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|  ABSTRACT  

 

The severity of cardiac dysfunction predicts mortality in septic patients. In this thesis, 

I have investigated the pathophysiology and the novel therapeutic strategy to attenuate 

cardiac dysfunction in experimental sepsis. 

I have developed a model of cardiac dysfunction caused by lipopolysaccharide 

(LPS)/peptidoglycan (PepG) co-administration or polymicrobial sepsis in young and 

old, male and female mice. There is good evidence that females tolerate sepsis better 

than males. Here, I have demonstrated for the first time that the cardiac dysfunction 

caused by sepsis was less pronounced in female than in male mice; this protection 

was associated with cardiac activation of a pro-survival pathway [Akt and endothelial 

nitric oxide synthase], and the decreased activation of a pro-inflammatory signalling 

pathway [nuclear factor (NF)-κB].  

Patients with chronic kidney disease (CKD) requiring dialysis have a higher risk of 

sepsis and a 100-fold higher mortality. Activation of NF-κB is associated with sepsis-

induced cardiac dysfunction and NF-κB is activated by IκB kinase (IKK). Here, I 

have shown that 5/6
th

 nephrectomy for 8 weeks caused a small, but significant, 

cardiomyopathy, cardiac activation of NF-κB and expression of inducible nitric oxide 

synthase (iNOS). When subjected to LPS or polymicrobial sepsis, CKD mice 

exhibited exacerbation of cardiac dysfunction and cardiac activation of NF-κB and 

iNOS expression, which were attenuated by a specific IKK inhibitor (IKK 16). Thus, 

selective inhibition of IKK may represent a novel therapeutic approach for the sepsis-

induced cardiac dysfunction in CKD patients. 

Activation of transient receptor potential vanilloid receptor type 1 (TRPV1) improves 

outcome in sepsis/endotoxaemia. The identity of the endogenous activators of TRPV1 

and the role of the channel in the cardiac dysfunction caused by sepsis/endotoxaemia 

is unknown. Here, I have shown that activation of TRPV1 by 12-(S)-HpETE and 20-

HETE (potent ligands of TRPV1) leads to the release of calcitonin gene-related 

peptide (downstream mediator of TRPV1 activation), which protects the heart against 

the cardiac dysfunction caused by LPS. 
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CHAPTER I | GENERAL INTRODUCTION 

1.1 Sepsis 

1.1.1 Definitions and Diagnosis 

The word sepsis originates from the Greek word “σηψιs”, which refers to 

decomposition of organic matter in the presence of bacteria [1]. Germ theory was the 

basis of the initial view of sepsis, in which pathogens were believed to be the only 

cause of sepsis [2, 3]. However, the failure of decades of intensive efforts to treat 

sepsis with antibiotic therapy alone, led to the new hypothesis that an excessive 

systemic inflammatory response of the host importantly contributes to the 

pathophysiology of sepsis [4]. In 1991, a consensus conference held in Chicago by the 

American College of Chest Physicians (ACCP) and the Society of Critical Care 

Medicine (SCCM) proposed a new definition of sepsis as a systemic inflammatory 

response syndrome (SIRS) as a result of a presumed or proven infectious process 

(Table 1.1) [5]. SIRS is a description of an inflammatory process caused by a wide 

variety of insults (not limited to infection), such as trauma, burns, pancreatitis or 

surgery. The diagnostic criteria for SIRS are based on the presence of two or more of 

the following clinical manifestations: abnormal body temperature, greater heart rate, 

greater respiratory rate, and/or alternated peripheral leukocyte count [5]. Based on 

cardiovascular response and altered organ function, the severity of sepsis was graded 

as severe sepsis, septic shock, multiple organ dysfunction syndrome (MODS) (Table 

1.1) [5]. These concepts have been adopted by clinicians and researchers worldwide 

and have greatly facilitated the written and verbal communications relating to sepsis, 

improved clinical care and served as the foundation for establishing entry criteria for 

clinical trials. However, the diagnostic criteria for SIRS were regarded to be overly 

sensitive and not specific to sepsis. The criteria did not include elevated circulating 

levels of biomarkers for sepsis, such as plasma C-reactive protein (CRP) or 

procalcitonin [6]. 
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Table 1.1 Definitions based on 1991 ACCP/ SCCM Consensus Conference. 

Term Definition 

SIRS Inflammatory process caused by a wide variety of severe insults. It is diagnosed by the 

presence of two or more of the following clinical manifestations:  

(1) body temperature > 38.3ºC or < 36ºC (hyperthermia or hypothermia);  

(2) heart rate > 90 beats/min (tachycardia);  

(3) respiratory rate > 20 breaths/min (tachypnea) or PaCO2 < 32 mm Hg;  

(4) peripheral leukocyte count > 12.000/mm3 or < 4.000/ mm3 or > 10% immature forms 

(bands) (leukocytopenia or leukocytosis). 

Sepsis The SIRS due to presumed or proven infectious process. 

Severe sepsis Sepsis accompanied by organ dysfunction, hypoperfusion or hypotension. 

Septic shock Sepsis accompanied by circulatory collapse evidenced by hypotension despite adequate fluid 

resuscitation.  

Sepsis-induced hypotension is defined as a systolic blood pressure < 90 mm Hg or a 

reduction of ≥40 mm Hg from baseline. 

MODS Manifestation of organ dysfunction in acutely ill patients, so that intervention is needed to 

sustain homeostasis. 

The table displays the definitions of SIRS, sepsis, severe sepsis, septic shock and MODS 

based on 1991 ACCP/SCCM Consensus Conference. PaCO2 = partial pressure of carbon 

dioxide; SIRS = Systemic inflammatory response syndrome. Table modified from Bone et al., 

1992. 
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A second consensus conference was held in Washington D.C. in 2001 sponsored by 

SCCM, ACCP, the European Society of Intensive Care Medicine (ESICM), the 

American Thoracic Society (ATS), and the Surgical Infection Society (SIS), with the 

aim to improve the definitions leading to the diagnosis of sepsis. In order to improve 

the specificity for prompt recognition of sepsis and to better reflect the host response 

to infection, a more comprehensive list of symptoms and signs commonly seen in 

sepsis was added to the diagnostic criteria for sepsis, including the possible clinical 

manifestations and altered biochemical parameters (Table 1.2) [6]. However, it was 

emphasised that none of the listed clinical symptoms or biochemical parameters is 

adequate and/or specific for diagnosing sepsis. For example, increased cardiac output 

can be induced by major surgical interventions or multi-site trauma. Arterial 

hypotension may accompany other conditions, such as haemorrhage or acute 

myocardial infarction. Therefore, it is important for clinicians to include only the 

findings that cannot be explained by other explicit causes when making the 

assessment and diagnosis [6]. Concepts and criteria of severe sepsis and septic shock 

outlined in the 1991 consensus conference remain unchanged and are still valid [6]. 

There are several assessment scales to define organ dysfunction, but the sequential 

organ failure assessment (SOFA) score system was recommended to assess the 

evolving nature of organ dysfunction [7]. 
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Table 1.2 Diagnostic criteria for sepsis based on 2001 ACCP/SCCM/ATS/ 

ESICM/SIS Consensus Conference.  

Infection 

Documented or suspected, and some of the following clinical or biochemical criteria: 

General parameters 

Body temperature > 38.3ºC or < 36ºC (hyperthermia or hypothermia)  

Heart rate > 90 bpm or > 2 SD above the normal value for age (tachycardia) 

Respiratory rate > 20 breaths/min (tachypnea) 

Altered mental status 

Significant edema or positive fluid balance (> 20 mL/kg over 24 h) 

Hyperglycemia (plasma glucose > 110 mg/dL or 7.7 mM/L) in the absence of diabetes 

Inflammatory parameters 

Peripheral leukocyte count > 12.000/mm3 or < 4.000/ mm3 or > 10% immature forms (bands) (leukocytopenia or 

leukocytosis) 

Plasma C-reactive protein > 2 SD above the normal value 

Plasma procalcitonin > 2 SD above the normal value 

Hemodynamic parameters 

Arterial hypotension (systolic blood pressure < 90 mm Hg, mean arterial pressure < 70 mm Hg, or a systolic blood 

pressure decrease > 40 mm Hg in adults or < 2 SD below normal for age) 

Mixed venous oxygen saturation  > 70 % 

Cardiac index > 3.5 L min-1 m-2 

Organ dysfunction parameters 

Arterial hypoxaemia (PaO2/FiO2 < 300) 

Acute decreased urine output (urine output < 0.5 mL kg−1 h−1 or 45 mM/L for at least 2 h) 

Creatinine increase ≥ 0.5 mg/dL 

Coagulation abnormalities (international normalized ratio >1.5 or activated partial thromboplastin time > 60 s) 

Ileus (absent bowl sounds) 

Thrombocytopenia (platelet count < 100 000 /μL) 

Hyperbilirubinaemia (plasma total bilirubin > 4 mg/dL or 70 μmoll/L) 

Tissue perfusion parameters 

Hyperlactatemia (> 3 mmol/L) 

Decreased capillary refill or mottling 
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The table displays the diagnostic criteria for sepsis based on 2001 

SCCM/ACCP/ATS/ESCIM/SIS Consensus Conference, this serves as a supplement for the 

diagnostic definition of sepsis outlined by 1991 ACCP/SCCM Consensus Conference. FiO2 = 

fraction of inspired oxygen; PaO2 = partial pressure of oxygen; SD = standard deviation. 

Table modified from Levy et al., 2003. 

 

 

 

 

 

In addition to modifying the diagnostic criteria of sepsis, the 2001 conference 

proposed a staging system for sepsis - the PIRO concept – that is based on patients’ 

Predisposing conditions, the nature and severity of the infectious insult, the 

host response, and the presence of organ dysfunction (Table 1.3). This concept 

attempted to incorporate host baseline factors and their response to both infectious 

insults and therapy, factors that would impact on sepsis outcome, in characterising the 

severity of sepsis [6]. 
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Table 1.3 PIRO concept based on 2001 SCCM/ACCP/ATS/ESCIM/SIS 

Consensus Conference.  

 Clinical aspects Other tests 

P (predisposing 

conditions) 

Age, alcohol abuse, steroid or 

immunosuppressive therapy 

Immunologic monitoring, genetic factors 

I (insult) Site-specific (e.g., pneumonia, 

peritonitis) 

X-rays, CT scan, bacteriology 

 

R (response) Malaise, temperature, heart rate, 

respiratory rate 

White blood cell count, C-reactive protein, 

procalcitonin, modified activated partial 

thromboplastin time 

O (organ 

dysfunction) 

Arterial pressure, urine output, 

Glasgow coma score 

PaO2/FIO2, creatinine, bilirubin, platelets 

The table displays the staging system for sepsis - the PIRO concept - proposed by 2001 

SCCM/ACCP/ATS/ESCIM/SIS Consensus Conference. CT = computed tomography; FiO2 = 

fraction of inspired oxygen; PaO2 = partial pressure of oxygen. Table modified from Silva et 

al., 2008. 
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1.1.2  Epidemiology 

Sepsis has been recognised as one of the most common causes of morbidity and 

mortality among admissions to the intensive care unit (ICU). Epidemiological studies 

of both incidence and mortality of sepsis showed remarkably constant high rates 

worldwide. An unacceptably high mortality rate of 46% was reported in patients with 

severe sepsis admitted to intensive care units between 1995 and 2000 in Britain [8]. A 

study based on the data from the Intensive Care National Audit & Research Centre 

Case Mix Programme Database in Britain identified an increase in the percentage of 

patients with severe sepsis admitted to ICU from 23.5% in 1996 to 28.7% in 2004. 

Although the in-hospital mortality rate for patients with severe sepsis decreased from 

48.3% in 1996 to 44.7% in 2004, the total number of patients that died from sepsis 

has risen by 55.6% due to the increase in the incidence of sepsis at the same time [9]. 

The incidence of severe sepsis in the United States was estimated as being 300 cases 

per 100,000 people annually (751,000 cases per year) with a death rate of 28.6%. The 

incidence of severe sepsis was shown to increase by 1.5% annually [10]. Similarly, 

another study on sepsis incidence in the United States estimated 240 cases of sepsis 

per 100,000 people with a mortality rate of 17.9% [11]. In European countries, septic 

patients were reported to account for 37.4% of overall admissions to ICU [12]. A 

French study reported that 8.4% of ICU admissions were diagnosed as septic shock 

and the death rate was 60% [13]. A study conducted in Brazil showed incidence of 

admissions to the ICU with sepsis, severe sepsis and septic shock were 61.4, 35.6 and 

30.0 per 1000 patient-days, respectively, with the mortality rate progressing from 

34.7% to 47.3% and 52.2%, respectively [14]. The increase in incidence and mortality 

of sepsis is thought to be due to aging of the population, increased incidence of 

comorbidities, more widely used immunosuppressive treatments, increased 

accessibility to invasive medical procedures and increased chance of multidrug-

resistant infections [15]. 

A Spanish epidemiological study provided clear evidence of the impact of organ 

dysfunction on morbidity and mortality in sepsis [16]. The authors reported that 78% 

of patients had MODS at the time of the diagnosis of sepsis, and both persistence and 

evolution of organ dysfunction were major contributors to mortality in these patients, 

which reflected in an increase in SOFA scores over time in non-survivors in 
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comparison with survivors [16]. Comorbidities were reported to increase the risk and 

worsen the outcome of sepsis [17], this may be because that pre-existence of 

comorbidity was correlated with aggravated organ dysfunction [11, 18]. 

It should be noted that most epidemiological studies were based on the evaluation of 

septic patients admitted to the ICU, and this may bias the result and underestimate the 

incidence of sepsis in the general population. The reason is that not all septic patients 

are treated in ICUs, due to different criteria for eligibility of ICU admission between 

countries and regions, different availability of critical care resources such as ICU beds 

and unequal access to medical care facilities caused by cultural or economic factors 

[19, 20]. These problems should be overcome by studying the incidence, morbidity 

and mortality of sepsis based on the data recorded from an entire population or 

correctly weighted samples [15]. 

1.1.3 Therapeutic Approaches 

The speed of identifying sepsis and appropriate intensive care within the first hour 

after diagnosis will influence morbidity and mortality. In order to provide evidence 

for the best clinical practice for intensive care treatments of septic patients, the 

ESICM, the International Sepsis Forum (ISF), and the SCCM developed and initiated 

the Surviving Sepsis Campaign (SSC) in 2002. In 2004, a group of selected 

international clinicians, who were regarded as experts in the diagnosis and treatment 

of infectious disease and sepsis and represented 11 professional societies, published 

the first internationally accepted, evidence-based guidelines for the therapy of septic 

patients, aiming at disseminating the knowledge derived from current clinical 

evidence to bedside practice, improving critical care and decreasing relative risk of 

death. [21]. Joined by the other 7 international organizations, the group of experts 

came together again in 2006 and 2007, and updated the guidelines using a new 

grading system to guide assessment for rating quality of evidence and determining the 

strength of the recommendations [22]. Based on the most recent clinical evidence, 68 

international experts representing 30 professional societies met in 2012 to provide a 

further update to the guidelines published in 2008 using the same evidence-based 

grading system. The latest guidelines published in 2013 recommended standardized 

care for a patient with severe sepsis or septic shock, including procedures of initial 

resuscitation, control of infection, and other supportive therapy (Table 1.4) [23].  
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However, it was emphasised by the committee that the clinician’s decision-making 

capability should not be replaced by these guidelines when the clinician is facing a 

unique set of clinical manifestations in any given patient. In addition, it should be 

noted that clinicians in some regions or countries might not be able to implement 

particular recommendations due to limited availability of critical care resources [22]. 
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Table 1.4 Guidelines for management of severe sepsis and septic shock based on 

SSC, 2012. 

A. Initial resuscitation 

1. Protocolized, quantitative resuscitation of patients with sepsis-induced tissue hypoperfusion (defined in this 

document as hypotension persisting after initial fluid challenge or blood lactate concentration ≥ 4 mmol/L). Goals 

during the first 6 h of resuscitation: 

(a) Central venous pressure 8 - 12 mmHg 

(b) Mean arterial pressure (MAP) ≥ 65 mmHg 

(c) Urine output ≥ 0.5 mL kg-1 h 

(d) Central venous (superior vena cava) or mixed venous oxygen saturation 70 or 65 %, respectively (grade 1C) 

2. In patients with elevated lactate levels targeting resuscitation to normalize lactate as rapidly as possible (grade 

2C) 

B. Screening for sepsis and performance improvement 
1. Routine screening of potentially infected seriously ill patients for severe sepsis to allow earlier implementation 

of therapy (grade 1C) 

2. Hospital-based performance improvement efforts in severe sepsis (UG) 

C. Diagnosis 

1. Cultures as clinically appropriate before antimicrobial therapy if no significant delay (＞ 45 min) in the start of 

antimicrobial(s) (grade1C). At least 2 sets of blood cultures (both aerobic and anaerobic bottles) be obtained 

before antimicrobial therapy with at least 1 drawn percutaneously and 1 drawn through each vascular access 

device, unless the device was recently (＜ 48 h) inserted (grade 1C) 

2. Use of the 1,3 β-D-glucan assay (grade 2B), mannan and anti-mannan antibody assays (2C), if available and 

invasive candidiasis is in differential diagnosis of cause of infection. 

3. Imaging studies performed promptly to confirm a potential source of infection (UG) 

D. Antimicrobial therapy 

1. Administration of effective intravenous antimicrobials within the first hour of recognition of septic shock (grade 

1B) and severe sepsis without septic shock (grade 1C) as the goal of therapy 

2a. Initial empiric anti-infective therapy of one or more drugs that have activity against all likely pathogens 

(bacterial and/or fungal or viral) and that penetrate in adequate concentrations into tissues presumed to be the 

source of sepsis (grade 1B) 

2b. Antimicrobial regimen should be reassessed daily for potential de-escalation (grade 1B) 

3. Use of low procalcitonin levels or similar biomarkers to assist the clinician in the discontinuation of empiric 

antibiotics in patients who initially appeared septic, but have no subsequent evidence of infection (grade 2C) 

4a. Combination empirical therapy for neutropenic patients with severe sepsis (grade 2B) and for patients with 

difficult to treat, multidrug-resistant bacterial pathogens such as Acinetobacter and Pseudomonas spp. (grade 2B). 

For patients with severe infections associated with respiratory failure and septic shock, combination therapy with 

an extended spectrum beta-lactam and either an aminoglycoside or a fluoroquinolone is for P. aeruginosa 

bacteremia (grade 2B). A combination of beta-lactam and macrolide for patients with septic shock from 

bacteremic Streptococcus pneumoniae infections (grade 2B) 

4b. Empiric combination therapy should not be administered for more than 3 - 5 days. De-escalation to the most 

appropriate single therapy should be performed as soon as the susceptibility profile is known (grade 2B) 

5. Duration of therapy typically 7 - 10 days; longer courses may be appropriate in patients who have a slow 

clinical response, undrainable foci of infection, bacteremia with S. aureus; some fungal and viral infections or 

immunologic deficiencies, including neutropenia (grade 2C) 

6. Antiviral therapy initiated as early as possible in patients with severe sepsis or septic shock of viral origin (grade 

2C) 

7. Antimicrobial agents should not be used in patients with severe inflammatory states determined to be of 

noninfectious cause (UG) 

E. Source control 

1. A specific anatomical diagnosis of infection requiring consideration for emergent source control be sought and 

diagnosed or excluded as rapidly as possible, and intervention be undertaken for source control within the first 12 

h after the diagnosis is made, if feasible (grade 1C) 

2. When infected peri-pancreatic necrosis is identified as a potential source of infection, definitive intervention is 

best delayed until adequate demarcation of viable and nonviable tissues has occurred (grade 2B) 

3. When source control in a severely septic patient is required, the effective intervention associated with the least 



                                                         GENERAL INTRODUCTION 

   
 

 33 

physiologic insult should be used (e.g., percutaneous rather than surgical drainage of an abscess) (UG) 

4. If intravascular access devices are a possible source of severe sepsis or septic shock, they should be removed 

promptly after other vascular access has been established (UG) 

F. Infection prevention 

1a. Selective oral decontamination and selective digestive decontamination should be introduced and investigated 

as a method to reduce the incidence of ventilator-associated pneumonia; This infection control measure can then 

be instituted in health care settings and regions where this methodology is found to be effective (grade 2B) 

1b. Oral chlorhexidine gluconate be used as a form of oropharyngeal decontamination to reduce the risk of 

ventilator-associated pneumonia in ICU patients with severe sepsis (grade 2B) 

G. Fluid therapy of severe sepsis 

1. Crystalloids as the initial fluid of choice in the resuscitation of severe sepsis and septic shock (grade 1B) 

2. Against the use of hydroxyethyl starches for fluid resuscitation of severe sepsis and septic shock (grade 1B) 

3. Albumin in the fluid resuscitation of severe sepsis and septic shock when patients require substantial amounts of 

crystalloids (grade 2C) 

4. Initial fluid challenge in patients with sepsis-induced tissue hypoperfusion with suspicion of hypovolemia to 

achieve a minimum of 30 mL/kg of crystalloids (a portion of this may be albumin equivalent). More rapid 

administration and greater amounts of fluid may be needed in some patients (grade 1C) 

5. Fluid challenge technique be applied wherein fluid administration is continued as long as there is hemodynamic 

improvement either based on dynamic (e.g., change in pulse pressure, stroke volume variation) or static (e.g., 

arterial pressure, heart rate) variables (UG) 

H. Vasopressors 

1. Vasopressor therapy initially to target a mean arterial pressure (MAP) of 65 mm Hg (grade 1C) 

2. Norepinephrine (NE) as the first choice vasopressor (grade 1B) 

3. Epinephrine (added to and potentially substituted for norepinephrine) when an additional agent is needed to 

maintain adequate blood pressure (grade 2B) 

4. Vasopressin 0.03 units/min can be added to norepinephrine with intent of either raising MAP or decreasing NE 

dosage (UG) 

5. Low dose vasopressin is not recommended as the single initial vasopressor for treatment of sepsis-induced 

hypotension and vasopressin doses higher than 0.03-0.04 units/min should be reserved for salvage therapy (failure 

to achieve adequate MAP with other vasopressor agents) (UG) 

6. Dopamine as an alternative vasopressor agent to NE only in highly selected patients (e.g., patients with low risk 

of tachyarrhythmias and absolute or relative bradycardia) (grade 2C) 

7. Phenylephrine is not recommended in the treatment of septic shock except in circumstances where (a) 

norepinephrine is associated with serious arrhythmias, (b) cardiac output is known to be high and blood pressure 

persistently low or (c) as salvage therapy when combined inotrope/vasopressor drugs and low dose vasopressin 

have failed to achieve MAP target (grade 1C) 

8. Low-dose dopamine should not be used for renal protection (grade 1A) 

9. All patients requiring vasopressors have an arterial catheter placed as soon as practical if resources are available 

(UG) 

I. Inotropic therapy 

1. A trial of dobutamine infusion up to 20 micrograms/kg/min be administered or added to vasopressor (if in use) 

in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac 

output, or (b) ongoing signs of hypoperfusion, despite achieving adequate intravascular volume and adequate MAP 

(grade 1C) 

2. Not using a strategy to increase cardiac index to predetermined supranormal levels (grade 1B) 

J. Corticosteroids 

1. Not using intravenous hydrocortisone to treat adult septic shock patients if adequate fluid resuscitation and 

vasopressor therapy are able to restore hemodynamic stability (see goals for Initial Resuscitation). In case this is 

not achievable, we suggest intravenous hydrocortisone alone at a dose of 200 mg per day (grade 2C) 

2. Not using the ACTH stimulation test to identify adults with septic shock who should receive hydrocortisone 

(grade 2B) 

3. In treated patients hydrocortisone tapered when vasopressors are no longer required (grade 2D) 

4. Corticosteroids not be administered for the treatment of sepsis in the absence of shock (grade 1D) 

5. When hydrocortisone is given, use continuous flow (grade 2D) 

K. Blood product administration 

1. Once tissue hypoperfusion has resolved and in the absence of extenuating circumstances, such as myocardial 

ischaemia, severe hypoxemia, acute haemorrhage, or ischemic heart disease, we recommend that red blood cell 
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transfusion occur only when haemoglobin concentration decreases to ＜ 7.0 g/dL to target a haemoglobin 

concentration of 7.0 - 9.0 g/dL in adults (grade 1B) 

2. Not using erythropoietin as a specific treatment of anaemia associated with severe sepsis (grade 1B) 

3. Fresh frozen plasma not be used to correct laboratory clotting abnormalities in the absence of bleeding or 

planned invasive procedures (grade 2D) 

4. Not using anti-thrombin for the treatment of severe sepsis and septic shock (grade 1B) 

5. In patients with severe sepsis, administer platelets prophylactically when counts are ≤ 10,000/mm3 (10 ⅹ109/L) 

in the absence of apparent bleeding. We suggest prophylactic platelet transfusion when counts are ≤20,000/mm3 

(20 ⅹ 109/L) if the patient has a significant risk of bleeding. Higher platelet counts (≥ 50,000/mm3 [50 ⅹ 109/L]) 

are advised for active bleeding, surgery, or invasive procedures (grade 2D) 

L. Immunoglobulins 

1. Not using intravenous immunoglobulins in adult patients with severe sepsis or septic shock (grade 2B) 

M. Selenium 

1. Not using intravenous selenium for the treatment of severe sepsis (grade 2C) 

N. History of Recommendations Regarding Use of Recombinant Activated Protein C (rhAPC) 

A history of the evolution of SSC recommendations as to rhAPC (no longer available) is provided. 

O. Mechanical ventilation of sepsis-induced acute respiratory distress syndrome (ARDS) 

1. Target a tidal volume of 6 mL/kg predicted body weight in patients with sepsis-induced ARDS (grade 1A vs. 12 

mL/kg) 

2. Plateau pressures be measured in patients with ARDS and initial upper limit goal for plateau pressures in a 

passively inflated lung be ≤ 30 cm H2O (grade 1B) 

3. Positive end-expiratory pressure (PEEP) be applied to avoid alveolar collapse at end expiration (atelectotrauma) 

(grade 1B) 

4. Strategies based on higher rather than lower levels of PEEP be used for patients with sepsis - induced moderate 

or severe ARDS (grade 2C) 

5. Recruitment maneuvers be used in sepsis patients with severe refractory hypoxemia (grade 2C) 

6. Prone positioning be used in sepsis-induced ARDS patients with a PaO2/FIO2 ratio ≤ 100 mm Hg in facilities 

that have experience with such practices (grade 2B) 

7. That mechanically ventilated sepsis patients be maintained with the head of the bed elevated to 30 - 45 degrees 

to limit aspiration risk and to prevent the development of ventilator-associated pneumonia (grade 1B) 

8. That noninvasive mask ventilation (NIV) be used in that minority of sepsis - induced ARDS patients in whom 

the benefits of NIV have been carefully considered and are thought to outweigh the risks (grade 2B) 

9. That a weaning protocol be in place and that mechanically ventilated patients with severe sepsis undergo 

spontaneous breathing trials regularly to evaluate the ability to discontinue mechanical ventilation when they 

satisfy the following criteria: a) arousable; b) hemodynamically stable (without vasopressor agents); c) no new 

potentially serious conditions; d) low ventilatory and end – expiratory pressure requirements; and e) low FIo2 

requirements which can be met safely delivered with a face mask or nasal cannula. If the spontaneous breathing 

trial is successful, consideration should be given for extubation (grade 1A). 

10. Against the routine use of the pulmonary artery catheter for patients with sepsis-induced ARDS (grade 1A). 

11. A conservative rather than liberal fluid strategy for patients with established sepsis-induced ARDS who do not 

have evidence of tissue hypoperfusion (grade 1C) 

12. In the absence of specific indications such as bronchospasm, not using beta 2 - agonists for treatment of sepsis 

- induced ARDS (Grade 1B) 

P. Sedation, analgesia, and neuromuscular blockade in sepsis 

1. Continuous or intermittent sedation be minimized in mechanically ventilated sepsis patients, targeting specific 

titration endpoints (grade 1B) 

2. Neuromuscular blocking agents (NMBAs) be avoided if possible in the septic patient without ARDS due to the 

risk of prolonged neuromuscular blockade following discontinuation. If NMBAs must be maintained, either 

intermittent bolus as required or continuous infusion with train - of - four monitoring of the depth of blockade 

should be used (grade 1C) 

3. A short course of NMBA of not greater than 48 h for patients with early sepsis-induced ARDS and a PaO2/FIO2 

＜ 150 mm Hg (grade 2C) 

Q. Glucose control 

1. A protocolized approach to blood glucose management in ICU patients with severe sepsis commencing insulin 

dosing when 2 consecutive blood glucose levels are ＞ 180 mg/dL. This protocolized approach should target an 

upper blood glucose ≤ 180 mg/dL rather than an upper target blood glucose ≤ 110 mg/dL (grade 1A) 

2. blood glucose values be monitored every 1 - 2 hrs until glucose values and insulin infusion rates are stable and 
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then every 4 hrs thereafter (grade 1C) 

3. glucose levels obtained with point - of - care testing of capillary blood be interpreted with caution, as such 

measurements may not accurately estimate arterial blood or plasma glucose values (UG) 

R. Renal replacement therapy 

1. Continuous renal replacement therapies and intermittent haemodialysis are equivalent in patients with severe 

sepsis and acute renal failure (grade 2B) 

2. Use continuous therapies to facilitate management of fluid balance in haemodynamically unstable septic 

patients (grade 2D) 

S. Bicarbonate therapy 

1. Not using sodium bicarbonate therapy for the purpose of improving haemodynamics or reducing vasopressor 

requirements in patients with hypoperfusion-induced lactic acidaemia with pH ≥ 7.15 (grade 2B) 

T. Deep vein thrombosis prophylaxis 

1. Patients with severe sepsis receive daily pharmacoprophylaxis against venous thromboembolism (VTE) (grade 

1B). This should be accomplished with daily subcutaneous low-molecular weight heparin (LMWH) (grade 1B 

versus twice daily UFH, grade 2C versus three times daily UFH). If creatinine clearance is ＜ 30 mL/min, use 

dalteparin (grade 1A) or another form of LMWH that has a low degree of renal metabolism (grade 2C) or UFH 

(grade 1A) 

2. Patients with severe sepsis be treated with a combination of pharmacologic therapy and intermittent pneumatic 

compression devices whenever possible (grade 2C) 

3. Septic patients who have a contraindication for heparin use (e.g, thrombocytopenia, severe coagulopathy, active 

bleeding, recent intracerebral haemorrhage) not receive pharmacoprophylaxis (grade 1B), but receive mechanical 

prophylactic treatment, such as graduated compression stockings or intermittent compression devices (grade 2C), 

unless contraindicated. When the risk decreases start pharmacoprophylaxis (grade 2C) 

U. Stress ulcer prophylaxis 

1. Stress ulcer prophylaxis using H2 blocker or proton pump inhibitor be given to patients with severe sepsis/septic 

shock who have bleeding risk factors (grade 1B) 

2. When stress ulcer prophylaxis is used, proton pump inhibitors rather than H2RA (grade 2D) 

3. Patients without risk factors do not receive prophylaxis (grade 2B) 

V. Nutrition 

1. Administer oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision 

of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (grade 2C) 

2. Avoid mandatory full caloric feeding in the first week but rather suggest low dose feeding (e.g., up to 500 

calories per day), advancing only as tolerated (grade 2B) 

3. Use intravenous glucose and enteral nutrition rather than total parenteral nutrition (TPN) alone or parenteral 

nutrition in conjunction with enteral feeding in the first 7 days after a diagnosis of severe sepsis/septic shock 

(grade 2B) 

4. Use nutrition with no specific immunomodulating supplementation rather than nutrition providing specific 

immunomodulating supplementation in patients with severe sepsis (grade 2C) 

W. Setting goals of care 

1. Discuss goals of care and prognosis with patients and families (grade 1B) 

2. Incorporate goals of care into treatment and end-of-life care planning, utilizing palliative care principles where 

appropriate (grade 1B) 

3. Address goals of care as early as feasible, but no later than within 72 h of ICU admission (grade 2C) 

The table displays the international guidelines for management of severe sepsis and septic 

shock recommended by 2012 SSC. The recommendations were made according to the 

Grading of Recommendations Assessment Development and Evaluation (GRADE) system to 

guide assessment for rating quality of evidence from high (A) to very low (D) and 

determining the strength of recommendations as strong (1) or weak (2). UG = ungraded. 

Table adapted from Dellinger et al., 2013. 
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In addition to publishing guidelines, the Surviving Sepsis Campaign Management 

Bundles have been put forward by the committee in 2008, including “the 6-h 

resuscitation bundle” and “the 24-h management bundle” [22]. Each bundle 

comprises of 4 to 5 evidence-based procedures, which (when implemented together) 

are expected to reduce the mortality of sepsis more than the individual interventions 

alone. Indeed, enhanced compliance with recommended bundles was paralleled with 

improved sepsis care and a reduction in mortality rate of sepsis by 5% - 7% 

throughout Europe, America [24] and Spain [25]. An analysis of nearly 32,000 

patients from 239 hospitals that distributed in 17 countries in 2011 contributed to an 

updated version of sepsis bundles in conjunction with the guidelines published in 

2013, which dropped the management bundle and divided the resuscitation bundle 

into two sections (Table 1.5) [23].  
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Table 1.5 Surviving sepsis campaign care bundles provided by SSC, 2012. 

To be completed within 3 h 

1) Measure lactate level 

2) Obtain blood cultures prior to administration of antibiotics 

3) Administer broad spectrum antibiotics 

4) Administer 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L 

To be completed within 6 h 

5) Apply vasopressors (for hypotension that does not respond to initial fluid resuscitation) to maintain a mean 

arterial pressure (MAP) ≥ 65 mm Hg 

6) In the event of persistent arterial hypotension despite volume resuscitation (septic shock) or initial lactate ≥ 4 

mmol/L (36 mg/dL): 

- Measure central venous pressure (CVP) (target CVP: ≥ 8 mm Hg) 

- Measure central venous oxygen saturation (ScvO2) (target ScvO2: ≥ 70%) 

7) Remeasure lactate if initial lactate was elevated 

The table displays the Surviving sepsis campaign care bundles recommended by 2012 SSC. 

Table adapted from Dellinger et al., 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                         GENERAL INTRODUCTION 

   
 

 38 

The recombinant human activated protein C (rhAPC) product - drotrecogin alfa was 

approved in a number of countries in 2001 for the treatment of patients with severe 

sepsis which do not have a bleeding risk (contraindication). This decision was based 

on the rhAPC Worldwide Evaluation in Severe Sepsis (PROWESS) clinical trial, 

which involved 1,690 patients with severe sepsis and with a high risk of death and 

demonstrated a reduction in mortality rate by 6% with drotrecogin alfa in comparison 

with the placebo group [26]. Therefore, the use of rhAPC or drotrecogin alfa was 

recommended by the SSC guidelines published in 2004 with a quality of evidence of 

grade B [21]. However, an additional clinical trial in 2005 which enrolled 11,000 

septic patients with a low risk of death and single organ dysfunction showed no 

beneficial treatment effect of drotrecogin alfa, and this lack of effect was associated 

with an increased bleeding risk [27]. Following this study, the usage of drotrecogin 

alfa should, according to the 2008 SSC guidelines, be limited to the patients with a 

high risk of death and multiple organ dysfunction, the quality of evidence was also 

downgraded from B to C [22]. In line with the previous study, the PROWESS 

SHOCK trial of 1,696 patients with severe sepsis or septic shock released in 2011 

failed to show a survival improvement with the treatment of drotrecogin alfa. 

Drotrecogin alfa was then withdrawn from the market and the usage of the drug was 

therefore stopped. (http://www.fda.gov/Drugs/DrugSafety/DrugSafetyPodcasts/ucm277212.htm). 

With the progress being made in uncovering the underlying mechanism(s) of sepsis, 

innovative therapies have been proposed, including a number of interventions that 

modulate inflammation. Clinical trials trying to block the effects of individual 

cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β failed, 

suggesting that it may be important to develop anti-inflammatory drugs, which 

suppress multiple inflammatory factors and, thus, blocking general inflammation in 

sepsis. The other reason for the failure of anti-inflammatory therapies may be due to 

the fact that a secondary immunosuppressed state was shown to accompany the 

initially profound pro-inflammatory state in sepsis, which may impair the host 

response to secondary infections [28]. A third explanation may be that these therapies 

were simply given too late in man to be effective. 

Apart from their lipid-lowering effects, statins have been reported to increase survival 

in septic patients [29], probably through their pleiotropic anti-inflammatory 
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properties. Simvastatin improves coronary perfusion and myocardial performance in 

animals challenged with bacterial toxins [30]. However, further research need to be 

done before the application of statins becomes accepted in the clinical practice for 

treating sepsis. A recent large cohort study showed administration of low doses of 

anti-inflammatory agent acetyl salicylic acid (ASA) within 24 h of the onset of sepsis 

was strongly associated with lower mortality in ICU patients, but it was also found the 

treatment might cause increased risk of renal injury [31]. Further studies are needed to 

elucidate the roles of ASA and other drugs with potential therapeutic effects on sepsis.  

1.1.4 Pathophysiology 

1.1.4.1 Pathogens 

The occurrence of Gram-positive bacterial infection-caused sepsis increased over time 

[11, 12]. Gram-negative organisms, however, still play a predominant role for as 

cause of many infections, as has been reported recently in the European Prevalence of 

Infection in Intensive Care (EPIC II) study [32]. Gram-negative infections accounted 

for 62% of cases with positive isolates, with the predominant species being 

Pseudomonas auruginosa (19.9%) or Escherichia coli (16%); Gram-positive 

organisms caused 46.8% of all cases, predominated by Staphylococcus aureus 

(20.5%); fungi were identified in 19.4% of cases (Table 1.6). However, blood culture 

results were negative in approximately 30% of all cases [32]. Gram-negative 

bacteraemia was also associated with an increased risk of mortality in comparison 

with Gram-positive bacteraemia [33]. The respiratory tract, especially the lung, is the 

most common focus of infection in patients with sepsis, and this focus is also 

associated with the highest risk of death [18]. Abdomen, renal/urinary tract, skin, 

catheter-related operations and the central nervous system are other common sources 

of infection [32]. 
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Table 1.6 Types of organisms and infection frequency
a
 in microbiological 

culture-positive infected patients based on the European Prevalence of Infection 

in Intensive Care (EPIC II) study. 

Microorganism Frequency (%) Microorganism Frequency (%) Microorganism Frequency (%) 

Gram-negative 62.2 Gram-positive 46.8 Fungi 19.4 

Escherichia coli 16.0 Staphylococcus 

aureus 

20.5 Candida 17 

Enterobacter 7.0 MRSA 10.2 Aspergillus 1.4 

Klebsiella species 12.7 S epidermidis 10.8 Other 1 

Pseudomonas 

species 

19.9 Streptococcus 

pneumoniae 

4.1 Anaerobes 4.5 

Acinetobacter 

species 

8.8 VSE 7.1 Other bacteria 1.5 

Other 17.0 VRE 3.8 Parasites 0.7 

  Other 6.4 Other organisms 3.9 

ESBL = extended-spectrum β-lactamases; MRSA = methicillin-resistant Staphylococcus 

aureus; VRE = vancomycin-resistant Enterococcus; VSE = vancomycin-sensitive 

Enterococcus. 
a
Percentages do not necessarily equal 100, because patients may have had 

more than 1 type of infection or microorganism. Table modified from Vincent et al., 2009. 
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The innate immune system recognises bacteria via conserved molecular structures.  

These motifs in bacteria are known as pathogen-associated molecular patterns 

(PAMPs) and PAMPs are essential for initiating both host immune response and 

cytokine expression [34]. Lipopolysaccharide (LPS), also known as endotoxin, is a 

crucial PAMP in Gram-negative bacteria. It presents in the outer membrane of the cell 

wall of Gram-negative bacteria. The conserved lipid A portion of LPS contributes to 

its toxicity and is associated with the LPS-induced activation of host cell membranes 

[35]. In Gram-positive bacteria, peptidoglycan (PepG) and lipoteichoic acid (LTA) 

play dominant roles, although their activities are much less than that of LPS. They are 

components of cell walls in the Gram-positive bacteria and can be sensed by host cell-

surface receptors, thus initiating inflammatory response [36, 37]. These molecular 

patterns are also able to act synergistically to cause innate immune cells activation, 

release of inflammatory cytokines [38] and multiple organ failure [39]. Additionally, 

bacterial superantigens produced by Staphylococcus aureus and Streptococcus 

pyogenes stimulate large numbers of T cells and cause a sudden release of cytokines 

into the blood stream [40]. 

1.1.4.2 Pattern Recognition Receptors  

Pathogens and PAMPs are sensed by families of conserved germline-encoded pattern 

recognition receptors (PRRs) expressed by innate immune cells, such as 

macrophages, dendritic cells, and neutrophils [41, 42]. There are several families of 

PRRs have been characterised, including Toll-like receptors (TLRs) and C-type lectin 

receptors (CLRs), most of which are located on the cell surface, as well as nucleotide-

binding oligomerisation domain (NOD)-like receptors (NLRs) and retinoic acid 

inducible gene I-like receptors (RLRs), which reside in the cytoplasm [43]. Each PRR 

detects corresponding PAMPs (Table 1.7). Generally, TLRs and NLRs are primarily 

crucial in recognising bacteria [44, 45], while RLRs play important roles in 

recognising viruses [46]. Additionally, CLRs are crucial for recognising fungi and 

mycobacteria [47, 48]. The recognition of PAMPs by PRRs initiates an innate 

immune response and induces production of pro-inflammatory and anti-inflammatory 

mediators via the activation of multiple transcription factors, such as nuclear factor 

(NF)-κB and interferon regulatory factors (IRFs) [49]. Effective activation of PRRs 

by PAMPs is essential for killing and elimination of invading pathogens by the host, 
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however, over-activation of PRRs may cause systemic inflammatory response and 

elicit harmful damage to the host [50]. Among these four categories of PPRs, TLRs 

and NLRs are the most extensively studied PPR families. 

Table 1.7 Overview of specific ligands for PRRs, according to PRR family. 

Recognised PAMP Origin of the PAMP 

NLRs  

NOD1 

Muramyl tripeptide 

peptidoglycans  

 

Gram-negative bacteria 

NOD2 

Muramyl dipeptide 

peptidoglycans  

 

Gram-positive bacteria 

NLRP1 

Anthrax toxin  

 

Bacillus anthracis 

NLRP3 

Peptidoglycans  

Bacterial toxins  

 

Bacteria 

Listeria, staphylococcus 

 

NLRC4 

Flagellin  

 

Shigella, salmonella, 

legionella 

AIM2 

dsDNA  

 

Francisella tularensis 

CLRs  

Mannose receptor 

Fungal mannans  

 

Candida 

 

Dectin-1 

Beta-1,3-glucans 

 

Fungi 

Dectin-2–FcRγ 

Mannans  

 

Candida hyphae 

MINCLE–FcRγ  

Mannans  

Mycobacterial cord factor  

 

Candida 

Mycobacteria 

Mannose-binding lectin 

Repetitive oligosaccharides  

 

Bacteria and fungi 

 

Recognised PAMP Origin of the PAMP 

TLRs  

TLR2-1 

Triacyl lipopeptides 

 

Bacteria 

TLR2-2 

Peptidoglycan 

Lipoarabinomannan 

Phospholipomannan  

Glycosylphosphatidy- 

linositol  

 

Bacteria 

Mycobacteria 

Candida 

Trypanosoma 

TLR2-6 

Diacyl lipopeptides 

Lipoteichoic acid  

Zymosan  

 

Mycoplasma 

Streptococcus 

Saccharomyces 

TLR3 

ssRNA virus 

dsRNA virus 

 

West Nile virus 

Reovirus 

TLR4 

Lipopolysaccharide  

Fungal mannans  

Envelope proteins  

 

Gram-negative bacteria 

Candida 

Respiratory syncytial virus 

TLR5 

Flagellin  

 

Flagellated bacteria 

TLR7 and TLR8 

ssRNA viruses  

 

Influenza virus, vesicular 

stomatitis virus 

TLR9 

dsDNA viruses  

CpG motifs  

 

Herpes simplex virus 

Bacterial and fungal DNA 

RLRs  

MDA5 

Long dsRNA  

 

Picornaviruses, reoviruses, 

flaviviruses 

RIG-I 

Short dsRNA  

 

 

5’ Triphosphate ssRNA  

 

 

Paramyxoviruses, 

orthomyxoviruses, 

rhabdoviruses, flaviviruses 

Paramyxoviruses, 

orthomyxoviruses, 

rhabdoviruses, 

flaviviruses 
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The table displays PRRs and their specific Pathogen-Associated Molecular Pattern (PAMP) 

Ligands, according to PPR family. CLRs = C-type lectin receptors; CpG = cytosine phosphate 

guanidine; ds = double-stranded; FcRγ = Fc receptor IgE high-affinity I gamma polypeptide; 

MDA5 = melanoma differentiation-associated protein 5; MINCLE = macrophage-inducible 

C-type lectin; NLRs = nucleotide-binding oligomerisation domain (NOD)-like receptors; 

NLRC4 = NLR family CARD-domain–containing protein 4 (also known as IPAF), NLRP = 

NOD leucine-rich-repeat and pyrin domain–containing protein; RIG-I = retinoic acid 

inducible gene I protein; RLRs = retinoic acid inducible gene I-like receptors; ss = single-

stranded, TLRs = toll-like receptors, TLR2-1 = TLR2–TLR1 heterodimers; TLR2-2 = TLR2–

TLR2 heterodimers; TLR2-6 = TLR2–TLR6 heterodimers. Table modified from Netea et al., 

2011. 

 

 

 

 

 

 

Toll-Like Receptors 

Toll was first described in Drosophila mutant for its effect in controlling dorsal-

ventricular polarity during embryogenesis [51]. The Toll gene was later revealed to be 

able to affect the immune response of Drosophila to fungal infections [52]. To date, 

10 functional TLRs have been identified in humans, and 12 have been found in mice. 

TLR1, TLR2, TLR4, TLR5, and TLR6 reside on the cell surface and are primarily 

responsible for sensing PAMPs that originate from bacteria and fungi; TLR3, 7, 8 and 

9 are expressed in the endosomal compartments, where they play a critical role in 

sensing nuclear acid originated from bacteria and viruses (see Table 1.7 for receptors 

and ligands) [41]. The extracellular domain of all TLRs is quite conserved and 

contains varying numbers of leucine-rich repeats (LRR); this domain is responsible 

for the recognition of PAMPs. The extracellular domain of TLRs is connected with 

the cytosolic carboxy-terminal domain known as Toll/IL-1R (TIR) domain via a 

single transmembrane helix [53]. TIR domain is essential for the transduction of 

downstream signalling. TLR signalling is initially triggered by the interaction 

between the activated cytosolic TIR domain and recruited adaptor molecules, which 

includes myeloid differentiation primary response gene 88 (MyD88), Toll/interleukin 

1 receptor domain-containing adapter inducing IFN-β(TRIF), TRIF-related adaptor 
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molecule (TRAM) and TIR-containing adaptor protein (TIRAP). TLR signalling can 

be roughly divided into two categories based on the usage of different adaptor 

molecules, the MyD88-dependent and TRIF-dependent pathways. All TLRs utilize 

MyD88 as the adaptor molecule, with the exception of TLR3, which recruits TRIF 

exclusively to initiate downstream signalling [54].  

TLR4 is the only receptor among all TLRs, which activates both MyD88-dependent 

and TRIF-dependent pathways, via recruitment all four adaptor molecules [54]. TLR4 

recognises LPS and triggers LPS signalling during endotoxaemia [55]. LPS is first 

sensed by an endogenous LPS binding protein (LBP). Together they form the LPS-

LBP complex, which binds to CD14 on the cell surface. CD14 then transfers LPS to 

the co-receptor of TLR4, myeloid differentiation protein-2 (MD2), this leads to the 

formation of a TLR4 homodimer [56]. Once TLR4 homodimerises and is activated, 

two downstream signalling cascades are initiated by recruitment of two distinct 

adaptor molecules, MyD88 and TRIF. TLR4 first recruits TIRAP at the cell 

membrane, followed by the recruitment of MyD88 and, thus, induction of the 

MyD88-dependent pathway. TLR4 is subsequently trafficked to the endosome 

followed by its phagocytosis, and recruits TRAM and TRIF to form a signalling 

complex, which initiates TRIF-dependent pathway [49]. 

In the MyD88-dependent pathway, the interaction between TLRs and MyD88 leads to 

the recruitment and activation of IL-1 receptor-associated kinase (IRAK)4, which 

subsequently activates IRAK1 and IRAK2 [57]. Activated IRAK associates with 

TNF-α receptor associated factor (TRAF)6, which enables the binding of TRAP6 to 

E2 ubiquitin conjugating enzymes ubiquitin C13 (UBC13) and ubiquitin conjugating 

enzyme variant 1A (UEV1A), causing polyubiquitination of TRAF6 modified with 

K63-ubiquitin linkage. The polyubiquitination subsequently enables the binding of 

TRAF6 to the ubiquitin-binding domain of IκB kinase (IKK)γ, a subunit of IKK 

complex critical for activation of NF-κB pathway. Additionally, TRAF6 recruits 

transforming growth factor-β-activated kinase (TAK)1-binding protein (TAB)2 and 

binds to the ubiquitin-binding domain of TAB2, leading to the activation of its 

associated TAK1, which further causes phosphorylation of IKKβ. Pellino 1 can 

catalyse the synthesis of K63-ubiquitin linkage to IRAK1, which enables IRAK1 to 

activate IKK directly. The activated IKK complex phosphorylates IκB, followed by 
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IκB degradation, which further releases subunits of NF-κB to nucleus and thereby 

initiates production of inflammatory mediators such as TNF-α, IL-6, IL-1β. Moreover, 

association between TRAF6 and TAK1 leads to the activation of p38 mitogen-

activated protein kinase (MAPK) pathway and induces inflammatory cytokines 

(Figure 1.1) [49, 58]. 

In the TRIF-dependent pathway, the combination of the intracellular region of TLRs 

with TRIF activates NF-κB and MAPK through the recruitment of TRAF6 and 

activation of TAK1 kinase in a way similar to those in the MyD88-dependent 

pathway. TRIF can also activate these pathways through recruiting receptor 

interacting protein (RIP)1, which can be modified with K63-ubiquitin linkage [49]. In 

addition to activating both NF-κB and p38 MAPK pathways, the TRIF-dependent 

pathway also cooperates the activation of IRF. TRIF activates TRAF3, which is 

modified with K63-ubiquitin linkage. TRAF3 then further activates TRAF family 

member-associated NF-κB activator-binding kinase (TBK)1 and IKKε, leading to 

phosphorylation and nuclear translocation of IRF3 and IRF7 for induction of type I 

interferon and inflammatory mediators (Figure 1.1) [42, 58].  
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Figure 1.1 Summary of the TLR signalling pathway. 

TLR signalling can be roughly divided into two categories based on the usage of different 

adaptor molecules, the myeloid differentiation primary response gene 88 (MyD88)-dependent 

and Toll/interleukin 1 receptor domain-containing adapter inducing IFN-β (TRIF)-dependent 

pathways. In MyD88-dependent pathway, combination of TLR ligands with TLRs leads to 

the recruitment of MyD88 and Toll/IL-1R-containing adaptor protein (TIRAP). MyD88 

activates IL-1 receptor-associated kinase (IRAK)4, which further phosphorylates IRAK1 and 

IRAK2. Activated IRAK binds to TNF-α receptor associated factor (TRAF)6, which 

subsequently phosphorylates TAK1-binding protein (TAB)2 and transforming growth factor-

β-activated kinase (TAK)1, and thereby initiates production of inflammatory mediators via 

activation of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK) 

pathway. TRIF-dependent pathway involves the activation of NF-κB and MAPK pathways in 

a receptor interacting protein (RIP)1 dependent or independent manner. In addition, it also 

regulates IRF3 and IRF7 through activating TRAF3. JNK = c-Jun amino-terminal kinase; 

CpG = cytosine phosphate guanidine; ds = double-stranded; ECSIT = evolutionarily 
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conserved signalling intermediate in Toll pathways; IKK = IκB kinase; LPS = 

lipopolysaccharide; MKKs = MAP kinase kinases; MD-2 = myeloid differentiation protein-2; 

MEKK = MAPK/extracellular signal-regulated kinases (ERK) kinase kinase; TBK = TRAF 

family member-associated NF-κB activator-binding kinase; TRAM = TRIF-related adaptor 

molecule; UBC13 = ubiquitin conjugating enzymes ubiquitin C13; UEV1A = ubiquitin 

conjugating enzyme variant 1A. Figure modified from Lim et al., 2013. 

 

 

 

 

 

NLR Proteins  

To date, 22 NLR members have been characterised in humans and more than 30 have 

been identified in mice [59]. The NLR proteins are composed of C-terminal LRR, 

which is essential in sensing and binding with PAMPs or other harmful endogenous 

molecules; a centrally located nucleotide-binding oligomerisation (NACHT) domain, 

the only region shared by all NLR members, which is believed to mediate self-

oligomerisation in an ATP-dependent manner; an N-terminal domain such as a 

caspase recruitment domain (CARD), a Pyrin domain (PYD) or a baculoviral 

inhibitory repeat (BIR)-like domain, that is thought to be involved in binding with 

downstream signalling molecules [60]. The NLR family is subcategorised into two 

distinct groups according to different N-terminal effector domains, the NLRC group 

which contains a CARD, such as NOD1 and NOD2; the NLRP group which contains 

a PYD, such as NLRP1, NLRP3, NLRP4 and NLRP6, etc. The main functions of 

these N-terminal effector domains are regulating NF-κB, p38 MAPK and caspase-1 

activation, thus triggering innate immune response in cytosol [54]. 

NOD1 and NOD2 mainly recognise cell wall components, PepG and muramyl 

dipeptide from gram-negative and gram-positive bacteria, respectively (Table 1.7) 

[48]. NOD1 is universally expressed in host cells, whereas the expression of NOD2 is 

restricted to monocytes [61] and intestinal epithelial cells [62]. The recognition of 

their associated PAMPs leads to oligomerisation of these receptors. Once the 
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receptors oligomerise and are activated, the downstream signalling is initiated by 

recruiting a CARD-containing adaptor molecule, RIP2, through a haemophilic 

CARD-CARD interaction [63, 64]. This leads to subsequent activation of NF-κB and, 

thereby, induces the production of inflammatory mediators such as TNF-α, IL-6, IL-

1β. In addition, NOD1 and NOD2 activate MAPK via their association with the 

CARD-containing molecule, CARD9, which further increases the transcription of 

various inflammatory cytokines (Figure 1.2) [65]. NODs are also able to synergise 

with TLRs to augment the inflammatory response [43, 66]. 

The NLRPs such as NLRP1, NLRP3 and NLRP4 are known to participate in the 

formation of a multi-protein complex (inflammasome), which consists of NLRPs, 

apoptosis-associated speck-like protein containing a CARD (ASC), and pro-caspase-

1; the most important consequence of the inflammasome formation is the activation of 

caspase-1 and, thus, release of the IL-1 family of inflammatory cytokines, such as IL-

1β and IL-18 [43]. The association of NLRP1, NLRP3 and NLRP4 receptors with 

their respective PAMPs in immune cells, such as macrophages and dendritic cells, 

leads to oligomerisation of these receptors, which recruits a cytosolic adaptor 

molecule known as ASC via haemophilic PYD-PYD interaction. ASC then binds to 

pro-caspase-1 through haemophilic CARD-CARD interaction, which induces 

autocatalytic cleavage of pro-caspase-1 into active caspase-1. The activated caspase-1 

further converts inactive form of IL-1 family cytokines (production of which is 

dependent on NF-κB and MAPK pathway) into active form through proteolytical 

cleavage (Figure 1.2) [43, 64]. In addition to inducing inflammatory cytokines 

production, caspase-1 activation is also able to initiate a type of inflammatory 

programmed cell death, which is known as pyroptosis, to eliminate invaded pathogens 

by killing infected cells [42, 54]. 
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Figure 1.2 Scheme of the NLR signalling pathway. 

Recognition of corresponded PAMPs with cytosolic NOD1 and NOD2 leads to the 

recruitment of receptor interacting protein (RIP)2 for the activation of nuclear factor (NF)-κB, 

and caspase recruitment domain (CARD)9 for the activation of p38 mitogen-activated protein 

kinase (MAPK) pathway, which further initiate production of pro-inflammatory mediators. 

NLRPs such as NLRP1, NLRP3 and NLRP4 assemble inflammasome together with 

apoptosis-associated speck-like protein containing a CARD (ASC), and pro-caspase (PC)-1 

upon the combination with their ligands, leading to the activation of caspase-1. The activated 

caspase-1 then converts inactive form of IL-1 family cytokines (production of which is 

dependent on NF-κB and MAPK pathway) into biologically active form. 
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1.1.5 Gender Dimorphism in Sepsis  

A retrospective clinical study of 261 255 septic patients showed a significantly 

increased mortality rate in male patients which were younger than 50 years of age 

compared with an age-matched female cohort. This difference was not detected in 

patients older that 50 years [67]. This ‘survival’ advantage of the female gender in 

sepsis is confirmed by data from another prospective clinical trial, which documents 

an increased survival rate in female patients (74%) when compared with male patients 

(31%) with sepsis [68]. Additionally, male gender is an independent prognostic 

variable for survival in patients with sepsis [69]. Experimental studies using various 

sepsis models also confirmed the gender dimorphism in the outcome of sepsis. 

Proestrus female mice showed maintained immune responses and a significantly 

improved survival rate compared with male mice following polymicrobial sepsis 

induced by caecum ligation and pucture (CLP) [70]. Male gender and age are also 

associated with higher mortality rates in a model of trauma-haemorrhage followed by 

a second hit of sepsis [71]. 

A potential mechanism of this gender dimorphism might involve the gender-specific 

expression of pro- and anti-inflammatory cytokines. Compared with female patients 

with sepsis, male patients had elevated levels of IL-6 [72, 73]; IL-6 is an independent 

predictor for the severity of septic episodes [74]. Experimental studies showed 

significantly increased level of IL-1 at four hours following LPS injection in male, but 

not in female, indicating an increased cytokine response of male mice at the early 

stages of endotoxaemia [75]. Another explanation for the survival advantage in 

females is that the peritoneal and pleural cavities of females contain a higher number 

of leukocytes compared with the equivalent group of male mice and rats, comprising 

greater numbers of macrophages, T and B lymphocytes. The different composition of 

immune cells in the female peritoneum is due to the increased expression of tissue 

chemokines and chemokine receptors [76]. Moreover, female resident macrophages 

have significantly greater TLRs expression and more efficient phagocytosis [76]. 

In rats with polymicrobial sepsis, treatment with oestradiol exhibited antioxidant 

properties and attenuated liver and intestine injuries [77]. Testosterone receptor 

antagonism with flutamide treatment in male mice with trauma-haemorrhage 

prevented immune deficiency and significantly decreased the mortality rate caused by 



                                                         GENERAL INTRODUCTION 

   
 

 51 

a subsequent septic challenge [78]. However, it has been shown that flutamide 

treatment following trauma increases the activity of enzyme aromatase, which 

catalyses the conversion of testosterone into oestradiol [79, 80], indicating that the 

protection afforded by flutamide in male mice may not be mediated by testosterone 

receptor antagonism, but by increasing the synthesis and the level of oestradiol. 

1.1.6 Cardiac Dysfunction in Sepsis 

The development of myocardial dysfunction is associated with increased morbidity 

and mortality of sepsis. More than 40% of cases of sepsis have cardiovascular 

impairment [81] and the presence of myocardial dysfunction can increase the 

mortality rate of affected patients to 70% [16]. Due to recognition of the importance 

of the cardiovascular impairment in sepsis, myocardial dysfunction identified by 

echocardiography has been included as one of the criteria for diagnosing severe sepsis 

[38].  

Myocardial dysfunction in patients with septic shock was first described by Parker et 

al. in 1984 [82], who discovered that patients with septic shock showed significant 

cardiac dysfunction with depressed left ventricular ejection fraction (LVEF) and acute 

LV dilation. Interestingly, the changes in heart function and cardiac volumes were 

fully reversed in survivors of septic shock over a 7-10 days period [82]. Before the 

application of pulmonary artery catheters, it was believed that the cardiovascular 

involvement associated with sepsis had two distinct phases. In the initial stage of 

sepsis, patients developed “warm shock” characterised by warm skins and a bounding 

pulse, resulting from a hyperdynamic state associated with high cardiac output and 

low systemic vascular resistance. This was followed by “cold shock” due to a 

hypodynamic state secondary to low cardiac output and high systemic vascular 

resistance, with clinical signs of cool extremities, a thready pulse, myocardial 

depression and ultimately death [83, 84]. However, with the application of pulmonary 

artery catheters (in the clinical or the experimental setting), which can measure 

haemodynamic changes including cardiac output and LV filling pressures accurately, 

it was found that patients with septic shock which received sufficient fluid 

resuscitation consistently exhibited a hyperdynamic state with hot extremities, high 

cardiac output and low systemic vascular resistance. It was concluded that the 

previous depiction of a hypodynamic stage of sepsis was the result of inadequate fluid 
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resuscitation and that the signs of “cold shock” were due to increased systemic 

vascular resistance compensating for reduced cardiac output [85, 86]. This led to the 

realisation of the importance of fluid resuscitation in modulating cardiovascular 

performance in patients with sepsis [87, 88].  However, intrinsic cardiac dysfunction 

still existed in patients despite of maintained cardiac output and stroke volume [82] 

with demonstration of depressed EF [89]. Reduction in EF and, hence, myocardial 

dysfunction was also confirmed by end systolic pressure-volume relationship 

analysis, a load-independent evaluation of heart function in patients with sepsis [90]. 

Although the mechanisms underlying the cardiac dysfunction in sepsis are not entirely 

clear, there is good evidence that a multitude of events including myocardial 

ischaemia, microcirculation changes, apoptosis, cardiosuppressing factors, nitric 

oxide (NO) production, calcium trafficking alterations and mitochondrial dysfunction 

are of pivotal importance (Figure 1.3) [91]. 
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Figure 1.3 A depiction of systemic, cellular, and molecular mechanisms associated with 

cardiac dysfunction in sepsis. See text for details. Figure modified from Flierl et al., 2008. 
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1.1.6.1 Systemic, Cellular and Molecular Mechanisms in Sepsis Induced 

Myocardial dysfunction 

Global Ischaemia  

A number of early studies suggested that global myocardial ischaemia may be the 

reason for the cardiac dysfunction observed in sepsis [92]. The theory was abandoned 

after thermodilution catheters were used in patients with septic shock to assess 

coronary blood flow and metabolic alterations. These studies demonstrated that 

patients with sepsis showed preserved or even higher coronary blood flow and 

decreased coronary artery–coronary sinus oxygen difference [93]. This was confirmed 

by the observation of markedly dilated coronary arteries and unchanged myocardial 

lactate production in septic patients [94]. Furthermore, autopsies of patients that had 

died from sepsis did not reveal any overt signs of cardiac necrosis [95]. However, 

increased levels of plasma troponin T and troponin I (both biomarkers for myocardial 

injury) were associated with the depression of left ventricular function in sepsis and 

septic shock [96]. The reasons for elevation of cardiac troponin in sepsis remains 

unclear, although it is thought to be due to transiently increased cardiomyocyte 

membrane permeability caused by increased cytokine levels [97]. 

Microcirculation Changes 

Significant microcirculatory changes have been reported in the heart of patients with 

sepsis and septic shock, including maldistribution of coronary flow [98], which might 

be secondary to swollen endothelial cells and non-occlusive intravascular fibrin 

deposits [99]. Increased migration of activated circulating neutrophils into the 

interstitium was also reported [100], and these cells may further aggravate myocardial 

dysfunction via the release of pro-inflammatory cytokines, such as TNF-α [101]. 

Apoptosis 

Many studies report that apoptosis contributes to myocardial dysfunction in sepsis 

[30, 102] and apoptosis of cardiac myocytes occurs secondary to activation of 

caspases and mitochondrial cytochrome c release [103]. Application of caspase 

inhibitors in endotoxin-induced models of shock appeared to decrease cardiac 

apoptosis and improved cardiac function [104]. However, the reversible myocardial 
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dysfunction and the rare cardiomyocyte death shown in septic patients [105] support a 

more important role for functional, rather than structural changes during myocardial 

depression. 

Cardiosupressing Substance 

Many studies suggest a potential role for ‘cardiosuppressing factors’ in the 

development of sepsis-induced myocardial dysfunction. Existence of circulating 

cardiosuppressing substances has been known since the 1970s [106]. In further 

studies, many factors that are able to act as myocardial depressant mediators were 

found including TNF-α, IL-1β, IL-6, the complement activation product C5a, 

endotoxin and endothelin-1 (ET-1), to name but a few. Elevations in the 

cardiosuppressive cytokines TNF-α, IL-1β and IL-6 were identified in plasma from 

both septic humans and animals [107]. Infusion of TNF-α in dogs resulted in 

myocardial dysfunction with depressed EF [108]. The addition of TNF-α to rabbit 

cardiomyocytes caused a reduction in contractility secondary to suppressed 

myofilament responsiveness [109]. Direct exposure of myocardial cells to IL-1β led 

to a decrease of the amplitude and peak velocity of cell shortening in a dose-

dependent manner [110]. TNF-α induced myocardial depression might be secondary 

to the generation of NO [111] and alterations in calcium trafficking [109]. TNF-α and 

IL-1β also induce mitochondrial injury in sepsis [112]. The addition of recombinant 

C5a impaired contractility in both sham and septic myocardial cells [113], probably 

through reacting with its receptor C5aR on myocardial cells [114], which suggests 

that the activation of complement may play a major role in sepsis-induced myocardial 

depression. Administration of a blocking antibody of C5a to rodents with sepsis 

induced by caecal ligation and puncture (CLP) reversed the depression of left 

ventricular EF resulting in improved survival [114]. Although only a minority of 

patients with sepsis has detectable levels of endotoxin [115], a potential role of 

endotoxin in the myocardial dysfunction associated with sepsis should not be 

neglected. Three hours after the injection of a bolus dose of endotoxin to healthy 

volunteers, a hyperdynamic circulation associated with high cardiac output and low 

systemic vascular resistance develops, and this was associated with a reduction in EF 

after volume loading [116]. The delayed onset of myocardial dysfunction after 

endotoxin injection suggests that it is unlikely that endotoxin causes myocardial 
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depression directly, but that LPS mediates the decline in EF through the release of 

other factors, such as TNF-α [101]. These effects of endotoxin are secondary to its 

interaction with TLR4, TLR2 [117] and CD14 [117], which are critical links between 

pathogens and host immune response (see chapter 1.1.4.2.1 Toll Like Receptor for 

details). The presence of TLR4 in macrophages and neutrophils was necessary for the 

ability of endotoxin to cause myocardial depression in vitro [101]. In addition, both 

the activation of NF-κB and the increased levels of TNF and IL-1β caused by 

endotoxin were significantly ameliorated in myocardial cells from CD14-deficient 

mice [118]. Furthermore, CD14
-/-

 mice were protected from endotoxin-induced 

myocardial depression compared with wild-type mice [118]. ET-1 was suggested to 

play a cardiosuppressive role in patients with sepsis [119], and an ET-1-receptor 

antagonist (SB 234551) attenuates the cardiovascular impairment in endotoxin shock 

in a dose-dependent manner in rats [120]. Myocardial dysfunction in sepsis is 

probably not caused by one, but by multiple cardiac suppressive substances, which 

may act through mediating the activation or inhibition of other factors, eg. NO 

generation and changes in intracellular calcium trafficking. 

Nitric Oxide Production 

NO plays a critical role in regulating cardiovascular homeostasis. Most notably, the 

excessive formation of NO importantly contributes to cardiac dysfunction [121], 

hypotension and resistance to catecholamines in sepsis [122-125]. NO is produced by 

NO synthases (NOS) by cell types in the heart. Three forms of NOS enzymes have 

been identified which are neuronal NO synthase (nNOS, NOS1), inducible NOS 

(iNOS, NOS2), and endothelial NOS (eNOS, NOS3) [126]. Both in vivo and in vitro 

work demonstrated that the level of iNOS in the myocardium increased rapidly after 

exposure to endotoxin or pro-inflammatory cytokines that are elevated in septic shock 

[127]. Most notably, mice that are deficient in iNOS protein were protected against 

the myocardial dysfunction induced by endotoxin [128]. Selected blockade or iNOS-

deletion also attenuates the cardiac depression in murine CLP-sepsis by enhancing 

cardiac norepinephrine responsiveness [129]. The overexpression of eNOS in the 

myocardium improved myocardial performance, probably through reducing 

production of reactive oxygen species (ROS) and increasing sarcoplasmic reticulum 

calcium accumulation, thus illustrating a protective role of myocardial eNOS in sepsis 
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[130]. The adverse effects of NO on myocardial function may be modulated by 

peroxynitrite, a by-product produced through interaction between NO and superoxide 

anions. Peroxynitrite impairs cardiac performance in sepsis through inhibiting 

mitochondrial respiration, altering calcium transport and denaturing proteins [131, 

132]. Removal of peroxynitrite improves myocardial contractility in studies of 

myocardial dysfunction caused by cytokines [133] and in a rodent model of sepsis 

[134]. 

Calcium Trafficking Changes 

Alterations in calcium trafficking are also involved in the cardiac depression in sepsis. 

For instance, intracellular calcium is reduced in myocardial cells after exposure to 

endotoxin due to decreased L-type channel-dependent calcium flow, leading to 

suppressed cardiac contractility [135]. Decreased density of ryanodine receptors on 

the sarcoplasmic reticulum in sepsis is also thought to play an important role in 

reducing intracellular concentration of calcium by inhibiting calcium release from SR 

[136]. Moreover, decreased sensitivity of myofilaments to calcium in the septic heart 

is associated with impaired myocardial contractility [137]. 

Mitochondrial Dysfunction 

There is now good evidence that mitochondrial dysfunction occurs in sepsis and may 

contribute to organ dysfunction [138]. Sepsis-induced focal mitochondrial injury was 

observed in both patients dying from sepsis [105] and in septic animals [139]. 

Mitochondrial DNA is less resistant to the injury induced by LPS when compared 

with nuclear DNA [140]. Glutathione (an intracellular antioxidant) depletion and NO 

overproduction observed in skeletal muscle biopsies obtained from septic patients 

may explain inhibition of oxidative phosphorylation and decreased ATP production by 

mitochondria [138], which potentially leads to organ failure in sepsis [141]. 

Mitochondrial permeability transition pore opening is also involved in the myocardial 

dysfunction induced by sepsis, and preserved myocardial function and decreased 

mortality rate were obtained through its inhibition [142]. It has been proposed that 

myocardial depression in sepsis is a protective adaption with the aim to reduce energy 

consumption (by inhibition of ATP production during the state of mitochondrial 

dysfunction), which is similar to the hibernation response triggered by myocardial 
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ischaemia [143]. 
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1.2 Chronic Kidney Disease 

1.2.1 Definitions and Diagnosis 

Chronic kidney disease (CKD) is caused by reduced renal function and characterised 

by increases in serum urea and creatinine. Major risk factors for CKD include 

hypertension, diabetes and old age (>60 years) [144, 145]. The kidney has many 

functions including excretion of waste products and toxic metabolites, maintenance of 

haemoglobin synthesis, fluid balance, acid-base and electrolyte balance, and 

regulation of blood pressure. Therefore, impaired kidney function is associated with a 

variety of concurrent complications, such as cardiovascular disease (CVD), anaemia 

and bone diseases, to name but a few [146].  

CKD is divided into 5 stages according to the degree of reduction of the glomerular 

filtration rate (GFR), which describes the volume of fluid filtered by renal glomerular 

capilllaries into the Bowman’s space per unit time. In clinical practice, the most 

commonly used formula for estimating GFR is that GFR (mL/min/1.73 m
2
) = 186 x 

(Scr)
-1.154

 x (Age)
-0.203

 x (0.742 if female) x (1.210 if African-American), where Scr is 

serum/plasma creatinine in mg/dL [147]. Stage 1 and 2 CKD represents kidney 

damage with normal or mildly reduced GFR, stages 3-5 CKD represent GFR of 30-59 

ml/min/1.73 m
2
, 15-29 ml/min/1.73 m

2
 and <15 ml/min/1.73 m

2
 or on dialysis, 

respectively (Table 1.8) [145]. Untreated early stages of CKD can lead to end-stage 

renal disease (ESRD), which requires the initiation of dialysis or renal transplantation. 

Therefore, once CKD is detected, it is important to identify the cause, concurrent 

complications and to define the stage of CKD for further management (Table 1.8) 

[145]. 
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Table 1.8 Stages, stage-specific recommendations for management and 

prevalence of CKD. 

Stage of CKD Description GFR Detection, evaluation, and management 

  ml/min/1.73 m2  

1 Kidney damage* 

with normal or 

increased GFR 

>90 Diagnosis and treatment  

Treatment of coexisting conditions 

Slowing progression  

Risk reduction for CVD 

2 Kidney damage 

with mild decrease 

in GFR 

60-89 Estimation of progression 

3 Moderate decrease 

in GFR 

30-59 Evaluation and treatment of complications 

4 Severe decrease in 

GFR 

15-29 Referral to nephrologist and consideration for 

kidney replacement therapy 

5 Kidney failure <15 Replacement (if uraemia present) 

The table displays stages of CKD, stage-specific recommendations for detection, evaluation 

and management, and prevalence in the United States in 2000. *Kidney damage is defined as 

persistent albuminuria on two occasions. CI = confidence interval; CVD = cardiovascular 

disease; GFR = glomerular filtration rate. Table modified from Lesley et al., 2006. 
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Creatinine clearance is calculated from the creatinine concentration in the collected 

urine sample, urine flow rate, and the creatinine concentration in the plasma 

concentration. Creatinine clearance is similar to GFR, and the serum/plasma 

creatinine level has a reciprocal relationship with GFR [148]. Creatinine clearance 

exceeds GFR because creatinine is also secreted by proximal tubular cells and also 

filtered by the glomeruli [145]. Creatinine secretion can be blocked by some drugs, 

such as trimethoprim and cimetidine, in this case, creatinine clearance is decreased 

and serum/plasma creatinine concentration is increased without affecting the GFR 

[149, 150]. The production of creatinine primarily depends on muscle mass and 

dietary intake, which may have contributed to the variations in the serum/plasma 

creatinine concentration among different age groups, genders and ethnic groups 

(Table 1.9) [145]. 
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Table 1.9 Factors affecting creatinine production. * 

Factor Effect on serum/plasma creatinine 

Aging Decreased 

Female sex Decreased 

Race or ethnic group† 

Black 

Hispanic 

Asian 

 

Increased 

Decreased 

Decreased 

Body habitus 

Muscular 

Amputation 

Obesity 

 

Increased 

Decreased 

No change 

Chronic illness 

Malnutrition, inflammation, 

deconditioning 

(e.g., cancer, severe cardiovascular 

disease, hospitalized patients) 

Neuromuscular diseases 

 

Decreased 

 

 

 

Decreased 

Diet 

Vegetarian diet 

Ingestion of cooked meat 

 

Decreased 

Increased 

The table displays factors contributing to the variations in the serum/plasma creatinine 

concentration. *Difference in muscle mass accounts for the predominant proportion of 

serum/plasma creatinine. †White ethnic group served as the reference group. Table adopted 

from Lesley et al., 2006. 
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1.2.2 Epidemiology and Outcomes 

CKD is a growing health problem worldwide with a global prevalence of around 8%-

16% [151]. In 2007, the United Kingdom prevalence of moderate to severe CKD 

(Stages 3-5) was 8.5% (5.8% in male and 10.6% in female patients), and similar 

prevalences have been reported in other countries [152, 153]. The prevalence of CKD 

rises from 8.5% of those under 40 to almost 40% of those that are older than 60 [154]. 

CKD prevalence in Mexican Americans and non-Hispanic blacks is twice as that in 

non-Hispanic whites [154]. Low-income status is correlated with an increased risk of 

albuminuria and progression from CKD to ESRD [155, 156]. Once ESRD has 

developed, it dramatically increases the clinical and economic burden. In 2011 in the 

US, the incidence of ESRD was 357 per million population. Nearly 113, 000 patients 

initiated dialysis, and around 18,000 patients received renal replacement therapy 

[157]. In developed countries, 2-3% of the overall national health care budget is 

currently being spent on the treatment of ESRD [158]. In several developing 

countries, each year around 1 million people die from untreated ESRD, due to lack of 

accessibility to renal replacement therapy [159].  

Premature death caused by CKD is a major contributor to years of life lost in the 

United States, contributing to 60,000 deaths in 2010 [160]. Among all of the causes of 

death in CKD patients, CVD remains the number one [161, 162]. CKD caused 

560,000 deaths indirectly through CVD in 2010 in the United States [160]. CKD 

patients not only have higher incidence of ischaemic heart disease, heart failure and 

cerebrovascular disease, but they also have a higher mortality rate following CV 

events than non-CKD patients. For example, CKD patients have a 4-5 times higher 

one-year mortality rate following acute myocardial infarction compared to non-CKD 

patients [163]. After adjustment for race, gender and age, the mortality of CKD due to 

CVD is around 10-20 times higher than in an age-matched general population cohort 

with CVD [161]. This increase in cardiovascular mortality is particularly strong in the 

younger population, where CKD patients have a 500-times higher cardiovascular 

mortality compared with non-CKD patients [161]. 
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1.2.3 Uraemic Cardiomyopathy 

1.2.3.1 Diagnosis 

The CV abnormalities induced by CKD are left ventricular hypertrophy (LVH), 

coronary artery disease (CAD), and congestive heart failure (CHF) [164]. The 

diagnosis of CVD consists of clinical symptoms, declinations in physical 

examination, echocardiography, electrocardiography (ECG), chest X-ray and 

coronary angiography etc.  

Echocardiography is an essential tool for the diagnosis of CVD in CKD patients with 

symptoms that are suggestive of heart disease. In patients starting dialysis, only 16% 

patients showed normal echocardiogram; 42% patients showed concentric LVH, 23% 

showed eccentric LVH, 16% had systolic dysfunction and 4% had isolated LV 

dilatation [165]. In the United States, LVH is found in about 75% of haemodialysis 

patients [166]. However, LV mass and LV volume fluctuate due to the fluid 

accumulation caused by lack of renal excretory capacity and fluid load decreases 

during dialysis [167]. Therefore it is important that echocardiography is performed 

when patients are at their dry weight, e.g. on the day after dialysis [164]. 

The diagnosis of CAD in dialysis patients is difficult. Exercise ECG is unreliable due 

to i) inability of patients to obtain a sufficient increase in heart rate; ii) existence of 

electrocardiographic abnormalities at the baseline in CKD patients [168]. Using 

pharmacological agents to increase heart rate and to induce coronary vasodilation 

combined with radioisotope e.g. thallium, myocardial imaging has become the 

standard, non-invasive method for documenting CAD in dialysis patients. However, 

conflicting data suggest poor sensitivity and specificity of this method [169]. 

Coronary angiography is the golden standard for detecting CAD in dialysis patients. 

However, it should be noted that around 50% of dialysis patients with suggestive 

symptoms of ischaemic heart disease may have a luminal narrowing of less than 50% 

of coronary artery and, hence, no CAD [170]. This might be due to the combined 

effects of increased oxygen demanding caused by anaemia and LVH, as well as 

decreased oxygen supply caused by small vessel coronary disease, reduced capillary 

density and vascular calcification in CKD patients [164].  
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1.2.3.2 Risk Factors and Management 

The accelerated rate of cardiovascular morbidity and mortality in CKD is undoubtedly 

ascribed to the high prevalence of traditional risk factors (Table 1.10), e.g., 

hypertension, dyslipidaemia, diabetes, history of smoking, older age and male gender 

[164]. Additionally, increased prevalence of other uraemia-related risk factors as renal 

function declines in subjects with CKD also contributes to the excess risk of CVD. 

These uraemia-related or non-traditional risk factors include anaemia, abnormal 

calcium phosphorus metabolism, LVH, inflammation, oxidative stress and 

hyperhomocysteinaemia, etc (Table 1.10) [171].  

 

 

 

 

Table 1.10 Contribution of traditional and non-traditional risk factors to 

uraemic cardiomyopathy. 

 

 

 

 

 

 

 

 

 

 

 

Traditional risk factors Non-traditional risk factors 

Hypertension Anaemia 

Dyslipidaemia Abnormal calcium and phosphate metabolism 

Diabetes Left ventricular hypertrophy 

Smoking Inflammation 

Older age Oxidative stress 

Male gender Hyperhomocysteinaemia 



                                                         GENERAL INTRODUCTION 

   
 

 66 

1.2.3.2.1 Traditional Risk Factors  

Hypertension 

Hypertension is strongly related to the increased incidence of cardiovascular events in 

patients with 2-3 stage CKD [172]. More than 70% of ESRD patients have 

hypertension [147]. Increased pulse pressure has a strong positive relationship with 

overall mortality of dialysis patients, however, systolic blood pressure is a stronger 

predictor of cardiovascular death in patients on dialysis [173]. Additionally, dialysis 

patients have a 48% higher risk of LVH with each increase of 10 mmHg in blood 

pressure [174]. A reduction in blood pressure slows the progression of CKD [175]. 

Normally multidrug therapy, such as a combination of calcium channel blockers, 

angiotensin converting enzyme inhibitors and angiotensin receptor blockers is 

recommended for treatment of hypertension in CKD patients [176]. However, it 

should be noted that low level of blood pressure has also been correlated to increased 

mortality in dialysis patients [177]. 

Dyslipidaemia 

Dyslipidaemia commonly exists in patients with CKD and ESRD, characterised by 

increased concentrations of triglyceride, VLDL cholesterol, LDL cholesterol and 

Lp(a) lipoprotein, reduced levels of HDL cholesterol [171]. Dyslipidaemia is 

independently correlated with cardiovascular diseases in CKD patients [178]. In 

patients on haemodialysis, increased Lp(a) lipoprotein levels predicts a higher risk in 

developing CAD [179]. In patients on peritoneal dialysis, there is a strong relationship 

between the severity of coronary artery events and the lipid abnormalities [180]. 

Statins have been shown to significantly reduce plasma lipid levels and prevent 

cardiovascular events without side effects such as liver injury in CKD patients [181, 

182]. However, in patients on dialysis, statins failed to improve cardiovascular 

endpoints despite the treatment significantly lowered LDL cholesterol concentrations 

[183]. 

Diabetes 

Diabetes is a risk factor for the adverse outcomes in patients with all stages of CKD 

[184]. In patients on dialysis, high values of haemoglobin A1c have been associated 
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with a greater risk of cardiovascular mortality [185]. However, contradictory results 

have also been reported that no association was found between haemoglobin A1c 

levels and death in dialysis patients in a different epidemiological study [186]. Using 

haemoglobin A1c as an index for glycaemic control can be unreliable in uraemic 

patients, due to the variable red blood cell survival and the interference of 

carbamylated haemoglobin in glycohaemoglobin assays [187]. 

Smoking, Older Age and Male Gender 

Smoking has been associated with progression of CKD [188]. Smoking is also a risk 

factor for increased mortality and development of heart failure in patients on dialysis 

[189]. In dialysis patients, older age appears to be one of the strongest traditional risk 

factors for cardiovascular events [190]. Male gender is correlated with higher 

prevalence of both CAD and LVH in dialysis patients [191]. 

1.2.3.2.1 Non-traditional Risk Factors 

Anaemia 

Anaemia is a common complication in CKD patients due to a deficiency in renal 

erythropoietin production. Severe anaemia (haemoglobin less than 90 g/l) is an 

independent predictor of death, cardiovascular mortality and impaired quality of life 

in CKD patients [192]. Anaemia leads to reductions in plasma viscosity, systemic 

vascular resistance, and oxygen delivery capacity of blood, and increases in venous 

return and sympathetic activity. The increases of venous return and sympathetic 

activity subsequently lead to increases in both of the heart rate and the venous tone, 

thus, an increased cardiac output. The increased cardiac output consequently causes 

adaptive or maladaptive LVH due to the increase in LV wall tension, as well as 

vascular hypertrophy and atherosclerosis due to the increase in arterial tension [193]. 

Correction of anaemia by erythropoiesis-stimulating agents, e.g. recombinant human 

erythropoietin, has been shown to lower the cardiac output and partially reverse LVH 

[194]. Both normalisation of haemoglobin (≥130 g/l) and partial correction of 

anaemia (haemoglobin levels of 100 g/l) significantly improved quality of life in 

patients on haemodialysis, while no difference was observed in survival rate or 

improvement of quality of life between two target groups [175, 192]. US drug labels 



                                                         GENERAL INTRODUCTION 

   
 

 68 

recommend target haemoglobin levels of 90-110 g/l for patients on dialysis with the 

use of erythropoiesis-stimulating agents, so that blood transfusions can be avoided, 

while higher target haemoglobin levels (100-120 g/l) is recommended by European 

standard [192]. 

Hyperparathyroidism, Calcium and Phosphate Metabolism  

Abnormalities in serum levels of parathyroid hormone, phosphate and calcium-

phosphate product are correlated with overall mortality in dialysis patients [195, 196]. 

Hyperparathyroidism is involved in the development of LVH. Increased plasma level 

of parathyroid hormone is implicated in the pathogenesis of myocardial fibrosis in 

uraemia [197]. Whereas parathyroidectomy improves LV function and partially 

reverses LV size in CKD patients [175]. In patients with stage 3-4 CKD, high 

phosphate levels predisposes to coronary artery calcification, myocardial infarction 

and death [198, 199]. Coronary artery calcification subsequently contributes, at least 

in part, to the development of atherosclerosis, which is a predictor of mortality in 

CKD patients [187]; and increases arterial stiffness, which leads to decreased 

coronary artery perfusion, systolic and diastolic blood pressure changes, LVH and 

adverse cardiovascular outcomes [200]. 

High calcium levels have been shown to stimulate coronary artery calcification and 

associated with cardiovascular mortality in patients on dialysis [201, 202]. Therefore, 

non-calcium-containing phosphate binders, e.g. sevelamer, have been studied for their 

potential therapeutic effects on controlling secondary hyperparathyroidism, without 

increasing calcium loads, in dialysis patients. A randomized clinical trial involved 127 

patients on haemodialysis showed that all-cause mortality was less in the sevelamer 

group compared with patients treated with calcium containing phosphate binders 

[203]. However, a multicentre clinical trial involved 2,103 haemodialysis patients 

showed contradictory results that no difference was observed in either cardiovascular 

death or all-cause death between sevelamer group and calcium based agents group 

[204]. 

Left Ventricular Hypertrophy 

The prevalence of LVH increases as the declination of renal function. LVH is a strong 

predictor of cardiovascular events and mortality [205, 206]. Factors contributing to 
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the pathogenesis of LVH in patients with CKD or ESRD include increased cardiac 

output, elevated blood pressure, extracellular fluid volume overload and vascular 

stiffness [187, 207]. 

A prospective clinical study has shown that activated vitamin D-calcitriol treatment 

regresses myocardial hypertrophy, parallels with the decreases in plasma levels of 

intact parathyroid hormone [208]. Compared with conventional haemolysis 3 times 

per week, frequent nocturnal haemolysis (6 times per week) has been shown to 

associate with significant decreased LV mass, improved mineral metabolism, reduced 

usage of medications for controlling blood pressure and oral phosphate binders [209]. 

Inflammation  

Inflammation commonly exists in patients with all stages CKD, in dialysis patients, 

about 50% population showed biochemical evidence of inflammation [210, 211]. 

Many factors may contribute to the inflammatory response in CKD patients, which 

include impaired renal excretion of inflammatory substances, reduced half-life of 

inflammatory cytokines, concomitant infections or sepsis, and increased risk of 

exposure to endotoxin due to the routine dialysis procedure [187, 212]. 

Inflammation is a crucial factor contributing to the development of atherosclerosis 

[213]. Inflammation facilitates plague formation probably by causing endothelial cell 

injury, thus activating leukocytes and platelets, which subsequently adhere to the 

endothelium. Endothelial injury also leads to vascular smooth muscle cell 

proliferation favouring the development of atherosclerosis [213].  

CRP, a marker of inflammation, predicts both cardiovascular mortality [214] and all-

cause mortality in dialysis patients [215]. Elevated levels of CRP correlate with 

increased number of atherosclerotic plaques in the carotid arteries of haemodialysis 

patients [216]. CRP probabaly contributes to CVD by binding to injured endothelial 

cells and activating compliments [217]. Additionally, cardiovascular mortality and all-

cause mortality are significantly increased in dialysis patients with elevated levels of 

inflammatory cytokines, such as IL-6 [218]. IL-6 can favour lipid formation and 

vascular smooth muscle cells proliferation by damaging endothelial cells [219]. 

In haemodialysis patients, simvastatin showed (in addition to its lipid-lowering effect) 
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an anti-inflammatory effect, demonstrated by a 47% reduction in serum CRP levels 

[220]. Therefore, it is reasonable to recommend the use of statins and aspirin in 

patients with high risk of developing CVD, due to their effects being designed as well 

as their effects in modulating inflammatory response [221].  

Oxidative Stress 

Oxidative stress is seen when there is an imbalance between generation of ROS and 

anti-oxidant mechanisms, e.g. with an increased pro-oxidant formation and 

deficiencies of anti-oxidant substances, or both. Formation of ROS is crucial in host 

response against inflammation and in tissue repair [222]. Major enzymatic anti-

oxidant members for detoxifying ROS include dismutase and glutathione peroxidase. 

Non-enzymatic members include Vitamin C and E, zinc, and selenium [223]. 

Oxidative stress commonly exists in CKD/ESRD patients [207, 224], which is 

probably ascribed to both of the deficiencies of anti-oxidant substances [225] and 

increased pro-oxidant activity caused by blood-membrane interaction [226] as well as 

by the chronic inflammatory response and uraemic toxins [222, 227]. 

Oxidative stress is involved in atherosclerosis and CVD, as it induces peroxidation of 

lipids, which produces oxidised lipoproteins, such as oxidised LDL. Oxidized LDL 

plays crucial roles in foam cells formation, endothelial cells injury and vascular 

smooth muscle cells proliferation, favouring the development of atherosclerosis [221]. 

The serum concentration of oxidative stress markers has been shown to have a 

positive correlation with the incidence of CVD in haemodialysis patients [228, 229]. 

Supplementation with vitamin E reduces the susceptibility of LDL to oxidation in 

patients on dialysis, especially on peritoneal dialysis [230]. Supplementation with 

high-dose vitamin E to haemodialysis patients with pre-existing cardiovascular 

disease has been associated with improved CVD outcomes [231]. Supplementation of 

antioxidant acetylcysteine has been shown to decrease the incidence of cardiovascular 

events in ESRD patients on haemodialysis [232]. 

Hyperhomocysteinaemia  

Plasma homocysteine level is mainly determined by the renal function, it increases as 

the renal function declines [233]. Hyperhomocysteinaemia is universally observed in 
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CKD patients, at least in part, due to the impaired renal clearance [234]. 

Hyperhomocysteinaemia has been reported to have a significant association with an 

increased incidence of cardiovascular accidents in patients with CKD [235]. High 

level of homocysteine promotes atherosclerosis probably by causing endothelial cells 

injury, enhancing LDL oxidation, inducing smooth muscle cell proliferation and 

enhancing thrombosis [221].  

Treatment with folic acid and vitamins B6 and B12 reduces total homocysteine levels 

in patients undergoing dialysis [236], however, a random clinical trial has shown that 

high doses of folic acid and vitamins B6 and B12 fail to improve cardiovascular 

outcomes in patients with advanced renal failure [237]. 

1.2.4 Infection/Sepsis in Chronic Kidney Disease 

1.2.4.1 Epidemiology and Outcomes 

Infectious complications account for one third of all of the ICU admissions in patients 

with CKD [238]. The urinary tract is the primary source of infection in patients on 

dialysis, due to the reduction in urine output and increased risk of urinary 

obstructions. Pneumonia is the second most common infectious complication in CKD 

patients, followed by sepsis (Figure 1.4) [239]. Other infectious complications can 

result from an interruption of the skin barrier, contaminated dialysis machine or 

dialysate; these infections are at high risk of progressing to septicaemia [239]. A 

seven-year follow-up study shows that in patients on haemodialysis and peritoneal 

dialysis, the hospitalization rates for septicaemia are 11.7% and 9.4%, respectively 

[240]. When compared with the general population without CKD, the hospitalization 

rates for bacteraemia/sepsis are 4-times higher in CKD patients without dialysis, and 

nearly 10-times higher in patients on dialysis [241]. The microorganisms causing 

these infectious events are mainly bacteria and fungi, the device-related infections are 

mostly caused by Gram-positive bacteria, such as Staphylococcus aureus [242, 243], 

while other report shows that the most common pathogens causing bloodstream 

infections are Gram-negative bacteria, particularly Escherichia coli [244].  
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Figure 1.4 Raw infection rates in CKD and non-CKD populations. UTI = urinary tract 

infection. Figure modified from Sakina et al., 2006. 

 

 

 

 

Among all of the causes of mortality in patients with CKD, infectious complications 

are the second leading cause, closely following CVD [239]. Compared with the 

general population with pneumonia and sepsis, in patients on dialysis, the annual 

mortality rates caused by these infectious complications are 10-fold and 100-300 fold 

higher, respectively [245, 246]. Despite refined transplant surgical techniques and 

more potent immunosuppressive therapies, the annual mortality rate following sepsis 

is 20-fold higher among recipients of kidney transplants as compared with general 

population with sepsis [245]. An observatory study associated with non-dialysis CKD 

patients showed that the 28- and 90-day mortality rates secondary to pneumonia were 

29.6% and 37.4%, respectively. Moreover, the 28-day mortality rate following sepsis 

in this same cohort was 35.6% and 90-day mortality was 44.2% [247]. It has also 

been shown that among all chronic medical conditions, pre-existing CKD predisposes 

the septic patients to the highest 90-day mortality risk [248]. 
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1.2.4.2 Risk Factors 

Numerous potential risk factors (Figure 1.5) contribute to the increased risk of 

infection/sepsis in CKD and ESRD patients. These risk factors include older age, 

comorbidities (particularly diabetes), anaemia, nephrotic syndrome and low serum 

albumin, etc. Moreover, these factors further lead to the immune dysfunction among 

CKD and ESRD populations, characterised by defective neutrophil phagocytosis and 

deranged functions of lymphocytes [249]. Initiation of maintenance dialysis increases 

infection risk through inducing vascular access and membrane re-use, etc. [240]. 

 

 

 

 

Figure 1.5 Risk factors and outcomes of infection in CKD. Figure modified from 

Dalrymple et al., 2008. 
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Older Age and Diabetes 

CKD and ESRD populations are characterised by older age and coexisting diabetes 

[250]. Among ESRD patients, older patients and patients with diabetes are associated 

with higher risk for infection, regardless of dialysis-related complications [240]. 

Diabetes is a widely recognised risk factor that predisposes patients to infections, due 

to impaired phagocytosis and immune defensive mechanisms, which have been 

characterised in patients with diabetes without good metabolic control [251]. 

Nephrotic Syndrome and Immunosuppressive Therapy 

Nephrotic syndrome in children has been reported to be closely correlated with 

bacterial sepsis and peritonitis [252]. This may be ascribed to deficient neutrophil and 

splenic functions and significant loss of factors of the alternative complement 

pathway in the urine in children with nephrotic syndrome [253]. Patients with 

autoimmune renal disorders normally receive immunosuppressive therapy, especially 

cytotoxic drugs, which are known to increase the risk for infection in these patients 

[254]. Immunosuppressive medications have also been strongly correlated with an 

increased incidence of bacteraemia in patients on haemodialysis [255]. 

Immune Dysfunction 

In CKD patients, impaired polymorphonuclear leukocyte function is caused by variety 

of factors, such as uraemic toxins, anaemia, malnutrition, iron overload and bio-

incompatibility of dialysis membrane, etc. [256]. LPS stimulated monocytes obtained 

from patients on peritoneal dialysis release less IL-1β and TNF-α when compared 

with those from normal populations [257]. Monocytes and monocyte-derived 

dendritic cells obtained from ESRD patients exhibit defective endocytosis and 

impaired terminal differentiation [258]. Moreover, uraemic serum blunts the response 

of  T-cells to antigens [259]. 

Uraemic patients have elevated plasma levels of both pro-inflammatory (e.g. TNF-α 

and IL-6) and anti-inflammatory cytokines (e.g. IL-10) [260]. The major reasons for 

this hypercytokinemia in patients with CKD and ESRD is probably secondary to 

reduced excretion of cytokines due to impaired renal function, as well as increased 

generation of cytokines caused by uraemic toxins, oxidative stress and comorbidities 
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[261].  

Dialysis Access 

Repeated access to vascular fistulas or grafts or dialysis catheters increase the risk of 

infections, due to the disruption of the skin barrier [262]. Among these forms of 

dialysis access, vascular dialysis catheters and vascular grafts predispose to even 

higher risk for infections. Compared with native fistulas, vascular grafts are 

associated with increased risk of septicaemia among patients on haemodialysis [240]. 

Dialysis catheters conferred a nearly two-fold higher risk for sepsis as well as 

infection-related mortality as compared with native fistulas in dialysis patients [263, 

264]. Several clinical studies show a positive relationship between dialyzer reuse and 

increased risk for infections [240, 265]. Dialyzer reuse has also been associated with a 

higher mortality rate in patients on haemodialysis [266]. 

1.2.4.3 Preventive Strategies 

Due to the high morbidity and mortality rate of infection/sepsis in CKD and ESRD 

patients, effective approaches for preventing infections in this population are 

essential. However, many risk factors for infections cannot be altered, such as older 

age and nephrotic syndrome as the cause of CKD. It is unknown that whether the 

management of comorbidities, e.g., diabetes, is associated with a lower risk for 

infections in patients with CKD and ESRD. However, potentially effective strategies 

have been applied to reduce the risk for infections, such as vaccination. Early 

vaccination against infections by pneumococci is recommended in all CKD patients. 

Among patients on dialysis, pneumococcal vaccination correlates with a lower total 

mortality, demonstrating a protective role of vaccine-triggered anti-pneumococcal 

strategy in CKD patients [267]. Among patients with peritoneal dialysis, influenza A 

and B vaccination results in decreased all-cause mortality rate. In patients on 

haemodialysis, influenza vaccination reduces hospitalizations for infections, such as 

influenza and pneumonia, as well as decreases all-cause mortality rate [268].  

However, it should be noted that because of the alterations of immune function in 

patients with ESRD, this population has a blunted response to vaccinations [267, 269]. 

Patients with renal disease have reduced responsiveness to vaccination, and once the 

antibody is generated after vaccination, the declination rate of antibody levels is more 
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rapid [270], which could limit the potential effectiveness of the preventive strategy of 

vaccination for reducing infections in patients with CKD and ESRD. 
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1.3 TRPV1 

1.3.1 Properties of TRPV1 

Transient receptor potential vanilloid 1 (TRPV1), or vanilloid receptor type 1 (VR1), 

is a non-selective calcium influx channel, was originally characterised as a noxious 

heat (>42°C) sensor [271]. The TRPV1 receptor can be activated by a variety of 

exogenous agonists, including capsaicin (the extract of hot chilli peppers), as well as 

capsaicin analogues (olvanil or plant toxin resiniferatoxin) [272] and low pH (6.0 at 

room temperature) [273]. Endogenous agonists acting at the TRPV1 receptor in vivo 

include anandamide [274], protons [275], and several products of lipoxygenases, 

including 12-(S)-hydroperoxyeicosatetraenoic acid (12-(S)-HpETE) [276] and 20-

hydroxyeicosatetraenoic acid (20-HETE) [277]. 

1.3.1.1 Molecular Structure, Expression and Functions of TRPV1 

TRPV1 receptors have large cytosolic amino-(N-) and carboxy-(C-) termini and 6 

transmembrane domains (TM1-6), with  a pore-forming loop between TM5 and TM6 

(Figure 1.6) [271]. In the N-terminus, there are at least three ankyrin repeats, which 

bind cytosolic proteins, such as calmodulin [278]. In the C-terminus, there is a TRP 

domain, which acts as molecular determinate of tetramerisation of TRPV1 [279]. The 

C-terminus also contains a binding site for phosphatidylinositol-4,5-bisphosphate 

(PIP2), and its location in the upper or lower leaflet of the cell membrane determines 

its function in up-regulating or down-regulating the activity of TRPV1 [280]. 

Additionally, there are multiple potential phosphorylation sites of protein kinase A 

and protein kinase C in the C-terminus, the N-terminus and the TM2-TM3 loop 

region. 
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Figure 1.6 Molecular structure of the TRPV1 receptor. Ankyrin repeat domain; 

TRP domain; PIP2-binding domain; PKA/PKC phosphorylation sites; CaM 

binding sites. Figure adopted from K. Alawi and J. Keeble, 2010. 
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Intradermal injection of the TRPV1 agonist capsaicin causes intense pain in humans 

and animals [281]. Consistent with these findings, TRPV1 expression is localised in 

small- to medium-diameter primary afferents, mainly in unmyelinated C afferents and 

thinly myelinated Aδ afferents [271, 282]. These nociceptive fibres characteristically 

contain neuropeptides, including calcitonin gene-related peptide (CGRP), 

somatostatin and substance P [283]. Activation of TRPV1 through its agonists triggers 

influx of divalent cations (particularly Ca2
+
) and nerve depolarisation, which in turn 

results in the conduction of painful afferent impulses and concomitant release of the 

neuropeptides [284].  

TRPV1 is also expressed in non-neuronal tissues including liver [285], various 

regions of brain [286], bladder urothelium, smooth muscle cells, endothelium [287], 

keratinocytes [288] as well as immune cells such as polymorphonuclear granulocytes 

[289], macrophages [290] and lymphocytes [291]. However, the function of TRPV1 

in these non-neuronal tissues remains the subject of current research.  

1.3.2 Roles of TRPV1 in Inflammation and Sepsis 

1.3.2.1 Neurogenic Inflammation 

Neurogenic inflammation is caused by the release of neuropeptides from sensory 

nerve terminals upon the activation of TRPV1 channel receptor, resulting in increased 

blood flow, plasma extravasation and recruitment of inflammatory cells. Among these 

neuropeptides, substance P is largely considered pro-inflammatory. Activation of NK1 

receptors by substance P causes microvascular leukocyte accumulation [292] and 

keratinocyte-derived cytokine (KC; equivalent to IL-8 in human) production [293]. 

Substance P is also associated with oedema formation and increased blood flow [294]. 

All of the above processes play a key role in the pathogenesis of numerous conditions, 

such as joint inflammation, colitis, and neuropathic pain, to name, but a few [283]. On 

the other hand, there is good evidence that CGRP and somatostatin are anti-

inflammatory. In LPS-injected mice, CGRP pre-treatment reduces TNF-α and KC 

generation, and attenuates recruitment of neutrophil; these beneficial effects are 

reverted by the CGRP receptor antagonist, CGRP8-37 [295]. The anti-inflammatory 

effects of CGRP are mediated by inhibiting of TLR activation, reducing the 

production of down-stream inflammatory mediators [296]. Somatostatin acts as an 
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anti-inflammatory neuropeptide in an auto-inhibitory manner, in which it not only 

inhibits its own release from sensory nerve terminals, but also prevents release of 

other pro-inflammatory neuropeptides [297]. Additionally, somatostatin inhibits the 

actions of pro-inflammatory mediators at their effector sites by binding to G-protein 

coupled receptors on vascular smooth muscle and immune cells [297]. 

1.3.2.2 Direct Stimulation of Inflammatory Cytokines Production  

In addition to eliciting neurogenic inflammation, TRPV1 may also act as a direct 

stimulator of the formation of pro-inflammatory mediators from immune cells. In 

murine mast cells, TRPV1 activation leads to production and release of IL-4 [298]. 

Immunohistochemistry of human inflammatory skin samples revealed TRPV1 

expression in all mast cells, whereas very few mast cells were TRPV1 positively 

stained in healthy skin samples [299]. Although TRPV1 has been considered as a pro-

inflammatory receptor in the past, new evidence regarding its protective roles against 

some inflammatory conditions has emerged, particularly in sepsis. 

1.3.2.3 Protect Roles of TRPV1 in Sepsis 

The discoveries of increased plasma levels of CGRP in patients with sepsis [300] and 

of an aggravated inflammatory response in sensory denervated rats [301] raised the 

awareness of the importance of TRPV1 in sepsis. More recently, in rats with 

endotoxaemia, elevated TRPV1 was observed in the tongue tissue [302]. 

To investigate the potential involvement of TRPV1 in sepsis, both loss- and gain of 

TRPV1 function methodologies have been used. In rats treated with LPS, the TRPV1 

antagonist (capsazepine) strongly inhibited the recovery of hypotension and 

tachycardia. Moreover, both 24- and 48-hour survival of endotoxaemic rats were 

significantly reduced by capsazepine treatment [303]. At 4 h after LPS injection, 

TRPV1
-/-

 mice showed greater hypotension compared with WT mice, indicating a 

vascular protective role of TRPV1. Additionally, TRPV1
-/-

 mice challenged with LPS 

also exhibited enhanced liver injury indicated by elevated levels of plasma AST and 

liver plasma extravasation, as well as aggravated acute inflammatory response 

indicated by increased production of TNF-α and nitric oxide in peritoneal lavage 

[304]. Aggravated hypotension, liver injury, renal and pancreatic dysfunction in 

TRPV1
-/-

 mice were also confirmed in CLP-induced polymicrobial sepsis model 



                                                         GENERAL INTRODUCTION 

   
 

 81 

[290].  

On the other hand, administration of the TRPV1 agonist capsaicin to septic rats 

significantly reduced the mortality rate and attenuated the catabolism of skeletal 

muscle [305]. Capsaicin treatment also reduced plasma concentrations of TNF-α and 

IL-6, but increased anti-inflammatory IL-10 levels in a rat model of CLP [306]. 
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1.4 Aims of the Thesis 

This thesis had the overall aim to (i) investigate the pathophysiology of the cardiac 

dysfunction associated with sepsis and to (ii) identify novel therapeutic approaches 

for improving cardiac function in preclinical models of sepsis. 

Increasing evidence shows that gender determines the degree of inflammatory 

response of the host and that females tolerate sepsis better than males. However, it is 

unknown whether gender affects the cardiac dysfunction in animals or patients with 

sepsis. In this thesis, I will establish animal models of polymicrobial sepsis caused by 

CLP, and systemic hyper-inflammation induced by co-administration of LPS and 

PepG in both male and female mice (chapter II). Using these models, I will then 

investigate whether the severity of sepsis-induced cardiac dysfunction differs in male 

and female mice (chapter II).  

Patients with CKD requiring dialysis have a higher risk of infection and sepsis. Once 

infected, dialysis patients with sepsis have an approximately 100-fold higher mortality 

rate compared with the general population with sepsis. However, the reasons for this 

higher mortality rate are unclear. Therefore, in chapter III, I will investigate (a) the 

roles of pre-existing CKD on cardiac function in mice with sepsis, and (b) the 

molecular mechanism underlying the cardiac dysfunction in CKD/sepsis, and (c) 

whether inhibition of NF-B (with a specific IKK-inhibitor) reduces the cardiac 

dysfunction in CKD-sepsis. 

Activation of TRPV1, which is highly expressed by neurons innervating the heart, 

improves outcome in sepsis/endotoxaemia. However, the identity of the endogenous 

activators of TRPV1 and the role of the channel in the cardiac function during 

sepsis/endotoxaemia is unknown. Therefore, in chapter IV, I will investigate (a) the 

roles of TRPV1 in the cardiac dysfunction caused by lipopolysaccharide (LPS; 

endotoxaemia), and (b) the involvements of 12-(S)-HpETE and 20-HETE (potent 

ligands of TRPV1) and neuropeptides (downstream mediators of TRPV1) in the 

cardioprotective effects afforded by TRPV1. 
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CHAPTER II | GENDER DIMORPHISM OF 

THE CARDIAC DYSFUNCTION IN MURINE 

SEPSIS: SIGNALLING MECHANISMS  

2.1 Introduction 

Sepsis is one of the most common causes of morbidity and mortality among 

admissions to the intensive care unit [307, 308]. Sepsis is a systemic dysregulated 

hyperinflammatory and/or anti-inflammatory response to infectious stimuli, such as 

bacteria, viruses and fungi, which, when excessive, may progress to organ failure and 

death [28]. Development of myocardial dysfunction is associated with increased 

morbidity and mortality of sepsis. More than 40% cases of sepsis have cardiovascular 

impairment [309] and the presence of myocardial dysfunction can increase the 

mortality rate of affected patients to 70% [16]. 

There is now good evidence that gender is a key determinant in the degree of the host 

inflammatory response and even of outcome in patients with sepsis. In a number of 

clinical and epidemiological studies, a significantly increased survival rate was 

reported in female patients when compared with male patients with sepsis [68, 310-

312]. This may be associated with lower pro-inflammatory and higher anti-

inflammatory cytokine levels in female patients [68]. Moreover, healthy female 

volunteers challenged with either lipopolysaccharide (LPS) or LTA showed less pro-

inflammatory response than males as demonstrated by lower levels of TNF-α, IL-1β, 

IL-6 and IL-8 in blood [313]. In addition, severely injured male trauma-patients had a 

higher incidence of sepsis, multiple organ dysfunction syndrome and greater 

elevations in plasma procalcitonin and IL-6 compared with the equivalent group of 

females [73]. Further basic research studies also confirmed these clinical data on 

gender dimorphism following sepsis. These experimental studies suggested that 

females had immunologic advantage and showed a significantly increased survival 

rate compared with males following induction of polymicrobial sepsis by CLP [70].  

However, little is known about the impact of gender dimorphism on cardiac 

dysfunction caused by sepsis. Moreover, the mechanisms underlying the gender 
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difference in susceptibility of the heart to a septic challenge are not understood. The 

present study was designed to determine whether the severity of myocardial 

dysfunction caused by either co-administration of LPS/ PepG or polymicrobial sepsis 

induced by CLP differs in male and female mice. Having found that the cardiac 

dysfunction associated with sepsis was less pronounced in female than in male mice, I 

have then investigated the potential signalling pathways that may have contributed to 

the observed differences. 

2.1.1 Scientific Hypotheses and Aims of the Study Presented in Chapter II 

My project was driven by the hypotheses that: 

 Female mice subjected to sepsis have better cardiac function than male mice 

 Cardiac activation of the Akt/eNOS survival pathway and decreased activation 

of NF-κB are essential to the protection of female hearts against the 

dysfunction associated with sepsis 

My study had the following scientific objectives: 

 To establish animal models of hyper-inflammation induced by co-

administration of LPS and PepG in both male and female mice 

 To investigate the gender dimorphism in the severity of cardiac dysfunction 

caused by co-administration of LPS/PepG 

 To elucidate signalling mechanism (s) underlying the protection of female 

hearts against the dysfunction associated with sepsis 

 To establish a clinically relevant model of polymicrobial sepsis caused by CLP 

(with antibiotic therapy and fluid-resuscitation) in both male and female mice 

 To confirm the results obtained in the model of hyper-inflammation in 

polymicrobial sepsis model induced by CLP 
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2.2 Materials and Methods 

2.2.1 Animals 

The animal protocols followed in this study were approved by the Animal Welfare 

Ethics Review Board (AWERB) of Queen Mary University of London in accordance 

with the derivatives of both the Home Office guidance on the Operation of Animals 

(Scientific Procedures Act 1986) published by Her Majesty’s Stationery Office and 

the Guide for the Care and Use of Laboratory Animals of the National Research 

Council. All surgery was performed under ketamine/xylazine anaesthesia and 

echocardiography was performed under inhalation anaesthesia of isoflurane, 

buprenorphine was administered before surgery as well as 6 h and 18 h after surgery 

to reduce postoperative pain, and all efforts were made to minimise suffering of the 

animals. This study was carried out on ten week-old male (n = 29) and age-matched 

female (n = 22) C57BL/6 mice, weighing 20-30 g, and eight month-old male (n = 12) 

and age-matched female (n = 12) C57BL/6 mice (Charles River Laboratories UK 

Ltd., Kent, UK), weighing 35-50 g. The animals were allowed to acclimatise to 

laboratory conditions for a period of at least one week before any experimental 

procedures were initiated. They were housed in individually ventilated cages lined 

with an absorbent bedding material with no more than 6 mice per cage. The room 

temperature and humidity was maintained at 19°C -23°C and 55%, respectively. All 

animals had free access to a standard diet and water ad libitum. The feeding boxes 

were cleaned and disinfected every 3 days, and the water was changed on a daily 

basis to prevent infectious diseases. Animals were inspected for signs of illness and/or 

unusual behaviour by research staff at least once per day. All studies involving 

animals are reported in accordance with the ARRIVE guidelines for reporting 

experiments involving animals [314, 315].   

2.2.2 Model of LPS/PepG-induced cardiac dysfunction 

Ten week-old male and female C57BL/6 mice received intraperitoneal administration 

of LPS/PepG (LPS (derived from Escherichia coli 0111:B4); 3 mg/kg and PepG; 0.1 

mg/kg or LPS; 9 mg/kg and PepG; 1 mg/kg in PBS; 5 ml/kg i.p.) (Figure 2.1). Sham-

treated mice were not subjected to LPS/PepG, but were otherwise treated the same 

way. Eighteen hours after LPS/PepG administration, cardiac function was assessed by 
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echocardiography in vivo. Mice were then deeply anaesthetised i.p. with ketamine 

(100 mg/kg) and xylazine (10 mg/kg), and were killed by removing the hearts. Heart 

samples were stored at -80 °C for further analyses. Mice were randomly allocated into 

eight different groups as indicated in Table 2.1.  

 

At 18 hours post-LPS/PepG injection, a clinical score for monitoring the health of 

experimental mice was used to evaluate the symptoms consistent with murine sepsis. 

The maximum score of 6 comprised the presence of the following signs: lethargy, 

piloerection, tremors, periorbital exudates, respiratory distress, and diarrhea.  
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Figure 2.1 Co-administration of LPS/PepG-induced cardiac dysfunction. Scheme of 

animal experiments carried out in a model of co-administration of LPS/PepG-induced 

experimental sepsis in 10 week-old male and female C57BL/6 mice to investigate gender 

dimorphism of cardiac dysfunction and its underlying mechanism. Mice received 

intraperitoneal (i.p.) administration of LPS/PepG (LPS; 3 mg/kg and PepG; 0.1 mg/kg or LPS; 

9 mg/kg and PepG; 1 mg/kg in PBS; 5 ml/kg i.p.). At 18 h cardiac function was assessed by 

echocardiography in vivo under anaesthesia with isoflurane. Mice were then euthanised; 

organs and blood samples were collected for quantification of organ dysfunction/injury. 

 

 

 

 

Table 2.1 Experimental groups used to study gender dimorphism in murine 

model of LPS/PepG-induced cardiac dysfunction. 

Study Group Number 

Low dose LPS/PepG 

co-administration 

[LPS (3 mg/kg)/PepG (0.1 

mg/kg)] study 

Male + vehicle (5ml/kg PBS i.p.) 6 

Male + LPS/PepG 7 

Female + vehicle (5ml/kg PBS i.p.) 4 

Female + LPS/PepG 8 

High dose LPS/PepG 

co-administration 

[LPS (9 mg/kg)/PepG (1 mg/kg)] 

study 

Male + vehicle (5ml/kg PBS i.p.) 5 

Male + LPS/PepG 11 

Female + vehicle (5ml/kg PBS i.p.) 4 

Female + LPS/PepG 6 
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2.2.3 Model of polymicrobial sepsis caused by caecal ligation and puncture 

In the model of polymicrobial sepsis-induced cardiac dysfunction (Figure 2.2), eight 

month-old male and female C57BL/6 mice were subjected to CLP. Sham-operated 

mice were not subjected to ligation or perforation of cecum but were otherwise treated 

the same way. I followed the original CLP protocol introduced by Wichterman and 

co-workers [26] with slight modifications including analgesia, antibiotic therapy and 

fluid resuscitation as described previously [15,21]. Based on previous evidence and 

preliminary data, an 18-G needle was used with the double puncture technique in 

order to generate reproducible cardiac dysfunction during the early phase of sepsis 

(24 h). Briefly, mice were anaesthetised i.p. with ketamine (100 mg/kg) and xylazine 

(10 mg/kg) prepared in the same solution by using 1.5ml/kg. Buprenorphine 

(0.05mg/kg i.p.) was injected additionally to provide adequate analgesia. The rectal 

temperature of the animals was maintained at 37°C with a homeothermic blanket. The 

abdomen was opened via a 1.5 cm midline incision, and the cecum exposed. The 

cecum was ligated just below the ileocaecal valve and punctured at both opposite 

ends. After a small amount of faecal matter was extruded from both ends, the cecum 

was placed back in its anatomical position and the abdomen was sutured. Ringer’s 

solution was given s.c. for resuscitation directly after surgery (1 ml/mouse) and 6 h 

and 18 h after surgery (0.5 ml/mouse). Antibiotic (Imipenem/Cilastin; 20 mg/kg s.c.) 

and analgesia (buprenorphine; 0.05 mg/kg i.p.) was administered 6 h and 18 h after 

surgery. At 24 h after CLP, cardiac function was assessed by echocardiography in 

vivo. Mice were then deeply anaesthetised i.p. with ketamine/xylazine, and blood 

samples were taken by cardiac puncture under deep anaesthsia. Mice were killed by 

removing the hearts. Organs and blood samples were collected for quantification of 

organ dysfunction/injury. Mice were randomly allocated into four different groups as 

indicated in Table 2.2.  

 

At 24 hours post-CLP, a clinical score for monitoring the health of experimental mice 

was used. The detailed score system is described in chapter 2.2.2. 
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Figure 2.2 Polymicrobial sepsis-induced cardiac dysfunction. Scheme of animal 

experiments carried out in a model of polymicrobial sepsis induced by caecal ligation and 

puncture (CLP) in 8 month-old male and female C57BL/6 mice to investigate gender 

dimorphism of cardiac dysfunction and its underlying mechanism. Ringer’s solution was 

given s.c. for resuscitation directly after CLP surgery (1 ml/mouse) and 6 h and 18 h after 

surgery (0.5 ml/mouse). Antibiotic (Imipenem/Cilastin; 20 mg/kg s.c.) and analgesia 

(buprenorphine; 0.05 mg/kg i.p.) was administered 6 h and 18 h after surgery. At 24 h after 

CLP, cardiac function was assessed by echocardiography in vivo under anaesthesia with 

isoflurane. Mice were then euthanised; organs and blood samples were collected for 

quantification of organ dysfunction/injury. 

 

 

Table 2.2 Experimental groups used to study gender dimorphism in cardiac 

dysfunction in mice that underwent CLP. 

Group Number 

Male + sham-operation 4 

Female + sham-operation 4 

Male + CLP 8 

Female + CLP 8 
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2.2.4 Assessment of cardiac function in vivo 

Cardiac function was assessed in mice by echocardiography in vivo as reported 

previously [316, 317]. At 18 h after LPS/PepG co-administration or 24 h after CLP, 

anaesthesia was induced with 3 % isofluorane and maintained at 0.5 to 0.7 % for the 

duration of the procedure. Before assessment of cardiac function, mice were allowed 

to stabilise for at least 10 min. During echocardiography the heart rate was obtained 

from ECG tracing and the temperature was monitored with a rectal thermometer. 

Two-dimensional B-mode and one-dimensional M-mode echocardiography images 

were recorded using a Vevo-770 imaging system (VisualSonics, Toronto, Ontario, 

Canada) (Figure 2.3). Percentage fractional area change (FAC) was assessed from a 

two-dimensional B-mode trace of LV (Figure 2.4), and was derived by 100 x [(LV 

end-diastolic area – LV end-systolic area)/ LV end-diastolic area]. The method 

involves tracing endocardial surface of the LV in the parasternal short axis view at the 

level of papillary muscles. Percentage EF and fractional shortening (FS) were 

calculated from the M-mode measurements in the parasternal short axis view at the 

level of the papillary muscles. Calculation of EF and FAC requires the measurements 

of LV internal dimension (LVID) in diastolic (d) and systolic (s) phase (Figure 2.5). 

Percentage EF was calculated from 100 x {[LVID (d)
 3

 – LVID (s)
 3

]/ LVID (d)
3
}; 

percentage FS was derived by 100 x {[LVID (d) – LVID (s)]/ LVID (d)}. The intra-

observer variability of percentage EF, FS and FAC measurements over the course of 

one year was less than 4%, 4% and 5%, respectively. The inter-observer variability of 

percentage EF, FS and FAC measurements between two independent operators was all 

less than 4%. 
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Figure 2.3 Set up of Vevo-770 imaging system. Echocardiography was conducted on a 

mouse under anaesthesia with isoflurane. Anaesthesia was induced in the anaesthetic chamber, 

and was maintained through a nosecone for oxygen and isoflurane supply. The mouse was 

placed on a mouse-handling stage with ECG leads and heating function, which could be 

adjusted by scrolling x/y stage adjustment. The heart rate was obtained from ECG tracing and 

the temperature was monitored through a rectal temperature probe. 707B RMV scanhead was 

connected to the RMV clamp. The clamp adjustment knob and up/down clamp adjustment 

scroll could be used to adjust orientation of the RMV clamp, thus the scanhead.  
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Figure 2.4 B-mode echocardiography image of the mouse heart. Representative B-mode 

echocardiography image shows the left ventricle (LV) in the parasternal short axis view at the 

level of the papillary muscles. Measurements of LV end-diastolic area and LV end-systolic 

area required for percentage fractional area change (FAC) calculation involve tracing 

endocardial surface of the LV in the parasternal short axis view at the level of papillary 

muscles. 
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Figure 2.5 M-mode image of the mouse heart. M-mode imaging (B) shows the movement 

of tissue detected by one line of the B-mode image in the parasternal short axis view at the 

level of papillary muscles (A) throughout the cardiac cycle. Calculation of percentage 

ejection fraction (EF) and fractional shortening (FS) requires the measurements of left 

ventricle internal dimension (LVID) in diastolic (d) and systolic (s) phase. Measurements of 

LVID should be taken from the left surface of the interventricular septum (IVS) to the inner 

surface of the LV posterior wall (LVPW). In order to make accurate assessment, it is 

important to avoid the interference of papillary muscles on the endocardial surface of LVPW. 

Cardiac structures and the electrocardiogram (ECG) are closely related both temporally and 

spatially. LVID (d) should be taken at the end of diastole, which coincides with the peak of R 

wave on the ECG whereas LVID (s) at the end of systole which correlates with the T wave of 

ECG. 
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2.2.5 Quantification of renal dysfunction and hepatocellular injury 

Renal dysfunction and hepatocellular injury were assessed in mice subjected to 

LPS/PepG at 18 h or CLP at 24 h. Mice were anaesthetised with 1.5 ml/kg i.p. of a 

ketamine (100 mg/ml)/xylazine (20 mg/ml) solution in a 2:1 ratio before being 

sacrificed. Approximately 0.7 ml of blood was collected by cardiac puncture into non-

heparinised syringes and immediately decanted into serum gel S/1.3 tube (Sarstedt, 

Nürnbrecht, Germany), after which the heart was removed to terminate the 

experiment. The samples were centrifuged at 9900 g for 3 min to separate serum, 

which was sent to an independent laboratory (IDEXX Laboratories, 

Buckinghamshire, UK) for analyses of serum creatinine and ALT, markers of renal 

dysfunction and hepatocellular injury, respectively. Additionally, heart samples were 

taken and stored at 80 °C for further analyses. 

 

2.2.6 Western Blot Analysis 

Semi-quantitative western blot analyses were carried out in mouse heart tissues as 

described previously [27]. We assessed the degree of phosphorylation of Akt on 

Ser
473

, eNOS on Ser
1177

, inhibitor of κB (IκB) α on Ser
32/36

, as well as the nuclear 

translocation of the p65 subunit of NF-κB (nucleus/cytosol ratio) and iNOS 

expression.  

2.2.6.1 Solutions and Reagents 

These solutions or buffers (Table 2.3) may be stored at 4°C for several weeks or for 

up to a year aliquoted and stored at -20°C. 
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Table 2.3 Protocols for making western blot solutions. 

Solutions Components 

Homogenisation buffer 

 

20 mM Hepes-KOH pH 7.9 

1 mM MgCl2 

0.5 mM EDTA 

1 mM EGTA 

0.1% Triton X-100 

100 ml Distilled H2O 

Protease Inhibitors (add just before use): 

0.1% Proteinase Inhibitor cocktail (PIC) 

0.5 mM PMSF 

0.1 mM DL-Dithiethrectol (DTT) 

Extraction buffer 

 

20 mM Hepes-KOH pH 7.9 

1.5 mM MgCl2 

0.2 mM EDTA 

1 mM EGTA 

20% Glycerol 

420 mM NaCl 

50 ml Distilled H2O 

Protease Inhibitors (add just before use): 

0.1% PIC 

0.5 mM PMSF 

0.1 mM DTT 

Loading buffer 

 

4% SDS 

20% Glycerol 

0.004% Bromophenol blue 

0.125 M Tris-HCl  

Running buffer 

 

25 mM Tris base 

190 mM Glycine 

0.1% SDS 

Distilled H2O 

Transfer buffer 

 

48 mM Tris 

39 mM Glycine 

15% Methanol 

0.04% SDS 

Distilled H2O 

Blocking buffer 

 

0.1% Tween 

10% Milk 

PBS 

Primary antibody solution 

 

0.1% Tween 

5% Milk  

Dilution 1:200 or 1:1000 Primary antibody (rabbit anti-

total Akt, dilution 1:1000; mouse anti-pAkt Ser473, 
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dilution 1:1000; rabbit anti total eNOS, dilution 1:200; 

goat anti-peNOS Ser1177, dilution 1:200; mouse anti-

total IκBα, dilution 1:1000; mouse anti-IκBα 

pSer32/36, dilution 1:1000; rabbit anti-NF-κΒ p65, 

dilution 1:1000; rabbit anti total iNOS, dilution 1:200) 

PBS 

Secondary antibody solution 

 

0.1% Tween 

5% Milk  

Dilution 1:10000 Secondary antibody conjugated with 

horseradish peroxidase (HRP) 

0.005% StrepTactin-HRP 

PBS 

Washing buffer 

 

0.002% Tween 

PBS 
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2.2.6.2 Procedures 

Tissue Homogenisation and Cytosolic Protein Collection 

(1) Take 40-50 μg tissue in a dish on ice, homogenise the tissue with homogenisation 

buffer in ice at concentrations of 1:10 (e.g. 30 ug of tissue in 300 ul of 

homogenisation buffer). 

(2) Centrifuge at 4 000 RPM for 5 min at 4°C to separate cytosol from nuclei (Figure 

2.6). 

(3) Separate the supernatant (Supernatant 1) from the pellet (Pellet 1). Keep tubes 

with nuclear pellet (Pellet 1) on ice. 

(4) Centrifuge the Supernatant 1 at 14000 RPM (16215g) for 40 min at 4°C. The 

obtained supernatant (Supernatant 2) containing the cytosolic proteins.  

(5) Transfer the supernatants to fresh tubes kept on ice, and discard the pellet. Keep 

cytosol protein supernatants in 4°C fridge. 

Nuclear Protein Extraction 

(1) The pelleted nuclei (Pellet 1) were re-suspended in extraction buffer (1:3.3 tissue 

weight/ solution volume). Vortex for 40 sec. Incubate solutions in ice for 30 min, 

vortex once every 10 min (Figure 2.6). 

(2) Centrifuge at 14 000 RPM for 20 min at 4°C to separate nuclear protein from 

DNA and nuclear membrane, etc. The obtained supernatant (Supernatant 3) 

containing the nuclear proteins. Keep supernatant in 4°C fridge. Or freeze 

Supernatant 2 (cytosolic proteins) and Supernatant 3 (nuclear proteins) at -80° C 

for future use. 
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Figure 2.6 Protocols for cytosolic protein collection and nuclear protein extraction from 

homogenised tissue. Figure is kindly provided by Mr Fausto Chiaza. 
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Bicinchoninic Acid (BCA) Protein Assay 

Protein content was determined on both nuclear and cytosolic extracts using a BCA 

protein assay following the manufacturer’s directions (Therma Fisher Scientific, 

Rockford, IL). 

(1) Make up BCA standard curve albumin. 

(2) Make up BCA buffer by adding buffer A to buffer B at 50:1. 

(3) Add 3 μl nuclear or cytosolic protein sample, 27 μl distilled water and 570 μl 

BCA solution per labelled well on plate. 

(4) Add 30 μl distilled water and 570 μl BCA solution in one well as negative control. 

(5) Incubate 37°C 30 min in dark for reaction (Figure 2.7). 

(6) Read plate (Revelation programme, 560nm). 

(7) Calculate protein concentrations. 
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Figure 2.7 The BCA assay reaction procedure.  Addition of copper (II) ions to a protein 

solution in an alkaline medium reduces the copper (II) ions to copper (I).  Copper (I) forms 

coordination complex with BCA reagent in a 1:2 stoichiometry. The BCA-Copper (I) complex 

produces a strong purple color. 

(http://guweb2.gonzaga.edu/faculty/cronk/CHEM240/experiments.cfm?expt= 02) 
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Loading and Running the Gel 

(1) Load 60 μg total cytosol protein samples or 30 μg total nuclear protein samples 

into the wells of the 8% sodium dodecyl sulphatepolyacrylamide gel 

electrophoresis (SDS-PAGE), along with 5 μl molecular weight markers. Empty 

wells were loaded with 5 μl sample buffer.  

(2) Total loading volume for protein sample loaded well was 15 μl [eg. 4.96 μl protein 

sample + 7.04 μl distilled H2O (12 μl in total) + 3 μl sample buffer)]. 

(3) Before loading the sample solution to the stacking gel, boil the solution (15 μl) for 

5 min to accelerate the effect of SDS in breaking 3
rd

 structure of protein. 

(4) Run the gel for 30-35 min at 200 V (time depends on protein size, small proteins 

run faster). 

Transferring the Protein from the Gel to Polyvinyldenedifluoride (PVDF) Paper 

Membrane 

(1) Place membrane into methanol for 15 sec. 

(2) Place membrane into Transfer buffer for 5 min. 

(3) Make “transfer sandwich”, ie: sponge/ 2-3 filter paper/ PVDF membrane/ gel/ 2-3 

filter paper/ sponge (Figure 2.8). 

(4) Place into transfer module 70 min/ 100 V. 
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Figure 2.8 Preparing the “transfer sandwich”. 

(http://www.abcam.cn/index.html?pageconfig= resource&rid=1304) 
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Antibody Incubation and Visualisation  

(1) Remove PVDF membrane and wash in washing buffer for 10 min. 

(2) Block membrane for 2 h at 4°C. 

(3) Wash membrane with washing buffer for 10 sec. 

(4) Incubate membrane with appropriate dilutions of primary antibody in 5% 

blocking solution overnight at 4°C. 

(5) Wash membrane with washing buffer 3 x 3 min. 

(6) Incubate membrane with secondary antibody solution for 30 min at room 

temperature.  

(7) Wash membrane with washing buffer 3 x 3 min. 

(8) ECL: add buffer 1 to buffer 2, stand 1 min then pour the solution onto membrane. 

Leave 1 min then discard. 

(9) Cover the membrane in transparent plastic wrap, place it into film cassette in dark 

room, and place a film on it. 

(10) Place film into developing solution for 10 sec, then stop the reaction by placing it     

into water, fix film in fixing solution. 

(11) Strip membrane (add Invitrogen Western stripping solu. Incubate 15 min/ RT/ 

shaking). 

(12) Wash membrane in washing buffer 3 x 3 min. 

(13) Incubate in blocking buffer for 2 h shaking at room temperature. 

(14) Store in fridge or reprobe with another primary antibody. 

(15) Densitometric analysis of the bands was performed using the Gel Pro Analyser 

4.5, 2000 software (Media Cybernetics, Silver Spring, MD, USA). Each group 

was then adjusted against corresponding sham data to establish relative protein 

expression when compared with sham animals. 

 

2.2.7 Quantitative Determination of Tissue TNF-α and IL-6 by ELISA 

The expressions of TNF-α and IL-6 in mouse heart samples were determined using 

mouse TNF-α and IL-6 immunoassay kits (R&D Systems, Minneapolis, MN), 

respectively. The detailed tissue homogenisation procedure is described in chapter 

2.2.6.2. ELISA was performed on tissue supernatant containing the cytosolic proteins. 

ELISA was performed by adding 100 μl of each sample (tested in duplicate) to wells 
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in a 96-well plate (12 strips x 8 wells) coated with anti-mouse TNF-α or IL-6. Wells 

were covered and samples were incubated for 2.5 h at room temperature, followed by 

rinsing 4 times in wash buffer. The samples were then incubated with 100 μl 

biotinylated anti-mouse TNF-α or IL-6 in each well for 1 h at room temperature. After 

washing 4 times in wash buffer, the wells were incubated with 100 μl HRP-

conjugated streptavidin for 45 min at room temperature. The wells were then rinsed 4 

times in wash buffer and the sites of HRP bing were visualised with a 3,3’,5,5’-

tetramethylbenzidine (TMB) solution, incubating for 30 min at room temperature in 

the dark. Adding 0.2 M sulfuric acid solution to the wells stopped the reaction. The 

expressions of TNF-α and IL-6 have been normalized to the protein content. 

2.2.8 Statistics 

All values described in the text and figures are presented as mean ± standard error of 

the mean (SEM) of n observations, where n represents the number of animals studied. 

Statistical analysis was performed using GraphPad Prism 6.0 (GraphPad Software, 

San Diego, California, USA). Two-way ANOVA followed by Sidak’s multiple 

comparisons test was used to compare intergroup differences. Comparing results were 

considered statistically significant when P < 0.05. 

2.2.9 Materials 

Unless otherwise stated, all compounds in this study were purchased from Sigma-

Aldrich Company Ltd (Poole, Dorset, UK). All solutions were prepared using non-

pyrogenic saline [0.9% (w/v) NaCl; Baxter Healthcare Ltd, Thetford, Norfolk, UK]. 

Antibodies for immunoblot analysis were purchased from Santa Cruz Biotechnology, 

Inc. (Heidelberg, Germany). 
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2.3 Results 

2.3.1 Gender dimorphism of cardiac dysfunction and clinical score in response to 

LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. 

To determine the gender difference of cardiac dysfunction caused by LPS/PepG, left 

ventricular function was assessed using echocardiography at 18 h after intraperitoneal 

injection of LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS (5mg/kg). Mice injected with 

LPS/PepG had a lower body temperature and a lower heart rate in comparison to 

sham-treated mice (male sham/female sham versus male + LPS/PepG/female + 

LPS/PepG; P<0.05; Table 2.4). In sham-treated mice, there was no difference of EF, 

FS or FAC between male and female mice (P>0.05; Figure 2.9A - D). When 

compared to sham-treated mice, LPS/PepG caused a significant reduction in EF 

(P<0.05; Figure 2.9A, 2.9B), FS (P<0.05; Figure 2.9A, 2.9C) and FAC (P<0.05; 

Figure 2.9A, 2.9D) in both male and female mice, indicating the development of 

cardiac dysfunction in vivo. However, female mice subjected to LPS/PepG exhibited 

significantly higher EF, FS and FAC in comparison with male mice (P<0.05; Figure 

2.9A - D), indicating the cardiac dysfunction caused by LPS/PepG was less 

pronounced in female than in male animals. Additionally, when compared with male 

mice subjected to LPS/PepG injection, female mice yielded attenuated clinical scores 

(P<0.05; Figure 2.9E). 

 

 

 

 

 

 

 

 

 

 

 

 

 



GENDER DIMORPHISM OF THE CARDIAC DYSFUNCTION IN MURINE 

SEPSIS: SIGNALLING MECHANISMS AND AGE-DEPENDENCY 
   

 

  106 

Table 2.4 Gender dimorphism of heart rate and temperature of mice responses to 

septic insults. 

 

Parameter Male Female 

 Sham LPS (3 mg/kg)/ 

PepG (0.1 mg/kg) 

Sham LPS (3 mg/kg)/ 

PepG (0.1 mg/kg) 

Number 6 7 4 8 

Heart Rate (bpm) 543.33 ± 23.23 486.14 ± 15.07* 569.25 ± 16.44 505.75 ± 12.16* 

Temperature (°C) 35.38 ± 0.31 30.38 ± 0.87* 35.62 ± 0.46 32.24 ± 0.94* 

 Sham CLP Sham CLP 

Number 4 8 4 8 

Heart Rate (bpm) 537.25 ± 25.76 481.13 ± 11.98* 546.75 ± 10.06 494.25 ± 18.69* 

Temperature (°C) 35.02 ± 0.52 31.19 ± 0.67* 35.45 ± 0.32 32.08 ± 0.81* 

 Sham LPS (9 mg/kg)/ 

PepG (1 mg/kg) 

Sham LPS (9 mg/kg)/ 

PepG (1 mg/kg) 

Number 5 11 4 6 

Heart Rate (bpm) 550.50 ± 26.34 456.72±12.08* 570.75 ± 20.14 448.17 ± 28.53* 

Temperature (°C) 35.52 ± 0.44 29.16 ± 0.63* 35.90 ± 0.48 29.70 ± 1.03* 

 

Heart rate and temperature were recorded at 18 h in mice subjected to LPS/PepG co-

administration and at 24 h in mice that underwent CLP. Bpm, beats per min. Data are 

expressed as means ± SEM for n number of observations. *P < 0.05 versus the respective 

sham group, #P < 0.05 versus male LPS/PepG or CLP group.  
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Figure 2.9 Gender dimorphism of cardiac dysfunction and clinical score in mice 

subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. Male or female mice 

received LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS intraperitoneally. Cardiac function was 

assessed at 18 h. (A) Representative M-mode echocardiograms; percentage (%) (B) ejection 

fraction (EF); (C) fractional shortening (FS); (D) fractional area of change (FAC); and (E) 

clinical score: At 18 hours post-LPS/PepG, mice were scored for the presence or absence of 

six different macroscopic signs of sepsis. The following groups were studied: Male + vehicle 

(n = 6); Female + vehicle (n = 4); Male + LPS/PepG (n = 7); Female + LPS/PepG (n = 8). 

Panel B – D: Data are expressed as means ± SEM for n number of observations.P < 0.05 

versus sham group, #P < 0.05 versus male LPS/PepG group, ¶ P < 0.05 versus male 

LPS/PepG group. 
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2.3.2 Gender dimorphism of cardiac dysfunction and clinical score in response to 

CLP-induced polymicrobial sepsis. 

The murine model of CLP with fluid resuscitation and antibiotic treatment offers a 

clinically relevant model of abdominal polymicrobial human sepsis. Cardiac 

dysfunction induced by polymicrobial sepsis caused by CLP was only observed in 8 

month-old male mice [317]. We sought to confirm the above observed gender 

difference of cardiac dysfunction in the CLP animal model in 8 month-old male and 

female mice. Left ventricular function was assessed using echocardiography at 24 h 

after CLP or sham surgery. Mice that underwent CLP had a lower body temperature 

and a lower heart rate in comparison to sham-operated mice (male sham/female sham 

versus male + CLP/female + CLP; P<0.05; Table 2.4). In sham-operated mice, there 

was no difference of EF, FS or FAC between male and female mice (P>0.05; Figure 

2.10A - D). When compared to sham-treated mice, polymicrobial sepsis induced by 

CLP caused a significant reduction in EF (P<0.05; Figure 2.10A, 2.10B), FS (P<0.05; 

Figure 2.10A, 2.10C) and FAC (P<0.05; Figure 2.10A, 2.10D) in both male and 

female mice, indicating the development of cardiac dysfunction in vivo. However, 

female mice that underwent CLP exhibited significantly higher EF, FS and FAC in 

comparison with male mice (P<0.05; Figure 2.10A - D), indicating the cardiac 

dysfunction induced by CLP was less pronounced in female than in male animals. 

Additionally, when compared with male mice subjected to CLP, female mice yielded 

attenuated clinical scores (P<0.05; Figure 2.10E). 
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Figure 2.10 Gender dimorphism of cardiac dysfunction and clinical score in mice that 

underwent CLP. Male or female mice were subjected to CLP or sham-operation. Cardiac 

function was assessed at 24 h. (A) Representative M-mode echocardiograms; % (B) EF; (C) 

FS; (D) FAC; and (E) clinical score: At 24 hours post-CLP, mice were scored for the presence 

or absence of six different macroscopic signs of sepsis. The following groups were studied: 

Male + sham-operation (n = 4); Female + sham-operation (n = 4); Male + CLP (n = 8); 

Female + CLP (n = 8). Panel B – D: Data are expressed as means ± SEM for n number of 

observations.P < 0.05 versus sham group, #P < 0.05 versus male CLP group, ¶ P < 0.05 

versus male CLP group. 
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2.3.3 Gender dimorphism of the phosphorylation of Akt in the hearts of mice 

subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. 

The potential underlying mechanisms behind the observed gender dimorphism of 

cardiac dysfunction were investigated by semi-quantitative western blot analysis of 

the mouse heart subjected to LPS/PepG at 18 h. When compared to male sham-treated 

mice, female sham-treated mice showed a higher degree of phosphorylation of Akt on 

Ser
473

 in heart tissue, but these data were not significant (P>0.05; Figure 2.11A). 

Exposure of male mice to LPS/PepG for 18 h caused a small and non-significant 

increase in the phosphorylation of Akt on Ser
473

 (P>0.05; Figure 2.11A). However, 

exposure of female mice to LPS/PepG for 18 h induced a significant increase in the 

phosphorylation of Akt on Ser
473

 compared with either female sham-treated mice or 

male LPS/PepG-treated mice (P<0.05; Figure 2.11A). 

 

2.3.4 Gender dimorphism of the phosphorylation of eNOS in the hearts of mice 

subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. 

When compared to male sham-treated mice, female sham-treated mice showed a 

higher degree of phosphorylation of eNOS on Ser
1177

 in heart tissue, but these data 

were not significant (P>0.05; Figure 2.11B). Exposure of male mice to LPS/PepG for 

18 h caused a small and not significant increase in the phosphorylation of eNOS on 

Ser
1177

 (P>0.05; Figure 2.11B). However, exposure of female mice to LPS/PepG for 

18 h induced a significant increase in the phosphorylation of eNOS on Ser
1177

 

compared with either female sham-treated mice or male LPS/PepG-treated mice 

(P<0.05; Figure 2.11B). 
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Figure 2.11 Gender dimorphism of the phosphorylation of Akt and eNOS in the hearts 

of mice subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. Male or female 

mice received LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS. Signalling events in heart tissue 

were assessed at 18 h. Densitometric analysis of the bands is expressed as relative optical 

density (O.D.) of (A) phosphorylated Akt (pSer
473

) corrected for the corresponding total Akt 

content and normalized using the related sham band; (B) phosphorylated eNOS (pSer
1177

), 

corrected for the corresponding total eNOS content and normalized using the related sham 

band. Each analysis (A - B) is from a single experiment and is representative of three to four 

separate experiments. Data are expressed as means ± SEM for n number of observations. P 

< 0.05 versus the respective sham group, #P < 0.05 versus male LPS/PepG group. 
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2.3.5 Gender dimorphism of the phosphorylation of IκBα in the hearts of mice 

subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration.  

In sham-treated mice, there was no difference in the phosphorylation of IκBα on 

Ser
32/36 

between male and female hearts (P>0.05; Figure 2.12A). When compared to 

sham-treated mice, both male and female mice subjected to LPS/PepG demonstrated 

significant increases in the phosphorylation of IκBα on Ser
32/36 

in heart tissue 

(P<0.05; Figure 2.12A). However, the increase in IκBα phosphorylation on Ser
32/36 

caused by LPS/PepG was significantly less pronounced in hearts obtained from 

female than male mice (P<0.05; Figure 2.12A). 

 

2.3.6 Gender dimorphism of nuclear translocation of the p65 NF-κB subunit in 

the hearts of mice subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-

administration. 

In sham-treated mice, there was no difference of nuclear translocation of the p65 NF-

κB subunit between male and female hearts (P>0.05; Figure 2.12B). When compared 

to sham-treated mice, both male and female mice subjected to LPS/PepG 

demonstrated significant increases in the nuclear translocation of the p65 NF-κB 

subunit in heart tissue (P<0.05; Figure 2.12B). However, female mice subjected to 

LPS/PepG exhibited a significantly attenuated response in the nuclear translocation of 

the p65 NF-κB subunit in comparison with male mice (P<0.05; Figure 2.12B), 

indicating an important role of gender in LPS/PepG induced activation of NF-κB. 

 

2.3.7 Gender dimorphism of the expression of iNOS in the hearts of mice 

subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. 

In sham-treated mice, we detected a faint expression of iNOS protein, but there was 

no difference of iNOS expression between male and female hearts (P>0.05; Figure 

2.12C). When compared to sham-treated mice, LPS/PepG caused significant increases 

in the expression of iNOS protein in the heart (P<0.05; Figure 2.12C). However, in 

hearts from female mice subjected to LPS/PepG, the levels of iNOS protein were 

significantly lower than in hearts from male mice subjected to LPS/PepG (P<0.05; 

Figure 2.12C). 
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Figure 2.12 Gender dimorphism of the phosphorylation of IκBα, nuclear translocation 

of the p65 NF-κB subunit and expression of iNOS in the hearts of mice subjected to LPS 

(3 mg/kg)/PepG (0.1 mg/kg) co-administration. Male or female mice received LPS (3 

mg/kg)/PepG (0.1 mg/kg) or PBS. Signalling events in heart tissue were assessed at 18 h. 

Densitometric analysis of the bands is expressed as relative optical density (O.D.) of (A) 

phosphorylated IκBα (pSer
32/36

) corrected for the corresponding total IκBα content and 

normalized using the related sham band; (B) NF-κB p65 subunit levels in both, cytosolic and 

nuclear fractions expressed as a nucleus/cytosol ratio normalized using the related sham 

bands and (C) iNOS expression corrected for the corresponding tubulin band. Each analysis is 

from a single experiment and is representative of three to four separate experiments. Data are 

expressed as means ± SEM for n number of observations. P < 0.05 versus the respective 

sham group, #P < 0.05 versus male LPS/PepG group. 
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2.3.8 Gender dimorphism of the expression of TNF-α and IL-6 in the hearts of 

mice subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. 

When compared to male sham-treated mice, female sham-treated mice showed a 

lower TNF-α and IL-6 expressions in heart tissue, but these data were not significant 

(P>0.05; Figure 2.13A, 2.13B). When compared to sham-treated mice, both male and 

female mice subjected to LPS/PepG demonstrated significant increases in the 

expression of TNF-α and IL-6 in heart tissue (P<0.05; Figure 2.13A, 2.13B). 

However, female mice subjected to LPS/PepG exhibited a significantly attenuated 

response in the expression of TNF-α and IL-6 in comparison with male mice after 

LPS/PepG challenge (P<0.05; Figure 2.13A, 2.13B). 
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Figure 2.13 Gender dimorphism of the expression of TNF-α and IL-6 in the hearts of 

mice subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. Male or female 

mice received either LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS. Signalling events in heart 

tissue were assessed at 18 h. (A) TNF-α expression and (B) IL-6 expression in heart tissue of 

mice subjected to LPS/PepG. Each analysis is from a single experiment and is representative 

of three to four separate experiments. Data are expressed as means ± SEM for n number of 

observations. P < 0.05 versus the respective sham group, #P < 0.05 versus male LPS/PepG 

group. 
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2.3.9 Gender dimorphism of cardiac dysfunction was blunted in response to high 

dose of LPS (9 mg/kg)/PepG (1 mg/kg) co-administration. 

To further investigate whether the gender dimorphism still exists under increased 

inflammatory stimulus, left ventricular function was assessed using echocardiography 

at 18 h after intraperitoneal injection of LPS (9 mg/kg)/PepG (1 mg/kg) or vehicle. 

Mice injected with LPS/PepG had a lower body temperature and a lower heart rate in 

comparison to sham-treated mice (male sham/female sham versus male + 

LPS/PepG/female + LPS/PepG; P<0.05; Table 2.4). In sham-treated mice, there was 

no difference in EF, FS or FAC between male and female mice (P>0.05; Figure 2.14A 

- D). When compared to sham-treated mice, LPS/PepG caused a significant reduction 

in EF (P<0.05; Figure 2.14A, 2.14B), FS (P<0.05; Figure 2.14A, 2.14C) and FAC 

(P<0.05; Figure 2.14A, 2.14D) in both male and female mice, indicating the 

development of cardiac dysfunction in vivo. When compared to male LPS/PepG-

treated mice, female mice subjected to LPS/PepG showed a significant increase in 

FAC (P<0.05; Figure 2.14A, 2.14D), but this was not significant for EF (P>0.05; 

Figure 2.14A, 2.14B) and FS (P>0.05; Figure 2.14A, 2.14C), indicating that gender 

dimorphism of the cardiac dysfunction after septic insult was abrogated by the severe 

injury induced by high dose of LPS (9 mg/kg)/PepG (1 mg/kg) co-administration. 
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Figure 2.14 Gender dimorphism of cardiac dysfunction was blunted in response to high 

dose of LPS (9 mg/kg)/PepG (1 mg/kg) co-administration. Male or female mice received 

either LPS (9 mg/kg)/PepG (1 mg/kg) or PBS intraperitoneally. Cardiac function was 

assessed at 18 h. (A) Representative M-mode echocardiograms; percentage (%) (B) ejection 

fraction (EF); (C) fractional shortening (FS); and (D) fractional area of change (FAC). The 

following groups were studied: Male + vehicle (n = 5); Female + vehicle (n = 4); Male + 

LPS/PepG (n = 11); Female + LPS/PepG (n = 6). Data are expressed as means ± SEM for n 

number of observations. P < 0.05 versus the respective sham group, #P < 0.05 versus male 

LPS/PepG group. 
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2.3.10 Gender dimorphism of renal dysfunction and hepatocellular injury in 

mice subjected to LPS/PepG co-administration or polymicrobial sepsis. 

In sham-treated mice, there was no difference of serum creatinine and serum ALT 

levels between male and female mice (P>0.05; Table 2.5). When compared to sham-

operated mice, both male and female mice subjected to septic insults induced either 

by co-administration of LPS (3 mg/kg)/PepG (0.1 mg/kg), CLP or co-administration 

of LPS (9 mg/kg)/PepG (1 mg/kg) exhibited significant increases in serum creatinine 

(P<0.05) and ALT (P<0.05) (Table 2.5), indicating the development of renal 

dysfunction and hepatocellular injury, respectively. There appeared to be no 

difference in serum creatinine and, hence, renal dysfunction between male and female 

mice subjected to septic insults (P>0.05; Table 2.5). However, the rise in serum ALT 

was significantly less in female than in male mice subjected to CLP or co-

administration of LPS (9 mg/kg)/PepG (1 mg/kg), indicating that females developed 

less hepatocellular injury than male mice (P<0.05; Table 2.5). 
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Table 2.5 Gender dimorphism of the renal dysfunction and hepatocellular injury 

in mice subjected to septic insults. 

Parameter Male Female 

 Sham LPS (3 mg/kg)/ 

PepG (0.1 mg/kg) 

Sham LPS (3 mg/kg)/ 

PepG (0.1 mg/kg) 

Creatinine (mol/L)     32.08 ± 0.67 48.60 ± 0.93* 29.07 ± 0.81 39.37 ± 4.24* 

ALT (U/L) 29.36 ± 2.14 74.46 ± 10.95* 28.85 ± 1.67 86.26 ± 7.45* 

 Sham CLP Sham CLP 

Creatinine (mol/L)     29.62 ± 0.40 46.44 ± 2.96* 29.15 ± 0.78 43.39 ± 3.76* 

ALT (U/L) 24.98 ± 1.70 224.15 ± 22.35* 23.88 ± 2.86 148.60 ± 19.11*# 

 Sham LPS (9 mg/kg)/ 

PepG (1 mg/kg) 

Sham LPS (9 mg/kg)/ 

PepG (1 mg/kg) 

Creatinine (mol/L)     31.46 ± 0.58 43.97 ± 2.59* 28.73 ± 0.69 42.86 ± 3.60* 

ALT (U/L) 28.06 ± 2.52 165.50 ± 21.12* 29.82 ± 1.75 104.78 ± 9.63*# 

 

Serum creatinine levels and serum alanine aminotransferase (ALT) levels were assessed at 18 

h in mice subjected to LPS/PepG co-administration and at 24 h in mice that underwent CLP. 

Data are expressed as means ± SEM for n number of observations. *P < 0.05 versus the 

respective sham group, #P < 0.05 versus male LPS/PepG or CLP group. 
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2.4 Discussion 

We describe here for the first time that the myocardial dysfunction caused by 

LPS/PepG is less pronounced in female than in male mice in vivo. This finding is in 

agreement with the previous reports showing that the cardiac dysfunction caused by 

myocardial ischaemia/reperfusion injury [318], trauma-haemorrhage [319] and burns 

[320] is also less pronounced in females than in males. Oestrogen modulates a 

number of acute injury-related myocardial responses; specifically oestrogen protects 

the heart against the injury and dysfunction caused by trauma-haemorrhage [321] and 

ischaemia/reperfusion injury (in isolated hearts subjected to global ischaemia and in 

hearts undergoing left anterior descending coronary artery (LAD) occlusion in vivo) 

[322, 323]. Although we provide clear evidence that female hearts show less 

dysfunction than male murine hearts when challenged with LPS/PepG, we wished to 

confirm this finding by using a more clinically relevant model of polymicrobial sepsis 

with antibiotic therapy and fluid-resuscitation caused by CLP in middle-aged mice (8 

month-old) [316, 317]. The age of mice was selected based on the knowledge that 8 

month-old female C57BL/6 mice are pre-ovarian failure and still have an active 

oestrus cycle [324]. Most notably, we demonstrate here that the cardiac function in 

female mice subjected to polymicrobial sepsis induced by CLP was significantly less 

pronounced than the cardiac dysfunction observed in male mice. Taken together, these 

findings indicate that the hearts of young or older female mice exhibit less cardiac 

dysfunction in response to polymicrobial sepsis or co-administration of LPS/PepG.  

To obtain a better insight into the mechanisms underlying the observed gender 

dimorphism of the cardiac response to sepsis, we investigated the phosphorylation of 

Akt, eNOS and IκBα, nuclear translocation of NF-κB subunit p65, iNOS expression, 

as well as TNF-α and IL-6 expression in murine hearts; When compared to the hearts 

of male mice subjected to LPS/PepG, hearts of female mice subjected to LPS/PepG 

showed i) profound increases in phosphorylation of Akt and eNOS; ii) reductions in 

phosphorylation of IκBα and nuclear translocation of the NF-κB subunit p65, iii) 

reduced expression of the pro-inflammatory cytokines TNF-α and IL-6, and iv) 

reduced expression of iNOS.  

Akt is a member of the phosphoinositide 3-kinases (PI3K) signal transduction enzyme 

family, activation of which protects the heart against injury [325, 326]. Here we 
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demonstrate that co-administration of LPS/PepG to female rather than male mice 

leads to a greater increase in Akt-phosphorylation and, hence, activity in the heart of 

female animals. Indeed, a greater increase in cardiac Akt phosphorylation in female 

when compared to male hearts also accounts for the reduced cardiac injury caused by 

ischaemia-reperfusion in female mice [327]. Most notably, when the Akt-pathway is 

blocked, the degree of cardiac injury in male and female mice was identical. Thus, 

activation of cardiac Akt (presumably by oestradiol) protects female hearts against 

cardiac injury and dysfunction [327]. Oestradiol activates cardiac Akt, which in turn 

also leads to a reduction in the cardiac dysfunction caused by trauma-haemorrhage 

[321, 326]. Blockade of the Akt pathway also abrogated the salutary effects of 

oestradiol on cardiac function following trauma-haemorrhage [321]. Moreover, 

activation of Akt mediates the inhibition by oestradiol of the TNF-α expression and 

NF-κB activation caused by LPS in cardiomyocytes [328]. In the present study, we 

found a small increase in cardiac Akt activity in female but not in male sham hearts. 

In line with this finding, one previous study showed that young women possess higher 

levels of Akt in the myocardium compared to comparably aged men or 

postmenopausal women, and that sexually mature female mice have elevated Akt 

kinase activity in nuclear extracts of hearts than male mice [329]. The hypothesis that 

cardiac Akt activity is modulated by oestrogen is also supported by the finding that 

the Akt activation in cardiomyocytes was reduced in ovariectomised rats [330]. In 

addition, activation of the PI3K/Akt signalling cascade by oestrogen was observed in 

rat cardiomyocytes [326]. A few studies have been conducted to explain the exact 

mechanism by which oestrogen induces Akt activation. Oestrogen receptor α has been 

shown to bind with the p85 α regulatory subunit of PI3K in a ligand-dependent 

manner in human endothelial cells; increased oestrogen receptor associated PI3K 

activity induced by oestrogen leads to the activation of Akt and eNOS in human 

endothelial cells [331]. Another study has shown that the direct interaction between 

oestrogen receptor and the PI3K regulatory subunit p85 in a time-dependent manner 

was consistent with the temporal profile for Akt phosphorylation in neurons [332]. 

Additionally, in cardiomyocytes, oestrogen stimulated Akt activation and prevented 

DNA fragmentation [326]. Thus, we propose that the higher cardiac activation of Akt 

in female mice importantly contributes to the improvement in cardiac dysfunction in 

sepsis.  
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Activation of Akt is known to modulate eNOS activity through phosphorylation of 

eNOS at Ser
1177

 [333, 334]. Indeed, the present study reported an increase in eNOS 

phosphorylation in female than in male hearts, which was correlated with the 

expression pattern of Akt. Augmentation of eNOS activity was shown to decrease 

sepsis-related increases in neutrophil-endothelial cell interaction and potentially 

maintain microvascular patency in sepsis [335]. There is good evidence that oestrogen 

modulates activation of eNOS. Oestrogen receptor α has been implicated in increased 

PI3K/Akt and eNOS activation induced by oestrogen in human endothelial cells 

[331]. Another study demonstrated that oestrogen stimulation of the eNOS promoter 

was mediated via increased activity of the transcription factor Sp1 (which is essential 

for the activity of the human eNOS promoter) [336]. Moreover, oestradiol treatment 

in guinea pigs increased eNOS mRNA in skeletal muscle, suggesting an increase in 

eNOS activity [337]. In line with these findings, data from the present study indicate 

that less vulnerability of female hearts to sepsis may be mediated in part by an 

increased activity of eNOS, secondary to the activation of PI3K/Akt pathway. 

NF-κB controls the transcription of a large number of genes, particularly those 

involved in inflammatory and acute stress responses, such as cytokines, chemokines, 

cell adhesion molecules, apoptotic factors, and other mediators [338]. IκBα 

inactivates NF-κB by masking the nuclear localisation signals of the NF-κB proteins 

and by sequestering NF-κB as an inactive complex in the cytoplasm [338, 339]. 

Phosphorylation of IκBα by IKK leads to the dissociation of IκBα from NF-κB, which 

liberates NF-κB to enter the nucleus and activates the expression of NF-κB target 

genes [338]. Up-regulation of NF-κB has been linked to the development of 

myocardial dysfunction following the onset of sepsis [317, 340]. Inhibition of NF-κB 

activation results in improved myocardial function after septic challenge [316]. 

Additionally, the dimer of oestrogen and its receptor can bind to NF-κB in osteoblasts 

following IL-1β exposure, further, NF-κB is proved to be one of the targets for 

oestrogen receptor, resulting in reduced IL-6 promoter activity [341]. In 

murine splenic macrophages, oestradiol inhibited TNF-α and IL-6 production was 

associated with a decreased LPS-induced NF-κB-binding activity [341]. Thus, our 

present results indicate that less myocardial dysfunction in females subjected to 

LPS/PepG could be importantly due to the decreased activation of NF-κB (secondary 

to the reduced activation of IκBα and, hence, nuclear translocation) in murine hearts. 

http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
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Activation of NF-κB may also mediate myocardial dysfunction through induction of 

expression of its target gene iNOS, which plays an important role in sepsis-related 

hypotension and impaired left ventricular function [125, 129]. Indeed, in the present 

study, iNOS expression was increased in male hearts, which correlates with their 

exacerbated cardiac dysfunction under septic insult. 

In addition to causing the expression of iNOS, NF-κB activation also leads to a 

pronounced increase in production of inflammatory mediators such as TNF-α and IL-

6 [342]. In turn, TNF also activates NF-κB through TNF-receptor-associated factors, 

this increases cytokine production, thus forming a feed-forward mechanism and 

amplifying the inflammatory reaction [343]. There is good evidence that those 

inflammatory cytokines play a significant role in the pathogenesis of sepsis-induced 

cardiac dysfunction [108, 344]. Moreover, clinical studies showed that stimulation of 

healthy females with LPS or LTA led to lower TNF-α and IL-6 levels in blood than 

males [313]. Female patients with sepsis had a higher survival rate, which was 

correlated with lower TNF-α and higher IL-10 levels [68], while male trauma-patients 

showed higher IL-6 level than females [73]. In experimental studies, cardiomyocyte 

TNF-α and IL-6 release was markedly lower in female than male rats following burn 

injury [320]. In addition, female hearts expressed less myocardial TNF-α in isolated 

hearts subjected to ischaemia/reperfusion injury [318] or LPS treatment [345]. Others 

have suggested that elevated plasma TNF-α and IL-6 induced by trauma-haemorrhage 

was prevented by oestradiol treatment in rats [321, 346]. Consistent with these 

findings, in our study, female mice, which had better cardiac function following septic 

insult, expressed less myocardial TNF-α and IL-6 than male mice subjected to 

LPS/PepG co-administration. 

In addition to the protective roles of oestrogen against inflammation, the observed 

gender dimorphism in our study might also be due to the pro-inflammatory effects of 

testosterone in male mice. Testosterone induces activation of NF-κB, macrophage 

chemotactic protein-1 (MCP-1) and IL-6 expression in 3T3-L1 adipocytes; the effect 

of testosterone on the expression of IL-6 and MCP-1 is inhibited by NF-κB inhibitor 

[347]. Additionally, testosterone injection for 2 weeks in rats caused NF-κB and iNOS 

upregulation in prostate tissue [348]. However, contradictory findings have shown 

also that testosterone inhibited TNF-α-induced nuclear translocation of NF-κB in 
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human aortic endothelial cells [349]. 

Our study demonstrated that the gender dimorphism of cardiac dysfunction in 

response to septic insults was abolished by the severe injury induced by high dose of 

LPS (9 mg/kg)/PepG (1 mg/kg) co-administration. This is in line with a report that the 

inflammatory cytokine response differed more strongly between blood from men and 

women after low-concentration of LPS stimulation compared with a higher stimulus 

concentration [313]. Population-based studies on sex dimorphism in mortality after 

sepsis showed inconsistent results. Some studies reported increased mortality in males 

[311, 312], while other studies demonstrated mortality from severe sepsis/sepsis was 

not affected by gender [350]. The inconsistency may have resulted from multiple 

factors such as pre-existing co-morbidities. More importantly, our observations of 

gender dimorphism in cardiac dysfunction responses to different severities of injury 

may partially explain the conflicting clinical data.  

The present study reported less hepatocellular injury in female than in male mice 

subjected to CLP or with injection of high dose of LPS (9 mg/kg)/PepG (1 mg/kg). 

This is consistent with the previous study in rats that females showed less liver tissue 

damage than males demonstrated by less liver congestion, and that 

oestrogen/progesterone treatment attenuated congestion, portal inflammation, and 

focal necrosis of the liver in male rats underwent CLP [351]. Additionally, 

administration of oestrogen significantly improved hepatocellular function assessed 

by serum AST, ALT levels and ameliorated oxidative organ damage in septic rats [77]. 

However, in the present study, no gender dimorphism of liver dysfunction was 

observed in mice subjected to low-dose LPS (3 mg/kg)/PepG (0.1 mg/kg) co-

administration. We propose that this may be secondary to the small therapeutic 

window in liver dysfunction induced by low-dose LPS (3 mg/kg)/PepG (0.1 mg/kg) 

may be not sufficient to show the gender dimorphism. In addition, the present study 

appears to show no difference in renal dysfunction between the two genders subjected 

to septic insults. This finding is line with a clinical study illustrating that mortality of 

acute kidney injury is independent of gender and age [352]. However, it has been 

suggested that the female gender is associated with slower progression of chronic 

kidney disease and better renal survival in chronic renal failure [353]. 
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It could be argued that the present study did not provide information about 

proestrus/oestrus or dioestrus state of oestrus cycle in female mice subjected to septic 

insults. In this regard, a recent study showed that female mice with CLP survived 

better than male mice that underwent CLP, but the higher survival in females did not 

correspond to any specific oestrus phase [71]. Furthermore, it has been demonstrated 

vaginal cytology does not reflect changes of circulating oestrogens in females and that 

the oestrus cycle cannot be predicted by vaginal smears [354]. Moreover, we did not 

notice a lot of variations in data obtained from female mice in our study. Therefore, 

oestrus cycle phases were not monitored in this study. 

2.4.1 Conclusion 

In this chapter, my findings provide for the first time a very clear indication of a 

gender dimorphism in the sepsis-induced cardiac dysfunction in vivo and we have 

shown that female mice have less cardiac dysfunction than male mice subjected to 

either co-administration of LPS/PepG in young mice or CLP in older mice. I report 

here that female hearts subjected to sepsis have a greater activation of Akt/eNOS, and 

less activation of NF-κB, which in turn results in reduced expression of the 

proinflammatory cytokines TNF-α and IL-6 as well as iNOS. I propose that the above 

pro-survival and anti-inflammatory signalling events contribute to the reduced cardiac 

dysfunction in female mice with sepsis.  
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CHAPTER III | IκB KINASE INHIBITOR 

ATTENUATES SEPSIS-INDUCED CARDIAC 

DYSFUNCTION IN MICE WITH CHRONIC 

KIDNEY DISEASE 

3.1 Introduction 

The lack of translatability of preclinical findings (e.g. efficacy of new interventions) 

to patients with sepsis has many possible reasons including: interventions given 

relatively late, a great degree of heterogeneity in the patient population (older patients 

of either gender) which often have a prior insult (trauma, burns) and very frequently 

co-morbidities including diabetes and CKD, or both [11, 307, 355, 356]. CKD is a 

growing public health burden with increasing number of patients receiving 

maintenance dialysis [357]. Cardiovascular disease is the leading cause of death in 

patients with CKD [358]. The cardiac injury caused by ischaemia-reperfusion is 

greater in uraemic rats compared to non-uraemic controls [359]. Moreover, patients 

with CKD requiring dialysis have a higher risk of infection and sepsis [360] due to 

uraemia-induced immune deficiency [262, 361, 362], significant co-morbidities and 

the dialysis procedure itself [363]. Once infected, dialysis patients with sepsis have an 

approximately 100-fold higher mortality rate compared with the general population 

with sepsis [245]. However, the reasons for this higher mortality rate are unclear; the 

detrimental role of cardiac dysfunction in sepsis and the higher mortality in septic 

patients following CKD together raise the possibility that alterations in cardiac 

function (at baseline, in response to sepsis or both) might play a crucial role in the 

increased risk of death in CKD patients followed by sepsis. 

Up-regulation of NF-κB (Figure 3.1) has been linked to the development of cardiac 

dysfunction following the onset of sepsis [317, 340]. Physiologically, IκBα inactivates 

NF-κB by sequestering NF-κB as an inactive complex in the cytoplasm [338, 339]. 

Phosphorylation of IκBα by IKK dissociates IκBα from NF-κB, which liberates NF-

κB to enter the nucleus and activates the expression of NF-κB target genes [338]. 

Recently, we showed that a specific IKK inhibitor, IKK 16 (Figure 3.1, Figure 3.2) 

http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
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[364] significantly attenuated the impairment in sepsis-induced multiple organ 

dysfunction/injury in mice [316]. 

 

 

Figure 3.1 Schematic overview of the NF-κB signalling and IKK 16. Stimuli such as pro-

inflammatory cytokines or activation of Toll-like receptor (TLR) results in downstream 

activation of inhibitor of IκB kinase (IKK).  Activated IKK phosphorylates IκBα, causing the 

degradation of IκBα. NF-κB is then released and translocated to the nucleus, activating the 

expression of NF-κB target genes. IKK 16 selectively inhibits IKK. 
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Figure 3.2 Chemical structure of IKK 16. Compound IKK 16 [N-(4-Pyrrolidin-1-yl-

piperidin-1-yl-)-[4-(4-benzo [b]thiophen-2-yl-pyrimidin-2-ylamino)-phenyl] carboxamide 

hydrochloride] is a selective inhibitor of IKK. It was discovered by Waelchli et al by 

screening the Novaritis compound archive, IKK 16 was found to hit with IKK inhibitor 

motifs (2-anilino-pyrimidines and 2,4-disubstituted quinazolines). The tertiary amines 

structure of IKK16 enables it to be potently active in the low-nanomolar range, with IC50 

values of 40, 70 and 200 nM for IKK-β, IKK complex and IKK-α inhibitiuon, respectively. 

Figure adapted from Waelchli et al., 2006. 
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It is, however, unknown whether pre-existing CKD augments the cardiac dysfunction 

in sepsis, and whether excessive activation of NF-κB drives cardiac dysfunction in 

animals with CKD and sepsis. This study investigates (a) the effects of pre-existing 

CKD on cardiac function in murine models of endotoxaemia and polymicrobial 

sepsis, and (b) the molecular mechanism underlying the cardiac dysfunction in 

CKD/sepsis, and (c) whether inhibition of NF-B (with a specific IKK-inhibitor) 

improves cardiac performance and reduces systemic inflammation in mice with CKD 

and sepsis.  

3.1.1 Scientific Hypotheses and Aims of the Study Presented in Chapter III 

My project was driven by the hypotheses that: 

 Pre-existing CKD aggravates the cardiac dysfunction caused by sepsis in mice 

 IKK 16 (a specific IKK-inhibitor) protects against cardiac dysfunction in CKD 

mice with sepsis 

My study had the following scientific objectives: 

 To investigate the effects of pre-exiting CKD on cardiac dysfunction induced 

by low dose LPS  

 To elucidate signalling events underlying the aggravated cardiac dysfunction 

in CKD mice subjected to low dose LPS 

 To investigate the effects of pre-exiting CKD on cardiac dysfunction in a 

clinically relevant model of polymicrobial sepsis caused by CLP (with 

antibiotic therapy and fluid-resuscitation) 

 To elucidate signalling events underlying the aggravated cardiac dysfunction 

in CKD mice subjected to CLP 

 To investigate the effects of treatment with IKK16 on cardiac performance and 

systemic inflammation in mice with CKD and polymicrobial sepsis induced 

by CLP 

 To elucidate signalling events underlying the observed protective effects of 

IKK16 on cardiac function in CKD mice subjected to CLP 
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3.2 Materials and Methods 

3.2.1 Animals 

This study was carried out on 86 four to six week-old male C57BL/6 mice (Charles 

River, Kent, UK), receiving a standard diet and water ad libitum. The ethical 

statement is provided in chapter 2.2.1. 

3.2.2 Animal models of subtotal (5/6th) nephrectomy (SNX)  

Mice were subjected to a two-stage, SNX or sham surgery under ketamine (100 

mg/kg)/xylazine (10 mg/kg) anaesthesia. We followed the original SNX protocol 

introduced by Gagnon et al. [365] with slight modifications. Briefly, in the first stage 

of the SNX, the upper and lower poles of the left kidney (2/6th NX) were removed by 

electrocoagulation knife, the mice were allowed to recover for 2 weeks, then the right 

kidney (3/6th NX) was removed. After the second stage of the surgery, the mice were 

kept for 8 weeks to develop CKD (Figure 3.3). Mice subjected to sham operations 

were operated on without removing kidney. To avoid adrenal gland injury, the renal 

capsule was peeled away carefully before partial or total nephrectomy. 
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Figure 3.3 Scheme of inducing animal model of CKD by subtotal (5/6th) SNX, and 

inducing organ dysfunction in CKD mice by LPS administration or CLP. Mice were 

subjected to a two-stage SNX to develop CKD. In the first stage, the upper and lower poles of 

the left kidney were removed (2/6th NX), 2 weeks after the first stage, the right kidney (3/6th 

NX) was removed. Then the mice were kept for 8 weeks to develop CKD. The mice with 

CKD were further used for LPS or CLP study. Cardiac function was assessed by 

echocardiography in vivo under anaesthesia with isoflurane at 18 h after LPS injection or 24 h 

after CLP surgery. 
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3.2.3 Model of LPS-induced organ dysfunctions 

Mice with CKD and without CKD (CKD Sham) received i.p. injection of low dose 

LPS (2 mg/kg) or its vehicle (PBS) (Figure 3.3). Sham-treated mice were not 

subjected to LPS, but were otherwise treated the same way. Mice were randomly 

allocated into four different groups as indicated in Table 3.1.  

 

At 18 hours post-LPS injection, a clinical score for monitoring the health of 

experimental mice was used. The detailed score system is described in chapter 2.2.2. 

 

 

 

 

 

Table 3.1 Experimental groups used to study LPS (2mg/kg)-induced cardiac 

dysfunction in CKD mice. 

Group Number 

CKD sham + PBS (5 ml/kg i.p.) 6 

CKD + PBS (5 ml/kg i.p.) 7 

CKD sham + LPS 7 

CKD + LPS 7 
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3.2.4 Model of polymicrobial sepsis caused by CLP 

Polymicrobial sepsis was induced by CLP (18-G needle, double puncture) in mice 

(Figure 3.3). Mice received volume resuscitation and antibiotic and analgesic therapy 

[366, 367]. The detailed CLP procedure is described in chapter 2.2.3 and depicted in 

Figure 2.2. Sham-operated mice were not subjected to ligation or perforation of 

cecum but were otherwise treated the same way. One hour after CLP, CKD mice were 

treated either with IKK 16 (1 mg/kg i.v. Tocris Bioscience, Bristol, UK) or vehicle 

(2 % DMSO) (Figure 3.4). Mice were randomly allocated into four different groups 

for investigating CLP-induced cardiac dysfunction in CKD mice as indicated in Table 

3.2; into three different groups for studying the effects of IKK 16 on cardiac function 

in CKD mice underwent CLP as indicated in Table 3.3. 

 

At 24 hours post-CLP, a clinical score for monitoring the health of experimental mice 

was used. The detailed score system is described in chapter 2.2.2. 
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Figure 3.4 Experimental protocol for IKK 16 treatment in CKD mice underwent CLP. 

IKK 16 (1 mg/kg, i.v.) was given to CKD mice at one hour after the CLP surgery. Cardiac 

function was assessed by echocardiography in vivo under anaesthesia with isoflurane at 24 h 

after CLP surgery. 

 

 

 

Table 3.2 Experimental groups used to study CLP-induced cardiac dysfunction 

in CKD mice. 

Group Number 

CKD sham + sham-operation 6 

CKD + sham-operation 7 

CKD sham + CLP 7 

CKD + CLP 7 

 

 

 

Table 3.3 Experimental groups used to study the effects of IKK 16 on cardiac 

function in CKD mice underwent CLP. 

Group Number 

CKD + sham-operation 7 

CKD + CLP + 2% DMSO 7 

CKD + CLP + IKK 16 7 
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3.2.5 Quantification of organ dysfunction/injury 

Cardiac function was assessed in mice subjected to LPS at 18 h or CLP at 24 h, 

respectively, by echocardiography using a Vevo-770 imaging system (Visual Sonics, 

Toronto, Canada) (Figure 3.3) [367, 368]. Then, the experiment was terminated and 

organ and blood samples were collected for quantification of organ 

dysfunction/injury. Details are described in chapter 2.2.4 and 2.2.5, and depicted in 

Figure 2.3, Figure 2.4 and Figure 2.5. 

3.2.6 Western blot analysis 

We analysed the degree of phosphorylation of IκBα on Ser
32/36

, Akt on Ser
473

 and 

ERK1/2, the nuclear translocation of the p65 subunit of NF-κΒ and the expression of 

iNOS. Semi-quantitative western blot analyses were carried out in mouse heart tissues 

as described previously [369] and details are described in chapter 2.2.6. 

3.2.7 Determination of myeloperoxidase (MPO) activity in lung tissue 

MPO was extracted from the tissue as described by Barone et al. [370] with slight 

modifications. MPO activity, used as a marker for neutrophil accumulation in tissues, 

was determined as previously described [371]. Details for solutions and reagents, and 

analysis procedure are described as below. 
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3.2.7.1 Solutions and Reagents for MPO assay 

Table 3.4 Protocols for making solutions for MPO assay. 

Solutions Components 

Homogenisation buffer,  

5 mmol/L pH 6.0 

 

2.17g K2HPO4 per 250ml H2O (solution A) 

1.7g KH2PO4 per 250ml H2O (solution B) 

Add 0.307ml solution A and 2.19ml solution B in 

200ml H2O 

Protease Inhibitors (add just before use): 

0.1% Proteinase Inhibitor cocktail (PIC) 

0.5 mM PMSF 

0.1 mM DL-Dithiethrectol (DTT) 

Extraction buffer,  

50 mmol/L pH 6.0 

 

2.17g K2HPO4 per 250ml H2O (solution A) 

1.7g KH2PO4 per 250ml H2O (solution B) 

Add 3.075ml solution A and 21.9ml solution B in 

200ml H2O 

0.5% Hexadecyltrimethylammonium bromide 

Protease Inhibitors (add just before use): 

0.1% PIC 

0.5 mM PMSF 

0.1 mM DTT 

Substrate buffer 50 mmol/L pH 6.0 phosphate buffer 

0.167 mg/ml O-Dianisidine HCl 

0.005% H2O2 
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3.2.7.2 Procedures for MPO assay 

(1) Homogenise tissue (30-40 μg tissue per mouse) in 5 mmol/L homogenisation 

buffer (1:20 tissue weight/ solution volume). 

(2) Centrifuge at 13 000 g for 30 min at 4°C. 

(3) Supernatants were removed and the pellets were re-suspended in preheated 25°C 

50 mmol/L extraction buffer (1:5 tissue weight/ solution volume), then vortex the 

solutions and keep them in ice for 2 min. 

(4) Three cycles of the following procedures to release MPO from the tissue: keep 

samples in -80°C freezer for 3 min; keep samples in 37°C water bath for 3 min 

and sonicating samples for 10 sec. 

(5) Incubate samples for 20 min at 4°C. 

(6) Centrifuge at 12 500 g for 15 min at 4°C. 

(7) Keep supernatants, and discard the pellets.  

(8) Add 5 μl sample in 145 μl substrate buffer (150 μl in total for each well). Add 150 

μl substrate buffer in one well as negative control. 

(9) Read the absorbance at 460 nm every 15 sec for a time span of 2 min. 

(10) uMPO = the quantity of enzyme which degrades 1 μmol/ min of peroxide at 

25°C. 

(11) Values of μUMPO/ tissue weight were calculated and compared. 

 

3.2.8 Measurement of cytokines by ELISA 

Concentrations of cytokines in culture supernatants and plasma were measured using 

a commercially available cytometric bead array (BD Bioscience Hatfield, UK) as 

described in the manufacturer’s instructions. 
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3.2.9 Bacteria counting 

Accurate enumeration of bacteria in peritoneal lavages was performed by flow 

cytometry using the SYTO BC bacteria counting kit (Invitrogen, UK) according to the 

manufacturer’s instructions.  

 

3.2.10 Primary macrophage cultures 

CKD and CKD sham mice were injected with 1 mL of 2% Bio-Gel (Bio-Rad) i.p., 

and 4 days later, peritoneal lavages were harvested with 4 mL of EDTA (3 mM) in 

PBS. Cells (2 × 106) were plated in 24-well plates in RPMI medium 1640 containing 

10% (vol/vol) FCS and 50 mg/mL of gentamicin. After 2 h at 37 °C, non-adherent 

cells were washed and adherent cells (>90% macrophages) were incubated in RPMI 

1640 1% FCS and treated with different concentrations of LPS (0.1 ng/ml, 1 ng/ml 

and 10 ng/ml) or vehicle (sterile PBS) for 6 h at 37 °C. Supernatants were harvested 

and cytokine production was determined by CBA (eBioscience, Hatfield, UK). 

 

3.2.11 Statistics 

Values are presented as mean ± SEM of n observations. Data were assessed by a one-

way ANOVA followed by Bonferroni’s post hoc test (multiple comparison), unpaired 

Student’s t-test or Mann-Whitney U test using GraphPad Prism 5.0 (GraphPad 

Software, San Diego, CA, USA). P<0.05 was considered to be statistically 

significant. 

 

3.2.12 Materials 

Reagents and compounds were purchased from Sigma Aldrich (Poole, Dorset, UK), 

unless otherwise stated. Antibodies for immunoblot analysis were purchased from 

Santa Cruz Biotechnology (Heidelberg, Germany).  
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3.3 Results 

3.3.1 Characterisation of organ dysfunctions and blood tests in mice that 

underwent SNX. 

When compared to a sham procedure, SNX resulted in significantly higher plasma 

urea and creatinine concentrations, this was paralleled by a mild cardiomyopathy 

indicated by slight, but significant, reductions in % EF, FS and FAC, as well as 

greater heart weights and heart weight to body weight ratio (a surrogate marker for 

myocardial hypertrophy [372]) (P<0.05; Table 3.5). 

CKD mice exhibited significantly increased plasma levels of IL-1β and KC (P<0.05; 

Table 3.5), but other inflammatory cytokines, such as TNF-α, IL-6 and IL-10 were 

not detected. Additionally, full blood analysis indicated the development of anaemia 

and an increase in neutrophil-to-lymphocyte ratio in CKD mice (P<0.05; Table 3.5).  
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Table 3.5 Combined data sets from all groups studied prior to the intervention of 

endotoxaemia/sepsis for the characterisation of mice with CKD induced by 

subtotal (5/6
th

) SNX.  

Parameter    CKD Sham       CKD 

Urea (mmol/L) 8.18 ± 0.41 (n=12) 17.43 ± 0.61 (n=14)* 

Creatinine (mol/L) 29.72 ± 0.38 (n=12) 45.96 ± 1.76 (n=14)* 

Ejection Fraction (%) 72.78 ± 0.56 (n=11) 65.25 ± 0.89 (n=23)* 

Fractional Shortening (%) 41.25 ± 0.48 (n=11) 35.85 ± 0.67 (n=23)* 

Fractional Area Change (%) 50.64 ± 0.64 (n=11) 44.34 ± 0.91 (n=23)* 

Alanine Aminotransferase (U/L) 27.57 ± 1.78 (n=12) 37.30 ± 4.45 (n=14) 

Body Weight (g) 31.11 ± 0.82 (n=5) 29.13 ± 0.41 (n=8)* 

Heart Weight (g) 0.135 ± 0.006 (n=5) 0.154 ± 0.004 (n=8)* 

Heart Weight Indexa 4.34 ± 0.10 (n=5) 5.29 ± 0.19 (n=8)* 

Plasma IL-1β (pg/ml) 15.83 ± 4.85 (n=3) 78.08 ± 19.36 (n=6)* 

Plasma KC (pg/ml) 25.55 ± 25.45 (n=3) 105.4 ± 12.78 (n=6)* 

Haemoglobin (g/dL) 13.41 ± 0.37 (n=8) 10.97 ± 0.34 (n=6)*  

Haematocrit (%) 42.83 ± 1.50 (n=8) 33.38 ± 1.14 (n=6)* 

White Blood Cells (K/uL) 6.57 ± 0.76 (n=8) 7.75 ± 1.14 (n=5) 

Neutrophils (K/uL) 0.64 ± 0.08 (n=8) 0.24 ± 0.07 (n=5)* 

Lymphocytes (K/uL) 5.80 ± 0.68 (n=8) 5.20 ± 0.82 (n=5) 

Monocytes (K/uL) 0.03 ± 0.01 (n=8) 0.13 ± 0.02 (n=5)* 

Neutrophil-to-Lymphocyte Ratiob 0.11 ± 0.01 (n=8) 0.45 ± 0.09 (n=5)* 

Neutrophils (%) 9.73 ± 0.53 (n=8) 30.44 ± 3.20 (n=5)* 

Lymphocytes (%) 88.3 ± 0.57 (n=8) 66.44 ± 3.69 (n=5)* 

Monocytes (%) 0.55 ± 0.19 (n=8) 1.68 ± 0.26 (n=5)* 

Mice underwent a two-stage SNX were compared with mice which underwent sham surgery. 

All data are expressed as means ± SEM for n number of observations. Data were analysed by 

unpaired Student’s t-test, or Mann-Whitney U test when n number of the group equals 3. 

*P<0.05 versus the CKD sham group. 
a
Heart Weight Index was calculated by dividing the 

weight of the heart in grams by the weight of the animal in kilograms. 
b
Neutrophil-to-

lymphocyte ratio was calculated as the ratio of the neutrophils to lymphocytes. IL, interleukin; 

KC, keratinocyte-derived cytokine. 
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3.3.2 Pre-existing CKD augmented the cardiac dysfunction and worsened clinical 

score caused by low dose LPS administration. 

In CKD sham animals, low dose LPS (2 mg/kg) had no effect on % EF, FAC and FS 

(P>0.05; Figure 3.5A - D), however, in CKD mice, low dose LPS induced significant 

reductions in % EF, FAC and FS (P<0.05; Figure 3.5A - D), indicating the 

development of a clear and significant cardiac dysfunction in vivo. Additionally, when 

compared with CKD sham mice subjected to low dose LPS injection, CKD mice 

yielded worse clinical scores (P<0.05; Figure 3.5E). 

 

 

 

Figure 3.5 Effects of low dose of LPS (2 mg/kg) administration on cardiac function and 
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clinical score in mice with CKD. CKD sham or CKD mice received either LPS (2 mg/kg) or 

PBS (5 ml/kg) intraperitoneally. Cardiac function was assessed at 18 h. (A) Representative 

M-mode echocardiograms; percentage (%) (B) ejection fraction (EF); (C) fractional area 

change (FAC); (D) fractional shortening (FS); and (E) clinical score: At 18 hours post-LPS, 

mice were scored for the presence or absence of six different macroscopic signs of sepsis.. 

The following groups were studied: CKD sham + PBS (n = 6); CKD + PBS (n = 7); CKD 

sham + LPS (2 mg/kg) (n = 7); CKD + LPS (2 mg/kg) (n = 7). Panel B – D: Data are 

represented as mean ± SEM. P<0.05 versus the CKD sham group with respective treatment, 

#P<0.05 versus repective PBS group, ¶ P < 0.05 versus CKD sham group. 

 

 

 

 

3.3.3 Pre-existing CKD augmented the cardiac dysfunction and worsened clinical 

score caused by CLP. 

The murine model of CLP with fluid resuscitation and antibiotics treatment offers a 

clinically relevant model of abdominal polymicrobial human sepsis. CLP induced-

cardiac dysfunction was only observed in 8 month-old mice, but not in young mice 

[317]. As previously reported [317], CLP had no significant effect on cardiac 

parameters in young mice (P>0.05; Figure 3.6A - D). However, in CKD mice, CLP 

caused significant reductions in % EF, FAC and FS (P<0.05; Figure 3.6A - D), 

indicating the development of a pronounced cardiac dysfunction in vivo. The degree 

of systolic dysfunction in young CKD mice with CLP was similar to the cardiac 

dysfunction reported prevously in old (8 months) mice with CLP [317]. Additionally, 

when compared with CKD sham mice subjected to CLP, CKD mice yielded worse 

clinical scores (P<0.05; Figure 3.6E). 
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Figure 3.6 Effects of polymicrobial sepsis induced by CLP on cardiac function and 

clinical score in mice with CKD. CKD sham or CKD mice were subjected to CLP or sham-

operated surgery. Cardiac function was assessed at 24 h. (A) Representative M-mode 

echocardiograms; percentage (%) (B) ejection fraction (EF); (C) fractional area change 

(FAC); (D) fractional shortening (FS); and (E) clinical score: At 18 hours post-CLP, mice 

were scored for the presence or absence of six different macroscopic signs of sepsis. The 

following groups were studied: CKD sham + sham-operated (n = 6); CKD + sham-operated 

(n = 7); CKD sham + CLP (n = 7); CKD + CLP (n = 7). Panel B – D: Data are represented as 

mean ± SEM. P<0.05 versus the CKD sham group with respective treatment, #P<0.05 

versus the respective sham-operated group, ¶ P < 0.05 versus CKD sham group. 
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3.3.4 Increases in the phosphorylation of IκBα, the nuclear translocation of p65 

NF-κB and the iNOS expression in hearts of mice with CKD subjected to low 

dose LPS administration. 

To gain a better mechanical insight into the augmented sepsis-associated cardiac 

dysfunction in CKD mice, we investigated the effects of pre-existing CKD on 

signalling events in mouse hearts subjected to LPS. When compared to PBS-treated 

CKD sham mice, PBS-treated CKD mice exhibited significantly higher degrees of 

cardiac phosphorylation of IKKα/β on Ser
176/180

, subsequent phosphorylation of IκBα 

on Ser
32/36

, subsequent nuclear translocation of p65 NF-κB, and iNOS expression 

(P<0.05; Figure 3.7A - D). Exposure of CKD sham mice to low dose LPS had no 

significant effect on any of the above signalling pathways (P>0.05; Figure 3.7A - D). 

However, LPS further increased cardiac phosphorylation of IKKα/β and IκBα, 

nuclear translocation of p65, and iNOS expression (P<0.05; Figure 3.7A - D) to 

profound degrees in CKD mice.  
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Figure 3.7 Effects of pre-existing CKD on NF-κB signalling pathways in hearts of mice 

subjected to low dose of LPS (2 mg/kg) administration. CKD sham or CKD mice received 

either LPS (2 mg/kg) or PBS (5 ml/kg) intraperitoneally. Signalling events in heart tissue 

were assessed at 18 h. Densitometric analysis of the bands is expressed as relative optical 

density (O.D.) of (A) phosphorylated inhibitor of kappa B (IκB) kinase (IKK) α/β (pSer
176/180

) 

corrected for the corresponding total IKKα/β content and normalized using the related sham 

band; (B) phosphorylated inhibitor of kappa B (IκB) α (pSer
32/36

) corrected for the 

corresponding total IκBα content and normalized using the related sham band; (C) NF-κB 

p65 subunit levels in both, cytosolic and nuclear fractions expressed as a nucleus/cytosol ratio 

normalized using the related sham bands; (D) inducible nitric oxide synthase (iNOS) 

expression corrected for the corresponding tubulin band. Each analysis (A - D) is from a 

single experiment and is representative of three separate experiments. Data are expressed as 

mean ± SEM for n number of observations. Data were analysed by one-way ANOVA 

followed by Bonferroni’s post hoc test. P<0.05 versus the CKD sham group with respective 

treatment, #P<0.05 versus the respective PBS group. 

 

3.3.5 Increases in the phosphorylation of IκBα, the nuclear translocation of p65 
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NF-κB and the iNOS expression in hearts of mice with CKD subjected to CLP. 

When compared to sham-operated CKD sham mice, sham-operated CKD mice 

exhibited significantly higher degrees of cardiac phosphorylation of IKKα/β on 

Ser
176/180

, subsequent phosphorylation of IκBα on Ser
32/36

, subsequent nuclear 

translocation of p65 NF-κB, and iNOS expression (P<0.05; Figure 3.8A - D). 

Exposure of CKD sham mice to CLP had no significant effect on any of the above 

signalling pathways (P>0.05; Figure 3.8A - D). However, CLP further increased 

cardiac phosphorylation of IKKα/β and IκBα, nuclear translocation of p65, and iNOS 

expression (P<0.05; Figure 3.8A - D) to profound degrees in CKD mice.  
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Figure 3.8 Effects of pre-existing CKD on NF-κB signalling pathways in hearts of mice 

subjected to polymicrobial sepsis induced by CLP. CKD sham or CKD mice were 

subjected to CLP or sham-operated surgery. Signalling events in heart tissue were assessed at 

24 h. Densitometric analysis of the bands is expressed as relative optical density (O.D.) of (A) 

phosphorylated inhibitor of kappa B (IκB) kinase (IKK) α/β (pSer
176/180

) corrected for the 

corresponding total IKKα/β content and normalized using the related sham band; (B) 

phosphorylated inhibitor of kappa B (IκB) α (pSer
32/36

) corrected for the corresponding total 

IκBα content and normalized using the related sham band; (C) nuclear factor (NF)-κB p65 

subunit levels in both, cytosolic and nuclear fractions expressed as a nucleus/cytosol ratio 

normalized using the related sham bands; (D) inducible nitric oxide synthase (iNOS) 

expression corrected for the corresponding tubulin band. Each analysis (A - D) is from a 

single experiment and is representative of three separate experiments. Data are expressed as 

mean ± SEM for n number of observations. Data were analysed by one-way ANOVA 

followed by Bonferroni’s post hoc test. P<0.05 versus the CKD sham group with respective 

treatment, #P <0.05 versus the respective sham-operated group.  
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3.3.6 Effects of low dose LPS administration on the phosphorylation of Akt and 

ERK1/2 in hearts of mice with CKD. 

When compared to PBS-treated CKD sham mice, PBS-treated CKD mice 

demonstrated significantly higher degrees of cardiac phosphorylation of Akt on Ser
473

 

and ERK1/2 on Tyr
202

 and Tyr
204

, respectively (P<0.05; Figure 3.9A, 3.9B). CKD 

sham or CKD mice subjected to LPS demonstrated no significant change in the 

degree of phosphorylation of Akt or ERK1/2 (P>0.05; Figure 3.9A, 3.9B). 

 

 

 

Figure 3.9 Effects of pre-existing CKD on Akt and ERK1/2 phosphorylation in hearts of 

mice subjected to low dose of LPS (2 mg/kg) administration. CKD sham or CKD mice 

received either LPS (2 mg/kg) or PBS (5 ml/kg) intraperitoneally. Signalling events in heart 

tissue were assessed at 18 h. Densitometric analysis of the bands is expressed as relative 

optical density (O.D.) of (A) phosphorylated Akt (pSer
473

) corrected for the corresponding 

total Akt content and normalized using the related sham band; (B) ERK1/2 phosphorylation, 

corrected for the corresponding total ERK1/2 content and normalized using the related sham 

band. Each analysis (A, B) is from a single experiment and is representative of three separate 

experiments. Data are expressed as mean ± SEM for n number of observations. Data were 

analysed by one-way ANOVA followed by Bonferroni’s post hoc test. P<0.05 versus the 

CKD sham group with respective treatment, #P<0.05 versus the respective PBS group. 

 

 



IκB KINASE INHIBITOR ATTENUATES SEPSIS-INDUCED CARDIAC 

DYSFUNCTION IN MICE WITH CHRONIC KIDNEY DISEASE 
   

 

  149 

3.3.7 Effects of CLP on the phosphorylation of Akt and ERK1/2 in hearts of mice 

with CKD. 

When compared to sham-operated CKD sham mice, sham-operated CKD mice 

demonstrated significantly higher degrees of cardiac phosphorylation of Akt on Ser
473

 

and ERK1/2 on Tyr
202

 and Tyr
204

, respectively (P<0.05; Figure 3.10A, 3.10B). CKD 

sham or CKD mice subjected to CLP demonstrated no significant change in the 

degree of phosphorylation of Akt or ERK1/2 (P>0.05; Figure 3.10A, 3.10B). 

 

 

 

Figure 3.10 Effects of pre-existing CKD on Akt and ERK1/2 phosphorylation in hearts 

of mice subjected to polymicrobial sepsis induced by CLP. CKD sham or CKD mice were 

subjected to CLP or sham-operated surgery. Signalling events in heart tissue were assessed at 

24 h. Densitometric analysis of the bands is expressed as relative optical density (O.D.) of (A) 

phosphorylated Akt (pSer
473

) corrected for the corresponding total Akt content and 

normalized using the related sham band; (B) ERK1/2 phosphorylation, corrected for the 

corresponding total ERK1/2 content and normalized using the related sham band. Each 

analysis (A, B) is from a single experiment and is representative of three separate 

experiments. Data are expressed as mean ± SEM for n number of observations. Data were 

analysed by one-way ANOVA followed by Bonferroni’s post hoc test. P<0.05 versus the 

CKD sham group with respective treatment, #P <0.05 versus the respective sham-operated 

group.  
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3.3.8 Pre-existing CKD increases severity of renal dysfunction and hepatocellular 

injury caused by low dose LPS administration or CLP. 

In CKD sham animals, septic insults induced either by low dose LPS or CLP had no 

significant effect on plasma urea, creatinine or ALT level (P>0.05; Table 3.6), 

however, in CKD mice, low dose LPS further increased plasma urea, creatinine and 

ALT levels to profound degrees (P<0.05; Table 3.6); CLP resulted in significant 

increases in plasma urea and ALT levels (P<0.05; Table 3.6), indicating the 

augmentation of renal dysfunction and hepatocellular injury, respectively. 

 

 

Table 3.6 Effects of low dose of LPS (2 mg/kg) administration or polymicrobial 

sepsis induced by CLP on renal dysfunction and hepatocellular injury in mice 

with CKD.  

Parameter CKD Sham CKD 

PBS LPS (2mg/kg) PBS LPS (2mg/kg) 

Number                                   6 

Urea (mmol/L)               8.26 ± 0.47 

Creatinine (mol/L)     30.22 ± 0.55 

7 

16.13 ± 3.88 

30.23 ± 2.35 

7 

17.24 ± 1.09* 

45.47 ± 2.42* 

7 

38.56 ± 2.11*† 

58.43 ± 2.55*† 

ALT (U/L)       27.23 ± 3.01 52.06 ± 2.11 32.16 ± 3.34 83.35 ± 14.11*† 

 Sham-operated CLP Sham-operated CLP 

Number                                   6 

Urea (mmol/L)               8.08 ± 0.72 

Creatinine (mol/L)     29.22 ± 0.50 

6 

13.08 ± 087 

27.30 ± 0.93 

7 

17.61 ± 0.66 

46.44 ± 2.75 

7 

37.60 ± 6.91*† 

67.43 ± 12.92* 

ALT (U/L)      23.62 ± 2.90 103.52 ± 15.31 42.44 ± 8.10 287.10 ± 49.86*† 

Plasma urea, creatinine and alanine aminotransferase (ALT) levels were assessed at 18 h in 

mice subjected to LPS administration and at 24 h in mice that underwent CLP. All data are 

represented as mean ± SEM. Data were analysed by one-way ANOVA followed by 

Bonferroni’s post hoc test. *P<0.05 versus the CKD sham group with respective treatment, 

†P <0.05 versus the respective PBS or sham-operated group.  

3.3.9 Pre-existing CKD increased lung inflammation and systemic inflammatory 
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response caused by CLP. 

In CKD sham animals, CLP had no significant effect on lung MPO activity or plasma 

inflammatory cytokine levels (TNF-α, IL-1β, IL-6, IL-10 or KC) (P>0.05; Figure 

3.11A - F), however, in CKD mice, CLP resulted in significant increases in lung 

MPO activity and inflammatory cytokine levels (P<0.05; Figure 3.11A - E), 

indicating an increased neutrophil infiltration in the lung and an enhanced systemic 

inflammatory response, respectively. No alteration was detected in peritoneal bacteria 

content between CKD and CKD sham mice following CLP (P>0.05; Figure 3.12). 
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Figure 3.11 Effects of polymicrobial sepsis induced by CLP on lung inflammation and 

systemic response in mice with CKD. Markers of lung inflammation and systemic response 

were assessed at 24 h in mice that underwent CLP. (A) Myeloperoxidase (MPO) activity in 

lung tissue; (B) plasma tumor necrosis factor (TNF)-α concentration; (C) plasma interleukin 

(IL)-1β concentration; (D) plasma IL-6 concentration; (E) plasma IL-10 concentration; and (F) 

plasma keratinocyte-derived cytokine (KC) concentration. Panel A: n=3 per group; Panel B – 

F: n=3 for CKD Sham + Sham-operated group, n=5-6 for other groups. All data are 

represented as mean ± SEM.  Data were analysed by one-way ANOVA followed by 

Bonferroni’s post hoc test for multiple comparisons or by Student’s t-test for comparisons 

between two groups. P<0.05 versus the CKD sham group with respective treatment, #P 

<0.05 versus the respective sham-operated group, +P<0.05 versus the CKD sham group with 

sham operation. ND, not detected. 
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Figure 3.12 Peritoneal bacterial loads following CLP and IKK 16 treatment in CKD 

mice. Mice underwent CLP surgery. One hour after CLP, two groups of CKD control mice 

were treated with either IKK 16 (1 mg/kg i.v.) or vehicle (2% DMSO). (A) Representative 

flow cytometry scattergrams illustrating bacteria (SYTO BC bacteria dye) positive events in 

E. coli suspension (Left) as well as 24 h post-CLP peritoneal exudates from CKD sham and 

CKD control mice. The density of bacteria in the experimental samples was determined from 

the ratio of bacterial to microsphere signals. (B - C) Bacteria levels in peritoneal lavages from 

CKD sham and CKD control mice. N=3-6 per group. All data are represented as mean ± 

SEM. Data were analysed by one-way ANOVA followed by Bonferroni’s post hoc test. 
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To determine whether the observed higher levels of inflammatory cytokines in CLP 

challenged CKD mice were due to increased cytokine production, macrophages 

isolated from either CKD sham or CKD mice were incubated with different 

concentrations of LPS (0.1 ng/ml, 1 ng/ml and 10 ng/ml). Untreated CKD-derived 

macrophages released significantly higher levels of IL-1β in the supernatant (P<0.05; 

Figure 3.13B). Yet significantly increased TNF-α released by CKD-derived 

macrophages in comparison with CKD sham-derived macrophages was solely 

induced by a low dose LPS (0.1 ng/ml) stimulation (P<0.05; Figure 3.13A), no other 

significant difference was detected in the cytokine production levels in response to 

LPS stimulation (P>0.05; Figure 3.13).  
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Figure 3.13 Cytokine production by macrophages derived from CKD sham and CKD 

mice following LPS incubation. Biogel-elicited macrophages from CKD sham and CKD 

mice were incubated with the indicated concentrations of LPS or vehicle (sterile PBS) for 6 h 

at 37 °C before assessment of cytokine production in supernatants by CBA. (A) Supernatant 

tumour necrosis factor (TNF)-α concentration; (B) supernatant interleukin (IL)-1β 

concentration; (C) supernatant IL-6 concentration; (D) supernatant IL-10 concentration; (E) 

supernatant IL-17 concentration; and (F) supernatant keratinocyte-derived cytokine (KC) 

concentration. N=4-7 per group. All data are represented as mean ± SEM. Data were analysed 

by unpaired Student’s t-test for comparisons between two groups with the same PBS or LPS 

treatment. P<0.05 versus corresponding CKD sham group. ND, not detected. 
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3.3.10 Inhibition of IκB kinase attenuated CLP-induced cardiac dysfunction and 

reduced clinical score in mice with CKD. 

When compared to sham-operated CKD mice, CKD mice that underwent CLP with 

vehicle treatment developed significant cardiac dysfunction (P<0.05; Figure 3.14A - 

D); this was significantly attenuated by delayed administration of IKK 16 one hour 

after CLP (P<0.05; Figure 3.14A - D). Additionally, when compared with vehicle-

treated CKD/CLP mice, IKK16 treatment significantly attenuated clinical scores 

(P<0.05; Figure 3.14E). No significant change in plasma urea, creatinine or ALT 

level was seen with IKK 16 administration (P>0.05; Table 3.7). 

 

 

Figure 3.14 Effects of IκB kinase inhibitor on cardiac dysfunction and clinical score 

induced by polymicrobial sepsis in mice with CKD. CKD mice underwent sham-operated 

surgery or caecal ligation and puncture (CLP). One hour after CLP, mice were treated with 

either IKK 16 (1 mg/kg i.v.) or vehicle (2% DMSO). Cardiac function was assessed at 24 h. 
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(A) Representative M-mode echocardiograms; percentage (%) (B) ejection fraction; (C) 

fractional area change; (D) fractional shortening (FS); and (E) clinical score: At 18 hours 

post-CLP, mice were scored for the presence or absence of six different macroscopic signs of 

sepsis. The following groups were studied: CKD + sham-operated (n = 7); CKD + CLP + 

Vehicle (n = 7); CKD + CLP + IKK 16 (n = 7). Panel B – D: Data are represented as mean ± 

SEM. P<0.05 versus the CKD + CLP + Vehicle group,  ¶ P < 0.05 versus CKD + CLP + 

Vehicle group. 

 

 

 

 

Table 3.7 Effects of IκB kinase inhibitor on renal dysfunction and hepatocellular 

injury induced by polymicrobial sepsis in mice with CKD.  

Parameter CKD 

Sham-operated CLP + Vehicle CLP + IKK 16 

Number                                   7 

Urea (mmol/L)             17.61 ± 0.66* 

Creatinine (mol/L)    46.44 ± 2.75 

7 

34.01 ± 6.41 

62.17 ± 5.69 

7 

21.90 ± 1.85 

52.59 ± 4.78 

ALT (U/L)     42.44 ± 8.10* 240.7 ± 36.78 626.0 ± 308.2a 

 

CKD mice underwent sham-operated surgery or caecal ligation and puncture (CLP). One 

hour after CLP, mice were treated with either IKK 16 (1 mg/kg i.v.) or vehicle (2% DMSO). 

Plasma urea, creatinine and alanine aminotransferase (ALT) levels were assessed at 24 h after 

CLP. All data are represented as mean ± SEM. Data were analysed by one-way ANOVA 

followed by Bonferroni’s post hoc test. *P<0.05 versus the CKD + CLP + Vehicle group. 

a
Two extremely high ALT values were detected in CKD + CLP + IKK 16 group, further 

research needs to be conducted to study the effects of IKK 16 on potential liver toxicity. 
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3.3.11 Effects of IκB kinase inhibitor on signalling events induced by CLP in 

hearts of CKD mice. 

When compared to septic CKD mice with vehicle treatment, delayed administration 

of IKK 16 significantly attenuated the increases in cardiac phosphorylation of IKKα/β 

and IκBα, nuclear translocation of p65 and iNOS expression (P<0.05; Figure 3.15A - 

D). Moreover, IKK 16 treatment significantly reduced cardiac phosphorylation of Akt 

and ERK1/2 (P<0.05; Figure 3.16A, 3.16B) in septic CKD mice. 
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Figure 3.15 Effects of IκB kinase inhibitor on NF-κB signalling pathways in hearts of 

mice with CKD subjected to polymicrobial sepsis induced by CLP. CKD sham underwent 

sham-operated surgery, CKD mice were subjected to CLP or sham-operated surgery. One 

hour after CLP, CKD mice were treated with either IKK 16 (1 mg/kg i.v.) or vehicle (2% 

DMSO). Signalling events in heart tissue were assessed at 24 h. Densitometric analysis of the 

bands is expressed as relative optical density (O.D.) of (A) phosphorylated inhibitor of kappa 

B (IκB) kinase (IKK) α/β (pSer
176/180

) corrected for the corresponding total IKKα/β content 

and normalized using the related sham band; (B) phosphorylated inhibitor of kappa B (IκB) α 

(pSer
32/36

) corrected for the corresponding total IκBα content and normalized using the related 

sham band; (C) NF-κB p65 subunit levels in both, cytosolic and nuclear fractions expressed 

as a nucleus/cytosol ratio normalized using the related sham bands; (D) inducible nitric oxide 

synthase (iNOS) expression corrected for the corresponding tubulin band. Each analysis (A - 

D) is from a single experiment and is representative of three separate experiments. Data are 

expressed as mean ± SEM. Data were analysed by one-way ANOVA followed by 

Bonferroni’s post hoc test. P <0.05 versus the CKD + CLP + Vehicle group.  
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Figure 3.16 Effects of IκB kinase inhibitor on Akt and ERK1/2 phosphorylation in 

hearts of mice with CKD subjected to polymicrobial sepsis induced by CLP. CKD sham 

underwent sham-operated surgery, CKD mice were subjected to CLP or sham-operated 

surgery. One hour after CLP, CKD mice were treated with either IKK 16 (1 mg/kg i.v.) or 

vehicle (2% DMSO). Signalling events in heart tissue were assessed at 24 h. Densitometric 

analysis of the bands is expressed as relative optical density (O.D.) of (A) phosphorylated Akt 

(pSer
473

) corrected for the corresponding total Akt content and normalized using the related 

sham band; (B) ERK1/2 phosphorylation, corrected for the corresponding total ERK1/2 

content and normalized using the related sham band. Each analysis (A, B) is from a single 

experiment and is representative of three separate experiments. Data are expressed as mean ± 

SEM for n number of observations. Data were analysed by one-way ANOVA followed by 

Bonferroni’s post hoc test. P <0.05 versus the CKD + CLP + Vehicle group.  
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3.3.12 Inhibition of IκB kinase attenuated lung inflammation and systemic 

inflammatory response caused by CLP. 

Treatment of septic CKD mice with IKK 16 one hour after CLP significantly reduced 

the increases in lung MPO activity and plasma inflammatory cytokine levels (P<0.05; 

Figure 3.17A - E). However, IKK 16 treatment had no effect on peritoneal bacteria 

content in CKD mice following CLP (P>0.05; Figure 3.12). 

 

 

Figure 3.17 Effects of IκB kinase inhibitor on lung inflammation and systemic response 

in mice with CKD subjected to polymicrobial sepsis induced by CLP. CKD mice 

underwent CLP or sham-operated surgery. One hour after CLP, CKD mice were treated with 

either IKK 16 (1 mg/kg i.v.) or vehicle (2% DMSO). Markers of lung inflammation and 

systemic response were assessed at 24 h. (A) Myeloperoxidase (MPO) activity in lung tissue; 

(B) plasma tumour necrosis factor (TNF)-α concentration n; (C) plasma interleukin (IL)-1β 

concentration; (D) plasma IL-6 concentration; (E) plasma IL-10 concentration; and (F) 

plasma keratinocyte-derived cytokine (KC) concentration. Panel A: n=3 per group; Panel B – 

F: n=5-6 per group. All data are represented as mean ± SEM. Data were analysed by one-way 

ANOVA followed by Bonferroni’s post hoc test. P <0.05 versus the CKD + CLP + Vehicle 

group. ND, not detected. 
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3.4 Discussion 

The presence of cardiac dysfunction in septic patients has been linked to a 

significantly raised mortality rate [16]. Patients with CKD also have a significantly 

higher risk of death followed by sepsis [363, 373], however, the reasons for this 

higher risk is unclear. The current study was designed to elucidate whether pre-

existing CKD worsens cardiac performance in mice with sepsis, to identify (some of) 

the molecular mechanisms responsible in order to target/test new therapeutic 

interventions in order to reduce cardiac dysfunction in mice with CKD and sepsis.   

In mice with SNX for 8 weeks (without sepsis), I found a small, but significant, 

impairment in systolic function (EF) and cardiac hypertrophy. This result is consistent 

with a previous study revealing the presence of impaired cardiac function, indicated 

by a reduced %FS in SNX-induced mouse model of CKD [374]. Indeed, systolic 

dysfunction, cardiac hypertrophy and left ventricular dilation are present in patients 

with end-stage renal disease, and only 16% of new dialysis patients present with 

normal cardiac findings on echocardiography [375, 376]. These structural and 

functional alterations may contribute to the increased risk of cardiac death in patients 

with renal failure [205, 376].  

Notably, we report here for the first time that the presence of CKD increases the 

severity of LPS-induced cardiac dysfunction, using a “two-hit” animal model that 

consists of pre-existing CKD followed by LPS injection. This is in agreement with the 

clinical findings that the pre-existing CKD worsens outcome in patients with infection 

or sepsis [245, 377]. We have recently reported that CLP-sepsis does not cause a 

significant cardiac (and indeed multiple organ) dysfunction in young mice, when 

these animals are treated with fluids and antibiotics, while older animals (8 month-

old) do develop cardiac (multiple organ) dysfunction despite fluid resuscitation and 

antibiotics [316, 317]. We demonstrate here that young mice with CKD do develop a 

profound cardiac (systolic) dysfunction in response to CLP, which is similar to the 

cardiac dysfunction in aged mice with CLP. Like CKD, ageing is associated with a 

mild systemic inflammation, characterised by elevated plasma concentrations of IL-6, 

IL-1β and TNF [378]; this pro-inflammatory phenotype in ageing (or CKD) may be 

secondary to a) the observed activation of NF-κB, which is one of the signatures of 

ageing [378]; b) impaired excretion of cytokines by the kidneys due to decreased 
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renal function (due to reduced number of functional glomeruli and lower glomerular 

filtration rate) [379]. 

NF-κB is one of the most important pro-inflammatory transcription factors, consisting 

of heterodimer-subunits p50 and p65 [338]. CKD caused cardiac phosphorylation of 

Ser
176/180

 on IKKα/β, indicating IKK activation, which in turn led to phosphorylation 

of IκBα and activation of NF-κB. Additionally, phosphorylation of IκBα, and the 

subsequent activation of NF-κB, can be induced by the exposure to pro-inflammatory 

cytokines, such as IL-1β [380]. Accordingly, plasma IL-1β and KC levels were 

increased in CKD mice, paralleled by the increased cardiac phosphorylation of IκBα. 

The cardiac activation of NF-κB in CKD mice may also be attributable to the 

potential hypertensive state (indicated by the presence of myocardial hypertrophy); 

this assumption is strengthened by a study showing that NF-κB is significantly 

activated in rat cardiomyocytes subjected to cyclic mechanical stretch, which mimics 

some aspects of the pathophysiological changes associated with hypertension in 

cardiac myocytes [381]. It is possible that the activation of NF-κB has (at least in 

part) contributed to the cardiomyopathy through induction of expression of its target 

gene iNOS. Cardiac activation of NF-κB and the subsequent iNOS expression 

contribute to both sepsis-related hypotension and impaired left ventricular function 

[125, 129, 317]. Indeed, in the present study, nuclear translocation of p65 and iNOS 

expression were augmented in hearts of CKD mice with sepsis, and this was 

associated with a worsened cardiac dysfunction. As neither low dose LPS nor CLP 

had a significant effect on any of the above signalling pathways in mice without 

CKD, it is likely that the baseline cardiac activation of NF-κB during CKD acts as the 

prime driver of the observed excessive activation of NF-B (and expression of NF-B 

dependent genes) and the associated cardiac dysfunction in CKD/sepsis. 

In addition to inducing iNOS expression, NF-κB activation also leads to a pronounced 

increase in other pro-inflammatory cytokines [342]. Here we report a dramatic 

increase in plasma levels of TNF-α, IL-1β, IL-6 and IL-10, in CKD mice with CLP. 

More than 70% of inflammatory cytokines are excreted by the kidney [212]; and the 

half-lifes of TNF-α, IL-6 and IL-10 are 2-3-fold prolonged in CKD mice compared 

with normal mice [212]. Therefore, impaired renal function resulting in a prolonged 

half-life of cytokines in CKD mice may amplify systemic inflammation, which in turn 
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may contribute to the excessive cardiac dysfunction in CKD-mice with sepsis [108, 

344]. 

Having found the significant roles of phosphorylation of IKKα/β and the subsequent 

activation of NF-κB in the augmented cardiac dysfunction induced by sepsis in CKD 

mice, we have then investigated the role of the selective inhibition of IKK complex in 

vivo in CKD mice that underwent CLP. The treatment protocol for IKK 16 used in the 

current study reduces systemic inflammation and organ injury in mice with sepsis 

without CKD [316]. We found for the first time that a single dose of IKK 16 started 

one hour after CLP attenuated sepsis-induced cardiac dysfunction in CKD mice 

corresponded to significant attenuated cardiac activation of NF-κB and iNOS 

expression. Additionally, the systemic inflammatory cytokine levels in CKD mice 

with CLP were reduced by IKK 16, presumably by inhibiting the production of 

inflammatory cytokines mediated by NF-κB activation and their release into plasma 

[364]. The attenuated lung inflammation with IKK 16 treatment in CKD mice with 

CLP was in line with previous studies, which showed therapeutic benefits of IKK 16 

on sepsis-induced lung inflammation in normal mice [316] and on ventilation-induced 

lung injury [382]. 

Sustained high levels activation of the PI3K/Akt and the ERK1/2 pathways have been 

involved in cardiomyocyte growth and the development of cardiac hypertrophy [383]. 

In the present study, the cardiac phosphorylation of Akt and ERK1/2 may contribute 

to the CKD-associated cardiac hypertrophy and cardiomyopathy. Similar to our 

results, the ERK1/2 pathway was also activated in rat hearts with adenine-induced 

CKD [384]. The activation of Akt and ERK1/2 was not changed by the exposure to 

septic insults but was reduced by the administration of IKK 16 in septic CKD animals, 

presumably through the down-regulation of NF-κB activation and the decreased 

expression of inflammatory cytokines, such as TNF-α [385, 386]. In turn, down-

regulated Akt and ERK1/2 phosphorylation may lead to less NF-κB activation, 

decreasing cytokine production, thus forming a feed-forward mechanism and further 

reducing the inflammatory reaction [385, 387]. 
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3.4.1 Conclusions 

In this chapter, I have discovered that pre-existing CKD augments the cardiac 

dysfunction caused by sepsis. CKD alone resulted in moderate systemic inflammation 

and activation of NF-κB (and iNOS expression) in the heart, while sepsis (second hit) 

in animals with pre-existing CKD resulted in a dramatic rise in a number of pro-

inflammatory cytokines (in the plasma) as well as a dramatic increase in the activation 

of NF-κB (and iNOS expression) in the heart. Most notably, selective inhibition of 

IKK (by administration of IKK 16 after the onset of sepsis) abolished the systemic 

inflammation and cardiac dysfunction caused by sepsis in animals with CKD. Thus, 

inhibition of IKK may be useful to treat the excessive inflammation and systolic 

cardiac dysfunction associated with sepsis in patients with CKD. 
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CHAPTER IV | ACTIVATION OF TRPV1 BY 

12-(S)-HPETE AND 20-HETE RELEASES 

CGRP AND PROTECTS THE HEART 

AGAINST THE CARDIAC DYSFUNCTION 

CAUSED BY LPS 

4.1 Introduction 

Recently, TRPV1 has been proposed to exhibit anti-inflammatory properties and 

protective roles in sepsis [388]. TRPV1 is a non-selective cation channel that is 

predominantly localised on nociceptive C and Aδ fibers [271, 282]. TRPV1-positive 

sensory nerves innervate predominantly cardiovascular and renal tissues [389, 390]. 

TRPV1 can be activated by the chilli extract capsaicin, noxious heat, low pH [283], 

and multiple endogenous agonists including the arachidonic acid metabolites 12-(S)-

HpETE [276] and 20-HETE [277]. Influx of divalent cations (particularly Ca
2+

) 

through TRPV1 results in nerve depolarisation and concomitant release of the 

neuropeptides CGRP, somatostatin and substance P from the sensory nerve terminals 

[391]. CGRP [295] and somatostatin [392] are anti-inflammatory, while substance P is 

pro-inflammatory [393]. 

Both loss- and gain of function studies have revealed a protective role of TRPV1 in 

the onset of sepsis. In rats challenged with LPS, the TRPV1 antagonist (capsazepine) 

strongly inhibited the recovery of hypotension and tachycardia, and increased 

mortality [303]. When challenged with LPS, TRPV1
-/-

 mice exhibited greater 

hypotension, hypothermia, liver injury [304], renal dysfunction and elevated serum 

pro-inflammatory cytokine levels [394] than wild-type (WT) mice. Similarly, sepsis-

induced by CLP in TRPV1
-/-

 mice also caused enhanced hypotension and significant 

elevations in plasma markers of liver injury, renal and pancreas dysfunction compared 

with WT [290]. On the other hand, TRPV1 agonist (capsaicin) improved survival 

[305] and reduced the systemic inflammatory response in septic rats [306].  

However, the identity of the endogenous activators of TRPV1 and the role of the 
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channel in the cardiac function during sepsis/endotoxaemia is unknown. As 

cardiovascular tissues are heavily innervated by primary efferent neurons that highly 

express TRPV1 [389, 390]; and TRPV1 activation improves the outcome in 

endotoxaemia, I hypothesised that TRPV1 may play a pivotal role in protecting 

against the endotoxaemia-induced cardiac dysfunction. Therefore, this study (a) 

investigates the impact of TRPV1 deletion upon the cardiac dysfunction caused by 

lipopolysaccharide (LPS; endotoxemia), and (b) identifies the endogenous mediators, 

which trigger TRPV1 in endotoxaemia, and (c) identifies CGRP as the downstream 

neuropeptide, which mediates the cardioprotection afforded by TRPV1 in 

endotoxaemia. 

4.1.1 Scientific Hypotheses and Aims of the Study Presented in Chapter IV 

My project was driven by the hypotheses that: 

 TRPV1 activation protects against cardiac dysfunction caused by 

endotoxaemia 

 12-(S)-HpETE and 20-HETE (potent ligands of TRPV1) and CGRP 

(downstream mediator of TRPV1) are essential for the cardioprotective effects 

afforded by TRPV1 

My study had the following scientific objectives: 

 To study the impact of TRPV1 activation on cardiac function in TRPV1
-/-

 

mice and WT mice with endotoxaemia induced by low dose LPS (2 mg/kg)  

 To determine the cardiac TRPV1 phosphorylation in WT mice subjected to 

low dose LPS 

 To investigate the effects of 12-(S)-HpETE biosynthesis inhibitor CDC and/or 

the 20-HETE biosynthesis inhibitor 17ODYA on cardiac function in WT mice 

subjected to low dose LPS 

 To determine plasma CGRP levels in WT mice subjected to low dose LPS 

 To investigate the effects of CGRP receptor antagonist CGRP8-37 on cardiac 

function in WT mice subjected to low dose LPS 
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4.2 Materials and Methods 

4.2.1 Animals 

TRVR1 knockout mice (TRPV1
-/-

) [395] on a C57BL/6 background were from 

Jackson Laboratories (Bar Harbor, ME, USA) and bred in-house. WT littermates and 

C57BL/6 WT mice purchased from Charles River (Kent, UK) were used as controls. 

This study was carried out on 9-13 week-old TRPV1
-/- 

(n=13) and WT (n=104) mice, 

receiving a standard diet and water ad libitum. The ethical statement is provided in 

chapter 2.2.1. 

4.2.2 Models of LPS or LPS/PepG co-administration-induced cardiac 

dysfunction 

TRPV1
-/-

 and/or WT mice received low dose LPS (2 mg/kg) in PBS (5 ml/kg) 

intraperitoneally. Some WT mice received intraperitoneal co-administration of high 

dose LPS/PepG (LPS; 6 mg/kg and PepG; 0.1 mg/kg). Sham-treated mice received 

PBS only (Figure 4.1). Mice were randomly allocated into five different groups for 

investigating LPS-induced cardiac dysfunction in TRPV1
-/- 

mice as indicated in Table 

4.1. 

At 18 hours post-LPS injection, a clinical score for monitoring the health of 

experimental mice was used. The detailed score system is described in chapter 2.2.2. 
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Figure 4.1 Experimental protocol for inducing cardiac dysfunction in TRPV1
-/-

 and WT 

mice by LPS or LPS/PepG co-administration. Mice received intraperitoneal (i.p.) 

administration of LPS (2 mg/kg) or LPS/PepG (LPS; 6 mg/kg and PepG; 0.1 mg/kg in PBS; 5 

ml/kg i.p.). At 18 h cardiac function was assessed by echocardiography under anaesthesia 

with isoflurane. 

 

 

 

Table 4.1 Experimental groups used to study LPS or LPS/PepG-induced cardiac 

dysfunction in TRPV1
-/-

 and WT mice. 

Group Number 

WT + PBS (5 ml/kg i.p.) 9 

TRPV1-/- + PBS (5 ml/kg i.p.) 5 

WT + LPS (2 mg/kg i.p.) 8 

TRPV1-/- + LPS (2 mg/kg i.p.) 7 

WT + LPS (6 mg/kg)/PepG (0.1 mg/kg) 7 
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4.2.3 Quantification of organ dysfunction/injury 

Cardiac function was assessed in mice subjected to LPS at 18 h by echocardiography 

using a Vevo-770 imaging system (Visual Sonics, Toronto, Canada) [367, 368]. 

During echocardiography the heart rate was obtained from ECG tracing and the 

temperature was monitored with a rectal thermometer. Then, the experiment was 

terminated and blood, hearts and dorsal root ganglions were collected for 

quantification of organ dysfunction/injury and further analysis. Details are described 

in chapter 2.2.4 and 2.2.5, and depicted in Figure 2.3, Figure 2.4 and Figure 2.5. 

4.2.4 Blockade of 12-(S)-HpETE and 20-HETE biosynthesis 

In some experiments, 12-(S)-HpETE biosynthesis was blocked with a potent 

pharmacological inhibitor of 12-lipoxygenase and to a lesser extend of 15-

lipoxygenase [396] (Cinnamyl-3, 4-dihydroxy-a-cyanocinnamate, CDC; Enzo Life 

Sciences, UK), and 20-HETE biosynthesis was blocked by a specific cytochrome 

P450 inhibitor [397] (17 octadecynoic acid, 17ODYA; Enzo Life Sciences, UK). WT 

mice were co-injected with 0.7 mg/mouse 17ODYA and/or 0.2 mg/mouse CDC 

intraperitoneally together with LPS (2 mg/kg) at 18 h before echocardiography and 

sample collection (Figure 4.2). WT mice were randomly allocated into four different 

groups as indicated in Table 4.2.  

 

 

 

 

 



ACTIVATION OF TRPV1 BY 12-(S)-HETE AND 20-HETE RELEASES CGRP AND 

PROTECTS THE HEART AGAINST THE CARDIAC DYSFUNCTION CAUSED BY LPS 
 

    171 

 

Figure 4.2 Experimental protocol for CDC and/or 17ODYA administration in WT mice 

with LPS (2 mg/kg) injection. WT mice received either low dose LPS (2 mg/kg i.p.). 

Together with LPS administration, mice were treated with CDC (a 12-lipoxygenase inhibitor 

to block 12-(S)-HpETE biosynthesis, 0.2 mg/mouse), 17ODYA (cytochrome P450 inhibitor to 

block 20-HETE biosynthesis, 0.7 mg/mouse), CDC/17ODYA or vehicle (70% ethanol, 20 l; 

i.p.). Cardiac function was analysed at 18 h after LPS injection.  

 

 

 

Table 4.2 Experimental groups used to study the effects of CDC and/or 17ODYA 

on cardiac dysfunction in WT mice with LPS (2 mg/kg) administration. 

Group Number 

WT + LPS + Vehicle 5 

WT + LPS + CDC (0.2 mg/mouse i.p.) 8 

WT + LPS + 17ODYA (0.7 mg/mouse i.p.) 8 

WT + LPS + CDC/17ODYA 8 

 

 

 

 

 

 



ACTIVATION OF TRPV1 BY 12-(S)-HETE AND 20-HETE RELEASES CGRP AND 

PROTECTS THE HEART AGAINST THE CARDIAC DYSFUNCTION CAUSED BY LPS 
 

    172 

4.2.5 Blockade of CGRP receptor and somatostatin receptor 

In some experiments, WT mice were treated intravenously with the CGRP receptor 

antagonist CGRP8-37 [398] (150 g/kg, BACHEM, Switzerland), somatostatin receptor 

antagonist cyclo-somatostatin [399] (C-SOM; 250 g/kg, BACHEM, Switzerland) or 50 

l PBS as vehicle at 30 min before the administration of LPS (2 mg/kg, i.p.), as well as 1 

h and 2 h after LPS injection. Echocardiography was analysed at 18 h after LPS injection 

(Figure 4.3).  WT mice were randomly allocated into three different groups as 

indicated in Table 4.3.  
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Figure 4.3 Scheme for CGRP8-37 or C-SOM administration in WT mice with LPS (2 

mg/kg) injection. WT mice were treated introvenously with CGRP8-37 (CGRP receptor 

antagonist, 150 g/kg), C-SOM (somatostatin receptor antagonist, 250 g/kg), or vehicle (PBS, 

50 l) 30 min before the administration of LPS (2 mg/kg, i.p.), as well as 1 h and 2 h after LPS 

injection. Cardiac function, body temperature and heart rate were analysed at 18 h after LPS 

administration. 

 

 

 

Table 4.3 Experimental groups used to study the effects of CGRP8-37 or C-SOM 

on cardiac function in WT mice underwent LPS (2 mg/kg) injection. 

Group Number 

WT + LPS + Vehicle 8 

WT + LPS + CGRP8-37 (150 g/kg i.v.) 7 

WT + LPS + C-SOM (250 g/kg i.v.) 7 
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4.2.6 ELISA 

Serum neuropeptide concentrations were assessed using specific ELISA kits 

following the manufacturer’s instruction (CGRP-EIA kit, Cayman Chemical 

Company, Ann Arbor, MI, USA; substance P- and somatostatin-EIA kits, Phoenix 

Pharmaceuticals, Inc., Burlingame, CA, USA).    

4.2.7 Western blot analysis 

Hearts and dorsal root ganglions were processed for protein extraction and 

immunoblotting as previously described [277]. Due to low protein concentrations 

obtained from dorsal root ganglions of a single mouse, samples from 3-4 mice were 

pooled to obtain sufficient protein for immunoblotting. Therefore, analysis of dorsal 

root ganglions involved a relatively low n-number. TRPV1 and TRPV1 pSer
800 

polyclonal antibodies were from Cosmo Bio Co Ltd. (Japan), and actin monoclonal 

antibody (C4) was from Millipore (CA, USA). Detection was carried out with 

horseradish peroxidase-conjugated secondary antibodies (goat anti -rabbit or goat 

anti-mouse, respectively; Dako, Denmark) and enhanced chemiluminescence 

detection reagents (Cell Signalling Technology, MA, USA). Intensity of bands were 

analysed on the software provided with FluorChemE imaging system (Protein Simple, 

CA, USA). Each group was then adjusted against corresponding sham data to 

establish relative protein expression when compared with sham animals. Details are 

described in chapter 2.2.6.  

4.2.8 Statistics 

Values are presented as mean ± SEM of n observations. Data were assessed by a one-

way ANOVA followed by Bonferroni’s post hoc test (multiple comparison), unpaired 

Student’s t-test or Mann-Whitney U test using GraphPad Prism 5.0 (GraphPad 

Software, San Diego, CA, USA). P<0.05 was considered to be statistically 

significant.  

4.2.9 Materials 

Reagents and compounds were purchased from Sigma Aldrich (Poole, Dorset, UK), 

unless otherwise stated.  
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4.3 Results 

4.3.1 Low dose LPS (2 mg/kg) administration induces cardiac dysfunction and 

worsens clinical score in TRPV1 deficient mice 

Under basal condition (PBS-treatment), WT and TRPV1
-/-

 mice showed similar levels 

of cardiac function as measured by % EF, FS, FAC and left ventricular end-diastolic 

volume (LVEDV), as well as body temperature and heart rate (P>0.05; Figure 4.4A - 

G). In WT mice, low dose LPS (2 mg/kg) had no effect on % EF, FAC and FS 

(P>0.05; Figure 4.4A - D). In TRPV1
-/-

 mice, however, low dose LPS induced 

significant reductions in % EF, FAC and FS (P<0.05; Figure 4.4A - D) indicating the 

development of a clear and significant cardiac dysfunction. Additionally, TRPV1
-/-

 

mice treated with low dose LPS exhibited significant hypothermia (P<0.05; Figure 

4.4F), and bradycardia (P<0.05; Figure 4.4G) compared with low dose LPS-treated WT 

mice. Interestingly, the degrees of systolic dysfunction, hypothermia and bradycardia 

observed in TRPV1
-/-

 mice challenged with low dose LPS (2 mg/kg) were similar to 

those in WT mice challenged with high dose LPS (LPS; 6 mg/kg and PepG; 0.1 

mg/kg) (P>0.05; Figure 4.4A - D, 4.4F, 4.4G).  Additionally, when compared with 

WT mice subjected to low dose LPS injection, TRPV1
-/- 

yielded worse clinical scores 

(P<0.05; Figure 4.4H). No significant difference was observed in LVEDV among any 

of the animal groups studied (P>0.05; Figure 4.4E).  
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Figure 4.4 TRPV1
-/-

 mice exhibit reduced cardiac function and worse clinical score in 

endotoxaemia.  Cardiac function, body temperature, heart rate and clinical score were analysed at 

18 h after either low dose LPS (2 mg/kg), high dose LPS (6 mg/kg)/PepG (0.1 mg/kg) or PBS (5 
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ml/kg) intraperitoneally administration in WT and TRPV1
-/-

 mice. (A) Representative M-mode 

echocardiograms; percentage (%) (B) ejection fraction (EF); (C)  fractional shortening (FS); (D) 

fractional area change (FAC); (E) left ventricular end-diastolic volume (LVEDV); (F) body 

temperature; (G) heart rate and (H) clinical score: At 18 hours post-LPS, mice were scored for 

the presence or absence of six different macroscopic signs of sepsis. The following groups 

were studied: WT + PBS (n=9); TRPV1
-/- 

+ PBS (n=5); WT + LPS (2 mg/kg) (n=8); TRPV1
-/- 

+ 

LPS (2 mg/kg) (n=7); WT + LPS (6 mg/kg)/PepG (0.1 mg/kg) (n=7). Panel B – G: Data are 

represented as mean ± SEM. P < 0.05 versus either PBS-treated groups or WT + LPS (2 

mg/kg) group, ¶ P < 0.05 versus WT + LPS (2 mg/kg) group. 

 

 

 

4.3.2 Low dose LPS (2 mg/kg) administration increases TRPV1 phosphorylation 

in heart tissue and dorsal root ganglions (DRGs) in WT mice 

To determine that whether the activation of TRPV1 is involved in the protected 

cardiac function in WT mice with low dose LPS administration, we investigated the 

effect of low dose LPS on TRPV1 phosphorylation on Ser
800

 in hearts and DRGs 

(areas of primary TRPV1 expression) in WT mice. When compared with PBS-treated 

WT mice, low dose LPS significantly increased the phosphorylation of TRPV1 on 

Ser
800

 both in heart tissue (P<0.05; Figure 4.5A - D) and in DRGs (P<0.05; Figure 

4.5E - H), indicating that the protected cardiac function in WT mice is dependent on 

the TRPV1 activation in hearts and DRGs.  
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Figure 4.5 LPS administration leads to TRPV1 activation in WT mouse heart and DRG. 

Heart (A - D) and DRG samples (E - H) were collected from WT mice at 18 h after LPS (2 

mg/kg) or PBS (5 ml/kg i.p.). Total TRPV1, TRPV1 phosphorylation at Ser
800

 and -actin protein 

expression were analysed. Panel A, E: Representative immunoblots of a single experiment of 

three (heart) or two (DRGs) independent experiments are shown. Each band represents an 

individual sample. Bands for DRGs represent pooled samples from 3-4 mice each. Panel B - D, F 

- H: Densitometric quantification of TRPV1 protein and phosphorylated protein relative to -actin 

(B, C, F, G) and phosphorylated TRPV1 protein relative to total TRPV1 protein (D, H) in hearts 
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(B - D) and DRGs (F - H). Data are expressed as mean ± SEM of n=20 PBS-treated or n=7 LPS-

treated mice (hearts) or n=4 pooled samples of 3-4 mice each (DRGs). Panel B - D: Data were 

analysed by unpaired Student's t-test. P < 0.05 versus PBS group. Panel F - H: Data were 

analysed by Mann-Whitney U test. P < 0.05 versus PBS group. 

 

 

 

4.3.3 Blockade of 12-(S)-HpETE and/or 20-HETE biosynthesis diminishes TRPV1-

dependent cardioprotective effects in WT mice challenged with low dose LPS (2 

mg/kg) 

Previous studies have identified 12-(S)-HpETE [276] and 20-HETE [277] as potent 

endogenous TRPV1 agonists. To investigate the role of these mediators in triggering 

the TRPV1-dependent cardioprotective effects in endotoxaemia, WT mice challenged 

with low dose LPS were co-treated with CDC (a 12-lipoxygenase inhibitor to block 

12-(S)-HpETE biosynthesis), 17ODYA (a cytochrome P450 inhibitor to block 20-

HETE biosynthesis), or both. When compared with the low dose LPS and drug 

vehicle-treated WT mice, co-administration of CDC or/and 17ODYA with LPS 

caused a significant reduction in % EF, FAC and FS (P<0.05; Figure 4.6A - D), 

indicating a further decline in systolic contractility. These data support the view that 

12-(S)-HpETE and 20-HETE, as endogenous agonists, trigger TRPV1 activation, 

which, in turn, protects against the LPS-induced cardiac dysfunction. No significant 

difference was observed in LVEDV, body temperature or heart rate among any of the 

different animal groups studied (P>0.05; Figure 4.6E - G). 
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Figure 4.6 Blockade of 12-(S)-HpETE or/and 20-HETE biosynthesis worsens cardiac 

function in endotoxaemia. WT mice received low dose LPS (2 mg/kg) intraperitoneally. 

Together with LPS administration, mice were treated with CDC (a 12-lipoxygenase inhibitor to 

block 12-(S)-HpETE biosynthesis, 0.2 mg/mouse), 17ODYA (cytochrome P450 inhibitor to 

block 20-HETE biosynthesis, 0.7 mg/mouse), CDC/17ODYA or vehicle (70% ethanol, 20 l) 

intraperitoneally. Cardiac function, body temperature and heart rate were analysed at 18 h after 

LPS injection. (A) Representitive M-mode echocardiograms; percentage (%) (B) ejection fraction 
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(EF); (C)  fractional shortening (FS); (D) fractional area change (FAC); (E) left ventricular end-

diastolic volume (LVEDV); (F) body temperature and (G) heart rate. The following groups were 

studied: WT + LPS + Vehicle (n=5); WT + LPS + CDC (n=8); WT + LPS + 17ODYA (n=8); WT 

+ LPS + CDC/17ODYA (n=8). All data are represented as mean ± SEM and were analysed by 

one-way ANOVA followed by Bonferroni's post hoc test. P < 0.05 versus WT + LPS + Vehicle 

group. 12-(S)-HpETE: 12-(S)-hydroperoxyeicosatetraenoic acid; 20-HETE: 20-

Hydroxyeicosatetraenoic acid; CDC: cinnamyl-3, 4-dihydroxy-a-cyanocinnamate; 17ODYA: 

17 octadecynoic acid. 

 

 

 

4.3.4 Plasma CGRP level is up-regulated by low dose LPS (2 mg/kg) administration, 

but down-regulated by blocking 12-(S)-HpETE and/or 20-HETE biosynthesis in 

WT mice 

Activation of TRPV1 triggers the release of neuropeptides including CGRP, 

somatostatin and substance P [391]. To gain a better understanding of the mechanism 

underlying the observed cardioprotective effects of TRPV1 in endotoxemia, we 

measured the levels of these mediators in endotoxemia. When compared with PBS-

treated WT mice, plasma CGRP and substance P levels were increased at 18 hours 

after low dose LPS injection (P<0.05; Figure 4.7A, 4.7E), while plasma somatostatin 

level was decreased (P<0.05; Figure 4.7C). 17ODYA or co-administration of CDC 

and 17ODYA significantly decreased plasma CGRP and somatostatin levels in low 

dose LPS-treated WT mice (P<0.05; Figure 4.7B, 4.7D); these decreases in plasma 

CGRP and somatostatin levels were associated with the cardiac dysfunction observed 

in these mice. CDC treatment resulted in non-significant decreases in plasma CGRP 

and somatostatin levels (P>0.05; Figure 4.7B, 4.7D). Neither 17ODYA nor CDC had 

any effect on plasma substance P level (P>0.05; Figure 4.7F). Notably, low dose LPS 

injection caused an increase in CGRP level in heart tissues of WT mice (P<0.05; 

Figure 4.7G). These data indicate that CGRP and/or somatostatin as downstream 

mediators may play a role in the cardioprotection afforded by TRPV1. 
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Figure 4.7 Plasma CGRP level is up-regulated after LPS administration, but is down-

regulated with 20-HETE and 12-(S)-HpETE inhibition. Plasma samples were collected at 18 

hours after LPS administration. Panel A, C, E, G: (A) Plasma CGRP;  (C) somatostatin; (E) 

substance P and (G) CGRP levels in the heart. WT mice received either low dose LPS (2 mg/kg) 

or PBS (5 ml/kg) intraperitoneally. The following groups were studied: WT + PBS (n=14); WT + 

LPS (n=13). Panel B, D, F: (B) Plasma CGRP; (D) somatostatin and (F) substance P. Together 

with LPS (2 mg/kg) administration, WT mice were treated with CDC (a 12-lipoxygenase 

inhibitor to block 12(s)-HpETE biosynthesis, 0.2 mg/mouse), 17ODYA (cytochrome P450 

inhibitor to block 20-HETE biosynthesis, 0.7 mg/mouse), CDC/17ODYA or vehicle (70% 
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ethanol, 20 l) intraperitoneally. The following groups were studied: WT + LPS + Vehicle (n=5); 

WT + LPS + CDC (n=8); WT + LPS + 17ODYA (n=8); WT + LPS + CDC/17ODYA (n=8). Data 

are shown as mean ± SEM. Panel A, C, E, G: Data were analyzed by unpaired Student's t-test. 

P < 0.05 versus PBS group. Panel B, D, F: Data were analyzed by one-way ANOVA followed 

by Bonferroni's post hoc test. P < 0.05 versus WT + LPS + Vehicle group. CGRP: calcitonin 

gene-related peptide; 12(s)-HpETE: 12-(S)-hydroperoxyeicosatetraenoic acid; 20-HETE: 20-

Hydroxyeicosatetraenoic acid; CDC: cinnamyl-3, 4-dihydroxy-a-cyanocinnamate; 17ODYA: 

17 octadecynoic acid. 

 

 

 

 

4.3.5 Blockade of CGRP receptor, but not somatostatin receptor, aggravates cardiac 

dysfunction in WT mice subjected to low dose LPS (2 mg/kg) 

To further identity the neuropeptide(s) that contributes to or even mediates the 

cardioprotective effects of TRPV1, WT mice challenged with low dose LPS were 

treated with CGRP8-37 (CGRP receptor antagonist) or C-SOM (somatostatin receptor 

antagonist) at 30 min before and 1 h and 2 h after LPS injection. When compared with 

the low dose LPS and drug vehicle-treated WT mice, mice subjected to co-

administration of CGRP8-37 with LPS demonstrated a significant reduction of % EF, 

FAC and FS, as well as an increased LVEDV (P<0.05; Figure 4.8A - E), indicating 

impaired systolic contractility and dilated left ventricle, respectively. Administration 

of C-SOM did not affect % EF, FAC, FS and LVEDV in mice challenged with low dose 

LPS. These results suggest that CGRP, but not somatostatin, mediates the 

cardioprotective effects of TRPV1. No significant difference was observed in body 

temperature or heart rate (P>0.05; Figure 4.8F, 4.8G). 
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Figure 4.8 Blockade of CGRP receptor, but not somatostatin receptor, aggravates cardiac 

dysfunction in endotoxaemia. WT mice were treated introvenously with CGRP8-37 (CGRP 

receptor antagonist, 150 g/kg), C-SOM (somatostatin receptor antagonist, 250 g/kg), or vehicle 

(PBS, 50 l) 30 min before the administration of LPS (2 mg/kg, i.p.), as well as 1 h and 2 h after 

LPS injection. Cardiac function, body temperature and heart rate were analysed at 18 h after LPS 

administration. (A) Representitive M-mode echocardiograms; percentage (%) (B) ejection fraction 

(EF); (C)  fractional shortening (FS); (D) fractional area change (FAC); (E) left ventricular end-

diastolic volume (LVEDV); (F) body temperature and (G) heart rate. The following groups were 

studied: WT + LPS + Vehicle (n=8); WT + LPS + CGRP8-37 (n=7); WT + LPS + C-SOM (n=7). 

All data are represented as mean ± SEM and was analysed by one-way ANOVA followed by 

Bonferroni's post hoc test. P < 0.05 versus WT + LPS + Vehicle group. CGRP: calcitonin gene-

related peptide; C-SOM: cyclo-somatostatin. 
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4.4 Discussion 

In addition to causing high morbidity and mortality, sepsis is associated with a 

significant financial burden [400], highlighting the need for improving 

pharmacological strategies to target specific aspects of the pathophysiology of sepsis. 

The cardiovascular system is frequently compromised both early and severely during 

sepsis and always affected in septic shock, and therefore has been studied with 

regards to this pathology in clinical and basic research for more than 50 years [401]. 

However, the precise mechanism causing myocardial dysfunction in 

sepsis/endotoxaemia is still unknown. The present study shows for the first time a 

protective role of TRPV1 signalling on cardiac function in endotoxaemia (Figure 4.9).  
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Figure 4.9. TRPV1 signalling modulates cardioprotection in endotoxaemia. Endogenous 

agonists 12-(S)-HpETE and/or 20-HETE activate TRPV1, leading to the release of 

downstream neuropeptides, including CGRP, somatostatin and substance P. Blockade of 12-

(S)-HpETE, 20-HETE or CGRP increased the susceptibility to LPS-induced cardiac 

dysfunction. Therefore, cardioprotective effects of TRPV1 in endotoxaemia are dependent on 

its ligands 12-(S)-HpETE and 20-HETE, as well as the release of CGRP. CDC: 12-(S)-

HpETE inhibitor; 17ODYA: 20-HETE inhibitor; C-SOM: somatostatin receptor antagonist; 

CGRP8-37: CGRP receptor antagonist. Abbreviations: CGRP: calcitonin gene-related peptide; 

C-SOM: cyclo-somatostatin; 12-(S)-HpETE: 12-(S)-hydroperoxyeicosatetraenoic acid; 20-

HETE: 20-Hydroxyeicosatetraenoic acid; CDC: cinnamyl-3, 4-dihydroxy-a-cyanocinnamate; 

17ODYA: 17 octadecynoic acid. 

 

 

 

 

 

 



ACTIVATION OF TRPV1 BY 12-(S)-HETE AND 20-HETE RELEASES CGRP AND 

PROTECTS THE HEART AGAINST THE CARDIAC DYSFUNCTION CAUSED BY LPS 
 

    187 

In contrast to WT mice, TRPV1
-/-

 animals developed a significant reduction in 

systolic contractility at 18 h after administration of a relatively low dose of LPS. In 

addition to impaired systolic contractility, heart rate and body temperature were also 

reduced in TRPV1
-/-

 mice challenged with low dose LPS. Collectively, these results 

indicate that the severity of key aspects of the pathophysiology (cardiac performance, 

temperature regulation) of endotoxaemia are exacerbated in the absence of TRPV1 

signalling. Notably, basal levels of all measured parameters were not different in mice 

lacking TRPV1 receptors as compared to WT animals, indicating that TRPV1-

deficiency has no impact on cardiac function under physiological conditions. Studies 

in humans using echocardiography showed decreased contractility and impaired 

myocardial compliances in patients with severe sepsis and septic shock [402-404], 

which is similar to our results observed in TRPV1
-/-

 mice challenged with LPS.  

I also discovered increased levels of TRPV1 phosphorylation in heart and dorsal root 

ganglion biopsies obtained from WT mice subjected to LPS (when compared to 

control mice). This supports the hypothesis that TRPV1 activation occurs during 

endotoxaemia. Although previous studies did not investigate the effects of 

endotoxaemia/sepsis on TRPV1 activation, our results are in line with data showing 

decreased mortality rates in rats treated with the TRPV1 agonist capsaicin [305]. 

Deletion or blockade of TRPV1 is associated with reduced organ function in the liver, 

lung and kidney [304, 394, 399, 405]. To our knowledge, this study provides the first 

evidence of a cardio-protective role of TRPV1 signalling in endotoxaemia. What then 

are the endogenous ligands which activate TRPV1 during endotoxaemia? The 

arachidonic acid metabolites, 20-HETE and 12-(S)-HpETE, are well-known ligands 

of TRPV1. Indeed, when treated with inhibitors of 12-(S)-HpETE and/or 20-HETE 

biosynthesis (with CDC and 17ODYA, respectively), mice exhibited similar levels of 

cardiac dysfunction as observed in TRPV
-/-

 mice. Blocking 20-HETE and 12-(S)-

HpETE synthesis simultaneously caused a small additive effect on cardiac 

dysfunction. Indeed, 12-(S)-HpETE protects the heart against ischaemia or hypoxia 

[406-408]. 20-HETE and 12-(S)-HpETE are potent vasoactive factors and previous 

studies from our group showed a close link between TRPV1 and an increase in blood 

pressure caused by 20-HETE [277]. Increased cardiac output was observed in patients 

with sepsis, which is believed to play a compensatory role in maintaining blood 
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pressure in the presence of systemic vasodilation. In contrast, septic patients with 

contractile dysfunction show a diminished blood pressure response to intravenous 

fluids and reduced ability to augment cardiac output despite increased levels of 

circulating catecholamines, an effect that is fully reversible in survivors [409]. By 

signalling through TRPV1, 20-HETE and 12-(S)-HpETE might participate in the 

regulation of blood pressure in endotoxaemia. Indeed, previous studies demonstrated 

that deletion or blockade of TRPV1 exacerbates/prolongs hypotension in 

sepsis/endotoxaemia [303, 304]. TRPV1 is a polymodal receptor and hence might be 

activated by multiple stimuli. An acidic extracellular milieu, which develops in 

sepsis/endotoxaemia might further potentiate ligand-evoked channel gating.   

In addition, we demonstrated that plasma CGRP levels are increased in WT mice with 

LPS administration. CGRP is a vasodilator and downstream mediator of TRPV1 with 

important roles in the physiological function and homeostatic maintenance of the 

cardiovascular system. Thus, CGRP might play a role in mediating TRPV1-dendent 

effect on cardiac function in endotoxaemia. Indeed, mice treated with CGRP receptor 

antagonist (CGRP8-37) exhibited an increased susceptibility to cardiac dysfunction 

induced by LPS. In line with our study, pre-treatment of synthetic CGRP reduces 

TNF-α and KC generation, and indirectly attenuates neutrophils recruitment induced 

by LPS injection in mice, which is reverted by the co-administration with CGRP8-37 

[295]. In vitro studies suggest that CGRP inhibits TLR-stimulated production of 

inflammatory mediators, such as TNF-α, by dendritic cells [296], and inhibits release 

of TNF-α from macrophages [295]. Interestingly, inflammatory responses in liver 

induced by ischaemia/reperfusion are exaggerated in CGRP
-/-

 mice [410]. Elevated 

levels in C-fibre-derived neuropeptides, including CGRP have been suggested also to 

limit tissue damage during myocardial infarction [411] and both TRPV1 and CGRP 

levels are reduced in diabetes mellitus patients, a disease associated with impaired 

recovery of mice hearts following global ischaemia [412].  
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4.4.1 Conclusions 

In this chapter, I showed for the first time that activation of TRPV1 by 12-(S)-HpETE 

and 20-HETE leads to the release of CGRP, which protects the heart against the 

cardiac dysfunction caused by LPS. Therefore, we propose the TRPV1 signalling 

pathway as a potential pharmaceutical target in patients with sepsis/endotoxaemia to 

improve the outcome of these patients by maintaining cardiac function. 
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CHAPTER V | CONCLUDING REMARKS 

AND FUTURE DIRECTIONS 

Sepsis is the leading cause of death in non-coronary intensive care units [307] and 

among the top 10 causes of death in the United States [413]. One in two patients with 

sepsis develop cardiac dysfunction [309], and the presence of cardiac dysfunction 

increases the mortality rate from 40% to 70% [16]. Several inflammatory mediators 

including cytokines, nitric oxide and factors of the coagulation cascade are associated 

with cardiac dysfunction in sepsis, however, clinical studies targeting these factors 

were overall disappointing and the survival of patients remains poor [22, 401, 414]. 

This thesis had the overall aim to (i) investigate the pathophysiology of the cardiac 

dysfunction in sepsis and (ii) to identify novel therapeutic approaches for improving 

sepsis-associated cardiac dysfunction in preclinical models of sepsis. 

One potential reason for the lack of translatability of preclinical findings (e.g. efficacy 

of new interventions) to patients with sepsis is that animal models of sepsis do not 

sufficiently mimic human sepsis. Laboratory animals may often be inbred strains, and 

are young, healthy and (often) male animals, and most importantly, do not have 

comorbidities. However, a cohort of patients with sepsis has a great degree of 

heterogeneity: Patients are often older and of either gender, they frequently have a 

prior insult (trauma, burns), pre-existing medication or immunosuppression, and very 

frequently co-morbidities including diabetes, hypertension and CKD [11, 307, 355, 

356]. 

Currently there is no single animal model of sepsis which mimics all components of 

human sepsis, but rather a number of animal models which recapitulate some 

individual aspects of human sepsis and the various animal models complement each 

other. In this thesis, two different and complementary animal models of sepsis have 

been established and used to study both pathophysiology and novel therapies for 

sepsis-associated cardiac dysfunction.  

In chapter II and III, a clinically relevant model of polymicrobial sepsis caused by 

CLP was established in both male and female mice. In this CLP protocol, antibiotic 

therapy and fluid-resuscitation was given both at 6 h and 18 h after the surgery, which 
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recapitulates some aspects of the clinical, supportive interventions in septic patients 

(outlined in chapter I). In young mice, CLP-sepsis with both antibiotic therapy and 

fluid-resuscitation did not cause cardiac dysfunction (chapter III), but in older mice 

(8-month-old), it caused a significant cardiac dysfunction (chapter II) indicating that 

the degree of cardiac dysfunction caused by CLP is age-dependent. In chapter II, a 

model of systemic hyper-inflammation, which was induced by co-administration of 

LPS (Gram-negative bacterial cell wall component) and PepG (Gram-positive 

bacterial cell wall component), was established in both male and female mice. LPS 

triggers a systemic inflammatory response by activating TLR4 and TLR2, while PepG 

targets TLR2 and NOD receptors. NODs synergise with TLRs to augment the 

inflammatory response [43, 66], through which a stable and reproducible hyper-

inflammation model can be obtained. In chapter III, I developed a “two-hit” animal 

model that consists of pre-existing CKD (secondary to 5/6
th

 nephrectomy) followed 

by LPS injection or CLP surgery, with the aim to study whether a pre-existing renal 

dysfunction affects the severity of sepsis-associated cardiac dysfunction, and also to 

test new therapeutic interventions in order to reduce cardiac dysfunction in mice with 

CKD/sepsis.   

In chapter II, apart from successfully establishing the experimental model, my results 

show for the first time a gender dimorphism in the cardiac dysfunction induced in 

vivo by either co-administration of LPS/PepG (in young mice) or by polymicrobial 

sepsis caused by CLP (in middle-aged mice). Female mice had less cardiac 

dysfunction than male mice in both experimental settings. These findings suggest that 

the observed protection of female hearts against the dysfunction caused by systemic 

inflammation and sepsis is associated with (and may well be secondary to) the 

activation in the heart of the well-known Akt/eNOS survival pathway, the inhibition 

of inflammatory signalling via NF-κB/iNOS, as well as the reduction in cardiac 

inflammatory cytokine production. Interestingly, a gender dimorphism in the cardiac 

dysfunction to sepsis was not observed when a strong inflammatory stimulus (high 

dose of LPS/PepG) was used.  

In both pre-clinical and clinical studies, different responses among genders have been 

found in sepsis, and females have a better outcome than males, which may be 

attributable to sex steroid-associated immunologic advantages in females. Oestrogen 
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protects against the cardiac dysfunction that occurs in response to a number of insults, 

such as trauma-haemorrhage and ischaemia/reperfusion injury. Therefore, 

characterisation of gender dimorphism in sepsis-induced cardiac dysfunction will 

hopefully enable the development of individualised and sex-based treatment strategies 

in male and female patients with sepsis. Future studies are warranted to test this 

hypothesis, e.g. by evaluating whether oestrogen does indeed improve cardiac 

function and outcome in patients with sepsis. Issues such as adverse effects of 

hormone therapy should also be addressed before its translation to clinical settings.  

Having established animal models of hyper-inflammation and sepsis, I aimed in 

chapter III to elucidate the impact of the pre-existing CKD on sepsis-associated 

cardiac dysfunction. Infection and sepsis in CKD patients are one of the major causes 

of their hospitalisation and death [245]. Moreover, patients with CKD have a 

significantly higher mortality when developing sepsis [363, 373], however, the 

reasons for this higher risk is unclear.  

The results in chapter III showed for the first time that pre-existing CKD augments 

the cardiac dysfunction caused by sepsis. CKD alone resulted in moderate systemic 

inflammation and activation of NF-κB (and iNOS expression) in the heart, while 

sepsis (second hit) in animals with pre-existing CKD resulted in a dramatic rise in a 

number of pro-inflammatory cytokines (in the plasma) as well as a dramatic increase 

in the activation of NF-κB (and iNOS expression) in the heart. Most notably, selective 

inhibition of IKK (by administration of IKK 16 at 1 h after the onset of CLP-sepsis) 

abolished the cardiac dysfunction caused by sepsis in animals with CKD; this 

attenuated cardiac dysfunction was associated with (or secondary to) the decreases in 

the cardiac activation of NF-κB (and iNOS expression) and the systemic 

inflammation caused by CLP in the CKD mice. Therefore, inhibition of IKK may be 

useful to treat the excessive inflammation and systolic cardiac dysfunction associated 

with sepsis in patients with CKD.  

In addition to the heterogeneity of the patient population, another important reason for 

the failed translation from preclinical findings to bedside might be that the 

interventions are normally given relatively late in patients with sepsis. Many other 

experimental approaches with therapeutic effects also inhibit the activation of NF-κB, 

however, most of these interventions have to be given at the very early phase of 
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sepsis, thus, are unlikely to be suitable for clinical settings where the interventions are 

often relatively late. The treatment protocol of IKK16 used in this study may be 

translatable to clinical settings in CKD patients followed by sepsis, with a relatively 

low dose of IKK 16, administrated intravenously at one hour after the induction of 

polymicrobial sepsis (although this time point is still relatively early in the 

pathophysiology). Targeting the IKK complex has the advantage that it might still be 

effective even when achieved relatively late in the course of sepsis, as it inhibits one 

of the final steps leading to the activation of NF-κB. However, further studies are 

needed to investigate how late after the onset of sepsis the administration of IKK16 

can still improve outcome (e.g. cardiac systolic function, cardiac damage markers, 

neutrophils recruitment to heart tissues and mortality rate) of the CKD animals. 

Additionally, more experiments are needed to evaluate the safety of IKK16 (e.g. liver 

toxicity) in CKD animals. 

Anti-inflammatory properties and protective roles of TRPV1 activation in sepsis have 

recently emerged [388].  The results presented in chapter IV highlight, for the first 

time, that the activation of TRPV1 helps to maintain cardiac function in 

endotoxaemia. The main findings outlined in chapter IV are that TRPV1 

phosphorylation was increased in the heart in WT mice subjected to low dose LPS (2 

mg/kg) injection. Low dose LPS did not affect the cardiac function in WT mice, but 

caused a significant reduction in EF in TRPV1
-/-

 mice, which was similar to the 

degree of cardiac dysfunction caused by high dose LPS (6 mg/kg) plus PepG (0.1 

mg/kg) in WT mice. The 12-(S)-HpETE inhibitor CDC or the 20-HETE inhibitor 

17ODYA augmented the cardiac dysfunction caused by LPS (2 mg/kg) in WT mice. 

LPS (2 mg/kg) caused significant increases in plasma CGRP levels in WT mice; and 

this effect was significantly attenuated by either 17ODYA or co-administration of 

CDC together with 17ODYA. The CGRP-receptor antagonist CGRP8-37 increased 

the cardiac dysfunction induced by LPS (2 mg/kg), suggesting that the release of 

endogenous CGRP mediates the cardioprotective action of TRPV1. Western blot 

analysis confirmed activation of TRPV1 with low dose LPS treatment in WT mice 

with increased expression of phosphorylated TRPV1 relative to total TRPV1 relative 

to vehicle control, reflecting increased TRPV1 activation.  

TRPV1 has been shown to regulate vascular tone, inhibit neutrophil activation, 
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oxidative stress, cardiac TNF production and preservation of endothelial function 

[388]. In chapter IV, we showed for the first time that activation of TRPV1 by 12-(S)-

HpETE and 20-HETE leads to the release of CGRP, which protects the heart against 

the cardiac dysfunction caused by LPS. Therefore, I propose the TRPV1 signalling 

pathway as a potential pharmaceutical target in patients with sepsis/endotoxaemia and 

that activation of TRPV1 may improve the outcome of these patients by maintaining 

cardiac function. To further elucidate the protective roles of TRPV1/CGRP, more 

experimental studies are needed to investigate whether delayed treatment of septic 

animals with CGRP improves sepsis-associated cardiac dysfunction in both hyper-

inflammation model induced by co-administration of LPS and PepG, and the 

polymicrobial sepsis induced by CLP. 

Hypothermia was observed in both polymicrobial sepsis model and endotoxaemia 

model, which recapitulates the clinical aspect that critically ill patients with 

endotoxaemia/sepsis often experience hypothermia [415]. The hypothermia in septic 

mice may be caused by reduced peripheral vascular resistance and redistribution of 

body heat from core tissues to periphery tissues [416]. The altered tissue perfusion in 

the gut is more evident than that in skin and skeletal muscles during septic shock 

[417]. Hypothermia in septic animals may contribute to decreased heart rate and 

cardiac conduction, which in turn lead to reduced cardiac output and tissue perfusion 

[418]. However, it should be noted that minimising the potential variant, body 

temperature, by heating or cooling the septic mice externally might change the pro- 

and anti-inflammatory pathways [415, 419]. Therefore, in current studies, no 

procedure was carried out to change the body temperature of the septic mice. 
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