and HOG is still the best performing

feature.

Table 3.1: Classification performance of different features with SVM using the full training set.
HOG SSIM Daisy Star graph(HOG)

Acc. 55.12% 27.99% 43.80% 56.42%

3.2.3 Fusing Features and Kernel Metrics using Multiple Kernel Learning

Given the varying informativeness of each feature on BOW, we next investigate whether MKL

can fuse these features in a complementary way. We train an RBF kernel MKL classifier with

three features including BOW representation of HOG, SSIM and Daisy. The star graph kernel is

also included and computed with Equation 3.8. With the complementary cues of multiple rep-

resentations on multiple features, recognition performance reaches 62.61% (RBF Intermediate

fusion result in Table 3.2(c); Intermediate fusion is explained later) Additionally, to show that
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Figure 3.4: Performance comparison for varying data volume. The x axis indicates the number
of the sketches used in training. Error bars are added to indicate one standard deviation, and the
deviations are generally around 0.3% similar as in Table 3.2.

each feature has contributed to the overall result, we computed the MKL results without one fea-

ture at a time. The results are shown in Table 3.2(a). We also show the weight βm from Equation

3.10 in Table 3.2(b) to help illustrating each feature’s contribution, and the weights are generally

consistent with the accuracy in Table 3.2(a), highlighting the contribution of star graph and HOG.

Beyond feature type, a pervasive design question in conventional sketch recognition is what

is the right kernel metric to use for comparing images. Within the MKL framework, this question

can be sidestepped as all kernel metrics can be used together synergistically. To demonstrate this,

we further evaluated 3 additional kernel functions beyond RBF used thus far: linear, chi square

(Chi2) and histogram intersection (HI) on all the features (star graph kernel is always included

when using each kernel function, computed with Equation 3.8). The performance of all kernel

functions is shown in Table 3.2(c) with HI kernel yielding the highest accuracy of 65.45%. Then,

we compute all the kernels for each feature, and use them all in MKL, which yields an even

better result of 65.81% (also shown in Table 3.2(c)). This performance significantly exceeds the

state-of-the-art performances in [32], which are compared in Table 3.2(d). Importantly, these

experiments show that not only does using all kernels and all features yield the best performance,

but that tuning the choice of features and kernels [33, 34] is not necessary – the simple strategy

of using them all together is best.
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Table 3.2: (a) Recognition accuracy of MKL using all the features but excluding one feature each
time to see the contribution of each feature (on RBF kernel). (b) The weight βm (see Equation
3.10) is also shown for each feature to illustrate its relative importance in MKL (on RBF kernel).
(c) The accuracies of early, intermediate and late fusions of the features with different kernel
functions. The intermediate fusion (MKL) with all the features and all the kernel functions yields
the best performance. (d) The performance comparison with previous works. The standard errors
are also provided for all the accuracies when available.

(a)

Excluded HOG SSIM Daisy Star graph(HOG)
Acc. 58.85±0.11% 62.01±0.28% 60.86±0.29% 60.46±0.28%

(b)

Feature HOG SSIM Daisy Star graph(HOG)
Weight 0.0054 0.0047 0.0043 0.0098

(c)

Kernel RBF Chi2 HI Linear All
Intermediate fusion Acc. 62.61±0.34% 63.78±0.48% 65.45±0.61% 55.09±0.45% 65.81±0.58%

Early fusion Acc. 61.20±0.44% 63.45±0.45% 64.82±0.59% 57.41±0.42% 64.38±0.48%
Late fusion Acc. 61.48±0.31% 56.75±0.31% 63.74±0.49% 60.90±0.16% 56.14±0.25%

(d)

Methods SVM [32] MKL(All)
Acc. 56% 65.81%

Table 3.3: Comparison of SVM recognition performance grouped by super-category, using BOW
and Star graph (Star) on HOG . The number of categories in each super-category is in parentheses.
MKL results are also stated.

Animal(48) Plant(18) Vehicle(27) Electronics(27) Clothing(8)
BOW 43.01% 61.62% 51.06% 55.42% 65.94%
Star 45.31% 63.97% 53.06% 58.38% 74.38%
MKL 53.47% 73.01% 58.94% 63.84% 75.78%

Furniture(14) Body part(20) Building(10) Sport(6) Food(9)
BOW 47.32% 63.69% 53.63% 61.25% 59.86%
Star 50.63% 68.19% 57.75% 62.92% 56.67%
MKL 58.21% 73.25% 66.75% 71.46% 70.42%

Instrument(7) Commodity(45) Weapon(6) Nature(5)
BOW 57.14% 59.97% 58.33% 78.75%
Star 58.39% 56.42% 61.88% 67.25%
MKL 68.04% 68.86% 70.00% 89.25%

To provide a complete analysis on feature fusion, we also included results of two alternative

strategies for fusion: a) the “early fusion” by feature stacking, and b) the “late fusion” by classi-

fier voting. Our MKL method is referred to as the intermediate fusion, because it learns weights

for the distance matricies. For the early fusion, we concatenate the BOW of the 3 basic features

and use the chosen kernel function to obtain the kernel matrix, which is then averaged with the

star graph kernel (computed with Equation 3.8)) without weighting. This averaged kernel matrix

is then used in SVM for classification. For the late fusion, we make a kernel for each feature with

the chosen kernel function (star graph kernel is computed with Equation 3.8) and train an SVM
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classifier for each of them. The output of this bank of SVMs is combined with majority voting

to obtain the final classification result. Those results are also shown in Table 3.2(c).

To offer insight into what types of sketches each representation is better at, the per super-

category performance of SVM on star graph and BOW is provided in Table 3.3. Although for

the overall result, star graph is only slightly better, star graph is evidently better at 11 super-

categories, while BOW is better at only 3 super-categories. The per super-category performance

of MKL is also shown in Table 3.3. After employing both representations, MKL achieves the

best of both, with top results on every super-category. For the super-category analysis, we also

show the confusion matrices of the 4 biggest super-categories (animal, commodity, vehicle and

electronics) in Figure 3.5. It can be seen that the inside super-category confusions are much

bigger than the between super-category confusions, especially for the animal and the vehicle

super-categories, as the categories inside these two super-categories have more similar topology

structures.

3.2.4 Attributes for Classification

To see how attributes can help improving the recognition inside a super-category, we pick the

animal super-category to perform a preliminary experiment. We borrowed some attributes from

[62] and defined a few more attributes by searching the category names’ inherited hypernyms

in WordNet. Finally we selected 29 attributes for the animal set. The category/attribute table is

shown in Figure 3.6.

To demonstrate the contribution of the attributes, we use the best MKL result with all the

features as the baseline, and compare with the MKL result when adding the attribute feature. We

also use SVM to test how attributes perform alone. A different evaluation scheme is adopted

compared to the previous sections, as two loops of training are needed for a fair comparison: the

attribute classifiers and the MKL/SVM classifiers. We divide the 80 sketches of each category

into 2 subsets : s1,s2, with s1 for training and testing attribute classifiers on HOG, s2 for training

and testing the MKL/SVM classifiers. On s1, for each attribute classifier, we select its parame-

ters γ and C by 4-fold cross validation also among [2−2,28]. When the attribute classifiers are

obtained, they are used to compute the attribute features for s2. Then s2 is used to train and test

the MKL/SVM classifiers through the same type of 4-fold cross validation. s1 and s2 are both set

40 in our experiment.

The recognition rate of each attribute classifier is shown in Table 3.4(a) and demonstrates
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Figure 3.5: The confusion matrix of BOW and Star graph on HOG for 4 major super-categories:
animal, commodity, vehicle, electronics. The matrices are sorted by category. Red dotted rectan-
gles highlight within-category versus across-category confusion. The matrices are exaggerated
via mapping values from 1 to 5 to the whole color range so numbers above 5 are shown the
same color as 5 and small values are more clearly observed. The confusions inside most super-
categories are much higher than the confusions between super-categories.
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Figure 3.6: The ground-truth class-attribute matrix used in our experiments. X axis (horizontal)
indicates categories and the Y axis (vertical) indicates attributes (The attributes are borrowed
from [62]).

that, despite the sparsity of features available in sketches, attributes are quite reliably detected.

Table 3.4(b) offers a comparison of the recognition accuracy of MKL without attributes, MKL

with attributes, and SVM solely with attributes. Evidently attributes can further improve the

recognition of sketches. This is because they provide a representation which is discriminative by

design – highlighting individual semantic properties that are useful for distinguishing categories.

It is thus reasonable to expect that attribute definitions for other super-categories besides animals

should also provide solid improvements in results.

Table 3.4: (a) The classification accuracies of the attribute classifiers. (b) The comparison of
recognition accuracies by using MKL on all the features, MKL on all the features with attributes
and SVM on attributes.

(a)

Attribute spots stripes bulbous lean flippers hands hooves paws
Accuracy 86.30% 74.84% 71.93% 69.58% 91.04% 97.92% 91.67% 84.17%
Attribute longneck tail horns tusks flys hops swims walks
Accuracy 86.04% 79.48% 94.48% 98.59% 81.46% 90.78% 77.81% 85.94%
Attribute fish mammal insects arthropod bird reptile furry hairless
Accuracy 96.15% 82.40% 95.36% 88.91% 88.54% 95.47% 76.20% 76.20%
Attribute claws longleg bipedal quadrapedal toughskin
Accuracy 72.81% 84.64% 88.75% 80.00% 87.76%

(b)

MKL(All)&Attributes MKL(All) Attributes
Accuracy 52.39% 50.63% 36.77%
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3.2.5 Exploiting Sketch Attributes

A possible interesting future direction for sketch attributes is to provide the opportunity for novel

sketch-understanding based applications.

• A first application is to allow the user to retrieve sketches by attribute rather than by cate-

gory, by sorting sketches via attribute classifier rather than category classifier (e.g., spotty

or stripy). The first results in the sorted list possess the attribute with high probability and

the last few results possess the attribute with low probability (or equivalently the inverse

attribute with high probability, e.g., long legs versus short legs). Figure 3.7 illustrates this

for three attributes in the top row of each section.

• A second application is to allow the user to retrieve sketches based on a combination of

category and attribute. There are various potential ways to achieve this, but we illustrate

the concept by querying the category first and then sorting by attributes. In the second row

of each section in Figure 3.7 we show the results of sorting attributes within ground truth

categories (thus separating categorization errors from attribute-sorting errors). In the third

rows, we show the results for a fully automated query which retrieves the top 20 confident

sketches for the specified category, and then sort these by the attribute scores. In each

case, both the top 5 results and bottom 5 results for each category are shown to illustrate

the contrast.

3.2.6 Computational Cost

Our experiments were performed on a CentOS 7 system with 3.40 GHz Intel Core i7 processor

and 16 GB main memory. We used precomputed kernels (pairwise similarities between all the

training sketch pairs) to accelerate the MKL training process. When we used all the 80 sketches

in each category to train, for the star graph kernel, it took around 1 hour to compute the full kernel

matrix. And for each BOW kernel, it took around 10 minutes to compute the full kernel matrix.

The cross-validation process normally took 10-40 hours to finish depending on the number of

combined kernels.
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3.3 Discussions

After the experiments, we can see that the proposed star graph representation performs evidently

better than the BOW representation, and HOG is confirmed to be the best among several popular

features for sketch recognition, which is the same as sketch-based image retrieval. By fusing mul-

tiple features and representations, MKL demonstrated significant improvement over the previous

state-of-the-art, from 56% to 65.81%. And histogram intersection kernel is rated the best kernel

metric. Over and above that, we for the first time study attributes for sketches, and demonstrate

their effectiveness in reducing confusion inside one super-category. Moreover, we show how

the high-level semantic nature of the attribute feature allows novel applications such as query by

attribute or category-attribute description.
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Chapter 4

Fine-Grained Sketch-Based Image Retrieval

As discussed in Section 2.2.1, intra-category fine-grained sketch-based image retrieval is the most

promising direction for the sketch-based image retrieval (SBIR) problem. We show the contrasts

of text-based image retrieval and conventional SBIR with our proposed fine-grained SBIR in

Figure 4.1, in which the advantage of fine-grained SBIR to differentiate fine-grained variations

of objects can be clearly seen.

The fine-grained SBIR should look at sketching the object scenario, as its potentially appli-

cable situation would be commodity retrieval. And object localization is necessary to ensure

credible object-oriented retrieval. Besides, a scheme that utilizes local feature descriptor and

has the ability to address abstractions/distortions is needed. A new dataset that is composed of

real-life images and has sketch-image similarity ratings is also compulsory for evaluation. In this

section, we propose a novel fine-grained SBIR framework which specially addresses the above

problems, and its corresponding evaluation benchmark is also presented.

To realize our framework, we use deformable part-based model (DPM) both as an object

detector and cross-domain representation to bridge the sketch and image domains. Similarity

comparison of DPMs is performed via graph matching, taking account both geometry and ap-

pearance information encoded in the DPMs. Specifically, we achieve fine-grained SBIR by first

training per category DPMs independently for each domain, then aligning DPM-mixture compo-

nents across the domains to obtain a component correspondence via graph matching. At retrieval

time, we use the trained DPMs to detect both the probe sketch and all gallery images, and use

the learned component alignment mapping to rank the images for the first round. Then we per-
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Figure 4.1: The advantages of SBIR over text-based image retrieval and fine-grained SBIR over
conventional SBIR.

form finer part alignment on the DPM detections via graph matching to rank the images for the

second round. Intuitively, the component-level matching ensures retrieved objects are in broadly

the same appearance/pose as the sketch. The detection-level matching enables matching fine-

grained details such as body configuration (e.g., limb position) and part appearances (e.g., the

shapes of claws). We demonstrate our proposed system’s performance quantitatively and quali-

tatively against previous bag-of-words [89] and spatial-pyramid [63] based methods. To perform

the evaluation, we create a real-life SBIR dataset for fine-grained retrieval by sampling sketches

from the TU-Berlin dataset [32] and images from the challenging PASCAL VOC dataset [36].

Ground-truth for sketch-image pairwise similarities within each category is carefully labeled ac-

cording to four criteria for fine-grained similarity on a portion of the proposed dataset used for

testing. This ground-truth then provides overall criterion for performance evaluation.

4.1 Methodology

We start this section with introducing basic notations for deformable part-based model, followed

by the formulation of our graph matching method. Given those, we finally illustrate our overall

framework in detail.
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Root
Filter

 Part
Filters

Figure 4.2: A mixture of DPMs for the airplane category. There are three learned components.
For each component, the first row shows the root filter and the second row shows the part filters.

4.1.1 Deformable Part-based Model and Notations

To use deformable part-based model (DPM), a mixture of DPMs is trained from a set of im-

ages, which comprises several components and is used for detection. During detection, only one

component will be triggered for one object in the image, and a corresponding DPM detection is

obtained for that object. Both DPM components and detections are in the form of a two-layer

structure composed of a root filter and a set of N part filters connected as a star graph (part filter

represents a small portion of the root filter and has twice the resolution of the root filter; all part

filters have the same size). One example for the mixture of DPMs of the airplane category is

illustrated in Figure 4.2.

We denote this two-layer structure as M = (r,G) and refer it as DPM, where r = (w,h, f)

specifies the width w, height h and global appearance feature (HOG is employed) of the root filter;

and G = (V,E,A) represents the star graph composed of the part filters. For the star graph G, V

represents a set of nodes, E, edges, and A, attributes. More specifically, V = {vi}N
i=1∪c represents

all N parts vi and the center c that is the center of r. Each node vi has an associated attribute ai ∈ A

describing appearance feature (also HOG) of vi, and an associated edge eic ∈ E describing the

geometrical relationship between the center of vi and c in terms of relative coordinate offset.

4.1.2 Graph Matching for Deformable Part-based Model

The key challenge for matching sketch with images in our approach is the computation of the

similarity metric between the DPMs across domains, including both DPM model components

and DPM image detections. In this section, we introduce our similarity measure S(MR|MT )

between two DPMs, MR and MT .
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Our matching objective accounts for both appearance and geometric information encoded in

the DPMs, as well as both layers of representation, i.e., root filter r and part filter star graph G.

The similarity function is defined as:

S(MR|MT ) = γSroot(MR|MT )+(1− γ)Spart(MR|MT ) (4.1)

where Sroot is the root similarity and Spart is the part similarity; γ is a weighting factor balancing

root and part similarities.

Root Similarity (Sroot) Given that all part filters of a DPM share a common size, differences

in root size and aspect ratio implicitly reflects pose variations. Therefore, we introduce a term

to represent root filter similarity based on appearance features, sizes and aspect ratios of the

root filters of MR and MT . We denote the root filters as rR and rT , the widths as wR and wT ,

the heights as hR and hT , and the appearance features as fR and fT respectively. Then, the root

similarity metric can be written as I:

Sroot(MR|MT ) = δ (fRfT )+(1−δ )exp
(
−|w

R

hR −
wT

hT |
max(hR,hT )

min(hR,hT )

)
, (4.2)

where the first term represents appearance similarity (dot product is inherited from [38]), and the

second term accounts for size and aspect ratio variations of the root filters. δ is a linear weighting

factor balancing the significance of both terms. The appearance feature fR and fT are extracted

after normalizing rR and rT to the same size.

Part Similarity (Spart) The part-level similarity between two DPMs depends on the unknown

mapping of the parts from one DPM to another. We achieve this by finding the mapping that

maximizes the overall geometrical and appearance consistency between the two DPMs’ part

filters. Since the part filters are organized as a star graph, we formalize this mapping task as a

graph-matching problem between the part filter star graphs and an illustration of this process is

shown in Figure 4.3.

Given two DPMs MR and MT , their part filters are represented as star graphs GR =(V R,ER,AR)

and GT = (V T ,ET ,AT ). We are going to find out a set of one-to-one matchings from all the

nodes in V R to all the nodes in V T that maximizes the overall geometrical and appearance consis-

tency of GR and GT . The mutual consistency of geometrical and appearance attributes between

one pair of matching candidates (vR
i ,v

T
a ) and (vR

j ,v
T
b ) can be described by an affinity function
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Figure 4.3: The part correspondences of two cat DPM components are sorted by graph matching.
The left component is from the sketch domain while the right one is from the image domain. The
parts with the same color are matched parts, which are also connected by a white line. Some part
may be overlapped by other part.

Wia; jb = f (aR
i ,aR

j ,eR
ic,eR

jc,aT
a ,aT

b ,e
T
ac,eT

bc). It follows that we can construct an affinity matrix W,

whose non-diagonal element Wia; jb contains a pair-wise affinity between two matching candi-

dates (vR
i ,v

T
a ) and (vR

j ,v
T
b ) and whose diagonal element Wia;ia denotes a unary affinity of one

matching candidate (vR
i ,v

T
a ).

If the number of parts of DPM is N, the correspondence between the parts of two DPMs

can be represented by an assignment matrix X ∈ {0,1}N×N , where Xia = 1 states that node vR
i

corresponds to node vT
a . It can then be further substituted by its column-wise vectorized replica

x ∈ {0,1}N·N . Finally, the graph matching problem can be formulated as seeking an assignment

x∗ that maximizes the quadratic score function I:

x∗ =argmax
x

(xT Wx)

s.t. x ∈ {0,1}N·N ,∀i
N

∑
a=1

xia ≤ 1,∀a
N

∑
i=1

xia ≤ 1,
(4.3)

where the two-way constrains define a one-to-one matching from GR to GT . It follows that the

part similarity can be calculated by :

Spart(MR|MT ) = x∗T Wx∗ (4.4)

where W is the affinity matrix given by:

Wia; jb = max(sapp(mia)sgeo(mia)+ sapp(m jb)sgeo(m jb),0) (4.5)

where mia = (aR
i ,aT

a ,eR
ic,eT

ac) and m jb = (aR
j ,bT

b ,e
R
jc,eT

bc) represent matching pair (vR
i ,v

T
a ) and
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(vR
j ,v

T
b ), respectively. Wia; jb denotes the overall similarity between such pairs, in which sapp(mia)

denotes feature similarity, sgeo(mia) represents geometrical similarity, and they can be computed

as follows:

sapp(mia) = aR
i aT

a (4.6)

sgeo(mia) = exp(−(eR
ic− eT

ac)
T S−1

D (eR
ic− eT

ac)) (4.7)

where SD is a constant covariance matrix controlling the allowed deviation of the matched cross-

domain parts and is empirically set to the normalized side length of the part of DPM. sgeo(m jb)

and sapp(m jb) can also be calculated as above.

In principle, any graph matching algorithm that is capable of solving a binary quadratic

maximisation function can be used to solve Equation 4.3. In work, we employ the method of [24]

that delivers good performance for our purpose.

4.1.3 Algorithm Design

The desired input of our proposed method is a sketch query q with known category, and the output

is a sequence of images from the same category ordered by their similarities with the query q in

terms of pose/appearance details. Achieving this fine-grained SBIR requires two major steps: (i)

Training: DPM training and component alignment; (ii) Retrieval: fine-grained retrieval based on

matching a query sketch DPM detection with image DPM detections. Below, we refer to DPM

component as Mc, and DPM detection as Md , and offer the detailed algorithms for the two steps:

Algorithm 1 DPM Training and component alignment

1: Training sketch mixture DPM Ls = {Mi
c}

Q
i=1 on sketch domain

2: Training image mixture DPM Lp = {M j
c}P

j=1 on image domain
3: for i = 1→ Q do
4: for j = 1→ P do
5: t( j) = S(Mi

c|M
j
c ) . Eq. (4.1), calculating the similarity of two components

6: end for
7: Rearrange {M j

c} in descending order into {M j
c}i according to similarities in t

8: Store {M j
c}i

9: . For each sketch component Mi
c, its similarity order (from more similar to less similar) to

the image components {M j
c} are saved here as {M j

c}i

10: end for
11: . As each component represents a coarse pose category (e.g., left, right or 45◦ views), this

step will establish a consistent coarse pose mapping across domains
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Algorithm 2 Fine-grained Retrieval
1: Input query sketch q
2: Detect on q with mixture DPM Ls, obtaining Mq

d and triggering component Mi
c

3: Detect on all the images with mixture DPM Lp, obtaining detections {Mk
d}F

k=1
4: Group the images into P groups {G j}P

j=1 according to which component M j
c detected it

(G j = {Mk j

d }F j

k j=1,∑
P
j=1 F j = F)

5: Sort {G j} into the same order of {M j
c}i obtained in the first step

6: . This will ensure the consistency of the coarse pose
7: for j = 1→ P do
8: for k j = 1→ F j do
9: t(k j) = S(Mq

d |Mk j

d ) . Eq. (4.1), calculating the similarity of two detections
10: end for
11: Rearrange {Mk j

d } in descending order according to similarities in t
12: . This will ensure the consistency of the detailed part shape and appearance
13: end for

4.2 Experiments

In this section, we first introduce a challenging SBIR dataset with human labels that enables fine-

grained SBIR performance to be quantified. We then use this dataset to evaluate performance of

the proposed fine-grained SBIR framework compared to conventional baselines [15, 16, 34, 51,

53, 56, 100] employing bag-of-words (BOW) and spatial pyramid (SP).

4.2.1 SBIR Dataset and Annotation

We create our SBIR dataset by intersecting 14 common categories from the TU-Berlin sketch

dataset and PASCAL VOC dataset [36], resulting in a new dataset of 14× 80 = 1,120 sketches

and 7,267 images (made up of 14× ni images, where ni is the total number of images in the

corresponding PASCAL category).

V : 2   Z : 2   C : 2  B : 2 V : 2   Z : 2   C : 1  B : 2 V : 2   Z : 2   C : 2  B : 1

V : 2   Z : 2   C : 1  B : 1 V : 2   Z : 0   C : 0  B : 0 V : 0   Z : 0   C : 0  B : 0

Figure 4.4: Examples of sketch-image pairs and their human rated similarity scores from our
dataset.
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We divide the whole dataset into testing and training sets of the equal size. To enable quan-

titative evaluation, we manually annotate a subset of the testing set with exhaustive pairwise

similarity ground-truth. Specifically, 6 sketches and 60 images from each category are sampled

from the full testing set, and sketch-image pair has its similarity manually annotated. For each

sketch-image pair (14×6×60 = 5,040 pairs in total), we score their similarity in terms of four

independent criteria: (i) viewpoint (V), e.g., left or right, (ii) zoom (Z), e.g., head only or whole

body; (iii) configuration (C), e.g., position and shape of the limbs; (iv) body feature (B), e.g., fat

or thin. For each criterion, we annotate (5,040× 4 = 20,160 annotations in total) three levels

of similarity: 0 for not similar, 1 for similar and 2 for very similar. Figure 4.4 includes some

example annotations. Previously, Bimbo and Pala [9] and Eitz et al. [34] have done similar

sketch-image pair similarity ratings. Not only is our dataset’s size significantly larger than them

(5,040 pairs comparing to 66 pairs in [9] and 1,240 pairs in [34]), we also employ 4 criteria for

similarity rating that is more accurate and practical in annotation.

4.2.2 Experimental Settings

We compare our framework to HOG Bag-of-Words and Spatial Pyramid baselines. The settings

for each model are given as follows.

Bag-of-Words Following common practice [32, 34], to compute the BOW representation, im-

ages are first converted into edge maps using Canny edge detector [13]. Both images and

sketches are then scaled into a fixed size of 256×256 pixels. HOG features are generated from

sketch/image patches of the size 90×90 pixels. A 51×51 grid is applied to each sketch/image,

and the patches are centered in the grid intersections. A large set of n features are randomly

sampled from all HOG features extracted (including both sketch and image features). After-

wards, k-means clustering is employed to cluster those n features into H clusters. A code book

U = {ui}H
i=1 is formed using the mean values of the clusters. After obtaining the codebook, a

feature f is represented by its distance to all the words ui. The distance is measured by Gaussian

kernel with parameter σ . We set n = 1,000,000, H = 2000, σ = 0.1 for our experiments.

Spatial Pyramid The spatial pyramid strategy [63] aims to encode the geometrical structure

of BOW by partitioning the image into increasingly finer equal sub-regions (i.e., in level 1 the

image has 1× 1 region, and in level 2 the image has 2× 2 regions) and compute the BOW for

each sub-region. The final representation is a concatenated vector of weighted BOW from all

the sub-regions. In our experiment, we use 2 levels of pyramid, and adopted the implementation
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of [63].

Gradient field HOG Gradient field HOG (GFHOG) was proposed by Hu et al. [51] for SBIR

and obtained the best performance in their evaluation comparing to several popular features [51,

53]. To compute the GFHOG descriptor, a gradient field is firstly constructed for the sketch or

the edge map, and then HOG features are extracted along the strokes or the edges on multiple

scales. Finally, the BOW representation is employed to encode the set of GFHOG features on

each sketch or image. We also compare to this feature descriptor, and employ Hu et al. [53]’s

implementation. We set the vocabulary size H = 3500 and employ the histogram intersection

distance, according to the best setting of [53].

DPM training and detection We train DPMs on the full training set of sketches/images in

each domain for each category, using the implementation of [38]. Each DPM is set to 3 mixture

components and 8 parts per component. For each category, the sketches/images of that category

are used as positive training examples while those from all remaining categories are employed

as negative examples. During training, bounding boxes provided by PASCAL VOC pascal-voc-

2010 are used to crop image objects, and sketch bounding box is extracted from the borders of

the sketch object. During detection, we choose the DPM detection with the largest probability in

each image.

Graph Matching Our graph matching works both on the obtained DPM components and de-

tections. Two parameters, the root-part weight γ and the root filter appearance-geometry weight

δ , are optimized by searching among [0,1] with interval of 0.1 on half of the annotated dataset,

and applied to the other half upon testing.

4.2.3 SBIR Performance Evaluation

Bimbo and Pala [9] uses ranking agreement between the humans and the algorithm for evaluation

and only looks at the top 6 results. As some images may be equally similar to the sketch, their

local rankings are not very important. So when the size of the annotated images is big (e.g., 60

in our case), the ranking agreement may be too rigid for evaluation. Eitz et al. [34] also has this

problem and they do not care if the annotated images are in the top results or not. Therefore to

overcome their weaknesses, we perform quantitative evaluation on the ground-truth dataset based

on rated scores. Given a probe sketch, we retrieve K images, and accumulate the ground-truth

similarity scores of those K images as the performance metric (the larger the better). Table 4.1

summarizes our results when K = 5 and K = 10. The per-category score is the average over all
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Table 4.1: SBIR performance comparison for top K = 5,10 retrievals: Ours, Spatial Pyramid
(SP), Bag-of-Words (BOW) and gradient field HOG (GFHOG).

(a) K = 5

Top 5 Ours SP BOW GFHOG

airplane 22.00 20.33 18.83 13.67
bicycle 11.67 13.83 13.67 9.00

standing bird 14.67 13.50 11.33 10.33
bus 24.67 10.50 10.50 15.00

car (sedan) 18.83 14.50 13.50 6.67
cat 12.17 7.67 7.50 11.67

chair 20.00 20.33 19.50 9.67
cow 19.67 14.00 13.17 15.00
table 8.67 3.33 4.33 6.00
dog 9.50 6.83 5.50 3.00

horse 31.67 7.33 4.67 6.33
motorbike 22.50 9.00 11.50 4.00

sheep 17.67 5.00 6.17 9.67
train 12.50 10.33 11.50 11.00

Average 17.58 11.18 10.83 9.36

(b) K = 10

Top 10 Ours SP BOW GFHOG

airplane 48.17 34.00 32.33 18.67
bicycle 25.50 26.67 25.00 21.33

standing bird 26.33 25.83 25.50 20.67
bus 37.67 19.17 20.00 29.00

car (sedan) 36.50 27.00 26.33 18.00
cat 20.33 16.17 15.17 23.33

chair 38.50 33.50 31.67 26.00
cow 27.17 26.50 25.33 29.00
table 12.33 9.00 9.33 11.00
dog 20.33 11.17 11.00 6.00

horse 57.33 14.50 13.33 13.00
motorbike 38.17 20.17 20.50 9.67

sheep 23.67 11.50 12.33 19.00
train 26.67 25.33 23.50 20.67

Average 31.33 21.46 20.81 18.95

3 query sketches in that category. It can be seen that our method significantly outperforms the

conventional alternatives on most categories. Although GFHOG has outperformed other features

in previous evaluations, it obtained less favorable results in the fine-grained SBIR task. Our

possible explanation for this is that the interpolation process for constructing the gradient field

has a blurring effect on the images. This effect could elevate the holistic structure of the object

yet diminish the fine details. Thus, the GFHOG may suit the inter-category SBIR better than the

intra-category fine-grained SBIR.

In Figure 4.5 we offer precision-recall curves computed over the full available range K = 1 :

60, utilizing all four criteria combined (Figure 4.5(a)) and each criterion alone (Figure 4.5(b)).

Given an image with retrieval score A, we compute its precision as precision = A/Y , where Y is

the maximum score an image can have (8 in our case), and recall as recall = A/U , where U is

the accumulative image score of the entire category. The results show that our SBIR framework

provides the biggest margin in its ability to perform at high-precision, suggesting that it has a

much better chance of retrieving the most relevant images in the first few results. Moreover, our

framework is more effective at fine-grained SBIR under all individual criteria.

Qualitative retrieval results with ground-truth annotation are provided in Figure 4.6. It can

be seen that our SBIR framework generally retrieves images having the same pose as the sketch

query. This is because the DPM training has summarized and encoded the representative poses

in the category as components, and our matching has corresponded similar representative poses
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Figure 4.5: Precision-recall curves comparing bag-of-words (BOW), spatial pyramid (SP), gradi-
ent field HOG (GFHOG) and our method (Ours), using: (a) all 4 criteria, (b) criterion viewpoint,
configuration, body feature, zoom separately.

from two domains. Figure 4.7 shows the intra-category SBIR using different sketches with our

proposed system. It can be clearly seen that the convenience to distinguish intra-category varia-

tions with sketches, which is hard to achieve in conventional text-based image retrieval.

To provide further insight into the mechanism of our model, in particular graph matching,

we also demonstrate retrieval using only root similarity versus both root and part similarities.
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Figure 4.8 shows a qualitative comparison, in this case querying the entire test set rather than

just the subset with ground-truth similarity annotation, as more sufficient images available for

evaluation. Part-level graph-matching is illustrated in the second row by way of color coding

the parts based on their sketch-image correspondence. Part similarity helps our method retrieve

images with more similar fine-grained details (e.g., the bent legs of the running horse). Although

not all the parts are perfectly aligned, their cumulative impact still helps to retrieve better matches

than using the root similarity alone.

4.2.4 Computational Cost

Our experiments were performed on a CentOS 7 system with 3.40 GHz Intel Core i7 processor

and 16 GB main memory. The major computational cost stayed in the DPM training stage. It

generally took half an hour to train a sketch mixture DPM and 12 hours to train an image mixture

DPM. Once the DPM mixtures are obtained, a detection procedure on one sketch or image takes

less than 10 seconds. Because DPM detection on images is performed offline, the retrieval for

one query on our test dataset takes around 20 seconds.

4.3 Discussions

Over the experiments, we can see that a specially designed representation and corresponding

similarity metric, i.e. DPM and graph matching, can significantly improve the fine-grained re-

trieval ability of SBIR. The key for the success of the DPM is the hierarchical structure that

encodes both the holistic shape and part appearances. The detection/object localization function

of DPM also opens SBIR’s access to the challenge real-life images with cluttered background.

Furthermore, our proposed dataset and evaluation scheme have provided an effective benchmark

to evaluate fine-grained SBIR system’s performance. However, some issues still exist for our

system, e.g., the high computational cost of the DPM detection and the graph matching process

and the moderate detection accuracy of DPM, which need to be further tackled before our system

can be applied to daily life. Further discussion about our system and future fine-grained SBIR

will be continued in Chapter 6.
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GFHOG

V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0 V:0 C:0 B:0 Z:0

GFHOG

Figure 4.6: Two example retrievals of our method (Ours), spatial pyramid (SP), bag-of-words
(BOW) and gradient field HOG (GFHOG). Ground truth similarity is also illustrated with the
decomposition of viewpoint (V), configuration (C), body (B) and zoom (Z).



4.3. Discussions 67

Figure 4.7: Using sketches to retrieval different object variations in the same category (from top
to bottom: bird, cat and chair categories).
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Root&
Parts

Root
Only

Figure 4.8: Comparison of retrievals using root similarity only (Root Only) and root and part
similarities (Root&Parts) in graph matching.
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Chapter 5

Sketch Synthesis

As introduced in Section 2.3, previous free-hand style sketch synthesis is restricted to a single

category: human faces [8]. The difficulties that impede sketch synthesis to reach other cate-

gories include the cluttered edges and diverse deformation variations of the object. To tackle

these problems, we propose a deformable stroke model (DSM) which forms the sketch synthesis

into a detection process and solves the aforementioned difficulties. Normally, to learn such a

deformable model with clearly defined parts, intensive part-level supervision is mandatory. To

avoid this tedious work, we propose a perceptual grouping method to segment the sketches into

proper semantic parts automatically. An iterative learning scheme is further proposed to refine

the learned model gradually. At the first iteration, the initial DSM is learned on the first iteration

perceptual grouping results, and the learned DSM will in turn guide the perceptual grouping of

the next iteration. The iterations will go on until some convergence criterion is met. During the

iterations, duplicated parts or improperly formed parts are largely corrected. Finally, the learned

DSM covers almost all the semantic parts of the object without duplication, and appearance

variations of each part are well encoded.

The proposed perceptual grouping method tackles the stroke-level sketch segmentation prob-

lem. The most advanced stroke-level sketch segmentation work to date [57] uses supervised 3D

model with manually selected viewpoint for each input sketch. However, a sufficient number of

3D models may not always be handy and the selection of viewpoint will be tedious for users.

So, they make the supervised method impractical for real-life usage. In this chapter, instead, we

introduce an unsupervised perceptual grouping method for stroke-level sketch segmentation. It
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takes into account the relationship between the stroke length and stroke semantics, and utilizes

the most semantically meaningful stroke length from observation as guidance to perform seg-

mentation. Unlike the supervised method using a top-down model fitting strategy, a bottom-up

greedy grouping algorithm is employed to form the parts gradually. Popular Gestalt principles are

also considered, and the local temporal order is used in a similar soft constraint fashion as [57].

To support our usage of stroke length as the criterion to measure the stroke semantics and

to reveal the myth of stroke temporal order which is claimed arbitrarily in different works [42,

57], we perform an evident stroke analysis regarding the relationship between the stroke length

and the stroke semantics as well as the stroke temporal order on two different sketch dataset:

the amateur TU-Berlin dataset and the professional Disney portrait dataset [8]. In the analysis,

intuitive results are presented to support our motivations.

Finally, we evaluate our framework via user studies and experiments on two publicly avail-

able sketch datasets: (i) six diverse categories of non-expert sketches from the TU-Berlin dataset

including: horse, shark, duck, bicycle, teapot and face, and (ii) professional sketches of two ab-

straction levels (90 seconds and 30 seconds, and we will refer them as 90s and 30s in the rest of

this thesis) of two artists in the Disney portrait dataset.

5.1 Stroke Analysis

In this section we perform a full analysis on how stroke-level information can be best used to

locate semantic parts of sketches. In particular, we look into (i) the correlation between stroke

length and its semantics as an object part, i.e., what kind of strokes do object parts correspond to,

and (ii) the reliability of temporal ordering of strokes as a grouping cue, i.e., to what degree can

we rely on temporal information of strokes. We conduct our study on both non-expert and profes-

sional sketches: (i) six diverse categories from non-expert sketches from the TU-Berlin dataset

( [32]) including: horse, shark, duck, bicycle, teapot and face, and (ii) professional sketches of

two abstraction levels (90s and 30s) of artist A and artist E in the Disney portrait dataset ( [8]).

Semantics of strokes On the TU-Berlin dataset, we first measure stroke length statistics (quan-

tified by pixel count) of all six chosen categories. Histograms of each category are provided in

Figure 5.2. It can be observed that despite minor cross-category variations, distributions are al-

ways long-tailed: most strokes being shorter than 1000 pixels, with a small proportion exceeding

2000 pixels. We further divide strokes into 3 groups based on length, illustrated by examples of
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Figure 5.2: Histograms of stroke lengths of six non-expert sketch categories. (x-axis: the size of
stroke in pixels; y-axis: number of strokes in the category).

2 categories in Figure 5.3(a). We can see that (i) medium-sized strokes tend to exhibit semantic

parts of objects, (ii) the majority of short strokes (e.g., < 1000 pixels) are too small to correspond

to a clear part, and (iii) long strokes (e.g., > 2000 pixels) lose clear meaning by encompassing

more than one semantic part.

These observations indicate that, ideally, a stroke model can be directly learned on strokes

from the medium length range. However, in practice, we further observe that people tend to

draw very few medium-sized strokes (length correlates negatively with quantity as seen in Figure

5.2), making them statistically insignificant for model learning. This is apparent when we look at

percentages of strokes in each range, shown towards bottom right of each cell in Figure 5.2. We

are therefore motivated to propose a perceptual grouping mechanism that counters this problem

by grouping short strokes into longer chains that constitute object parts (e.g., towards the medium

range in the TU-Berlin sketch dataset). We call the grouped strokes representing semantic parts

as semantic strokes. Meanwhile, a cutting mechanism is also employed to process the few very

long strokes into segments of short and/or medium length, which can be processed by perceptual

grouping afterwards.

On the Disney portrait dataset, a statistical analysis of strokes similar to Figure 5.2 was

already conducted by the original authors and the stroke length distributions are quite similar to

ours. From example strokes in each range in Figure 5.3(b), we can see for sketches of the 30s

level the situation is similar to the TU-Berlin dataset where most semantic strokes are clustered

within the middle length range (i.e., 1000− 2000 pixels) and the largest group is still the short
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(b)

Figure 5.3: Example strokes of each size group. (a) 2 categories in TU-Berlin dataset. (b) 2
levels of abstraction from artist A in Disney portrait dataset. The proportion of each size group
in the given category is indicated in the bottom-right corner of each cell.
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strokes. As already claimed in [8] and also reflected in the bottom row of Figure 5.3(b), stroke

lengths across the board reduce significantly as abstraction level goes down to 90s. This suggests

that, for the purpose of extracting semantic parts, a grouping framework is even more necessary

for professional sketches where individual strokes convey less semantic meaning.

Stroke ordering Another previously under-studied cue for sketch understanding is the tem-

poral ordering of strokes, with only a few studies exploring this ( [42, 57]). Yet these authors

only hypothesized the benefits of temporal ordering without critical analysis a priori. In order to

examine if there is a consistent trend in holistic stroke ordering (e.g., if long strokes are drawn

first followed by short strokes), we color-code the length of each stroke in Figure 5.4 where: each

sketch is represented by a row of colored cells, ordering along the x-axis reflects drawing order,

and sketches (rows) are sorted in ascending order of the number of constituent strokes. For ease

of interpretation, only 2 colors are used for the color-coding. Strokes with above average length

are encoded as yellow and those with below average as cyan.

From Figure 5.4 (1st and 2nd rows), we can see that non-expert sketches with fewer strokes

tend to contain a bigger proportion of longer strokes (greater yellow proportion in the upper

rows), which matches the claim made by [8]. However, there is not a clear trend in the ordering of

long and short strokes across all the categories. Although clearer trend of short strokes following

long strokes can be observed in few categories, e.g., shark and face, and this is due to these

categories’ contours can be depicted by very few long and simple strokes. In most cases, long and

short strokes appear interchangeably at random. Only in the more abstract sketches (upper rows),

we can see a slight trend of long strokes being used more towards the beginning (more yellow

on the left). This indicates that average humans draw sketches with a random order of strokes of

various lengths, instead of a coherent global order in the form of a hierarchy (such as long strokes

first, short ones second). In Figure 5.4 (3rd row), we can see that artistic sketches exhibit a clearer

pattern of a long stroke followed by several short strokes (the barcode pattern in the figure).

However, there is still not a dominant trend that long strokes in general are finished before short

strokes. This is different from the claim made by [42], that most drawers, both amateurs and

professionals, depict objects hierarchically. In fact, it can also be observed from Figure 5.5 that

average people often sketch objects part by part other than hierarchically. However the ordering

of how parts are drawn appears to be random.

Although stroke ordering shows no global trend, we found that local stroke ordering (i.e.,
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Start

End

Figure 5.5: Stroke drawing order encoded by color (starts from blue and ends at red). Object
parts tend to be drawn with sequential strokes.

strokes depicted within a short timeframe) does possess a level of consistency that could be

useful for semantic stroke grouping. Specifically, we observe that people tend to draw a series of

consecutive strokes to depict one semantic part, as seen in Figure 5.5. The same hypothesis was

also made by [57], but without clear stroke-level analysis beforehand. Later, we will demonstrate

via our grouper how local temporal ordering of strokes can be modeled and help to form semantic

strokes.

5.2 Deformable Stroke Models

From a collection of sketches of similar poses within one category, we can learn a generative de-

formable stroke model (DSM). In this section, we first formally define DSM. Then, we introduce

the perceptual grouping which groups raw strokes into semantic strokes/parts, and we illustrate

how a DSM is learned on those semantic parts and how to use DSM to detect on sketches/images.

Finally, the iterative process of performing these three steps interchangeably is well demonstrated

with concrete examples.

5.2.1 Model Definition

Our DSM is an undirected graph of n semantic part clusters: G = (V,E). The vertices V =

{v1, ...,vn} represent category-level semantic part clusters, and pairs of semantic part clusters

are connected by an edge (vi,v j) ∈ E if their locations are closely related. The model is pa-

rameterized by θ = (u,E,c), where u = {u1, ...,un}, with ui = {sa
i }

mi
a=1 representing mi seman-

tic stroke exemplars of the semantic part cluster vi; E encodes pairwise part connectivity; and

c = {ci j|(vi,v j) ∈ E} encodes the spatial relation between connected part clusters. An example
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shark DSM illustration with full part clusters is shown in Figure 5.11 (and a partial example for

horse is already shown in Figure 5.1), where the green crosses are the vertices V and the blue

dashed lines are the edges E. The part exemplars ui are highlighted in blue dashed ovals.

5.2.2 Sketch segmentation by Perceptual Grouping

Perceptual grouping segments the sketches into semantic strokes/parts based on raw stroke input.

There are many factors that need to be considered in perceptual grouping. As demonstrated in

Section 5.1, small strokes need to be grouped to be semantically meaningful, and local tempo-

ral order is helpful to decide whether strokes are semantically related. Equally important to the

above, conventional perceptual grouping principles (Gestalt principles, e.g. proximity, continu-

ity, similarity) are also required to decide if a stroke set should be grouped. Furthermore, after

the first iteration, the learned DSM model is able to assign a group label for each stroke, which

can be used in the next grouping iteration.

Algorithmically, our perceptual grouping approach is inspired by [5], who iteratively and

greedily group pairs of lines with minimum error. However, their cost function includes only

proximity and continuity; and their purpose is line simplification, so grouped lines are replaced

by new combined lines. We adopt the idea of iterative grouping but change and expand their

error metric to suit our task. For grouped strokes, each stroke is still treated independently, but

the stroke length is updated with the group length.

More specifically, for each pair of strokes s1,s2, grouping error is calculated based on 6

aspects: proximity, continuity, similarity, stroke length, local temporal order and model label

(only used from second iteration), and the error metric function is defined as:

Z(si,s j) = (ωpro ∗Dpro(si,s j)+ωcon ∗Dcon(si,s j)+ωlen ∗Dlen(si,s j)−ωsim ∗Bsim(si,s j))

∗Ftemp(si,s j)∗Fmod(si,s j), (5.1)

where proximity Dpro, continuity Dcon and stroke length Dlen are treated as cost/distance which

increase the error, while similarity Bsim decreases the error. Local temporal order Ftemp and

model label Fmod further modulate the overall error. All the terms have corresponding weights

{ω}, which make the algorithm cutomizable for different datasets. Detailed definitions and

explanations for the 6 terms are as follows (to be noticed, as our perceptual grouping method

is an unsupervised and greedy algorithm, the colors for the perceptual grouping results are just
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for differentiating grouped semantic strokes in individual sketches and have no correspondence

between sketches):

Proximity Proximity employs the modified Hausdorff distance (MHD) ( [30]) dH(·) between

two strokes, which represents the average closest distance between two sets of edge points. We

define Dpro(si,s j) = dH(si,s j)/εpro, dividing the calculated MHD with a factor εpro to control

the scale of the expected proximity. Given the image size φ and the average semantic stroke

number ηavg of the previous iteration (the average raw stroke number for the first iteration), we

use εpro =
√

φ/ηavg/2, which roughly indicates how closely two semantically correlated strokes

should be located.

Continuity To compute continuity, we first find the closest endpoints x,y of the two strokes.

For the endpoints x,y, another two points x′,y′ on the corresponding strokes with very close

distance (e.g., 10 pixels) to x,y are also extracted to compute the connection angle. Finally, the

continuity is computed as:

Dcon(si,s j) = ‖x−y‖∗ (1+angle(
−→
x′x,
−→
y′y))/εcon,

where εcon is used for scaling, and set to εpro/4, as continuity should have more strict requirement

than the proximity.

Stroke length Stroke length cost is the sum of the length of the two strokes: Dlen(si,s j) =

(P(si)+P(s j))/λ , where P(si) is the length (pixel number) of raw stroke si; or if si is already

within a grouped semantic stroke, it is the stroke group length. The normalization factor is

computed as λ = τ ∗ηsem, where ηsem is the estimated average number of strokes composing a

semantic group in a dataset (from the analysis). When ηsem = 1, τ is the proper length for a stroke

to be semantically meaningful (e.g. around 1500 pixels in Figure 5.3(a)), and when ηsem > 1, τ

is the maximum length of all the strokes.

The effect of changing λ to control the semantic stroke length is demonstrated in Figure 5.6.

Similarity In some sketches, repetitive short strokes are used to draw texture like hair or mus-

tache. Those strokes convey a complete semantic stroke, yet can be clustered into different

groups by continuity. To correct this, we introduce a similarity bonus. We extract strokes s1 and

s2’s shape context descriptor and calculate their matching cost K(si,s j) according to [7]. The

similarity bonus is then Bsim(si,s j) = exp(−K(si,s j)
2/σ2) where σ is a scale factor. Examples

in Figure 5.7 demonstrate the effect of this term.
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Without
similarity

With
similarity

Without
similarity

With
similarity

Figure 5.7: The effect of employing the similarity term. Many separate strokes or wrongly
grouped strokes are correctly grouped into properer semantic strokes when exploiting similarity.

Temporal
order

Without
temporal

 order

With
temporal 

order

Figure 5.8: The effect of employing stroke temporal order. We can see many errors made to
the beak and feet (wrongly grouped with other semantic part or separated into several parts) are
corrected as a result.
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Figure 5.9: The model label after the perceptual grouping of the first iteration. Above: first
iteration perceptual groupings. Below: model labels. It can be observed that the first itera-
tion perceptual groupings have different number of semantic strokes, and the divisions over the
eyes, head and body are quite different across sketches. However, after a category-level DSM
is learned, the model labels the sketches in a very similar fashion, roughly dividing the duck
into beak(green), head(purple), eyes(gold), back(cyan), tail(grey), wing(red), belly(orange), left
foot(light blue), right foot(dark blue). But some errors still exist in the model label, e.g., missing
parts and wrongly labeled part, which will be further corrected in the future iterations.

Local temporal order The local temporal order provides an adjustment factor Ftemp to the

previously computed error Z(si,s j) based on how close the drawing orders of the two strokes are:

Ftemp(si,s j) =


1−µtemp, if |T (si)−T (s j)|< δ .

1+µtemp, otherwise.
,

where T (s) is the order number of stroke s. δ = ηall/ηavg is the estimated maximum order

difference in stroke order within a semantic stroke, where ηall is the overall stroke number in

the current sketch. µtemp is the adjustment factor. The effect by this term is demonstrated in

Figure 5.8.

Model label The DSM model label provides a second adjustment factor according to whether

two strokes have the same label or not.

Fmod(si,s j) =


1−µmod , if W (si) ==W (s j).

1+µmod , otherwise.
, (5.2)

where W (s) is the model label for stroke s, and µmod is the adjustment factor. The model label

obtained after first iteration of perceptual grouping is shown in Figure 5.9.

Pseudo code for our perceptual grouping algorithm is shown in Algorithm 3. More results

produced by first iteration perceptual grouping are illustrated in Figure 5.10. As can be seen,
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Algorithm 3 Perceptual grouping algorithm
1: Input t strokes {si}t

i=1
2: Set the maximum error threshold to h
3: for i, j = 1→ t do
4: ErrorMx(i, j) = Z(si,s j) . Pairwise error matrix
5: end for
6: while 1 do
7: [a,b,minError] = min(ErrorMx)
8: . Find sa,sb with the smallest error
9: if minError == h then

10: break
11: end if
12: ErrorMx(a,b)← h
13: if None of sa,sb is grouped yet then
14: Make a new group and group sa,sb
15: else if One of sa,sb is not grouped yet then
16: Group sa,sb to the existing group
17: else
18: continue
19: end if
20: Update ErrorMx cells that are related to strokes in the current group according to the

new group length
21: end while
22: Assign each orphan stroke a unique group id

every sketch is grouped into a similar number of parts, and there is reasonable group correspon-

dence among the sketches in terms of appearance and geometry. However, obvious disagreement

also can be observed, e.g., the tails of the sharks are grouped quite differently, as the same to the

lips. This is due to the different ways of drawing one semantic stroke that are used by different

sketches. And this kind of intra-category semantic stroke variations are further addressed by our

iterative learning scheme introduced in Section 5.2.5.

5.2.3 Model Learning

DSM learning is now based on the semantic strokes output by the perceptual grouping step.

Putting the semantic strokes from all training sketches into one pool (we use the sketches of

mirrored pose to increase the training sketch number and flip them to the same direction), we use

spectral clustering ( [111]) to form category-level semantic stroke clusters. Semantic strokes in

one cluster possess common appearance and geometry characteristics. Subsequently, unlike the

conventional pictorial structure/deformable part-based model approach of learning parameters

by optimizing on images, we follow contour model methods by learning model parameters from

semantic stroke clusters.
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Figure 5.10: Perceptual grouping results. For each sketch, a semantic stroke are represented by
one color.

Figure 5.11: An example of shark deformable stroke model with demonstration of the part ex-
emplars in all the semantic part clusters (the blue dashed ovals), and the minimum spanning tree
structure (the green crosses for tree nodes and the dash-dot lines for tree edges).

A. Spectral Clustering on Semantic Strokes

The clustering step forms semantic strokes into semantic stroke clusters, which will be the basic

elements of the DSM. We employ spectral clustering, since it takes an arbitrary pairwise affinity

matrix as input. Exploiting this, we define our own affinity measure Ai j for semantic strokes si,s j

whose geometrical centers are llli,lll j as

Ai j = exp(
−K(si,s j) · ‖llli− lll j‖

ρsiρs j

), (5.3)

where K(·) is the shape context matching cost and ρsi is the local scale at each stroke si ( [111]).

The number of clusters discovered for each category is decided by the mean number of se-

mantic strokes obtained by the perceptual grouper in each sketch. After spectral clustering, in

each cluster, the semantic strokes generally agree on the appearance and location. Some cluster

examples can be seen in Figure 5.11.
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B. Model Parameter Learning

When the semantic stroke clusters are obtained, we need to obtain the parameters θ of the model

(exemplars u, connectivity E and spatial relations c) to form the stroke clusters into a functional

DSM.

Stroke exemplars We choose the m strokes with the lowest average shape context matching

cost to the others in each cluster vi as the stroke exemplars ui = {sa
i }

mi
a=1 ( [88]). The exemplar

number mi is set to a fraction of the overall stroke number in the obtained semantic stroke cluster

vi according to the quality of the training data, i.e., the better the quality, the bigger the fraction.

Besides, we augment the stroke exemplars with their rotation variations to achieve more precise

fitting. Some learned exemplar strokes of the shark category are shown in Figure 5.11.

Spatial Parameters Following the pictorial structure framework ( [39]), we treat the spatial

parameters (E and c) learning as a maximum likelihood estimation (MLE) problem and assume

E forms a minimum spanning tree (MST) structure. However we optimize the parameters on

semantic stroke clusters rather than training images. Letting Li = {llla
i }

mi
a=1 be the locations of

mi strokes for cluster vi and p(L1, ...,Ln|E,c) be the probability of the obtained stroke clusters’

locations given the model parameters, we get:

E∗,c∗ = argmax
E,c

p(L1, ...,Ln|E,c). (5.4)

As E is assumed to be a tree structure, the probability can be factorized by E:

p(L1, ...,Ln|E,c) = ∏
(Li,L j)∈E

p(Li,L j|ci j), (5.5)

p(Li,L j|ci j) =
mi j

∏
k=1

p(lllk
i ,lll

k
j|ci j), (5.6)

where k indexes such stroke pairs that one stroke is from cluster vi and the other from cluster

v j and they are from the same sketch. It can be seen that the spatial relations ci j between two

clusters are independent to the edge structure E. Then, we can solve this MLE problem by the

following 2 steps.

Learning the Graph Structure To learn such a MST structure for E, we first need to calculate

the weights of all the possible connections/edges between the clusters (the smaller the weight,
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the more closely correlated). We define edge (vi,v j)’s weight as:

w(vi,v j) =
mi j

∏
k=1

‖lllk
i − lllk

j‖
max(height,width)

. (5.7)

where height,width are the average dimensions of sketches. This metric ensures that stroke

clusters are connected to nearby clusters, making the local spatial relations well encoded. Now

we can determine the MST edge structure by minimizing

E∗ = argmin
E ∑

(vi,v j)∈E
w(vi,v j). (5.8)

which is solved by Kruskal’s algorithm. And the obtained MST is a tree that connects all the

vertices and has minimum edge weights.

Spatial Relations After the MST is learned, we can learn the spatial relations of the connected

clusters. To obtain relative location parameter ci j for a given edge, we assume that offsets are

normally distributed p(lllk
i ,lll

k
j|ci j) =N (lllk

i − lllk
j|µµµ i j,ΣΣΣi j). Then MLE result of:

(µµµ∗i j,ΣΣΣ
∗
i j) = arg max

µµµ∗
i j,ΣΣΣ

∗
i j

mi j

∏
k=1
N (lllk

i − lllk
j|µµµ i j,ΣΣΣi j), (5.9)

straightforwardly obtains parameters c∗i j = (µµµ∗i j,ΣΣΣ
∗
i j).

The learned model and edge structure is illustrated in Figures 5.1 and 5.11.

5.2.4 Model Matching

As discussed in [39], matching DSM to sketches or images should include two steps: model

configuration sampling and configuration energy minimization. Here, we employ fast directional

chamfer matching (FDCM, [69]) as the basic operation of stroke registration for these two steps,

which is proved both efficient and robust at edge/stroke template matching ( [95]). In our frame-

work, automatic sketch model matching is used in both iterative model training and image-sketch

synthesis. This section explains this process.

A. Configuration Sampling

A configuration of the model F = {(si,llli)}n
i=1 is a model instance registered on an image. In one

configuration, exactly one stroke exemplar si is selected in each cluster and placed at location

llli. Later, the configuration will be optimized by energy minimization to achieve best balance
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between (edge map) appearance and (model prior) geometry. Multiple configurations can be

sampled, among which the best fitting can be chosen after energy minimization.

To achieve this, on a given image I and for the cluster vi, we first sample possible locations for

all the stroke exemplars {sa
i }

mi
a=1 with FDCM (one stroke exemplar may have multiple possible

positions). A sampling region is set based on vi’s average bounding box to increase efficiency,

and only positions within this region will be returned by FDCM. All the obtained stroke exem-

plars and corresponding locations form a set Hm(vi) = {(sz
i ,lll

z
i )}

hi
z=1(hi ≥ mi). For each (sz

i ,lll
z
i ), a

chamfer matching cost Dcham(sz
i ,lll

z
i ,I) will also be returned, and only the matchings with a cost

under a predefined threshold will be considered by us.

The posterior probability of a configuration F , according to the Bayes’s rule, can be formed

as:

p(F |I,θ)∝ p(I|F,θ)p(F |θ), (5.10)

Expanding Equation 5.10 on a stroke exemplar basis, we obtain:

p(F |I,θ)∝
n

∏
i=1

p(I|si,llli) ∏
(vi,v j)∈E

p(llli,lll j|ci j), (5.11)

where p(I|si,llli) denotes the appearance fitness for a stroke exemplar and p(llli,lll j|ci j) denotes the

spatial relation fitness of two related stroke exemplars.

As the graph edges E forms a MST structure, each node is dependent on a parent node except

the root node which is leading the whole tree. Letting vr denote the root node, Ci denote child

nodes of vi, we can firstly sample the posterior probability p(sr,lllr|I,θ) for the root, and then

sample the probability p(sc,lllc|sr,lllr,I,θ) for its children {vc|vc ∈Cr} until we reach all the leaf

nodes. And we can write the marginal distribution for the root as:

p(sr,lllr|I,θ)∝ p(I|sr,lllr) ∏
vc∈Cr

Sc(lllr), (5.12)

S j(llli)∝ ∑
(s j,lll j)∈Hm(v j)

(
p(I|s j,lll j)p(llli,lll j|ci j) ∏

vc∈C j

Sc(lll j)

)
. (5.13)

p(llli,lll j|ci j) is the learned Gaussian offset distribution and p(I|si,llli) is computed from the chamfer

matching cost: p(I|si,llli) = exp(−Dcham(si,llli,I)).

In computation, the solution for the posterior probability of a configuration F is in a dynamic

programming fashion. Firstly, all the S functions are computed once in a bottom-up order from
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the leaves to the root. Secondly, following a top-down order, we select the top f probabilities

p(sr,lllr|I,θ) for the root with corresponding f configurations {(sb
r ,lll

b
r )}

f
b=1 for the root. For each

root configuration (sb
r ,lll

b
r ), we then sample a configuration for its children that have the maximum

posterior probability, and we continue recursively until we reach the leaves. From this, we obtain

f configurations {Fb} f
b=1 for the model.

B. Energy Minimization

Energy minimization can be considered a refinement for a configuration F according to both

appearance and geometry correspondences of the stroke exemplars in the input image. It is

solved similarly to configuration sampling with dynamic programming. But instead working

with the posterior, it works with the energy function:

L∗ = argmin
L

(
n

∑
i=1

Dcham(si,llli,I)+ ∑
(vi,v j)∈E

Dde f (llli,lll j)

)
, (5.14)

where Dde f (llli,lll j) =− log p(llli,lll j|ci j) is the deformation cost between each stroke exemplar and

its parent exemplar, and L = {llli}n
i=1 are the locations for the selected stroke exemplars in F . The

searching space for each llli is also returned by FDCM. Comparing to configuration sampling, we

set a higher threshold for FDCM, and for each stroke exemplar si in F , a new series of locations

{(si,lllk
i )} are returned by FDCM. And a new llli is then chosen from those candidate locations

{lllk
i }. To make this solvable by dynamic programming, we define:

Q j(llli) = min
lll j∈{lllk

j}
(Dcham(s j,lll j,I)+Dde f (llli,lll j)+ ∑

vc∈C j

Qc(lll j)), (5.15)

And by combining Equations 5.14 and 5.15 and exploit the MST structure again, we can

formalize the energy objective function of the root node as:

lll∗r = arg min
lllr∈{lllk

r}

(
Dcham(sr,lllr,I)+ ∑

vc∈Cr

Qc(lll j)

)
. (5.16)

Through the same bottom-up routine to calculate all the Q functions and the same top-down

routine to find the best locations from the root to the leaves, we can find the best locations L∗

for all the exemplars. As mentioned before, we sampled multiple configurations and each will

have a cost after energy minimization. We choose the one with lowest cost as our final detection

result.
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Image Edge map Synthesized Refined

Figure 5.12: Refinement results illustration.

Aesthetic refinement The obtained detection results sometimes will have unreasonable

placement for the stroke exemplar due to the edge noise. To correct this kind of error, we perform

another round of energy minimization, with appearance terms Dcham switched off, and rather

than use chamfer matching to select the locations, we let the stroke exemplar to shift around

its detection position within a quite small region. Some refinement results are shown for the

image-sketch synthesis process in Figure 5.12.

5.2.5 Iterative Learning

As stated before, the model learned with one pass through the described pipeline is not satis-

factory – with duplicated and missing semantic strokes. To improve the quality of the model,

we introduce an iterative process of: 1) perceptual grouping, 2) model learning and 3) model

matching on training data in turns. The learned model will assign cluster labels for raw strokes

during detection according to which stroke exemplar the raw stroke overlaps the most with or

has the closest distance to. And the model labels are used in the perceptual grouping in the next

iteration (Equation 5.2). If an overly-long stroke crosses several stroke exemplars, it will be cut

into several strokes to fit the corresponding stroke exemplars.

We employ the variance of semantic stroke numbers at each iteration as convergence met-

ric. Over iterations, the variance decreases gradually, and we choose the semantic strokes from

the iteration with the smallest variance to train the final DSM. Figure 5.13(a) demonstrates the

convergence process of the semantic stroke numbers during the model training. Different from

Figure 5.4, we use 3 colors here to represent the short strokes (cyan), medium strokes (red) and

long strokes (yellow). As can be seen in the figure, accompanying the convergence of stroke

number variance, strokes are formed into medium strokes with properer semantics as well. Fig-
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ure 5.13(b) illustrates the evolution of the stroke model during the training, and Figure 5.13(c)

shows the evolution of the perceptual grouping results.

5.2.6 Image-sketch Synthesis

After the final DSM is obtained from the iterative learning, it can directly be used for image-

sketch synthesis through model matching on an image edge map – where we avoid the local-

ization challenge by assuming an approximate object bounding box has been given. Also the

correct DSM (category) has to be selected in advance. And these are quite easy to be engineered

in practice.

5.3 Experiments

We evaluate our sketch synthesis framework (i) qualitatively by way of showing synthesized

results, and (ii) quantitatively via two user studies. We show that our system is able to generate

output resembling the input image in plausible free-hand sketch style; and that it works for a

number of object categories exhibiting diverse appearance and structural variations.

We conduct experiments on 2 different datasets: (i) TU-Berlin, and (ii) Disney portrait. TU-

Berlin dataset is composed of non-expert sketches while Disney portrait dataset is drawn by

selected professionals. 10 testing images of each category are obtained from ImageNet, except

the face category where we follow [8] to use the Center for Vital Longevity Face Database ( [75]).

To fully use the training data of the Disney portrait dataset, we did not synthesize face category

using images corresponding to training sketches of Disney portrait dataset, but instead selected

10 new testing images to synthesize from. And we normalized the grayscale range of the original

sketches to 0 to 1 for the sake of simplifying the model learning process. Specifically, we chose

6 diverse categories from TU-Berlin: horse, shark, duck, bicycle, teapot and face; and the 90s

and 30s abstraction level sketches from artist A and artist E from Disney portrait (270 level is

excluded considering the high computational cost and 15s level is due to the presence of many

incomplete sketches).

5.3.1 Free-hand Sketch Synthesis Evaluation

In Figure 5.14, we illustrate synthesis results for five categories using models trained on the TU-

Berlin dataset. We can see that synthesized sketches are clearly of free-hand style and abstraction

while possessing good resemblance to the input images. In particular, (i) major semantic strokes
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Figure 5.14: Sketch synthesis results of five categories in the TU-Berlin dataset.

TU-Berlin
face

Artist A
30s

Artist A
90s

Artist E
30s

Artist E
90s

Figure 5.15: A comparison of sketch synthesis results of face category using the TU-Berlin
dataset and Disney portrait dataset
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are respected in all synthesized sketches, i.e., no missing or duplicated major semantic strokes,

(ii) changes in intra-category body configurations are accounted for, e.g., different leg configura-

tions of horses, and (iii) part differences of individual objects are successfully synthesized, e.g.,

different styles of feet for duck and different body curves of teapots.

Figure 5.15 offers synthesis results for face only, with a comparison between these trained on

the TU-Berlin dataset and Disney portrait dataset. In addition to the above observations, it can

be seen that when professional datasets (e.g., portrait sketches) are used, synthesized faces tend

to be more precise and resemble better the input photo. Furthermore, when compared with [8],

we can see that although without intense supervision (the fitting of a face-specific mesh model),

our model still depicts major facial components with decent precision and plausibility (except

for hair which is too diverse to model well), and yields similar synthesized results especially

towards more abstract levels (Please refer to [8] for result comparison). We fully acknowledge

that the focus of [8] is different as compared to ours, and believe adapting detailed category-

specific model alignment supervision could further improve the aesthetic quality of our results,

especially towards the less abstract levels.

Figure 5.16 offers a better demonstration of the distinct free-hand style conveyed by our

DSM, we select 4 major works that can also generate sketch-like images yet employ different

strategies, including XDoG [105], FDoG [59], active basis model (ABM) [107] and sketch tokens

[112]. The non-photorealistic animation and rendering (NPAR) works, i.e. XDoG and FDoG,

have largely kept the photo details, belonging to both foreground and background. Although the

aesthetics of the NPAR results is quite good when the textures of the background and foreground

are not too complicated, only moderate abstraction could be expected from the results. Moreover,

unpleasant artifacts would be hard to get rid of when complicated texture is present. The ABM

could offer more abstract results being closer to sketches and would not keep any background

content. In other words, they well simulated the human sketching behavior. However, due to the

employment of the Gabor wavelets, the constituent strokes (wavelets) are not similar as natural

human strokes, and the level of details is kind of sparse. The sketch tokens results are the closest

to human sketches except our DSM results. They possess decent level of abstraction and resemble

close characteristics of human strokes. Yet, the affection of background artifacts cannot be totally

avoided by them. Distinctly, on the task of free-hand sketch synthesis, our DSM is capable to

generate sketch images that have good balance between abstraction and object details and highly
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resemble the free-hand style almost the same as real free-hand sketches.

5.3.2 Perceptual Study

Two separate user studies were performed to quantitatively evaluate our synthesis results. We

employed 10 different participants for each perceptual study (to avoid prior knowledge), making

a total of 20. The first user study is on sketch recognition, in which humans are asked to recognize

synthesized sketches. This study confirms that our synthesized sketches are semantic enough to

be recognizable by human. The second one is on perceptual similarity rating, where human

subjects are asked to link the synthesized sketches to their corresponding images. By doing this,

we demonstrate the intra-category discrimination power of our synthesized sketches.

Sketch recognition Sketches synthesized using models trained on TU-Berlin dataset are used

in this study, so that human recognition performance reported in [32] can be used as comparison.

There are 60 synthesized sketches in total, with 10 per category. We equally assign 6 sketches

(one from each category) to every participant and ask them to select an object category for each

sketch (250 categories are provided in a similar scheme as in [32], thus chance is 0.4%). From

Table 5.1, we can observe that our synthesized sketches can be clearly recognized by humans, in

some cases offering 100% accuracy. It can be further noted that human recognition performance

on our sketches follows a very similar trend across categories to that reported in [32]. The overall

higher performance of ours is most likely due to the much smaller scale of our study. The result

of this study clearly shows that our synthesized sketches convey enough semantic meaning and

are highly recognizable as human-drawn sketches.

Table 5.1: Recognition rate of human users for (S)ynthesised and (R)eal sketches ( [32]).
Horse Shark Duck Bicycle Teapot Face

S 100% 40% 100% 100% 90% 80%
R 86.25% 60% 78.75% 95% 88.75% 73.75%

Image-sketch similarity For the second study, both TU-Berlin dataset and Disney portrait

dataset are used. In addition to the 6 models from TU-Berlin, we also included 4 models learned

using the 90s and 30s level sketches from artist A and artist E from Disney portrait dataset.

For each category, we randomly chose 3 image pairs, making 30 pairs (3 pairs × 10 categories)

in total for each participant. Each time, we show the participant one pair of images and their

corresponding synthesized sketches, where the order of sketches may be the same or reversed as

the image order (Due to the high abstraction nature of the sketches, only a pair of sketch is used
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and two corresponding images are provided for clues each time). Please refer to Figure 5.14 to

see some example image and sketch pairs. The participant is then asked to decide if the sketches

are of the same order as the images. We consider a choice to be correct if the participant correctly

identified the right ordering. Finally, the accuracy for each category is averaged over 30 pairs and

summarized in Table 5.2. A binomial test is applied to the results, and we can see that, except

duck and Artist E 90s, all the rest results are significantly better than random guess (50%), with

most p < 0.01. The relatively weaker performance for duck and teapot from TU-Berlin is mainly

due to a lack of training sketch variations as opposed to image domain, resulting in the model

failing to capture enough appearance variations in images. On Disney portrait dataset, matching

accuracy is generally on the same level as TU-Berlin, yet there appears to be a big divide on

artist E 90s. This is self-explanatory when one compares synthesized sketches of the 90s level

from artist E (last column of Figure 5.15) with other columns – artist E 90s seems to depict a lot

more short and detailed strokes making the final result relatively messy. In total, we can see that

our synthesized sketches possess sufficient intra-category discrimination power.

Table 5.2: Image-sketch similarity rating experiment results.
Horse Shark Duck Bicycle Teapot

Acc. 86.67% 73.33% 63.33% 83.33% 66.67%
p < 0.01 < 0.01 0.10 < 0.01 < 0.05

Face A 30s E 30s A 90s E 90s
Acc. 76.67% 76.67% 90.00% 73.33% 56.67%

p < 0.01 < 0.01 < 0.01 < 0.01 0.29

5.3.3 Parameter Tuning

Our model is intuitive to tune, with important parameters constrained within perceptual grouping.

There are two sets of parameters affecting model quality: semantic stroke length and weights for

different terms in Equation 5.1. Semantic stroke length reflects negatively to the semantic stroke

number and it needs to be tuned consistent with the statistical observation of that category. And

it is estimated as the λ illustrated in the stroke length term in Section 5.2.2. For ηsem we used 1-3

for TU-Berlin dataset and the 30s level portrait sketches, and for the 90s level portrait sketches,

ηsem is set 8 and 11 respectively for the 90s level of artist A and artist E. This is because in the

less abstracted sketches artists tend to use more short strokes to form one semantic stroke. For

those categories with ηsem = 1, we found 85%-95% of the maximum stroke length is a good

range to tune against for τ since our earlier stroke-level study suggests semantic stroke strokes

tend to cluster within this range (see Figure 5.2).
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Regarding weights for different terms in Equation 5.1, we used the same parameters for both

the TU-Berlin dataset and 30s level portrait sketches, and set ωpro, ωcon and ωlen (for proximity,

continuity and stroke length respectively) uniformly to 0.33. For the 90s level sketches, again

since too many short strokes are used, we switched off the continuity term, and set ωpro and ωlen

both to 0.5. The weight ωsim and adjustment factors µtemp and µmod (corresponding to similarity,

local temporal order and model label) are all fixed as 0.33 in all the experiments.

5.4 Discussions

We presented a free-hand sketch synthesis system that for the first time works outside of just one

object category. Our model is data-driven and uses publicly available sketch datasets regardless of

whether drawn by non-experts or professionals. With minimum supervision, i.e., the user selects

a few sketches of similar poses from one category, our model automatically discovers common

semantic parts of that category, as well as encoding structural and appearance variations of those

parts. By fitting our model to an input image, we automatically generate a free-hand sketch that

shares close resemblance to that image. Results provided in the previous section confirms the

efficacy of our model. Some key issues of our model are discussed more as follows:

Data alignment: Although our model can address a good amount of variations in the number,

appearance and location of parts without the need for well-aligned datasets, a poor model may be

learned if the topology diversity (existence, number and layout of parts) of the training sketches

is too extreme. This could be alleviated by selecting fine-grained sub-categories of sketches to

train on, which would require more constrained collection of training sketches.

Model quality: Due to the unsupervised nature of our model, it has difficulty modelling chal-

lenging objects with complex inner structure. For example, buses often exhibit complicated

features such as the number and location of windows. We expect that some simple user interac-

tion akin to that used in interactive image segmentation might help to increase model precision,

for example by asking the user to scribble an outline to indicate rough object parts.

Another weakness of our model is that the diversity of synthesized results is highly dependent

on training data. If there are no similar sketches in the training data that can roughly resemble

the input image, it will be hard to generate a good looking free-hand sketch for that image, e.g.,

some special shaped teapot images. We also share the common drawback of part-based models,

that severe noise will affect detection accuracy.



5.4. Discussions 97

Aesthetic quality: In essence, our model learns a normalized representation for a given cat-

egory. However, apart from common semantic strokes, some individual sketches will exhibit

unique parts not shared by others, e.g., saddle of a horse. To explicitly model those accessory

parts can significantly increase the descriptive power of the stroke model, and thus is an inter-

esting direction to explore in the future. Last but not least, as the main aim of this work is to

tackle the modeling for category-agnostic sketch synthesis, only very basic aesthetic refinement

post-processing was employed. A direct extension of current work will be therefore leveraging

advanced rendering techniques from the NPAR domain to further enhance the aesthetic quality

of our synthesized sketches.
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Chapter 6

Conclusions and Future Work

The studying of more sophisticated sketch datasets has profoundly advanced the free-hand sketch

domain. We are glad to be part of it and demonstrate our contributions with this thesis. After

the full details of our works in the previous chapters, we hereby offer our summary on the three

applications and look into the promising future directions.

6.1 Sketch Recognition

By addressing the internal structure complexity and visual cue sparsity challenges, our proposed

star graph representation and multiple kernel learning method have greatly advanced the previous

state-of-the-art sketch recognition performance. As a fast pacing area, recent state-of-the-art has

been moved forward again by deep learning empowered Sketch-a-Net [110] to 74.9% accuracy

as opposed to 73.1% of human accuracy. Respecting the deep learning’s superb power, this

result may temporally put a period to the sketch recognition race, except some evaluation can be

done on the pruned TU-Berlin dataset proposed by Schneider and Tuytelaars [85], where human

accuracy is 100%. In this kind of situation, the future works on sketch recognition can focus more

on useful applications, especially in the area of preschool education for children. Integrating

sketch input into existing preschool education software can make this kind of software more

easily accessible for children and increase their interest of using the software to study the world.
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6.2 Fine-grained Sketch-based Image Retrieval

In Section 2.2.1, we have summarized the essential understandings for the previous SBIR works.

Here, we update them based on the research outcomes of Chapter 4.

i)The applying scenarios As demonstrated by the experiment results of Chapter 4, intra-category

fine-grained SBIR focusing on objects is a more promising and worthwhile direction. We can see

that with the help of sketches, more customized retrieval could be realized with intuitive sketch-

ing rather than composing loads of texts. In the future, this kind of fine-grained SBIR can be

promoted to various online sale websites, helping the users to retrieve the desired commodities

existing in their minds.

ii)The representations The DPM representation has provided a mid-level abstraction for the

objects, which enhances the local descriptor based representation at addressing holistic abstrac-

tion/distortions. In the future, how to elaborate this representation to cope with more object

variations, to exploit the most discriminative parts and to alleviate the computational cost, are all

interesting directions to proceed.

iii)The dataset and the evaluation metric The currently proposed dataset is still quite challeng-

ing for the state-of-the-art object detectors to work properly. And if this step cannot be solved

well, the afterwards comparisons are not built on a very solid ground. Unfortunately, so far,

object detection is still a very challenging area being actively researched. Therefore, commod-

ity datasets, like shoe dataset and furniture dataset, that contain sufficient object variations but

have no background clutters are more suitable both to evaluate the core function of fine-grained

SBIR systems and to test real-life scenarios. The evaluation metric should still follow the human

ranked image list evaluation strategy. More desirably, crowdsourcing practices like employing

the Amazon Mechanical Turk, should be adopted to obtain large-scale sketch-image pair simi-

larity ratings for statistically significant evaluation and for long-term evaluation.

6.3 Sketch Synthesis

The demonstrated deformable stroke model has shown promising results in real free-hand style

sketch synthesis for general categories. The perceptual grouping method is also quite practical

for part-level sketch segmentation due to its unsupervised nature. Two direct extensions for the

deformable stroke model work are 1) enhancing the aesthetic quality of the synthesized sketches

and 2) introducing simple guidance for the part-level sketch segmentation to improve the seg-
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mentation quality. Improving the stroke connectivity is the most straightforward way to enhance

aesthetic quality. And the EZ-Sketching work [92] should be a good place to seek inspirations

from, which refines user-drawn sketch strokes. Regarding the simple guidance for sketch seg-

mentation, stick-man-like iconic sketches that indicate the desired topology of some category are

a good choice. Producing these iconic sketches is easy for the users, and these iconic sketches

will help a lot when segmenting some sketch categories with complicated topology, i.e. with

intersecting parts. In the long run, simulating professional artists’ sketching styles to produce

more complicated and aesthetically valuable sketching works from given realistic photos could

be the developing direction for sketch synthesis. Hopefully one day, some algorithm can be a

famous artist enthusiastically welcomed by the general public.
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