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Abstract

The modelling of transport processes in biological systems is one of the main theoretical
challenges in physics, chemistry and biology. This is motivated by their essential role in
the emergence of diseases, like tumour metastases, which originate from the spontaneous
migration of cancer cells. Thus, improvements in their understanding could potentially
pave the way for an outstanding innovation of present-day techniques in medicine. These
processes often exhibit anomalous properties, which are qualitatively described by the
power-law scaling of their mean square displacement, compared to the linear one of nor-
mal diffusion. Such behaviour has been often successfully explained by the celebrated
continuous-time random walk model. However, recent experimental studies revealed the
existence of both more complicated mean square displacement behaviour and anomalous
features in other characteristic observables, e.g. the position-velocity statistics or the two
point correlation functions of either the velocity or the position. Thus, in order to under-
stand the anomalous diffusion recorded in these experiments and assess the microscopic
processes underlying the observed macroscopic dynamics, one needs to have a complete
tool-kit of techniques and models that can be readily compared with the experimental
datasets. In this Thesis, we contribute to the construction of such a complete framework
by fully characterising anomalous processes, which are described by means of a continuous-
time random walk with general waiting time distributions and/or external forces that are
exerted both during the jumps (as in the original model) and the waiting times. In the first
case we derive both the joint statistics of these processes and their observables, specifically
by obtaining a generalised fractional Feynman-Kac formula, and their multipoint corre-
lation functions and employ them to fit the mean square displacement data of diffusing
mitochondria. This result supports the experimental relevance of our formalism, which
comprises general formulas for several quantities that can provide readily predictable tests
to be checked in experiments. In the second case, we characterise the new anomalous
processes by means of Langevin equations driven by a novel type of non Gaussian noise,
which reproduces the typical fluctuations of a free diffusive continuous-time random walk.
For a constant external force, we also obtain the fractional evolution equations of their
position probability density function and show that, contrarily to continuous-time random
walks, they are weak Galilean invariant, i.e., their position distribution in different Galilean
frames is obtained by shifting the sample variable according to the relative motion of the
frames. Thus, these processes provide a suitable frame-invariant framework, that could be
employed to investigate the stochastic thermodynamics of anomalous diffusive processes.
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CHAPTER 1

Introduction

Our aim in this Chapter is to explain the importance of developing a comprehensive un-
derstanding of diffusion phenomena in living systems, thus motivating the research work
discussed in the rest of Thesis. We will provide an historical overview on both experiments
and theoretical models of diffusion processes. Thus, we will first recall the pioneering work
of L. Bachelier [1], A. Einstein [2], M. Smoluchowski [3], P. Langevin [4] (on the theoret-
ical side) and of I. Ingenhousz [5] and J. Perrin [6] (on the experimental side) on normal
diffusive processes and then present those mechanisms, for instance trapping or energy con-
sumption, which causes anomalous diffusion to emerge, by ultimately driving the system
out of equilibrium. We will then characterise anomalous diffusive processes in terms of
their mean square displacement. In conclusion, we will provide an outline of the Thesis.

1.1 Motivation

Transport phenomena, specifically diffusion processes, are ubiquitous in both physical and
biological systems [7]. For instance, nutrients and other biological macromolecules often
need to be transported into a cell trough its membrane and/or to some specific places
within the cytoplasm to ensure the correct functioning, and in some cases the survival, of
the cell itself. Another example consists in cell migration, which is responsible for several
essential mechanisms of living systems, like embryo-genesis, wound-healing or immune de-
fence. However, it is also the mechanism generating tumour metastases and other diseases,
thus suggesting that the improvement of our understanding of transport processes could
represent an essential step towards the development of efficient ways to cure them. In
addition, the study of the diffusive behaviour of tracer particles is often used to probe the
rheological properties and the internal dynamics of complex media, e.g. the cytoplasm or
other different active gels and granular systems, thus providing a straightforward technique
to assess the validity of the theoretical models describing them.

All these applications, and several others not mentioned, demonstrate the relevance of
diffusion processes and motivate the extraordinary effort that has been devoted to their
analysis, either in the case of normal processes or in that of anomalous ones (their difference

2



1.1 Motivation 3

will be discussed later in this Chapter), both from the experimental and the theoretical
side. In the former case, the aim is usually to observe the different types of dynamical
behaviour that diverse systems may exhibit, compare their properties and construct an
efficient classification of them. In the latter case, the focus resides on developing a complete
theoretical framework for their interpretation, comprising both techniques for the statistical
analysis of experimental datasets and mathematical models to reproduce them.

Considering that the rest of the Thesis will be devoted to this second aspect, it is
instructive to elucidate what modelling means in this specific context. Let us consider a
system, either physical, like charge carriers, or biological, like cells or other macromolecules
within it or even macroscopic animals (birds or fish for instance). Depending on its specific
properties and on the environmental conditions, the system may be observed in a variety
of different states, corresponding to specific values of characteristic observables that can
be measured experimentally, which all together constitute its state space. We define the
dynamics of the system as the set of rules determining how it can evolve in time from
one state to a different one [8]. When we perform an experiment on such system, we
usually initialise it in a prescribed initial state and let it evolve freely or under the effect
of external forces according to these rules. At the same time, we measure a suitable
observable, usually either the position or the velocity in the case of diffusive systems, whose
value is determined by the state of the system and thus changes continuously during its
temporal evolution, along with the systems moving to different states. We call Y (t) the
measured time evolution of such observable and y0 its value corresponding to the state in
which the system was initialised. If the dynamics of the system is known, Y (t) would be a
deterministic function, as one could calculate exactly its value at each time t, once also y0

is specified. However, this is never the case in realistic situations, because the dynamical
rules of the system are usually unknown, meaning that Y (t) cannot be determined a
priori and it is instead a random function of time, i.e., a stochastic process. Nevertheless,
the experimentally recorded Y (t) provides essential information, which can be employed
to infer the dynamical rules of the system, and thus to elucidate its physical or biological
features, by comparing it with simplified models that can reproduce such observed function.

If Y is the position of the system at each time, a fundamental information to understand
the dynamics of the system is provided by the Mean Square Displacement (MSD):

MSDY (t) =
〈
[Y (t)− y0]2

〉
(1.1)

where the brackets denote an average over many independent realisations of the process
Y . These are obtained by repeating several times its measurement under the same experi-
mental conditions. According to the definition Eq. (1.1), the MSD provides an estimate of
the spatial extent of the observed process, i.e., of the portion of space explored on average
by the system. Despite its simplicity, the functional form of the MSD already provides
a qualitative classification of the different types of diffusion behaviour that a system can
exhibit and enables one to distinguish between normal and anomalous diffusive processes.
In the rest of this Chapter, we will describe how this classification in terms of their MSD
historically evolved through a close interplay between experimental evidences, elucidating
the existence of such different types of diffusion, and theoretical advances in the definition
of models that are capable of reproducing such experimentally observed MSDs [9, 10].
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1.2 Normal Diffusion

The random motion of inorganic particles in a fluid, which had already been seen by, e.g.,
W. F. Gleichen, J. T. Needham, G. L. Leclerc, A. T. Brogniart and L. Spallanzani [11, 12],
who though failed to correctly interpret their experimental observations, was first postu-
lated by I. Ingenhousz in 1784 [5] and independently by J. Bywater in 1801 [13]. However,
the first systematic analysis of such motion was obtained by the botanist R. Brown in
1827, after whom it was named Brownian motion, who was studying a system of particles
trapped in cavities and immersed in a water solution enriched of pollen grains. While look-
ing at this system with his microscope, he realised that the particles were moving through
the solution while rapidly changing directions without any net drift [11]. Furthermore, he
provided robust evidence that such motion could not be ascribed to bubbles, release of
matter within the solution or interactions between the particles. This motion of the parti-
cles, that Brown investigated, belongs to the class of normal diffusive processes, which are
characterised by a linear scaling of the MSD:

MSDY (t) ∼ t. (1.2)

A first insight into the properties of these processes was obtained by A. Fick [14]. During
his studies on molecular transport through membranes, he phenomenologically proposed
an equation describing the concentration of the diffusing species n(x, t), which reads as:

∂

∂t
n(x, t) = D

∂2

∂x2
n(x, t) (1.3)

where D is a constant coefficient. As we will discuss in Sec. 2.1.1, this same equation holds
for the position Probability Density Function (PDF) of a normal diffusive process.

However, it was only trough the seminal works of L. Bachelier [1], who first connected
the random motion studied by Brown to diffusion equations like Eq. (1.3), and A. Einstein
[2], which were later put on more robust mathematical grounds by M. Smoluchowski [3],
that the microscopic origin of Brownian motion became clear. In the following, we review
the calculation of the MSD Eq. (1.2) within the microscopic picture proposed by Einstein.
Let us tag one of those particles observed by Brown. According to Einstein’s argument,
its motion can be constructed by assuming independent and identically distributed (i.i.d)
position displacements si between consecutive samplings of the particle’s position at dis-
crete times, which are separated by an interval of fixed length τ . In physical terms, these
position displacements are due to the collisions between such particle and the smaller ones
forming the solution. As it will be clarified in Sec. 2.1.1, this is ultimately a random walk
type description. Let now Y (t) and N(t) be respectively the position of the tagged particle
at time t and the number of positions samplings up to t. Thus, Y (t) = y0 +

∑N(t)
i=1 si, such
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that the MSD is given as below:

MSDY (t) =
〈
Y 2(t)

〉
=

〈
N(t)∑
i,j=1

si sj

〉

=

N(t)∑
i=1

〈
s2
i

〉
+

N(t)∑
i,j=1
i 6=j

〈si sj〉 =

N(t)∑
i=1

〈
s2
i

〉
=
a2

τ
t, (1.4)

where the contribution from the sum over terms 〈si sj〉 for i 6= j is null because the variables
{si} are independent, thus also uncorrelated, 〈s2

i 〉 = a2 and N(t) = t/τ by construction.
Experimental confirmation of Einstein’s molecular picture was provided by J. Perrin [6]

Three years later than Einstein’s work, an alternative formulation of normal diffusive
processes was proposed by P. Langevin in Ref. [4]. His approach consists in writing down
a Newtonian like equation of motion for the tagged particle, which consists of a first
deterministic part, accounting for the friction and any external force f being exerted on
it, and a second stochastic contribution ξ(t), which instead accounts for the effect of the
collisions from the other particles in the solution in a coarse-grained, probabilistic way (an
exact derivation based on the seminal Ref. [15] is discussed in Sec. 5.2.1). Thus, denoting
V (t) the time dependent velocity of the tagged particle, we obtain the equation [4]:

mV̇ (t) = −γ V (t) + f + ξ(t), (1.5)

where m is the mass of the colloidal particle, γ is the friction coefficient and the stochastic
force ξ has fixed statistical properties [in the case of diffusive processes these are specified
in Sec. 2.2.2, Eq. (2.98)]. The linearity of the MSD can be easily shown also from Eq. (1.5).
Indeed, recalling that Y (t) =

∫ t
0 V (τ) dτ and assuming f = 0, we obtain:

MSDY (t) =

∫ t

0

∫ t

0

〈
V (t′)V (t′′)

〉
dt′ dt′′

= 2

∫ t

0

[∫ t

t′

〈
V (t′)V (t′′)

〉
dt′′
]

dt′

= 2

∫ t

0

[∫ t−t′

0

〈
V (t′)V (t′ + τ)

〉
dτ

]
dt′ = 2

∫ t

0

[∫ t−t′

0
Cv(t

′; τ) dτ

]
dt′ (1.6)

where we first employed the symmetry of the integration region and of the integrand func-
tion, secondly we changed the integration variable t′′ into the time lag τ = t′′ − t′ in the
third line and lastly we introduced the velocity-velocity correlation function Cv(t

′; τ) =

〈V (t′)V (t′ + τ)〉. This quantity is equal to Cv(t
′; τ) = [(kB T )/m] exp [−(γ τ)/m] for

t′ → ∞ with kB being the Boltzmann constant and T the temperature of the system
[16]. Thus, the internal integral in Eq. (1.6) is equal to m/γ for t� t′ →∞, such that we
finally find: MSDY (t) = 2 (kB T/γ) t. We highlight that these two different approaches,
i.e., the random walk one proposed by Einstein, on the one hand, and that based on
the description of the system in terms of a Newton equation of motion with stochastic
driving force proposed by Langevin, on the other hand, are both equivalent and com-
plementary. Indeed, while the Langevin approach provides essential information on the
stochastic trajectories of the observed process, the random walk framework enables one to
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derive straightforwardly evolution equations for its PDF (this will be discussed in details
in both Chapters 2). Thus, in order to fully understand their properties, one needs to ma-
nipulate both these two techniques. As this argument also holds in the case of anomalous
diffusive processes, in this Thesis we will characterise all the processes of interest by always
employing both these two different techniques.

1.3 Out-of-Equilibrium Driving and Anomalous Diffusion

The study of Brownian motion by Brown [11] and its subsequent theoretical description
developed by A. Einstein [2], M. Smoluchowski [3] and P. Langevin [4] represents a mile-
stone in the theory of diffusion processes. For the first time, these results suggested the
experimental relevance of diffusion processes, and specifically of the normal ones satisfying
Eq. (1.2), and the need to put solid ground to their theoretical framework, thus inspiring
several further investigations both in the Mathematics and in the Physics community.

Nevertheless, it was soon realised that normal diffusive processes only represents a
subclass of the set of diffusion processes that can be observed experimentally. Indeed,
many systems in Nature exhibit anomalous diffusive patterns, whose distinctive feature is
a power-law scaling of the MSD [17, 18, 9, 19]:

MSDY (t) ∼ tα. (1.7)

Here, α is a positive real number, whose value enables us to provide a first qualitative
classification of anomalous diffusive processes. Indeed, recalling that for α = 1 we recover
normal diffusion, the case 0 < α < 1 corresponds to processes with slower space explo-
ration, whereas in the opposite case α > 1 the resulting processes diffuse faster. These
different processes are called subdiffusive or superdiffusive respectively. Within the class of
superdiffusive processes we can identify a further distinction. Indeed, α = 2, i.e., ballistic
motion, is another special case, so that we call processes for which α > 2 superballistic. In
what follows, we will provide experimental evidence of both subdiffusive and superdiffusive
processes and discuss the main mechanisms, which generate such anomalous behaviour by
ultimately driving the system out of equilibrium, and their corresponding models.

1.3.1 Subdiffusive Processes

Subdiffusive processes are usually observed when the system is diffusing in a complex
medium, which presents impediments of either energetic or geometrical nature to its mo-
tion. For instance, one of the first observation of subdiffusion was obtained while studying
the motion of charge carriers moving in amorphous semiconductors [20, 21, 22, 23, 24, 25,
26, 27]. Such medium generates a complex landscape of energy wells where the electrons
can get trapped for a time interval, whose duration depends on the height of the poten-
tial barrier that they need to overcome to get out of it. Thus, their motion consists in a
sequence of trapping-untrapping events, such that the total time spent in free motion is
smaller than the time spent in the energetic wells. According to the qualitative discus-
sion of the previous paragraph, this type of dynamics leads to subdiffusion. Such system
was originally modelled in terms of the Continuous-Time Random Walk (CTRW) model
[28, 20], which was proved to reproduce its observed dynamical behaviour. Later, subd-
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iffusive behaviour of different origin was also observed for particles being transported on
fractal geometries and for Rouse or reptation dynamics in polymeric systems (see [9] for
further examples and related references).

In addition, thanks to the recent improvements of experimental techniques in biol-
ogy, joint position-velocity datasets have been obtained, revealing the existence of several
examples of subdiffusion also in living systems. Specifically, biological macromolecules
and/or organelles often exhibit a subdiffusive scaling of the MSD, while moving in molec-
ular crowded environments, which can be prepared ad hoc for in vitro experiments, e.g.
by using solutions of surfactant micelles [29] or polymer networks [30] to name just a few
techniques, or found in vivo, e.g. the cytoplasm [31] or the cells’ membrane [32], whose
viscoelastic properties have recently been found to play a major role in determining the
anomalous diffusion [33, 34]. Further examples can be found in Ref. [10].

The diverse features of these examples suggest that several different mechanisms can
generate subdiffusive behaviour in both non-living and living systems. Detailed reviews of
them, along with the models usually adopted to describe them, can be found in Refs. [35,
36, 19, 10, 8]. Here, we only mention the two most commonly observed in experiments:

• trapping. As for electrons moving in amorphous solids, the dynamics of the diffusing
particle alternates periods of free motion (possibly in the presence of external forces)
with periods of immobilisation, which are caused by its getting trapped in either
energetic wells (due to the presence of binding sites or complex potential landscapes)
or geometrical traps (like for particle transport in Purkinje cells [37, 38, 39]). Its
molecular description is given by Einstein’s argument [2], but the finite time step
τ , which for normal diffusive dynamics is not an intrinsic property of the system
but rather a time-scale induced by the data sampling procedure, corresponds to the
physical sojourn time of the particle in each of the cages. This implies that its
duration is generally not constant, but trap-dependent. Further considering that in
experiments we only have information on the statistics of the height of these cages,
τ needs to be randomly sampled from a specific distribution.

• Viscoelasticity of the medium. In this case, the diffusing particle is part of a more
complex interacting system exhibiting viscoelastic properties, thus inducing strong
correlations with the other parts of the system. Consequently, its motion is naturally
forced to take place in a concerted way with that of the rest of the system.

Considering the large variety of different mechanisms that may generate subdiffusive be-
haviour, different models are naturally needed in order to correctly reproduce their features.
The CTRW represents one specific example of such models, which is particularly suitable
to describe trapping-untrapping dynamics, but other models have also been proposed, e.g.
the generalised Langevin equation with power-law kernel [40], which is often adopted to de-
scribe diffusion in a viscoelastic environment, the fractional Brownian motion [41] or even
ordinary Langevin dynamics in the presence of random or multiscale potential [42, 43]. All
these different models are not equivalent, even if they possibly share the same subdiffusive
MSD behaviour for specific choices of their characteristic parameters, because they usu-
ally differ with respect to other statistical properties, e.g. the free-force propagator or the
two-point correlation functions. Consequently, one needs to choose the model according to
the specific features of the system observed in the experimental study.
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1.3.2 Superdiffusive Processes

Anomalous superdiffusive processes originate from different mechanisms than subdiffusive
ones. In this case, indeed, the MSD grows faster than in the normal case, meaning that
the diffusing particle needs to perform on average longer spatial excursions than Brownian
motion in the same fixed time interval. Examples of such diffusive behaviour can be
found in rotating flows, particle motion in turbulent fluids/plasma or in heterogeneous
rocks (see [9] for references and further experimental results). Furthermore, cell migration
experiments have recently revealed a characteristic superdiffusive scaling of the MSD along
with many more features deviating from standard Brownian models, e.g. non Gaussian
PDFs for the position and/or the velocity of the moving cell and power-law long time
scaling of the velocity auto-correlation functions [44, 45, 46, 47, 48, 49]. Another relevant
application consists in animal foraging and target search, where superdiffusive behaviour is
often observed in specific environmental conditions [50, 51], i.e., when targets are sparsely
distributed and non-destructible. Models often used to describe superdiffusion are Lévy
flights and Lévy walks [52, 53, 54, 9, 55, 56], which will be mentioned in Chapter 2. We
recall that a dynamical behaviour qualitatively resembling that of Lévy walks has been
recently obtained for ordinary underdamped Langevin dynamics in two dimensions, i.e.,
with pure thermal fluctuations, with randomly generated potential landscapes [42, 43].

1.4 Thesis Outline

We conclude this Introduction by providing an outline of the Thesis.

• Chapter 2: Mathematical Tools for Anomalous Stochastic Processes
The aim of this Chapter is to construct a complete framework for the theoretical
analysis of diffusion processes, either normal or anomalous. To this aim, the Chapter
is divided in two parts. The first one is focused on the random walk description of
diffusive processes. Specifically, we will review the random walk model and derive the
diffusion equation from its corresponding master equation. This same scheme will
then be applied to the CTRWmodel. A tutorial on the use of fractional operators will
also be provided. The second part deals with their description in terms of stochastic
Langevin equations. Thus, we will review the stochastic analysis of Itô processes and
present the theory of Lévy processes, in particular subordinators. A brief discussion
of semimartingales and time-changed processes will end the Chapter.

• Chapter 3: Anomalous Processes with General Waiting Times: Function-
als and Multipoint Structure
In this Chapter, we formulate anomalous diffusive processes in terms of a CTRW
with a more general waiting time distribution than the Lévy stable one. We fully
characterise them, and their observables, in terms of (i) the stochastic description
of their microscopic dynamics in terms of subordinated Langevin equations, (ii) the
generalised Fractional Feynman-Kac (FFK) equation, whose derivation is presented
in details, and (iii) their multipoint correlation functions. We compute the MSD
and two-point correlation functions of specific toy models of biological relevance. We
conclude the Chapter by applying our formalism to model MSD data of mitochon-
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dria diffusing in S. Cerevisiae cells depleted of actin microfilaments of Ref. [57] and
predict the functional form of the two point correlation function of the process, that
can be readily tested experimentally.

• Chapter 4: Langevin Formulation of a Subdiffusive Continuous-Time Ran-
dom Walk in Physical Time
This Chapter is devoted to study if a Langevin formulation of a CTRW can be ob-
tained without using subordination. To this aim, we define a novel non Gaussian
noise and investigate processes whose dynamics is described by Langevin equations
driven by it. While in the free diffusive case we find equivalence with the CTRW,
external forces are exerted on the system differently, specifically both during the wait-
ing times and the jumps, thus changing completely their properties. We will discuss
in details their difference with CTRWs and conclude by comparing them with the
Scaled Brownian Motion (SBM), which is a Gaussian model of anomalous diffusion.

• Chapter 5: Galilean Invariance of Anomalous Stochastic Processes
This Chapter is focused on elucidating the role of Galilean Invariance (GI) in the
study of diffusion processes. We first discuss how the violation of GI of the Langevin
equation and the Fokker-Planck (FP) equation is caused by the coarse-graining pro-
cedure, which is employed to switch from the microscopic Hamiltonian description
of the tracer particle dynamics to the macroscopic stochastic one. We then formu-
late the concept of “weak”, or statistical, GI and show that both normal diffusive
dynamics and the novel processes of Chapter 4 satisfy it, while CTRWs do not.

• Chapter 6: Conclusions
In this Chapter we summarise the novel results discussed in this Doctoral Disserta-
tion. Open questions and hints for future lines of research will be suggested.



CHAPTER 2

Mathematical Tools for Anomalous Stochastic Processes

Transport processes are usually described by adopting either a “physicist” approach, where
the dynamics is described at a microscopic level in terms of random walks, or a “mathemati-
cian” approach, which consists instead of a coarse-grained description, where the dynamics
is modelled in terms of stochastic Langevin equations. These different techniques equiva-
lently lead to the same evolution equations for the probability density function of the process,
i.e., the diffusion equation in the well-known case of a colloidal particle in a fluid. How-
ever, they also complement each other, by independently providing information on several
different properties of the system, for instance of its stochastic trajectories in the case of the
Langevin description. Thus, a full understanding of the dynamical properties of a process
can only be attained, if both these two descriptions are available. In this Chapter, we build
such a complete tool-kit of techniques to investigate anomalous stochastic processes.

2.1 Random Walks and Fractional Calculus

In this first section, we present an overview of random walk techniques for the analysis of
diffusion processes (see Ref. [36] for a more detailed discussion). We will first introduce the
concept of the random walk, i.e., the celebrated drunken sailor problem, which was first
extensively studied in [58], and show how the PDF of the walker’s position is naturally
described by the diffusion equation [14]. Secondly, we will endow the walker with the
ability of either resting in its position or making arbitrarily large random jumps. This
generalisation of the random walk is called the continuous-time random walk (CTRW)
[28]. We will show how this model can account for different types of anomalous dynamical
behaviour, by suitably specifying the asymptotic scaling of the resting time and jump size
distributions, and derive their corresponding diffusion equations [59, 60, 61, 9]. These will
contain fractional operators, elucidating the non locality in space and time of the walker’s
dynamics in the CTRW. Finally, we will describe the Lévy walk model [56] of superdiffusion
and provide a tutorial on fractional operators, which are an essential tool to investigate
anomalous stochastic processes.

Let us define the notation for the integral transforms used throughout this thesis. The

10
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Laplace transform of a function f(t) with support on the positive half line will be denoted
as f̃(λ) and it is defined as follows:

f̃(λ) = L{f(t)} (λ) =

∫ +∞

0
e−λtf(t) dt . (2.1)

The convolution of two such functions φ1 and φ2 is given by:

(φ1 ∗ φ2)(t) =

∫ t

0
φ1(t− τ)φ2(τ) dτ , (2.2)

whose Laplace transform, thanks to the convolution theorem, is given by the product of
the corresponding Laplace transforms: ˜(φ1 ∗ φ2)(λ) = φ̃1(λ)φ̃2(λ). On the other hand, let
us now consider a function g(x) defined on the all real line R. The Fourier transform of g
will be referred to as ĝ(k) and it is defined explicitly as:

ĝ(k) = F {g(x)} (k) =

∫ +∞

−∞
ei k xg(x) dx . (2.3)

The convolution of two such functions g1 and g2 is given by:

(g1 ∗ g2)(x) =

∫ +∞

−∞
g1(x− y)g2(y) dy . (2.4)

The convolution theorem also holds in this case, such that the Fourier transform of a con-
volution of two functions g1 and g2 is the product of the corresponding Fourier transforms:
̂(g1 ∗ g2)(k) = ĝ1(k)ĝ2(k). The corresponding definitions for the case of a convolution of

multiple functions follow straightforwardly.

2.1.1 Random Walk and the Diffusion Equation

Let us consider a point particle on a one dimensional lattice of mesh ∆x, which moves at
each finite time step ∆t by jumping into one of its adjacent positions. We denote with Pj(t)
its probability of being in the lattice node j at time t. We assume that jumps to the right
or to the left are independent and that they occur with probability 1/2. Our interest is in
understanding how the quantity Pj evolves over time, as this would provide us information
on both (i) the final point that the particle can reach and (ii) the area spanned by the
particle if, after some finite time T , we restart its motion from the same initial position
and repeat this procedure several times. According to the dynamical rules prescribed, the
particle can reach a fixed position j only by jumping from one of its neighbouring sites,
i.e., from the lattice sites j ± 1, at the previous step. Thus, if a particle was in the lattice
site j±1 at some time t, it would arrive in the position j with probability Pj±1(t)/2. Thus,
we obtain the following master equation [16]:

Pj(t+ ∆t) =
1

2
Pj+1(t) +

1

2
Pj−1(t). (2.5)

What happens if we consider the limit ∆t→ 0, this being equivalent to the limit of a large
number of jumps, and the continuum limit of the lattice mesh ∆x → 0. In the first case,
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one needs first to Taylor expand the lhs of Eq. (2.5) in ∆t, which leads to:

Pj(t) + ∆t
∂

∂t
Pj(t) + o

(
∆t2

)
=

1

2
Pj+1(t) +

1

2
Pj−1(t). (2.6)

In the second case, i.e., the continuum limit ∆x→ 0, we consider density functions instead
of probabilities: Pj(t) → P (x, t) and Pj±1(t) → P (x′±, t), where x represents the lattice
node j and x′± the neighbouring sites x ± ∆x (mathematically Pj(t) = P (x, t) dx ). By
Taylor expansion, we obtain: P (x′±, t) = P (x, t)±∆x ∂

∂xP (x, t) + ∆x2

2
∂2

∂x2P (x, t) +o(∆x3).
If we substitute it in Eq. (2.6) and keep only first and second order terms, we obtain the
celebrated diffusion equation [14]:

∂

∂t
P (x, t) = K1

∂2

∂x2
P (x, t) (2.7)

where we define the diffusion constant : K1 = lim∆x,∆t→0 ∆x2/(2 ∆t). By taking its
Fourier-Laplace transform, we derive the solution of the corresponding initial value problem
with initial condition P (x, 0) = δ(x− x0) as the following Gaussian distribution:

P (x, t) =
1√

4πK1t
exp

[
−(x− x0)2

4K1t

]
. (2.8)

The Gaussian distribution of the walker’s position is a direct consequence of the central
limit theorem [62, 63], here holding because we require the ratio ∆x2/∆t to be finite in
the limit ∆t,∆x → 0 in order to ensure the existence of K1. In addition, we can easily
show that MSD(t) = 2K1 t, i.e., the motion of the walker is an ordinary diffusive process.

2.1.2 CTRW Model and The Montroll-Weiss Equation

The celebrated Continuous-Time RandomWalk model, first introduced in the seminal work
of Montroll and Weiss [28], consists in an elegant generalisation of the random walk model,
whose relevance is motivated by its ability of capturing complex physical phenomena, like
trapping or target searching. The main idea of the CTRW is to allow the point particle
of an ordinary random walk to rest for some time τ , which is random and sampled from a
given distribution, before performing the next jump, which is itself sampled from a specified
distribution. Thus, in order to fully characterise the dynamics of the point particle in a
CTRW, we need to introduce a distribution for both the jump lengths and the waiting times
between different jumps. Let us call ψ(x, t) such joint distribution of jump lengths and
waiting times. By integrating out one variable, one can obtain the marginal distributions.
In details, we define: (i) the jump length distribution φ(x) =

∫ +∞
0 ψ(x, t) dt and (ii)

the waiting time distribution w(t) =
∫ +∞
−∞ ψ(x, t) dx . In general, both jump lengths and

waiting times can be dependent (coupled CTRWs) [64, 65, 66, 67, 68, 69, 70], so that we
need to use the joint distribution. In the opposite case instead, such distribution can be
factorised: ψ(x, t) = w(t)φ(x) (uncoupled CTRWs).

Our first aim is to introduce the analogue of the master Eq. (2.5) for the dynamics of
the CTRW. Let us denote Y (t) the position of the walker at the time t. We further define
its PDF P as the quantity: P(Y (t) ∈ dx |Y (0) = 0) = P (y, t) dy . As both waiting times
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and jump lengths are independent and identically distributed (i.i.d.), we find:

P(Y (t) ∈ dy |Y (t′) = y′) = P(Y (t− t′) ∈ dy |Y (0) = y′)

= P(Y (t− t′)− y′ ∈ dy |Y (0) = 0)

= P (y − y′, t− t′) dy . (2.9)

Thanks to the simple structure of the CTRW dynamics outlined previously, the value of
Y (t) can be expressed by specifying the time of the first jump τ1 with respect to t [71]:

P(Y (t) ∈ dy |Y (0) = 0) = P(Y (t) ∈ dy , τ1 ≤ t|Y (0) = 0)

+ P(Y (t) ∈ dy , τ1 > t|Y (0) = 0). (2.10)

Each of these terms can then be computed exactly. On the one hand, if the first jump
occurs after t, i.e., τ1 > t, which happens with probability:

Ψ(t) = 1−
∫ t

0

∫ +∞

−∞
ψ(y, τ) dy dτ = 1−

∫ t

0
w(τ) dτ , (2.11)

the particle should have been in the position y already at the initial time in order to be
there at time t. As this happens with probability δ(y) dy , we find:

P(Y (t) ∈ dy , τ1 > t|Y (0) = 0) = Ψ(t) δ(y) dy . (2.12)

If instead the first jump happens before t, i.e., τ1 ≤ t, we need to condition on both the
position of the walker before the jump and the exact jump time:

P(Y (t) ∈ dy , τ1 ≤ t|Y (0) = 0) =

∫ +∞

−∞

∫ t

0
P(Y (t) ∈ dy |Y (t′) = y′)×

× P(Y (t′) ∈ dy′ , τ1 ∈ dt′ |Y (0) = 0). (2.13)

However, the quantity P(Y (t′) ∈ dy′ , τ1 ∈ dt′ |Y (0) = 0) simply represents the probability
that the first jump has size y′ < Y (t′) < y′ + dy′ and occurs at the time τ1 such that
t′ < τ1 < t′ + dt′ . This is given in terms of the distribution ψ by the following [71]:

P(Y (t′) ∈ dy′ , τ1 ∈ dt′ |Y (0) = 0) = ψ(y′, t′) dy′ dt′ . (2.14)

Thus, by substituting it into Eq. (2.13), we find:

P(Y (t) ∈ dy , τ1 ≤ t |Y (0) = 0) =

∫ +∞

−∞

∫ t

0
P(Y (t) ∈ dy |Y (t′) = y′)ψ(y′, t′) dy′ dt′

=

[∫ +∞

−∞

∫ t

0
P (y − y′, t− t′)ψ(y′, t′)dy′ dt′

]
dy , (2.15)

where we used Eq. (2.9) in the second line. Finally, by employing the results of Eqs. (2.12,
2.15) into Eq. (2.10), we obtain the following master equation:

P (y, t) =

∫ t

0

∫ +∞

−∞
P (y − y′, t− τ)ψ(y′, τ) dy′ dτ + δ(y) Ψ(t). (2.16)



2.1 Random Walks and Fractional Calculus 14

The result just derived is better understood in Laplace-Fourier space. Recalling that
Ψ̃(λ) = [1− w̃(λ)]/λ, we find the celebrated Montroll-Weiss equation [28]:

̂̃
P (k, λ) =

1− w̃(λ)

λ

P̂0(k)

1− ̂̃ψ(k, λ)
, (2.17)

where P0 denotes the initial condition (if different from a delta function in the origin).
This equation expresses the position PDF of a CTRW-type random walker in terms of the
jump length and waiting time distribution. Once these are fixed, the statics of the walker’s
position is completely determined by inverse Fourier-Laplace transforming Eq. (2.17). As
in the case of the ordinary random walk, we will be interested in the behaviour of P
in the continuum and long-time limit, which in Fourier-Laplace variables is respectively
equivalent to (k, λ)→ (0, 0). Thus, the dynamics of the random walk will be classified by
considering only the asymptotic behaviour of w and φ, which are related to the existence
of a finite mean waiting time and/or jump length variance, respectively defined as:

〈τ〉 =

∫ ∞
0

τ w(τ) dτ , (2.18)

〈
x2
〉

=

∫ +∞

−∞
x2 φ(x) dx . (2.19)

We discuss in the following such classification, by first considering the case of uncoupled
CTRWs. We define the following distributions for waiting times and jump lengths [56]:

w(τ) =
1

τ0

α

[1 + τ/τ0]1+α
α > 0 (2.20)

φ(x) =
Γ(β + 1/2)

x0
√
π Γ(β) [1 + (x/x0)2]β+1/2

β > 0 (2.21)

We recall that the exact details of these distributions do not matter in determining the
qualitative features of the dynamics of the walker [59, 9, 56]. This specific choice has been
made, as their Laplace and Fourier transform respectively can be obtained analytically
[72]. Their asymptotic behaviour in the limit (k, λ)→ (0, 0) is given below:

w̃(λ) = 1− τ0

α− 1
λ− τα0 Γ(1− α)λα +O(λ1+α) (2.22)

φ̂(k) = 1− x2
0

β − 1

k2

4
− x2β

0

22β

Γ(1− β)

Γ(1 + β)
|k|2β +O(k2+2β) (2.23)

Clearly, different values of the exponents α, β corresponds to finite or divergent mean
waiting time and jump length variance. We will classify these different ranges below.

Normal Diffusion Case

Let us first show that we recover normal diffusive behaviour, and specifically Eq. (2.7), if
both 〈τ〉 and

〈
x2
〉
exist finite. By looking at Eqs. (2.22, 2.23), this is obtained if we assume

α > 1 and β > 1 simultaneously. In this regime, indeed, the fractional powers become of
sub-leading order compared to both the linear and quadratic terms and can be neglected.
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Thus, Eqs. (2.18, 2.19) read as below:

〈τ〉 =
τ0

α− 1
,

〈
x2
〉

=
x2

0

2(β − 1)
. (2.24)

In addition, if we substitute Eqs. (2.22, 2.23), after neglecting the fractional order terms,
in Eq. (2.17) and keep only first and second order terms we find:

̂̃
P (k, λ) =

τ0

α− 1

P̂0(k)

1−
(

1− τ0
α−1 λ

)(
1− x2

0
β−1

k2

4

)
=

P̂0(k)

λ+
x2

0
4(β−1)

α−1
τ0
k2

=
P̂0(k)

λ+K1k2
, (2.25)

where we set K1 =
〈
x2
〉
/[2 〈τ〉]. If we now rearrange the terms, we obtain the equation:

λ
̂̃
P (k, λ)− P̂0(k) = −K1 k

2 ̂̃P (k, λ), (2.26)

whose Fourier-Laplace inverse transform leads to Eq. (2.7). In conclusion, normal diffusion,
and the diffusion equation, can be recovered in the continuum and long-time limit of a
CTRW with finite mean waiting time and jump length variance [9].

Long Rests Case: Subdiffusion

Let us now relax one of the conditions assumed before. Specifically, we allow for the mean
waiting time to be infinite. This corresponds to a random walker that can get trapped in
a fixed position for long times. This is obtained by assuming 0 < α < 1, which implies
that the leading order term in Eq. (2.22) is the fractional one, which scales as λα. On the
contrary, we still keep a jump length distribution with finite variance, i.e., β > 1. In this
regime 〈τ〉 is not finite, while

〈
x2
〉
is the same as in Eq. (2.24). Thus, substituting the

expansions w(λ) ∼ 1− τα0 Γ(1− α)λα and φ(x) ∼ 1− x2
0

β−1
k2

4 in Eq. (2.17), we obtain:

̂̃
P (k, λ) = τα0 Γ(1− α)λα−1 P̂0(k)

1− [1− τα0 Γ(1− α)λα]
(

1− x2
0

β−1
k2

4

)
=

λα−1P̂0(k)

λα +
x2

0
4(β−1)

1
τα0 Γ(1−α)k

2
=

P̂0(k)

λ+Kαk2λ1−α , (2.27)

where we introduce the anomalous diffusion coefficient: Kα =
〈
x2
〉
/[2τα0 Γ(1 − α)]. In

order to get the corresponding evolution equation, we rearrange the terms as follows:

λ
̂̃
P (k, λ)− P̂0(k) = Kαk

2λ1−α ̂̃P (k, λ) (2.28)

and take its Fourier-Laplace inverse transform. We note that the Laplace inverse transform
of the fractional term can be derived by introducing a suitable fractional operator (details
are given in Sec. 2.1.5). Thus, we obtain the fractional diffusion equation (FFPE) [28, 73]:

∂

∂t
P (x, t) = Kα

∂2

∂x2 0D
1−α
t P (x, t) (2.29)
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where 0D
1−α
t is the Riemann-Liouville operator [74, 75, 76, 77]:

0D
1−α
t P (x, t) =

1

Γ(α)

∂

∂t

∫ t

0

P (x, τ)

(t− τ)1−α dτ , (2.30)

or equivalently in Laplace transform:

L
{

0D
1−α
t P (x, t)

}
(x, λ) = λ1−αP̃ (x, λ). (2.31)

It is now straightforward to see that MSD(t) = 2Kαt
α/Γ(1 + α), i.e., the motion of the

walker is of subdiffusive type. This is due to the presence of long waiting times, which are
physically related to the occurrence of trapping events during the particle’s dynamics [19].
We note that a closed form Laplace-Fourier inverse transform of Eq. (2.27) is derived in
terms of a Fox H-function (see Appendix A.3 for its definitions and properties) [9]:

P (x, t) =
1√

4πKα tα
H2,0

1,2

[
x2

4Kα tα

∣∣∣∣∣
(
1− α

2 , α
)

(0, 1),
(

1
2 , 1
)] (2.32)

Large Jump Lengths Case: Lévy Flights

We now consider the opposite case of finite mean waiting time [same as in Eq. (2.24)], but
infinite jump length variance, i.e., α > 1 and simultaneously 0 < β < 1. These parameters
lead to the asymptotic behaviour: w̃(λ) ∼ 1 − τ0

α−1λ and φ̂(k) ∼ 1 − x2β
0

22β
Γ(1−β)
Γ(1+β) |k|

2β . As
before, we substitute these expressions into Eq. (2.17) to obtain [73, 78, 9, 56]:

̂̃
P (k, λ) =

τ0

α− 1

P̂0(k)

1−
(

1− τ0
α−1λ

)(
1− x2β

0

22β
Γ(1−β)
Γ(1+β) |k|2β

)
=

P̂0(k)

λ+
x2β

0

22β
Γ(1−β)
Γ(1+β)

α−1
τ0
|k|2β

=
P̂0(k)

λ+Kβ|k|2β
, (2.33)

where we defined the parameter: Kβ = [(x0)2βΓ(1 − β)]/[22βΓ(1 + β) 〈τ〉]. In order to
derive an evolution equation, we need to rearrange its terms. In details, we obtain:

λ
̂̃
P (k, λ)− P̂0(k) = −Kβ|k|2β

̂̃
P (k, λ). (2.34)

Its inverse Fourier transform can be derived exactly, if we introduce a suitable fractional
operator in the x-variable. This is obtained by employing Eq. (2.81) in Sec. 2.1.5. Thus,
we obtain the following fractional evolution equation:

∂

∂t
P (x, t) = Kβ D

2β
0 P (x, t) (2.35)

where we introduce the Riesz-Feller fractional derivative:

D2β
0 P (x, t) =

∫ +∞

−∞

P (y, t)

|x− y|1+2β
dy (2.36)

In this regime, the MSD of the walker is not finite (indeed the second order derivative
in k of Eq. (2.37) is ∝ |k|2(β−1) which diverges for k → 0). This is due to the existence
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of instantaneous arbitrarily large jumps, which, however, lack of physical meaning for
massive particles, as they would require them to have an infinite instantaneous velocity.
Nevertheless, it is possible to compute an exact PDF [9], again as a Fox H-function:

P (x, t) =
1√

2β |x|
H1,1

2,2

[
|x|

(K2β t)1/(2β)

∣∣∣∣∣
(

1, 1
2β

)
,
(
1, 1

2

)
(1, 1),

(
1, 1

2

) ]
, (2.37)

which is a closed form expression of a symmetric Lévy stable distribution [63]. Such
distribution has power-law decaying tails, specifically P (x, t) ∼ |x|−1−2β for |x| → ∞.
Lévy stable processes will be reviewed in Sec. 2.2.3, but we anticipate that these processes
are self-similar with index H = 1/[2β], i.e., P (x, a t) = a−HP (a−H x, t). Despite the fact
that moments of order ≥ 2 are infinite, by employing Eqs. (2.37, A.26), one can determine
the fractional moments of the distribution, i.e., the quantities

〈
|x|δ
〉
, where 0 < δ < 2β < 2,

which are found to scale as tδ/(2β) for long times. After rescaling, we obtain: MSD(t) ∼
t1/β , i.e., the walker exhibits superdiffusive behaviour [73, 63, 17, 54, 18].

General Case: Lévy Flights with Long Rests

Let us finally consider the more general case, where both the mean waiting time and
the jump length variance are not finite, which is obtained in the regime 0 < α < 1 and
0 < β < 1. In this case, the fractional powers dominate the expansions given in Eqs. (2.22,

2.23), i.e., we have w(λ) ∼ 1− τα0 Γ(1− α)λα and φ̂(k) ∼ 1− x2β
0

22β
Γ(1−β)
Γ(1+β) |k|

2β . Substituting
these asymptotic expressions into Eq. (2.17), we derive the following solution [9, 56]:

̂̃
P (k, λ) = τα0 Γ(1− α)λα−1 P̂0(k)

1− [1− τα0 Γ(1− α)λα]

(
1− x2β

0

22β
Γ(1−β)
Γ(1+β) |k|2β

)
=

λα−1P̂0(k)

λα +
x2β

0

22β
Γ(1−β)
Γ(1+β)

1
τα0 Γ(1−α) |k|2β

=
P̂0(k)

λ+Kβ,α|k|2βλ1−α , (2.38)

where we define the parameter: Kβ,α = [x2β
0 Γ(1−β)]/[22βΓ(1+β)τα0 Γ(1−α)]. Rearranging

the terms, we find the following equation:

λα
̂̃
P (k, λ) +Kβ,α|k|2β

̂̃
P (k, λ) = λα−1P̂ 0(k), (2.39)

whose inverse Fourier-Laplace transform is expressed in terms of fractional operators:

0D
α
t P (x, t) = Kβ,αD

2β
0 P (x, t) +

t−α

Γ(1− α)
P0(x) (2.40)

Analogously to the case before, we can compute: MSD(t) ∼ tα/β . The dependence of the
scaling exponent on the ratio α/β elucidates that the qualitative features of the walker’s
motion are determined by the interplay between both long waiting times and large jumps.

Parametrising the CTRW: The Subordinated Langevin Equations

We conclude this section on the CTRW model, by presenting the parametrisation of its
stochastic trajectories in the continuum limit proposed by H. C. Fogedby [79], which for
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the first time provided a Langevin formulation of CTRWs.
In the original work of Montroll and Weiss [28], the CTRW is defined as a renewal

process where both the jump lengths and the waiting times between successive jumps are
selected as i.i.d RVs. A natural parametrisation of the CTRW is then obtain in terms of
the number of jumps n. Let us introduce the two sets of RVs {(ξj , ηj)}j=1,...,n, such that
ξj and ηj respectively specify the amplitude of the jump occurring at the jth step and the
waiting time between the (j−1)th and the jth jump. Waiting times and jump lengths may
possibly be correlated. However, in the Thesis we will only focus on the uncorrelated case,
i.e., the RVs {ξj} are independent of {ηj}. Thus, the position of the walker Y , initially in
the position y0, after n jumps is obtained by summing all the variables {ξj}:

Y (n) = y0 +
n∑
j=1

ξj . (2.41)

Analogously, the total elapsed time T is obtained by summing all the variables τj :

T (n) =
n∑
j=1

τj . (2.42)

Instead of such parametrisation in terms of the discrete variable n, it is usually convenient
to describe the position coordinate in terms of a continuous time variable t. By looking at
Eq. (2.42), we note that T and n are complementary variables, i.e., we can employ such
relation to define a stochastic process N(t), which counts the number of jumps in a time
interval [0, t]. Specifically, it can be defined as: N(t) = max {n ≥ 0 : T (n) ≤ t}. Thus, the
position variable can be written in terms of the continuous time t as below:

Y (t) = y0 +

N(t)∑
j=1

ξj . (2.43)

If we now consider the continuum limit in the number of steps of this random walk
picture, N(t) is no longer an integer, but it becomes a continuous variable S(t), which still
counts the number of waiting time increments up to t. In details, introducing a continuous
parameter s, which stands for the steps of the original random walk picture, the total
elapsed time after s steps [the continuum limit of Eq. (2.42)] is given by:

T (s) =

∫ s

0
τ(s) ds , (2.44)

whereas the position after s steps [the continuum limit of Eq. (2.41)] is given by :

X(s) =

∫ s

0
ξ(s) ds . (2.45)

These equations are equivalent to the following Langevin equations for X and T [79]:

Ẋ(s) = ξ(s), (2.46a)

Ṫ (s) = η(s). (2.46b)
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Thus, the analogue of the discrete RV N(t) in the continuum limit is the continuous
function of time S(t) defined as the collection of first passage times (for a formal derivation
in terms of functional limit theorems we refer to [80]):

S(t) = inf
s>0
{s : T (s) > t}. (2.47)

Indeed, this definition ensures that S accounts exactly for the number of steps, such that
the total elapsed time, i.e., the sum of the waiting time increments for each of those steps,
is equal to t. Thus, the time-dependent position of the CTRW Y (t) [the continuum limit
of Eq. (2.43)] is naturally expressed as a time-changed process:

Y (t) =

∫ S(t)

0
ξ(τ) dτ = X(S(t)) (2.48)

The notion of time-changed process and its properties are addressed in details in Sec. 2.2.4.
Therefore, Fogedby’s approach [79] describes the resulting trajectory of the random walk
in the continuum limit by parametrising both the path of the walker X(·) and the time
elapsed T (·) with an arbitrary continuous arc-length s. The stochastic process S(·) is the
inverse of T (·) and measures the arc-length as a function of the physical time. S(t) thus
represents the continuum limit of the RV N(t) that counts the number of steps in the
renewal picture. An illustrative representation of this procedure is reported in Fig. 2.1.
We further remark that, within this framework, the effect of an external force F (x) acting
on the walker is accounted for by directly inserting it into Eq. (2.46a).
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Figure 2.1: Physical interpretation of the arc-length s. We consider (i) a discretisation of
the physical time t (black solid lines) of step length ∆t and (ii) a discretisation of finite step
length ∆s� ∆t of s (not shown). We denote with ∆x, ∆T the increments of the processes
X and T corresponding to an increment ∆s of s (red dots), which are given by Eqs. (2.46a,
2.46b). The resulting process Y (t) = X(S(t)), with S defined by Eq. (2.47), is plotted in
black solid lines. (a) Normal Diffusion. In this case ∆T = ∆s (T is a deterministic drift)
and X is an ordinary random walk. In this setting, s coincides with the physical time t
and its discretisation is a thinner time partition. (b) Anomalous Diffusion. In this case,
∆T = ηj ∆s, with ηj being a RV. In this setup, s no longer coincides with the physical
time, but it provides a parametrisation of the elapsed physical time T via the definition
Eq. (2.47). We note the occurrence of trapping events (Y (t2) = Y (t3) in panel b), which
are due to the variable length of ∆T .

This description of the CTRW dynamics in terms of the subordinated Langevin Eqs. (2.46a,
2.46b), together with the definition of the time-change S in Eq. (2.47), also represents a
convenient method to write an algorithm for the Monte Carlo simulations of its stochastic
trajectories. We present the algorithm proposed in [81], which has the advantage of not
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requiring an exact form of the time-change S(t). An alternative algorithm can be found in
[82]. In order to simulate the CTRW Y (t) up to a fixed time T , we consider a partition of
the interval [0, T ] π = {0 = t0 < t1 < . . . < tm = T} with fixed mesh ∆t, i.e., m = T/∆t,
and a second fixed step size ∆s, such that ∆s � ∆t, which will serve as an update step
for the arc-length parameter s. The increments of X and T corresponding to an update
step in s are obtained by using an Euler scheme [83] to approximate Eqs. (2.46a, 2.46b):

X(s+ ∆s) = X(s) + ξ(s,∆s), (2.49a)

T (s+ ∆s) = T (s) + η(s,∆s), (2.49b)

where ξ(s,∆s) and η(s,∆s) for different values of s are RVs sampled respectively from the
jump length distribution and the waiting time distribution of the CTRW. In the case of
subdiffusive CTRWs, these are respectively a Gaussian with zero mean and variance ∝ ∆s

and a Lévy stable distribution of order parameter 0 < α < 1 [79]. Along with X(s) and
T (s), also the operational time s is updated step by step: s → s + ∆s. According to
Eq. (2.47), for each ti in the partition the update is stopped whenever s reaches a value s̄
such that: ti ≤ T (s̄) ≤ ti + ∆t, so that the subdiffusive process Y (t) is approximated as:
Y (ti) = X(s̄). The corresponding pseudo code is provided below.

Algorithm 1 Simulation of the Subordinated Langevin Equations
1: t := 0, S(t) := 0, Y (t) := x0 . Initialise Processes in t
2: s := 0, X(s) := x0, T (s) := 0 . Initialise Processes in s
3: for i=0 to N do
4: t← i∆t
5: repeat
6: if T (s) ≥ t then
7: Exit For Loop
8: end if
9: X(s)← X(s) + ξ(s,∆s) . Update X according to Eq. (2.49a)

10: T (s)← T (s) + η(s,∆s) . Update T according to Eq. (2.49b)
11: s← s+ ∆s
12: until T (s) < t . Exit Update Loop when Eq. (2.47) holds.
13: S(t)← s
14: Y (t)← x(s)
15: end for

2.1.3 Ageing and Weak Ergodicity Breaking of Subdiffusive CTRWs

As we highlighted in the previous paragraphs, anomalous subdiffusion is obtained by the
CTRW model when the mean waiting time does not exist finite. This condition is also
intimately related to two other important properties of CTRWs, i.e., ageing behaviour and
ergodicity breaking, that we here briefly recall. Our discussion is inspired by that of Ref. [8].

In a broad sense, a system is ageing if its statistics, measured in some time interval [t1, t],
explicitly depend on the time t0 6= t1 when the system was initially prepared. In the CTRW
model such dependence is strictly related to the asymptotic properties of the waiting time
distribution, which ultimately determine if the resulting process in the diffusive limit has
stationary increments or not. Specifically, let us first consider a normal random walk, i.e.,
a normal diffusive process Y in the scaling limit, corresponding to a finite mean waiting
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time 〈τ〉. In such scenario, the frequency of steps is constant and equal to 1/〈τ〉, thus
implying that Y has stationary increments. Consequently, despite the fact that the system
was prepared at the earlier time t0, no ageing effects are recorded. In particular, it is not
possible to determine t0 from the experimental measurements. For instance, its MSD, as
measured in the experiment, can be computed as below [by recalling Eq. (2.25)]:

〈
[Y (t− t0)− Y (t1 − t0)]2

〉
=
〈
[Y (t− t1)]2

〉
= K1 (t− t1). (2.50)

On the contrary, let us now consider the case of a subdiffusive CTRW, which is characterised
by the condition 〈τ〉 → ∞. In this case, the frequency of steps scales as tα−1/τα0 , i.e., the
dynamics slows down for long times. This effect is due to the heavy tails of the waiting
time distribution. Indeed, in the long time limit the walker can sample waiting times
eventually longer than the observation time, so that it can get stuck in its actual position.
Consequently, Y does not have stationary increments and ageing ultimately affects its
statistics. For instance, the MSD can be computed explicitly as below:

〈
[Y (t− t0)− Y (t1 − t0)]2

〉
=
〈
[Y (t− t0)− Y (t0)]2

〉
−
〈
[Y (t1 − t0)− Y (t0)]2

〉
= Kα[(t− t0)α − (t1 − t0)α], (2.51)

where we used the fact that the increments are still uncorrelated. Introducing the variables
ta = t1 − t0, estimating the age of the system at the beginning of the measurement, and
tobs = t− t1, i.e., the duration of the experiment, we can rewrite it as [84, 85]:

MSD(t) = Kα[(tobs + ta)
α − tαa ], (2.52)

which exhibit an explicit dependence on the age of the system ta. For more details on
ageing effects in CTRWs, in particular on statistical quantities, e.g., the position PDF or
the two-point correlation functions, and on the fractional evolution equations, we refer to
[84, 85, 86]. In [87] a more extensive study of ageing in renewal processes is discussed.

Ageing effects and non stationarity of the increments are related to the so called weak
ergodicity breaking of subdiffusive CTRWs [88, 89, 90, 91, 92, 93]. Let us first consider a
process Y with stationary increments, e.g. the scaling limit of an ordinary random walk.
In this case, the ergodic hypothesis states that ensemble averages over several independent
realisations of the dynamics 〈·〉 and temporal averages of single trajectories of length T

〈·〉T are the same for long measurement time T. In particular, for an ergodic process the
time-averaged MSD:

〈
Y 2(t)

〉
T

=
1

T − t

∫ T−t

0

[
Y (t+ t′)− Y (t′)

]2
dt′ (2.53)

is the same of the ensemble averaged MSD, i.e., 〈Y 2(t)〉 = limT→∞
〈
Y 2(t)

〉
T
. This is not

the case of subdiffusive CTRWs, and more generally of random walk and trap models with
power-law distributed sojourn times [94], for which 〈Y 2(t)〉 6= limT→∞

〈
Y 2(t)

〉
T
. Here,

ergodicity breaking occurs because the time that the system waits inside a trap, before
being able to escape it, becomes infinitely long in the limit T → ∞. In such limit indeed
the system eventually samples waiting times from the power-law tails of the waiting time
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distribution. Thus, despite being theoretically possible for the system to span the all
phase-space, thus recovering ergodicity, this would happen in an infinite time, i.e., not in
physical conditions. This mechanism, manifestly related to ageing, leads to the so called
weak ergodicity breaking. On the contrary, other systems may exhibit strong ergodicity
breaking, in which case the phase-space itself is divided into closed sets, which do not
communicate between themselves. Consequently, after the system is initially prepared in
one of this sets, it is no longer able to leave it and explore the rest of its phase-space [94].

In the specific case of subdiffusive CTRWs one can show that the time-averaged MSD
scales linearly in time and that the diffusion coefficients (the slopes of the MSD) of different
trajectories exhibits a broad distribution centred around a2ATα−1. Here, a2 is the finite
variance of the jump length distribution, α is the scaling exponent of the waiting time
distribution and A a numerical factor [89]. Thus, when analysing data from single-particle
tracking experiments, where only a few trajectories are typically available and temporal
averages are employed, one needs to take such effect into account to correctly classify the
observed process.

2.1.4 Lévy Walks

As suggested in the previous section, superdiffusive behaviour in the CTRW model can be
obtained by assuming a heavy-tailed jump length distribution, which, however, leads to a
PDF of the walker’s position, whose moments of order larger than two are infinite. Such a
model can not represent the motion of massive particles, as it would require them to have
instantaneous infinite velocity. An alternative model ensuring that the particle’s velocity is
finite at any time is the Lévy walk model [52, 73, 95, 96, 56]. In this section, we present the
derivation of the position PDF of a Lévy walker, i.e., the analogue of the Montroll-Weiss
Eq. (2.17). In addition to its relevance for biological systems, this derivation represents a
further application of the random walk techniques and of fractional calculus.

We consider a point particle, whose dynamics consists of (i) periods of random duration
during which it moves with fixed velocity, i.e., the flights, and (ii) random changes of
direction of motion occurring at the end of each flight. The dynamics of the particle is
completely determined by defining the characteristic speed v0 during the flights and the
flight time PDF ψ(t). Similarly to the derivation of the Montroll-Weiss Eq. (2.17), our first
goal is to write the corresponding master equation for the frequency of changes of direction
ν(x, t). The argument at this point is the following: a change of direction occurs at the
position x at time t if the particle is at that time at the end of a flight, namely if it started
a flight of duration τ at an earlier time t − τ and moved straight with fixed velocity for
the remaining time. This is summarised in the master equation:

ν(x, t) =

∫ +∞

−∞

∫ t

0
φ(y, τ) ν(x− y, t− τ) dτ dy + δ(t)f0(x) (2.54)

where we introduced the transition probability density φ(y, t), which couples the time
duration of the flight and the distance travelled. Differently from the case of Lévy flights,
this coupling, which is due to the assumption of a fixed flight velocity, naturally sets the
distance that the walker can travel during a flight of finite duration t. This was indeed not



2.1 Random Walks and Fractional Calculus 23

the case for Lévy flights. Specifically, we assume:

φ(x, t) =
1

2
δ(|x| − v0 t)ψ(t), (2.55)

meaning that the walker can only travel a distance |v0 t| during a flight of duration t.
Consequently, if x0 is the initial position and T is the total duration of the motion, the
walker’s position will never exceed x0 ± v0 T . The source term in the rhs of Eq. (2.54),
which depends on the Dirac delta function, originates from the assumption that the particle
starts a new flight at the initial time. The position PDF at the point (x, t) is now obtained
by accounting for all the possible flights that can get the particle at that specified position,
but that do not terminate at time t. This is written as:

P (x, t) =

∫ t

0

∫ +∞

−∞
ν(x− y, t− τ) Φ(y, τ) dy dτ (2.56)

with the following definition for Φ:

Φ(y, τ) =
1

2
δ(|x| − v0 t)Ψ(t), (2.57)

where Ψ(t) = 1−
∫ t

0 ψ(τ) dτ is the probability that the flight time is longer than t. Finally,
Eq. (2.56) can be solved in Fourier-Laplace space as below:

P (k, λ) =
[Φ(λ+ i v0 k]) + Ψ(λ− i v0 k)]P0(k)

2− [ψ(λ+ i v0 k) + ψ(λ− i v0 k)]
(2.58)

This equation is the counterpart of the Montroll-Weiss equation for CTRWs and it expresses
the position PDF of the Lévy walker in terms of the flight time distribution. The next
step is to investigate its asymptotic behaviour in terms of the one of ψ and relate the
characteristic features of the particle motion to the exponent of the heavy-tails of the
flight time distribution. We refer to the recent review [56] for this detailed discussion.

2.1.5 A Tutorial on Fractional Derivatives

As shown by the calculations of the earlier sections, fractional operators naturally appear
in the coarse-grained description of anomalous processes, as they are reminiscent of the
power-law tails of the distributions of waiting times and/or jump lengths, whose exponent
determines the qualitative anomalous features of the dynamics [59, 9, 56]. In addition,
several different complex phenomena have been successfully described within the framework
of fractional calculus, which has become an essential tool to investigate systems affected
by long-term memory effects, spatial heterogeneity or non stationary and/or non ergodic
statistics [97]. Due to the relevance that fractional calculus has gained as a fundamental
tool to describe out-of-equilibrium systems, in this section we provide the reader with
a brief overview on the necessary definition and properties of fractional derivatives and
integrals to understand the content of this thesis and to work with fractional equations in
a broader sense. The following discussion will be based on Refs. [74, 98, 75, 9, 76, 77].

The first notion that needs to be presented is that of a fractional integral. We define
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the Riemann-Liouville (RL) fractional integral as the following convolution integral:

t0D
−α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α dτ (2.59)

for an arbitrary function f , preserving the convergence of the integral, and a general
complex parameter α such that Re (α) > 0. These fractional integrals satisfy: (i) the semi-
group property, i.e., t0D

−β
t t0D

−α
t f(t) = t0D

−α−β
t f(t) and (ii) the commutative property,

i.e., t0D
−α
t t0D

−β
t f(t) = t0D

−β
t t0D

−α
t f(t). A fractional derivative is then defined in terms

of both integer derivatives and fractional integrals. Let β be a complex parameter with
Re (β) > 0 and let n be an integer, such that n− 1 < Re (β) ≤ n. We define the fractional
derivative of order β as below:

t0D
β
t f(t) =

dn

dtn t0D
β−n
t f(t). (2.60)

An important specific case of Eqs. (2.59, 2.60) is obtained when t0 = 0. In this case, we
then obtain (i) the fractional integral:

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α dτ , (2.61)

which has a well defined Laplace transform:

L{0D−αt f(t)}(λ) = λ−α f̃(λ) (2.62)

and (ii) the RL operator :

0D
β
t f(t) =

1

Γ(n− p)
dn

dtn

∫ t

0

f(τ)

(t− τ)1−n+β
dτ , (2.63)

again with n being an integer such that n−1 < Re (β) ≤ n. If we set β = 1−α (0 < α < 1),
we recover Eq. (2.30). It is convenient to derive its Laplace transform. This is given by:

L
{

0D
β
t f(t)

}
(λ) = λβf(λ)−

n−1∑
q=0

cqλ
q, cq = lim

t→0+ 0D
β−1−q
t f(t). (2.64)

Let us discuss two simple examples of application of the formulas provided. First, we
compute the quantity 0D

p
t t
µ, with µ ∈ R. Let us first discuss the case p < 0, which

corresponds to compute the fractional integral Eq. (2.59). In details, we have:

0D
p
t t
µ =

1

Γ(−p)

∫ t

0

τµ

(t− τ)1+p
dτ =

Γ(1 + µ)

Γ(1 + µ− p)
tµ−p (2.65)

with the additional condition µ > −1, needed to ensure the convergence of the integral. In
the opposite case p > 0, we need to compute the Riemann-Liouville operator in Eq. (2.60).
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We assume that m−1 < Re (p) ≤ m, with m ∈ N0. Recalling Eqs. (2.63, 2.66), we obtain:

0D
p
t t
µ =

1

Γ(m− p)
dm

dtm

∫ t

0

τµ

(t− τ)1−m+p
dτ

=
dm

dtm
Γ(1 + µ)

Γ(1 + µ+m− p)
tµ+m−p =

Γ(1 + µ)

Γ(1 + µ− p)
tµ−p. (2.66)

As before, we need to assume: µ > −1. We also note that in the particular case µ = 0,
we obtain: 0D

p
t 1 = t−p/Γ(1 − p), i.e., fractional derivatives of a constant are not zero,

differently from the case of ordinary integer-order derivatives. Interestingly, we note that
a direct application of Eq. (2.64) would have required a more stringent condition on the
exponent µ, i.e., µ > m, in order to ensure that the coefficients cq were finite [75], and in
this specific case null. As a consequence, one needs to work carefully with the quantities
defined in Eqs. (2.61, 2.63), usually first solving for the fractional integral Eq. (2.61), which
has a well defined Laplace transform, and then performing the integer order derivatives. As
shown in the simple example above, this procedure provides results which are not affected
by the explicit dependence on the boundary condition t0 = 0. To clarify this issue, we
discuss another general example. We consider the RL operator in Eq. (2.60) with 0 < β < 1

and perform explicitly the time derivative. Naively, we would obtain:

1

Γ(1− β)

d

dt

∫ t

0

f(τ)

(t− τ)β
dτ =

1

Γ(1− β)

[
f(τ)

(t− τ)β

∣∣∣∣
τ=t

− β
∫ t

0

f(τ)

(t− τ)1+β
dτ

]
(2.67)

where the first term does not exist, as the integrand function has a pole in t = τ . On the
contrary, if we first work on the fractional integral and then take its time derivative, we
obtain a well defined equation. In details, we can write the following:

1

Γ(1− β)

d

dt

∫ t

0

f(τ)

(t− τ)β
dτ =

1

Γ(1− β)

d

dt

∫ t

0
f(τ)

[
− 1

1− β
∂

∂τ
(t− τ)1−β

]
dτ

=
−1

Γ(2− β)

d

dt

[
f(τ)(t− τ)1−β

∣∣∣τ=t

τ=0
−
∫ t

0

f ′(τ)

(t− τ)β−1
dτ

]
=

−1

Γ(2− β)

d

dt

[
f(0)t1−β −

∫ t

0

f ′(τ)

(t− τ)β−1
dτ

]
=

1

Γ(2− β)

d

dt

∫ t

0

f ′(τ)

(t− τ)β−1
dτ − t−β

Γ(1− β)
f(0)

=
1

Γ(1− β)

∫ t

0

f ′(τ)

(t− τ)β
dτ − t−β

Γ(1− β)
f(0), (2.68)

under the assumption that f is continuous in t = 0. As a sanity check, one can verify that
the two sides of this equation are equal when we Laplace transform them. The first term in
the rhs of Eq. (2.68) is a Caputo fractional derivative of order β. In this Thesis we will not
employ such fractional derivatives. Thus, we refer the interested reader to Ref. [98] for a
review on its properties compared with those of the RL fractional derivative. As a second
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example, we calculate the RL derivative of an exponential: 0D
p
t e
a t (a ∈ R). In details:

0D
p
t e
a t =

∞∑
n=0

an

n! 0D
p
t t
n

=

∞∑
n=0

an

n!

Γ(1 + n)

Γ(1 + n− p)
tn−p =

t−p

Γ(1− p)1F1(1; 1− p; a t), (2.69)

where we used Eq. (2.66) and we introduce the confluent hypergeometric function 1F1 (see
Appendix A.1 for details).

To conclude this brief tutorial, we introduce fractional integrals, and derivatives, in
space, i.e., where t0 → −∞ in Eq. (2.59). Differently from the original case, the fractional
integrals are no longer supported on a compact interval, which results in a better behaviour
under transformations. In addition, they are naturally suitable to be used when fractional
powers appear in the Fourier variable of the Montroll-Weiss Eq. (2.17), which is usually the
characteristic feature of superdiffusive anomalous dynamics. For instance, we have shown
earlier that this is the case of Lévy flights and walks. When considering fractional integrals
on R, we need to introduce both left-sided and right-sided Liouville fractional integrals.
These are given respectively by the formulas below:

(Iα+f)(x) =
1

Γ(α)

∫ x

−∞

f(y)

(x− y)1−α dy (2.70)

(Iα−f)(x) =
1

Γ(α)

∫ ∞
x

f(y)

(x− y)1−α dy (2.71)

where x ∈ R, Re (α) > 0 and f is chosen arbitrarily, but preserving the convergence of
the integral. The corresponding left-sided and right-sided fractional derivatives are defined
similarly to Eq. (2.60) (with n = 1 + [Re (α)], Re (α) ≥ 0 and x ∈ R):

−∞D
α
xf(x) =

dn

dxn
(In−α+ f)(x) =

1

Γ(n− α)

dn

dxn

∫ x

−∞

f(y)

(x− y)α−n+1
dy (2.72)

xD
α
∞f(x) = (−1)n

dn

dxn
(In−α− f)(x) =

1

Γ(n− α)
(−1)n

dn

dxn

∫ ∞
x

f(y)

(y − x)α−n+1
dy (2.73)

For instance, when α = n, n ∈ N0, we recover the ordinary derivatives: (i) −∞D0
xf(x) =

f(x) = xD
0
∞f(x) and (ii) −∞Dn

xf(x) = f (n)(x) = xD
n
∞f(x). Another remarkable case is

when 0 < Re (α) < 1. From Eqs. (2.72, 2.73) we obtain:

−∞D
α
xf(x) =

1

Γ(1− α)

d

dx

∫ x

−∞

f(y)

(x− y)α−[Reα]
dy (2.74)

xD
α
∞f(x) =

−1

Γ(1− α)

d

dx

∫ ∞
x

f(y)

(y − x)α−[Reα]
dy (2.75)

As already suggested, these fractional integrals and derivatives generate fractional powers
when we compute their Fourier transform. Indeed, one can show the relations [76]:

F{(Iα±f)(x)}(k) = (∓i k)−αf̂(k) (2.76)

F{−∞Dα
xf(x)}(k) = (−i k)αf̂(k) (2.77)

F{xDα
∞f(x)}(k) = (i k)αf̂(k) (2.78)
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with the definition (±i k)α = |k|αe∓πi sign (k)α/2. However, in physical applications slightly
different fractional powers with no imaginary part appears [look for instance Eq. (2.34)].
Thus, we would like to construct such a fractional integral and derivative from the earlier
definitions. This is obtained by considering the symmetrised fractional integral:

(Iα0 f)(x) =
(Iα+f)(x) + (Iα−f)(x)

2 cos (απ/2)
=

1

2 cos (απ/2)Γ(α)

∫ +∞

−∞

f(y)

|x− y|1−α
dy , (2.79)

which is valid for α /∈ N. We call this fractional integral the Riesz potential. From Eq. (2.76)
it follows straightforwardly the following Fourier transform:

F{(Iα0 f)(x)}(k) = |k|−αf̂(k). (2.80)

The corresponding fractional derivative, called the Riesz fractional derivative, is then de-
fined as below (by analytic continuation):

(Dα
0 f)(x) = −(I−α0 f)(x) F{(Dα

0 f)(x)}(k) = −|k|αf̂(k). (2.81)

We further recall that Eq. (2.81) is a special case of the Riesz-Feller fractional deriva-
tive, defined in Fourier transform as F{(Dα

θ f)(x)}(k) = −ψθα(k)f̂(k), with the definition
ψθα(k) = |k|αei sign(k) θ α/2 for 0 < α ≤ 2 and |θ| ≤ min {α, 2− α}. As we will discuss
in details later in this Chapter, −ψθα is the logarithm of the characteristic function of
a Lévy stable distribution with stability and skewness parameters α and θ respectively.
We conclude by calculating the Riesz fractional derivative of (i) the exponential function
eb x, b ∈ R and (ii) the power-law function |x|β, β 6= 0. In the former case, we find:

Dα
0 e

b x = F−1{−|k|αδ(k − i b)}(x) = −|b|αF−1{δ(k − i b)}(x) = −|b|αeb x. (2.82)

We note that if we set b = 0, we obtain zero. This means that the Riesz fractional derivative
of a constant is null, like in the case of ordinary derivatives. In the latter case, we obtain:

Dα
0 |x|β =

√
2

π
Γ(1 + β) sin

(
πβ

2

)
F−1{|k|α−β−1}(x) = − Γ(1 + β)

Γ(1 + α− β)

sin
(
πβ
2

)
sin
(
π(α−β)

2

) |x|α−β.
(2.83)

2.2 Stochastic Processes and Itô Calculus

In this section, we provide an overview of the theory of stochastic processes and Itô calculus.
These notions complement the random walk approach, by providing the essential methods
to develop a coarse-grained description of anomalous processes in terms of subordinated
Langevin dynamics, which has already been suggested in Sec. 2.1.2. Our aim will be to put
robust ground to such formulation and construct a tool-kit, comprising essential notions
and techniques to work with it. Purposely, we will avoid proofs of the theorems reported
and refer to mathematical textbooks for them [99, 100, 101, 102, 103, 104, 105, 106, 107].
We begin with a preliminary discussion on the notation of this section and on the definitions
of convergence, which will clarify the range of applicability of the results presented.

A stochastic process Y = (Y (t), t ≥ 0) is a collection of Random Variables (RVs)
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indexed by time, or equivalently a random function of time. We define its PDF P (y, t)

as the function such that ∀t ≥ 0 the quantity P (y, t) dy determines the probability that
y ≤ Y (t) < y+ dy , with dy denoting an infinitesimal increment of y. We will denote with
〈·〉 averages over all different realisations of Y . For a general function f of Y , this is given
by the following integral expression:

〈f(Y (t))〉 =

∫ +∞

−∞
f(y)P (y, t) dy . (2.84)

We mention two important specific cases: (i) f(y) = yn, n ∈ N, which provides the
moments of Y ; (ii) f(y) = ei k y, which leads to its characteristic function φY (k, t). From
the definition Eq. (2.84), it follows straightforwardly that the PDF can be written as
the average: P (y, t) = 〈δ(y − Y (t))〉. Equivalently, one can define the joint PDF of Y
P (y1, t1; . . . ; yN , tN ) as that function such that P (y1, t1; . . . ; yN , tN ) dy1 . . . dyN is the
probability of simultaneously satisfying the N relations: {y1 ≤ Y (t1) < y1 + dy1 , . . .,
yN ≤ Y (tN ) < yN + dyN }. Multipoint averages are given by the integral expression:

〈f(Y (t1), . . . , Y (tN ))〉 =

∫ +∞

−∞
. . .

∫ +∞

−∞
f(y1, . . . , yN )P (y1, t1; . . . ; yN , tN ) dy1 . . . dyN ,

(2.85)
which also implies that P (y1, t1; . . . ; yN , tN ) = 〈δ(yN − Y (tN )), . . . δ(y1 − Y (t1))〉. In the
specific case f(y) = y, we obtain the multipoint correlation functions of Y , whereas for
f(y) = ei k y we obtain the multipoint characteristic function φY (k1, t1; . . . ; kN , tN ).

In many applications, it is necessary to know the PDF of Y at the time t conditioned
to the knowledge of its value at an earlier time s. If we call such value x, this quantity is
denoted as P (y, t|x, s). Conditional averages are then defined accordingly:

〈f(Y (t))|Y (s) = x〉 =

∫ +∞

−∞
f(y)P (y, t|Y (s) = x) dy . (2.86)

The definition of conditional probability density can be extended to the case when the
value of Y at multiple times τ1, . . . , τM , M ∈ N is known. The following relation holds:

P (y1, t1; . . . ; yN , tN |x1, τ1; . . . ;xM , τM ) =
P (y1, t1; . . . ; yN , tN ;x1, τ1; . . . ;xM , τM )

P (x1, τ1; . . . ;xM , τM )
.

(2.87)
Finally, we review the main notions of convergence of RVs that will be needed in the

following discussion. Let us consider a sequence of RVs {Xn}n∈N and let Y be a different
RV. We say that the RVs Xn converge to X:

• almost surely (a.s.) if limn→∞Xn = X for each realisation of the RVs;

• in p-average if limn→∞ 〈|Xn −X|p〉 = 0;

• in probability if limn→∞ P(|Xn −X| > ε) = 0 for all ε > 0;

• in distribution if limn→∞ 〈f(Xn)〉 = 〈f(X)〉 (denoted as Xn
d
= X) for every contin-

uous and bounded function f .

We note that these notions can be used to clarify in what sense any property holds for
a general stochastic process Y . For instance, if a certain property is satisfied a.s., then
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it holds for each realisation of Y . Proving that a certain property holds a.s. is usually a
challenging task, that will not be discusses in this context. Here, we will mainly justify
theorems and formulas on quadratic average, i.e., in p-average with p = 2.

2.2.1 Finite Variation Processes

In this first section, we define stochastic processes with paths of finite variation and present
the definition of the stochastic integral with respect to them. As a preliminary step, we
introduce the concept of total variation of a real-valued function g, defined on an interval
[s, t]. Intuitively, this quantity will quantify the total increment of g on such interval.
In mathematical terms, we introduce a partition of the interval π = {s = t0 < t1 <

. . . < tn = t}, whose mesh is given by the maximum of the lengths of the subintervals:
|π| = maxi=1,...,n |ti − ti−1| and compute the following quantity:

V π
t (g) =

n∑
i=1

|g(ti)− g(ti−1)|, (2.88)

whose value depends on the specific π chosen. Let us now consider the set of all possible
partitions P = {πn} and the corresponding variations of g with respect to them {V πn

t (g)}.
The total variation of g on [0, t] is obtained by taking the supremum of this set:

Vt(g) = sup
π∈P

V π
t (g). (2.89)

Thus, if Vt(g) <∞, then g is said to be of finite variation and Vt(g) is the total variation
of g on the chosen interval; otherwise, it is said to have infinite variation. If g is defined
over all R, then g has finite variation if it is of finite variation on all closed intervals
of R. In addition, if g is a non decreasing function, then it is of finite variation, as
Vt(g) = g(tn)−g(t0). Conversely, if g is of finite variation, we can always find two auxiliary
non decreasing functions g1 and g2, such that g = g1 + g2. In a similar way, a stochastic
process Y is said to be of finite variation if its stochastic trajectories Y (t) have finite
variation almost surely. An analogous definition holds in the opposite case of a process
of infinite variation. Thus, the total variation provides fundamental information on the
properties of the stochastic trajectories of Y . We further remark that ordinary integrals
(in Lebesgue sense) of a continuous stochastic process are processes of finite variation.

We conclude by defining the stochastic integration with respect to a finite variation
process Y . We will restrict our discussion to the subclass of processes with contin-
uous stochastic paths. These integrals can be defined straightforwardly as Lebesgue-
Stieltjes integral with the proper measure associated to Y , which exists due to the as-
sumption of finite variation [108]. In terms of Riemann sums, if we define a partition
π = {0 = t0 < t1 < . . . < tn = t}, the stochastic integral of an arbitrary function H(t)

with respect to Y is defined as follows:∫ t

0
H(τ) dY (τ) = lim

n→∞
|π|→0

n∑
i=1

H(ti)[Y (ti)− Y (ti−1)]. (2.90)

We note that H does not need to be continuous. The only assumption needed is that its
paths are right continuous with left limits (càdlàg). Under these same assumptions, the
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following result for a general differentiable function f of Y holds:

f(Y (t)) = f(y0) +

∫ t

0
f ′(Y (τ)) dY (τ) , (2.91)

where we denote: f ′(x) = ∂
∂xf(x). Considering again the partition π and employing the

mean value theorem, this is proven as below:

f(Y (t))− f(y0) =

N∑
i=1

[f(Y (ti))− f(Y (ti−1)]

=

N∑
i=1

f ′(Y (ti))(ti − ti−1) =

∫ t

0
f ′(Y (τ)) dτ . (2.92)

If the paths of Y are instead càdlàg, the Riemann sum in Eq. (2.90) still converges to
the stochastic integral, which has an additional contribution coming from the jumps of Y .
However, we will not discuss further details in this context.

2.2.2 Brownian Processes and the Itô Formula

Brownian Motion and Stochastic Integral

We define the Brownian Motion, also denoted as Wiener process, a stochastic process
B = (B(t), t ≥ 0), with initial condition B(0) = B0, satisfying the following properties:

A) B0 = 0 a.s.;

B) non overlapping increments are independent, i.e., ∀k ≥ 2 and for each partition
0 ≤ t0 < t1 < . . . < tk the RVs {B(ti)−B(ti−1)}i=1,...,k are independent;

C) increments of the process B are stationary, i.e., for all 0 ≤ s1 < s2 ≤ t the increment
B(s2)−B(s1) has the same distribution of B(s2− s1), which is a Gaussian with null
average and variance s2 − s1;

D) its stochastic trajectories are a.s. continuous.

We note that a process B, satisfying these properties, can be formally constructed (for
a general derivation we refer to Ref. [109]). The definition of a d-dim Brownian motion
follows straightforwardly, by simply replacing the 1-dim Gaussian distribution with a d-dim
one having variance (t− s)Id (Id is the unitary d× d matrix).

In physical applications, one usually does not introduce the process B directly, but
the so called white Gaussian noise instead. We here clarify the relation between this new
object and B. A white Gaussian noise is a continuous stochastic process ξ = (ξ(t), t ≥ 0)

with the formal properties: 〈ξ(t)〉 = 0 and 〈ξ(t1)ξ(t2)〉 = D δ(t2 − t1), which is related to
a finite increment of B, i.e., B(t+ ∆t)−B(t) with ∆t finite, trough the equation:

B(t+ ∆t)−B(t) =

∫ t+∆t

t
ξ(τ) dτ . (2.93)

Such relation, together with the specific two point correlation function of ξ, can be em-
ployed to show that the properties A)-D) are preserved. In particular, the independence
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of non overlapping increments follows straightforwardly from the calculation below:

〈[B(t+ ∆t)−B(t)][B(s+ ∆t)−B(s)]〉 =

∫ t+∆t

t

∫ s+∆t

s

〈
ξ(s′)ξ(s′′)

〉
ds′ ds′′

=

∫ t+∆t

t

∫ s+∆t

s
δ(s′ − s′′) ds′ ds′′ = 0, (2.94)

which holds for every s < s+ ∆t < t < t+ ∆t. In addition, we can compute the variance:

〈
[B(t)−B(s)]2

〉
=

∫ s

t

∫ s

t

〈
ξ(s′)ξ(s′′)

〉
ds′ ds′′

=

∫ s

t

∫ s

t
δ(s′ − s′′) ds′ ds′′ = t− s, (2.95)

which is in agreement with property B). The remaining properties can be shown similarly.
When ∆t→ 0, the discrete increments become differentials and Eq. (2.93) reduces to:

dB(t) = ξ(t) dt . (2.96)

This relation is essential to make sense of integrals over ξ, which appears in the solution of
ordinary Langevin equations. These are indeed interpreted as stochastic integrals over B.

As it will be discussed extensively in Chapter 3, if one is interested in the analysis of
experimental data, essential information on the nature of the observed dynamical process
are provided by its higher order correlation functions, i.e., by quantities of the type of
Eq. (2.85). Thus, it is important to provide methods to determine such objects analytically.
In the case of Brownian motion, and more generally of Gaussian stochastic processes, these
are the Wick’s theorem [110, 111] and the Novikov’s theorem [112]. On the one hand, the
Wick’s theorem directly relates the hierarchy of nth order correlation functions of Gaussian
distributed RVs, and hence of Gaussian processes, to their two point one. Specifically, if
we consider a random n-dimensional vector of Gaussian distributed RVs with zero mean
(Y1, Y2, . . . , Yn), its higher order correlation function is characterised as follows (n, ν ∈ N):

〈Y1, . . . , Yn〉 =

{
0 n = 1 + 2 ν

1
ν! 2ν

∑
σ∈S2ν

∏ν−1
i=1

〈
Yσ(i+1) − Yσ(i)

〉
n = 2 ν

(2.97)

where S2 ν is the space of all permutations of 2ν elements. Thus, the theorem states that,
while the odd correlation functions of Gaussian distributed RVs are null, the even ones can
be factorised in terms of the two point one, which then provides a complete characterisation
of the statistics of Y . As an example, for the white Gaussian noise ξ(t) we obtain:

〈ξ(t1) . . . ξ(tn)〉 =

{
0 n = 1 + 2 ν
Dν

ν! 2ν
∑

σ∈S2 ν

∏ν−1
i=1 δ

(
tσ(i+1) − tσ(i)

)
n = 2 ν

(2.98)

On the other hand, Novikov’s theorem provides a general method to compute averages of
the type 〈Y (t)W [Y ]〉, where Y is a Gaussian stochastic process with general two point
correlation function 〈Y (t)Y (t′)〉 = C(t, t′) and W is a general functional of Y , i.e., W
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depends on the trajectory of Y in the interval [0, t]. The theorem states the following:

〈Y (t)W [Y ]〉 =

∫ t

0
C(t, t′)

〈
δW [Y ]

δY (t′)

〉
dt′ , (2.99)

where the term inside the brackets in the rhs is a functional derivative of W . In the
original formulation of [112], the Gaussian process may depend on both time and space
coordinates, but Eq. (2.99) still holds possibly within a different integration region. The
proof of this theorem follows straightforwardly by functional Taylor expansion ofW , which
then enables one to compute exactly the quantities 〈Y (t)W [Y ]〉 and

〈
δW [Y ]
δY (t′)

〉
by means of

the Wick theorem. Eq. (2.99) then follows by combining the resulting analytical solutions.
A similar argument is presented in Sec. 5.5 for a different type of non Gaussian process.

We conclude this section by introducing the concept of stochastic integral with respect
to B. Let us introduce (i) a process Y a.s. continuous, (ii) a Brownian motion B on the
time interval [0, t] and (iii) a partition π = {0 = t0 < t1 < . . . < tn = t} of the time
interval with mesh properly defined and converging to zero. The stochastic integral of Y
with respect to B is a stochastic process explicitly defined as follows:∫ t

0
Y (τ) dB(τ) = lim

|π|→0
n→∞

n∑
i=1

Y (ti−1)[B(ti)−B(ti−1)]. (2.100)

Two remarks need to be made: (1) the stochastic integral defined above can be constructed
formally; (2) Eq. (2.100) holds for every sequence of partitions of the time interval with
mesh converging to zero, thus implying that the convergence holds in probability. For the
explicit construction and the proof of the related theorems, we refer to [104, 107, 109].

One further remark regards the choice of the specific time at which we evaluate the
integrand process Y in the definition of the stochastic integral. In Eq. (2.100), this is
the earlier time ti−1. This specific choice is called the Itô prescription, but in general
we can choose any point in the interval [ti−1, ti], which however leads to integrals with
completely different properties. A general definition of the stochastic integral accounting
for the different prescriptions is:∫ t

0
Y (τ) ? dB(τ) = lim

|π|→0
n→∞

n∑
i=1

[(1− κ)Y (ti−1) + κY (ti)] [B(ti)−B(ti−1)] κ ∈ [0, 1].

(2.101)
We note that for κ = 0, we recover the Itô prescription, whereas for κ = 1/2 and
κ = 1 we obtain respectively the Stratonovich and the Hänggi-Klimontovich prescriptions
[113, 114]. Choosing a specific interpretation of the stochastic integral Eq. (2.101), i.e.,
the parameter κ, usually leads to different and possibly rather peculiar dynamics, e.g.
Lévy flights [115, 116]. However, these processes all have physical meaning, so that the
choice of the prescription is guided by the specific features of the system that one needs to
model. In this Thesis, we will implement such different interpretations within the context of
anomalous diffusive processes, by looking at subordinated Langevin equations of the type of
Eqs. (2.46a, 2.46b), where we also assume a Y -dependent diffusion coefficient in Eq. (2.46a)
[see Eqs. (3.33)]. After integration, this leads to the stochastic integral Eq. (2.101). As for
the Itô case (see Chapter 3), we will study their Feynman-Kac equation.
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The Quadratic Variation

In this section, we define the quadratic variation of a process Y = (Y (t), t ≥ 0) on a time
interval [s, t]. We consider a partition of this interval π = {s = t0 < t1 < . . . < tn = t} of
mesh |π| = maxi=1,...,n |ti − ti−1|. Associated to π, we can define the following process:

[Y, Y ]πt =
n∑
i=1

[Y (ti)− Y (ti−1)]2, (2.102)

which depends both on the specific realisation of Y and on the partition chosen. To avoid
this latter dependence, we are interested in its properties in the limit |π| → 0. Let us now
consider sequences of partitions {πn}, such that |πn| → 0, and compute the corresponding
sequences {[Y, Y ]πnt }. If for every t this latter sequence converges in probability to a finite
value [Y, Y ]t independent on the specific choice of {πn} a.s., then [Y, Y ]t is a well-defined
process, which is called the quadratic variation of Y .

As a first application, we show that the quadratic variation of a process Y with paths
of finite variation exists and it is null. From Eq. (2.102) and for a given π, we can write:

[Y, Y ]πt ≤

(
n∑
i=1

|Y (ti)− Y (ti−1)|

)
max

j=1,...,n
|Y (tj)− Y (tj−1)|

≤ V π
t (Y ) max

j=1,...,n
|Y (tj)− Y (tj−1)| = V π

t (Y ) |π|, (2.103)

where V π
t (Y ) is the variation of Y as defined in Eq. (2.88), which is finite by hypothesis.

Thus, the rhs converges to zero a.s. in the limit |π| → 0. In addition, as this result holds
independently of the specific π, we can conclude that a.s. [Y, Y ]t = 0.

As a second application, we compute the quadratic variation of a Brownian motion
B(t). To this aim, it is convenient to rewrite Eq. (2.102) for a given π as follows:

[B,B]πt − (t− s) =

n∑
i=1

[B(ti)−B(ti−1)]2 − (ti − ti−1), (2.104)

where the RVs Yi = [B(ti)−B(ti−1)]2 − (ti − ti−1) are independent:

〈Yi Yj〉 =
〈
[B(ti)−B(ti−1)]2 [B(tj)−B(tj−1)]2

〉
+ (ti − ti−1)(tj − tj−1)

− (ti − ti−1)
〈
[B(tj)−B(tj−1)]2

〉
− (tj − tj−1)

〈
[B(ti)−B(ti−1)]2

〉
=
〈
[B(ti)−B(ti−1)]2

〉 〈
[B(tj)−B(tj−1)]2

〉
− (ti − ti−1)(tj − tj−1) = 0. (2.105)

In this brief calculation, we employed the independence of the increments of B and the
relation

〈
[B(ti)−B(ti−1)]2

〉
= ti − ti−1. Thus, when we take its square and average over

the realisations of B, only the squared terms remain. Thus, we obtain:

〈
([B,B]πt − (t− s))2

〉
=

n∑
i=1

(ti − ti−1)2

〈[(
B(ti)−B(ti−1)√

ti − ti−1

)
− 1

]2
〉

=
n∑
i=1

(ti − ti−1)2
〈

[Zi − 1]2
〉
, (2.106)

with the definition Zi = B(ti)−B(ti+1)√
ti−ti−1

. Recalling that B(ti) − B(ti+1) is a Gaussian dis-
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tributed RV with zero mean and variance ti − ti−1, Zi is a Gaussian RV with zero mean
and variance equal to one, i.e.,

〈
[Zi − 1]2

〉
= c is a constant independent on i. Thus, we

can write:〈
([B,B]πt − (t− s))2

〉
=c

n∑
i=1

(ti − ti−1)2

≤ c (t− s) max
i=1,...,n

|ti − ti−1| = c (t− s) |π| (2.107)

whose rhs converges to zero in the limit |π| → 0, i.e., [B,B]πt = t− s. As this result holds
for every sequence of such partition, we obtain the following relation:

[B,B]t = (t− s). (2.108)

The Itô Formula

We consider a process Y = (Y (t), t ≥ 0) described by the Langevin equation:

Ẏ (t) = F (t, Y (t)) + σ(t, Y (t)) · ξ(t), (2.109)

where ξ(t) is a white Gaussian noise and we assume the Itô prescription. We recall that in
the mathematical literature processes satisfying Eq. (2.109) are called Itô processes. Even
though Eq. (2.109) describes the full stochastic trajectory of Y for a fixed initial condition
y0 = Y (0) and for a given realisation of ξ, one often needs to investigate the dynamics
of general functions of Y . For instance, the characteristic function of Y is obtained by
taking the ensemble average of the function ei k Y (t). Such information is provided by the
celebrated Itô formula. If we consider a twice differentiable function f of the process Y
and we denote f ′(x) := ∂

∂xf(x) and f ′′(x) := ∂2

∂x2 f(x), the Itô formula is given by:

f(Y (t)) = f(y0) +

∫ t

0
f ′(Y (τ)) dY (τ) +

1

2

∫ t

0
f ′′(Y (τ)) d[Y, Y ]τ , (2.110)

where [Y, Y ]t is the quadratic variation of Y , which can be characterised, following a similar
approach to what explained earlier. Let us consider a partition π and compute [Y, Y ]πt .
Recalling that the increments of Y are determined by Eq. (2.109), we can write:

[Y, Y ]πt =

n−1∑
i=0

[F (ti, Y (ti))]
2 (ti+1 − ti)2 + σ2(ti, Y (ti)) [W (ti+1)−W (ti)]

2

+ 2F (ti, Y (ti))σ(ti, Y (ti))[W (ti+1)−W (ti)]. (2.111)

If we take its average over the realisations of B, the third term in its rhs cancels out, so
that we are left with the following expression:

〈[Y, Y ]πt 〉 =
n−1∑
i=0

〈
[F (ti, Y (ti))]

2
〉

(ti+1 − ti)2 +
n−1∑
i=0

〈
σ2(ti, Y (ti))

〉 〈
[W (ti+1)−W (ti)]

2
〉

=

n−1∑
i=0

〈
[F (ti, Y (ti))]

2
〉

(ti+1 − ti)2 +

n−1∑
i=0

〈
σ2(ti, Y (ti))

〉
(ti+1 − ti) (2.112)
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where we factorise the average on the second term as Y (ti) is independent on the increment
of B. In the limit |π| → 0, we can further simplify this expression as below:

〈[Y, Y ]πt 〉 ≤ |π|
n−1∑
i=0

〈
[F (ti, Y (ti))]

2
〉

(ti+1 − ti) +
n−1∑
i=0

〈
σ2(ti, Y (ti))

〉
(ti+1 − ti) (2.113)

such that only the second term survives in the limit |π| → 0, which is the discretised form
of an ordinary Lesbegue-Stieltjes integral over the function σ2(t, Y (t)). Further recalling
that this result holds independently on π, we conclude that:

[Y, Y ]t =

∫ t

0
σ2(s, Y (s)) ds . (2.114)

Eq. (2.110) is of fundamental importance to investigate the properties of Y . For in-
stance, we show how to compute its Fokker-Planck equation (FPE), i.e., the evolution
equation for its PDF P (y, t). As suggested, we choose: f(Y (t)) = ei k Y (t) and substitute
it in Eq. (2.110). In details, we find:

ei k Y (t) = ei k y0 + i k

∫ t

0
ei k Y (τ) dY (τ) +

k2

2

∫ t

0
ei k Y (τ)σ2(τ, Y (τ)) dτ

= ei k y0 + i k

∫ t

0
ei k Y (τ)F (τ, Y (τ)) dτ + i k

∫ t

0
ei k Y (τ)σ(τ, Y (τ)) dB(τ)

+
k2

2

∫ t

0
ei k Y (τ) σ2(τ, Y (τ)) dτ . (2.115)

Now, we need to take the ensemble average of Eq. (2.115). We note that the stochastic
integral in its rhs is null on average. Indeed, if we introduce a discretisation of time of step
length ∆ t and define n = t/∆t the number of discrete time intervals, we can write:

〈∫ t

0
ei k Y (τ) σ(τ, Y (τ)) dB(τ)

〉
= lim

∆t→0
n→∞

n−1∑
i=0

〈
ei k Y (ti) σ(ti, Y (ti)) [B(ti+1)−B(ti)]

〉
= lim

∆t→0
n→∞

n−1∑
i=0

〈
ei k Y (ti)σ(ti, Y (ti))

〉
〈[B(ti+1)−B(ti)]〉 = 0

(2.116)

where (i) we denote ti = i∆t, (ii) the factorisation of the average in the rhs of Eq. (2.116)
can be made as the increments of W are independent and (iii) it is equal to zero because
〈B(t)〉 = 0 for all t. Thus, Eq. (2.115) becomes:

〈
ei k Y (t)

〉
= ei k y0 +

∫ t

0

〈
ei k Y (τ)

[
i k F (τ, Y (τ)) +

k2

2
σ2(τ, Y (τ))

]〉
dτ . (2.117)

Finally, if we take its time derivative and Fourier inverse transform, we obtain:

∂

∂t
P (y, t) =

[
− ∂

∂y
F (τ, y) +

1

2

∂2

∂y2
σ2(τ, y)

]
P (y, t), (2.118)

where we also employed the properties of the delta function. We note that in the force free
case, i.e., F (t, x) = 0, and for σ2(t, x) = 2K1 we recover Eq. (2.7).

We conclude this section by extending Eq. (2.110) to an M-dimensional Itô process Z.
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In details, this indicates that we can define a vectorial process F (t,Z(t)), a matrix process
σ(t,Z(t)) and a vectorial white Gaussian noise ξ(t) of dimensions respectively M , M × d
and d (1 ≤ d ≤M) such that the dynamics of Z is described by the equation:

Ż(t) = F (t,Z(t)) + σ(t, Y (t)) · ξ(t) (2.119)

where the second term is interpreted as follows:

(σ(t,Z(t)) · ξ(t))(i) =

d∑
j=1

σ(i j)(t,Z(t)) · ξ(j)(t), (2.120)

with the dot still imposing the Itô prescription. As before, if we now consider a twice
differentiable function f of Z and denote f ′i(x) := ∂

∂xi
f(x) and f ′i,j(x) = ∂2

∂xi ∂xj
f(x), the

multidimensional Itô formula is defined as below:

f(Z(t)) = f(Z0) +
M∑
i=1

∫ t

0
f ′i(Z(τ)) dZ(i)(τ) +

1

2

M∑
i,j=1

∫ t

0
f ′′i,j(Z(τ)) d[Z(i), Z(j)]τ , (2.121)

where, in analogy with Eq. (2.114), we define the quadratic covariation [Z(i), Z(j)]t as the
following stochastic process (of the Itô type):

[Z(i), Z(j)]t =
d∑

n=1

∫ t

0
σ(i n)(s,Z(s))σ(j n)(s,Z(s)) ds . (2.122)

Relation between Generalised and Itô Prescription

As we suggested earlier, the Itô formula represents a powerful method to investigate the
dynamical properties of processes described by Eq. (2.109). However, depending on the
physical system we are interested in, we may need to use different prescriptions for the
stochastic integrals, which would require different techniques to be studied. Here, we show
that at least in the 1-dim case processes with the general prescription can be mapped into
an Itô process by suitably choosing the functions F and σ in Eq. (2.109).

We consider a process Y = (Y (t), t ≥ 0) described by the two Langevin equations:

Ẏ (t) = F (t, Y (t)) + σ(t, Y (t)) ? ξ(t) (2.123)

Ẏ (t) = a(t, Y (t)) + b(t, Y (t))ξ(t) (2.124)

where we use respectively the generalised prescription as in Eq. (2.101) or the Itô one. Our
aim is to find suitable functions a, b, such that the resulting process is the same. Let us
consider the integrated version of Eq. (2.123):

Y (t)− y0 =

∫ t

0
F (τ, Y (τ)) dτ +

∫ t

0
σ(τ, Y (τ)) ? dB(τ) , (2.125)

where the stochastic integral is defined as in Eq. (2.101). The first task is then to represent
this term as an Itô stochastic integral. To this aim, let us consider a partition π = {0 =

t0 < t1 < . . . < tn = t}, define the auxiliary variable Z(ti) = Y (ti) + κ [Y (ti+1) − Y (ti)],
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and use the explicit definition of the integral:

∫ t

0
σ(τ, Y (τ)) dB(τ) = lim

|π|→0
n→∞

n−1∑
i=0

σ(ti, Z(ti))[B(ti+1)−B(ti)]. (2.126)

We note that Z(ti) depends on the increment ∆Y (ti) = Y (ti+1) − Y (ti), which can be
expressed as an Itô increment by using Eq. (2.124), i.e., we find ∆Y (ti) = a(ti, Y (ti))∆ti+

b(ti, Y (ti))∆B(ti), where to simplify the notation we called: ∆B(ti) = [B(ti+1) − B(ti)]

and ∆ti = (ti+1 − ti). Consequently, we can use the discretised version of the Itô formula
Eq. (2.110) to express σ as follows:

σ(ti, Z(ti)) = σ(ti, Y (ti)) + κσ′(ti, Y (ti))∆Y (ti) +
κ2

2
σ(ti, Y (ti))[b(ti, Y (ti))]

2∆ti

= σ(ti, Y (ti)) + κσ′(ti, Y (ti))b(ti, Y (ti))∆B(ti)

+ [κ a(ti, Y (ti))σ
′(ti, Y (ti)) +

κ2

2
σ′′(ti, Y (ti))(b(ti, Y (ti)))

2]∆ti. (2.127)

This result needs to be substituted back into Eq. (2.126). We can then further simplify
such expression by recalling that

〈
∆B(ti)

2
〉

= ∆ti, due to its being Gaussian distributed,
and that the ∆ti dependent term cancels out in the limit of null mesh. Thus we obtain:∫ t

0
σ(τ, Y (τ)) ? dB(τ) =

∫ t

0
σ(τ, Y (τ)) dB (τ) + κ

∫ t

0
σ′(τ, Y (τ))b(τ, Y (τ)) dτ . (2.128)

By putting everything together, we obtain the integrated equation:

Y (t)−y0 =

∫ t

0

[
F (τ, Y (τ)) + κσ′(τ, Y (τ))b(τ, Y (τ))

]
dτ +

∫ t

0
σ(τ, Y (τ)) dB(τ) . (2.129)

It is now clear that the mapping between the two processes is realised if we set:

b(t, Y (t)) = σ(t, Y (t)), (2.130a)

a(t, Y (t)) = F (t, Y (t)) + κσ(t, Y (t))σ′(t, Y (t)). (2.130b)

2.2.3 Lévy Processes, Subordinators and Time-Changed Processes

Infinitely Divisible Random Variables

Let us consider a RV Y with law PY and characteristic function: φX(k) =
∫ +∞
−∞ ei k xPY (x) dx .

If ∀n ∈ N there exists i.i.d RVs X(n)
1 , . . . , X

(n)
N with law PY and characteristic function φY

(uniquely defined), such that:

Y
d
=

n∑
i=1

X
(n)
i (2.131)

then Y is said to be infinitely divisible. Consequently, we can show the following relation:

φY (k) =
〈
ei k Y

〉
=
〈
ei k

∑n
i=1X

(n)
i

〉
=

n∏
i=1

〈
ei k X

(n)
i

〉
=
[〈
ei k X

(n)
1

〉]n
= [φX(k)]n (2.132)
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where the factorisation of the average is due to the independence of the RVs X(n)
i . We

note that Eq. (2.132) is a necessary and sufficient condition for Y to be infinitely divisible
[107], i.e., we can use it as a criterion to asses if a given RV is infinitely divisible.

Let us consider two examples of infinitely divisible RVs:

• Gaussian RVs.
Let Y be Gaussian distributed with mean m and variance σ. Thus, we can write:

φY (k) = exp

(
i k m− σ2

2
k2

)
=

[
exp

(
i k

m

n
− σ2

2n
k2

)]n
= [φX(k)]n, (2.133)

with φX(k) = exp [i k m/n− k2σ2/(2n)], i.e., Xi in Eq. (2.131) are Gaussian dis-
tributed with mean m/n and variance σ/

√
n.

• Poisson RVs.
Let Y be a Poisson distributed RV with characteristic parameter λ. Thus, its law is:

P(Y = m) = exp (−λ)
λm

m!
∀m ∈ N0 (2.134)

Its characteristic function can be computed easily as below:

φY (k) = 〈exp (i k Y )〉 = exp (−λ)
∞∑
m=0

exp (i k m)
λm

m!

= exp
[
λ (ei k − 1)

]
(2.135)

Therefore, Eq. (2.131) is satisfied if we take Poisson RVs with parameter λ/n.

• Compound Poisson RVs.
Let us consider Y being a compound Poisson variable. Y is a sum of M i.i.d RVs
Zi with law PZ(x) and M is itself a Poisson distributed RV of parameter λ. The
characteristic function of Y is computed by conditioning on M:

φY (k) =
〈〈

ei k Y
∣∣∣M = m

〉〉
=

〈[∫ +∞

−∞
ei k xPZ(x) dx

]m〉
= exp (−λ)

∞∑
m=0

[∫ +∞

−∞
ei k xPZ(x) dx

]m
λm

m!

= exp

[
λ

∫ +∞

−∞
(ei k x − 1)PZ(x) dx

]
. (2.136)

Thus, Eq. (2.131) holds if the RVs X(n)
i are compound Poisson with parameter λ/n.

The relevance of infinitely divisible RVs is motivated by the fact that they can be
uniquely determined in terms of their characteristic function, which is described by the
Lévy-Khintchine formula. Before writing it down, we need to define the concept of Lévy
measure. Let Π be a measure on R/{0}. We note that so far we have always implicitly
assumed that Π can be written in terms of the Lebesgue measure, i.e., Π(dy ) = P (y) dy ,
for some density P . We call Π a Lévy measure if the following condition is satisfied:∫

R/{0}
Max(|y|2, 1) Π(dy ) <∞ (2.137)
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Further introducing parameters b ∈ R, σ ≥ 0 the Lévy-Khintchine formula is given by the
following expression:

φY (k) = exp

{
i b k − 1

2
σ k2 +

∫
R/{0}

[ei k y − 1− i k y 1|y|<1(y)] Π(dy )

}
. (2.138)

with 1A(y) = 1 for y ∈ A or 1A(y) = 0 otherwise. Thus any infinitely divisible RV
Y has a characteristic function of the type of Eq. (2.138) for a specific triplet (b, σ,Π)

and conversely any function of the type of Eq. (2.138) is the characteristic function of an
infinitely divisible RV. For instance, Eqs. (2.133, 2.136) are obtained from Eq. (2.138) by
choosing the triplets (m,σ2, 0) and (0, 0, w(y) dy ) respectively. Finally, if Y is a d-dim
infinitely divisible variable, Eq. (2.138) still holds by taking b a vector in Rd, σ a positive
definite d× d matrix, Π a Lévy measure on Rd/0 and the indicator function being defined
on d-dim sphere centred at the origin.

Stable Random Variables

In this section, we discuss a further example of infinitely divisible RVs, which will play
a major role in the stochastic description of CTRWs. Let us consider a RV Y and n
independent of its copies {Yi}i=1,...,n. If there exists real-valued sequences of parameters
{cn}n∈N and {dn}n∈N, such that:

n∑
i=1

Yi
d
= cn Y + dn (2.139)

then Y is called a stable RV. If dn = 0, then Y is strictly stable. From this definition, it
is straightforward to see that Y is infinitely divisible [simply set X(n)

i = [Yi − dn/n]/cn

in Eq. (2.131)] and that the existence of Y represents a generalisation of the central limit
theorem. Indeed, Eq. (2.139) is equivalent to say that the sequences of partial sums
{Sn}n∈N with: Sn = [Y1 + . . . + Yn − dn]/cn converge in distribution to Y . With the
choice cn = σ

√
n and dn = nm, this is the ordinary central limit theorem and Y is a

Gaussian RV with mean m and variance σ2. However, for different choices of cn and dn,
we obtain a generalised central limit theorem. However, the only possible choice to satisfy
Eq. (2.139) is given by cn = σ n1/α, with 0 < α ≤ 2, also called index of stability of the
stable distribution [100]. As stable distributions are infinitely divisible, their characteristic
function is completely determined by Eq. (2.138). In particular, we have two possible
characteristics: (i) (b, σ, 0) for α = 2, implying that Y is Gaussian distributed with mean
b and variance σ and (ii) (b, 0,Π) with

Π(dx ) =

{
c1 x

−1−α dx x ∈ [0,∞)

c2 |x|−1−α dx x ∈ (−∞, 0)
(2.140)

with c1, c2 ≥ 0 and c1 + c2 > 0. However, it is often preferable to work with the equivalent
characterisation (obtained by changing coordinates in Eq. (2.138) [103]) for µ ∈ R, σ ≥ 0
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and −1 ≤ β ≤ 1:

φY (k) = exp

(
i µ k − 1

2
σ2 k2

)
α = 2 (2.141a)

φY (k) = exp
(
i µ k − σα |k|α

[
1− i β sign (k) tan

(π α
2

)])
α 6= 1, 2 (2.141b)

φY (k) = exp

(
i µ k − σ |k|

[
1 + i β

2

π
sign (k) log (|k|)

])
α = 1 (2.141c)

We remark that Eqs. (2.141a-2.141c) uniquely define a stable RV Y and, conversely, every
stable RV Y has characteristic function of the type of Eqs. (2.141a-2.141c). A symmetric
stable RV Y has characteristic function (ρ = σ for 0 < α < 2 and ρ = σ/

√
2 for α = 2):

φY (k) = exp (−ρα |k|α) 0 < α ≤ 2 (2.142)

Lévy Processes

A stochastic process Y = (Y (t), t ≥ 0) and initial condition Y (0) = y0 is a Lévy process if
the conditions below are satisfied:

1. Y (0) = y0 = 0 almost surely.

2. Y (t) has independent increments, i.e., ∀n ≥ 2 and for each partition 0 ≤ t0 < t1 <

. . . < tn ≤ t the RVs {Y (tj)− Y (tj−1)}j=1,...,n are independent.

3. Y (t) has stationary increments, meaning that for all 0 ≤ t1 < t2 ≤ t the RV Y (t2)−
Y (t1) has the same distribution as Y (t2− t1). Note that, if 1 is not satisfied, it would
instead depend on Y (t2 − t1)− y0.

4. The trajectories of Y (t) are càdlàg, i.e., right-continuous with left limits.

If one restricts the conditions 2, 4 by assuming Gaussian distributed increments and con-
tinuous trajectories respectively, one recovers ordinary Brownian motion.

Thanks to the property 2-3, Y is infinitely divisible ∀t ≥ 0. Indeed, we can write:

Y (t) =

n∑
i=1

X
(n)
i X

(n)
i = Y

(
i t

n

)
− Y

(
(i− 1) t

n

)
∀n ∈ N,∀t ≥ 0 (2.143)

where the RVs X(n)
i are i.i.d. by assumption. This result can be employed to derive

a general formula for the characteristic function of a Lévy process. Let us define the
function:

Ψ(k, t) = ln 〈exp (i k Y (t))〉. (2.144)

We further consider two integers m,n. By recalling Eq. (2.143), we can write:

Y (m) = Y (1) + [Y (2)− Y (1)] + . . .+ [Y (m)− Y (m− 1)] (2.145a)

Y (m) = Y
(m
n

)
+
[
Y
(

2
m

n

)
− Y

(m
n

)]
+ . . .+

[
Y (m)− Y

(
(n− 1)

m

n

)]
(2.145b)

These are equivalent to: Y (m)
d
= mY (1) and Y (m)

d
= nY

(
m
n

)
, as we recall that increments

of Lévy processes are stationary and independent. Thus, we can compute explicitly the
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quantity Ψ(k,m). We obtain the two equivalent expressions:

Ψ(k,m) = ln 〈exp [i k mY (1)]〉 = m ln 〈exp [i k Y (1)]〉 (2.146a)

Ψ(k,m) = ln
〈

exp
[
i k n Y

(m
n

)]〉
= n ln

〈
exp

[
i k Y

(m
n

)]〉
(2.146b)

where the factorisation of the average is again due to the independence of the increments.
Thus, we derive that simultaneously Ψ(k,m) = mΨ(k, 1) and Ψ(k,m) = nΨ

(
k, mn

)
. Com-

bining these two results, we obtain:

Ψ
(
k,
m

n

)
=
m

n
Ψ(k, 1). (2.147)

This relation expresses the characteristic function of a Lévy process at some finite time
m/n in terms of its value at time t = 1. As this relation holds for every integer m,n, we
can conclude that it holds for any real positive number t, i.e., Ψ(k, t) = tΨ(k, 1). Further
recalling that Ψ(k, 1) is given by the logarithm of Eq. (2.138), as a Lévy increment is an
infinitely divisible RV, we can write the characteristic function of a Lévy process as below:

φY (k, t) = exp

{[
i b k − 1

2
σ k2 +

∫
R/{0}

[ei k y − 1− i k y 1|y|<1(y)] Π(dy )

]
t

}
. (2.148)

The quantity η(k) = Ψ(k, 1) is called the Lévy symbol of Y and it is given by:

η(k) = i b k − 1

2
σ k2 +

∫
R/{0}

[ei k y − 1− i k y 1|y|<1(y)] Π(dy ) (2.149)

Let us discuss discuss four special examples of Lévy processes:

• Brownian motion.
As suggested earlier, Brownian motion is a Lévy process with Gaussian distributed
increments, which are infinitely divisible RVs with characteristic triplet (m,σ2, 0),
where m and σ describes respectively their mean and variance. Its Lévy symbol is

η(k) = imk − 1

2
σ2 k2. (2.150)

• Poisson Process.
A Poisson process of parameter λ is a Lévy process N , such that N(t) is Poisson
distributed with the parameter λ t for every t > 0. Recalling the characteristic
function of a Poisson RV in Eq. (2.135), we deduce that its characteristic triplet is
(0, 0,Π) with the Lévy measure Π(dy ) = λ δ(y − 1) dy and that its Lévy symbol is

η(k) = λ (ei k − 1). (2.151)

• Compound Poisson Process.
A Compound Poisson process Y (t) on the interval [0, t] is defined by samplingN(t) in-
dependent RVs {Zi}i=1,...,N(t) distributed with law PZ(x), whereN(t) are Poisson dis-
tributed RVs ∀ t > 0. It can be thought as a sequence of jumps of random amplitudes
occurring at exponentially distributed random times with law P (t) = e−λ t (here λ is
the inverse of the mean time between the jumps). Such process can be shown to be
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a Lévy process. Further recalling the characteristic function of a Compound Poisson
RV Eq. (2.136), we deduce that the characteristic triplet of a Compound Poisson
process is (b, 0,Π) with Π(dy ) = λPZ(y) dy and b = λ

∫ 1
−1 y PZ(y) dy . Finally, its

Lévy symbol is given as follows:

η(k) = λ

∫ +∞

−∞
PZ(x)(ei k x − 1) dx . (2.152)

We remark that the Compound Poisson process can have a Lévy measure, which
cannot be expressed in terms of the Lebesgue measure. In this case, if λΠ(dx ) is its
measure, b = λ

∫ 1
−1 yΠ(dy ) and its Lévy symbol is modified to the following:

η(k) = λ

∫ +∞

−∞
(ei k x − 1)Π(dx ). (2.153)

• Stable Process.
A stable process is a Lévy process with increments that are sampled from a stable
distribution. Thus, η(k) is given by Eqs. (2.141a-2.141c) or by Eq. (2.142), if we
consider a process with symmetric stable distributed increments.

We conclude this section by introducing the Lévy-Itô decomposition of a Lévy process Y .
To this aim, we rewrite Eq. (2.149) in the equivalent form: η(k) = η1(k) + η2(k) + η3(k),
with the auxiliary definitions below:

η1(k) = i b k − 1

2
σ k2 (2.154a)

η2(k) =

∫
R/{[−1,1]}

(ei k y − 1) Π(dy ) (2.154b)

η3(k) =

∫ 1

−1
(ei k y − 1) Π(dy )− i k c (2.154c)

where we defined the constant c =
∫ 1
−1 yΠ(dy ). Comparing these formulas with the

examples discussed earlier, we recognise that (i) η1(k) is the Lévy exponent of a Brownian
motion B(t) with parameters b, σ, (ii) η2(k) is that of a Compound Poisson process C(t)

with jump lengths always greater/smaller than ±1 respectively and (iii) η3(k) is that of a
compensated, i.e., with null average, compound Poisson process C̃(t) with jump lengths
always inside the interval (−1, 1). Note that the compensation is realised by introducing a
constant drift term in the Lévy exponent, which is proportional to the mean jump length
c. Thus, Y has the following Lévy-Itô decomposition:

Y (t) = B(t) + C(t) + C̃(t). (2.155)

Note that for any Lévy process there exists suitable B,C, C̃ satisfying Eq. (2.155).

Subordinators

We define subordinator a 1-dim Lévy process a.s. non-decreasing. Thus, if T = (T (t), t ≥ 0)

is a subordinator, then the following relations hold a.s.: T (t) ≥ 0 ∀ t ≥ 0 and T (t1) ≤
T (t2) ∀ t1 ≤ t2. Recalling that T is infinitely divisible, its characteristic function will be
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determined by Eq. (2.148) for a subclass of characteristic triplets (b, σ, ν) that we need
to determine. First, we note that, if X(t) is Gaussian with zero mean and variance σ t,
then P (X(t) ≥ 0) = 1/2 = P (X(t) ≤ 0), whereas we require T ≥ 0 ∀ t. This means
that a subordinator T cannot have any Gaussian component in its Lévy symbol, i.e.,
σ = 0. In addition, it also implies that no jumps of negative amplitudes nor a negative
shift can be allowed in its Lévy symbols, thus implying the further conditions: b ≥ 0 and
Π((−∞, 0)) = 0. In details, one can prove the following characterisation (in terms of the
Laplace transform of T ) [105]:〈

e−λT (t)
〉

= e−tΦ(λ) Φ(λ) = b λ+

∫ ∞
0

(1− e−λ y)Π(dy ) (2.156)

with the conditions explained above and the further one:
∫∞

0 Max(y, 1) Π(dy ) < ∞. We
call Φ the Laplace exponent of the subordinator. We note that only two parameters now
define its form, i.e., the characteristics of T are described in terms of the couple (b, ν).
Using Eq. (2.148) and Jensen’s inequality, one can show that Φ(λ) must be a continuous,
non decreasing, non negative and convex function. In addition, we note that Φ(0) = 0. In
general, one can prove that Φ is a Bernstein function [117, 118].

Let us consider two specific examples of subordinators that will be used in the thesis:

• Lévy stable subordinator.
A subordinator T is Lévy stable if it has characteristic couple (0,Π) with

Π(dx ) =
α

Γ(1− α)

dx

x1+α
. (2.157)

If we replace it inside Eq. (2.156), we obtain the following Laplace exponent:

Φ(λ) =
α

Γ(1− α)

∫ ∞
0

(1− e−λ y) y−1−α dy =
λ

Γ(1− α)

∫ ∞
0

e−λ y y−α dy = λα.

(2.158)

• Tempered Lévy stable subordinator.
A subordinator T is tempered Lévy stable if it has characteristic couple (0,Π) with
Lévy measure specified by the following equation [101]:

Π(dx ) =
α

Γ(1− α)
e−µx

dx

x1+α
c > 0. (2.159)

If we substitute it inside Eq. (2.156), we obtain the following Laplace exponent:

Φ(λ) =
α

Γ(1− α)

∫ ∞
0

(1− e−λ y) e−µ y y−1−α dy

=
α

Γ(1− α)

[
−
∫ ∞

0
(1− e−µ y) y−α dy +

∫ ∞
0

(1− e−(λ+µ)y) y−α dy

]
= (λ+ µ)α − µα (2.160)

where we solved the integrals in the rhs by employing the result derived in Eq. (2.158).
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2.2.4 Continuous Semimartingales

We consider a process M = (M(t), t ≥ 0) and assume that all the information on M up
to a chosen time s is known, i.e., we know M(s) = ms. M is a martingale if (i) M(t) is
integrable for all t and (ii) if the following relation on its conditional average holds [83]:

〈M(t)|M(s) = ms〉 = ms. (2.161)

It is instead called a sub-martingale if 〈M(t)|M(s) = ms〉 ≥ ms or a super-martingale if
〈M(t)|M(s) = ms〉 ≤ ms. For instance, the Brownian motion B(t) is a martingale, as one
can easily verify by direct computation of Eq. (2.161).

Let us further consider a process Y = (Y (t), t ≥ 0). The process Y is a semimartingale
if the following decomposition holds:

Y (t) = M(t) +A(t) (2.162)

where M and A = (A(t), t ≥ 0) are respectively a martingale and a finite variation process
with càdlàg paths. Semimartingales are good integrators, i.e., stochastic integration with
respect to such processes, can be well defined. We refer to the monograph [102] for more
details. For the sake of our discussion, we will only present their Itô formula, in the specific
case of Y being a semimartingale with continuous stochastic paths. With this assumption,
the Itô formula is given as follows:

f(Y (t))− f(y0) =

∫ t

0
f ′(Y (τ)) dY (τ) +

1

2

∫ t

0
f ′′(Y (τ)) d[Y, Y ]τ , (2.163)

where [Y, Y ]t is the quadratic variation of Y , which is defined as in Sec. 2.2.2. Analo-
gously to the case of the Itô formula Eq. (2.110), the extension of Eq. (3.15) to a M-dim
semimartingale Z is given by:

f(Z(t))− f(Z0)=

M∑
i=1

∫ t

0
f ′i(Z(τ)) dZ(i)(τ) +

1

2

M∑
i,j=1

∫ t

0
f ′′i,j(Z(τ)) d[Z(i), Z(j)]τ , (2.164)

where [Z(i), Z(j)]t is the joint quadratic variation of Z(i), Z(j). Both processes [Y, Y ]t and
[Z(i), Z(j)]t can be shown to be given by a continuous increasing processes. In the joint
case, such process has also finite variation paths [102].

Time-Changed Processes

We conclude this Chapter by presenting the definition of time-changed process. Let us
consider a Lévy process X = (X(t), t ≥ 0) and a subordinator T = (T (t), t ≥ 0). Then,
we can define a new time-changed process Y trough the following relation:

Y (t) = X(T (t)). (2.165)

The resulting process Y is a Lévy process [107]. This procedure can also be applied
to processes X other than Lévy ones, even though the resulting time-changed process
Y will no longer be a Lévy process. In the specific case of Y being a semimartingales,
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one can show that the resulting process is still a semimartingale [119]. This technique is
particularly relevant in the theory of CTRWs, as it is employed to formulate their Langevin
equations, as we suggested in Sec. 2.1.2. In this case, however, the time-change is obtained
by considering an auxiliary process S called the inverse process, or hitting time, of T :

S(t) = inf
s∈R
{s > 0 : T (s) > t}. (2.166)

Conveniently, we can prove that S has continuous paths, if T is strictly increasing [104, 120].
We conclude by recalling the following two relations, which are proved in a more general
setting in [120]. Let S be given by Eq. (2.166) for a subordinator T and Z be a continuous
semimartingale. Thus, we can derive:∫ S(t)

0
H(s) dZ(s) =

∫ t

0
H(S(τ)) dZ(S(τ)) (2.167a)

[Z(S(t)), Z(S(t))]t = [Z,Z]S(t) (2.167b)



CHAPTER 3

Anomalous Processes with General Waiting Times: Functionals and

Multipoint Structure

In this Chapter we employ the mathematical tools provided in Chapter 2 to study a general
class of anomalous diffusive processes that can capture more complicated MSD behaviour
than a pure power-law by means of a general waiting time distribution. Specifically, we will
be interested in physical systems displaying a non linear MSD, where crossovers between
different scaling regimes are observed over time. Here, we will provide a complete charac-
terisation of these processes comprising: (i) the stochastic description of their microscopic
diffusive dynamics; (ii) evolution equations for the PDF of the process and its associated
time-integrated observables; (iii) the multi-point correlation functions. We will show that
our model includes the ordinary CTRW as a special case. We will then apply our formalism
to model the MSD of mitochondria diffusing in S. Cerevisiae cells depleted of actin micro-
filaments [57] and predict the form of the two-point correlation function, that can be readily
compared with the experimental data. These results suggest the relevance of our formalism
for both theorists and experimentalists in the field of anomalous stochastic processes.

3.1 Motivation

In Chapter 1 we extensively discussed how several experiments provided evidence of anoma-
lous diffusive behaviour in both physical and biological systems, which motivated the def-
inition of the CTRW model [28]. In all these experiments (see [18, 9, 35, 19, 10, 56] and
references therein) the MSD was observed to exhibit a pure power-law scaling behaviour,
which naturally suggested the classification between subdiffusive and superdiffusive trans-
port processes, according to its characteristic scaling exponent being respectively less or
greater than one. However, despite the fact that many models have been proposed that are
able to reproduce such power-law MSD scaling, the modelling of empirical data display-
ing anomalous diffusive behaviour still represents a sound theoretical challenge. Indeed,
recent experiments of diffusion in biological systems have shown that the MSD can be
a general non linear function, where different scaling regimes and crossovers regions be-
tween them can be identified over time [44, 45, 46, 48, 57, 49, 121, 122, 123, 124, 125,

46
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57, 126, 127, 128, 129, 130]. Thus, these results suggest the need to formulate more
general anomalous stochastic processes, which can account for such complicated MSD be-
haviour, and to characterise them in terms of both single and multi point functions. These
latter ones are ultimately essential, as the fundamental non Markovian nature of these
processes makes single point quantities insufficient to fully understand their properties.
However, their complete theoretical characterisation is undoubtedly a challenging task
[131, 132, 133, 134, 135, 136, 137, 138].

In addition, as in experiments one has often access to joint position-velocity data,
it is necessary to develop a consistent framework to study both these quantities, which
can then be employed to assess the nature of the microscopic processes underlying the
observed dynamics. It is evident that this is a specific example of the more general joint
description of a process and one of its observables, which are mathematically defined as
functionals of its stochastic trajectories [139]. In the case of normal diffusive dynamics,
this is provided by the celebrated Feynman-Kac (FK) equation, which will be presented
later in this Chapter. The development of such a complete description for CTRWs, and in
general for anomalous stochastic processes, is a second main theoretical challenge, which
has been only solved recently in Ref. [140], whose content is here presented. This result
provides the statistical properties of general observables of anomalous stochastic processes,
which can be used as a mean to asses the nature of the observed dynamics in experimental
datasets, on the one hand, and to investigate further yet unresolved theoretical issues for
such processes, on the other hand. For instance, it would provide the framework for the
analysis of their stochastic thermodynamics [141], where the work exerted by a dynamical
particle is defined exactly as an observable of the position process, i.e., as a functional of
the particle’s trajectory.

In this Chapter, we will face both these two challenges by constructing a complete
framework for the analysis of general anomalous stochastic processes, which are obtained
by allowing for more general waiting time distributions in the CTRW model. Specifically,
we will provide the description of their stochastic dynamics in terms of Langevin time-
changed equations (similarly to those presented in Sec. 2.2.4) and derive from them both
a Generalised Fractional Feynman-Kac (GFFK) equation and analytical formulas for their
multi-point functions. We will finally apply our formalism to a few specific models of
biological relevance and to the MSD data of mitochondria diffusing in S. Cerevisiae cells
depleted of actin microfilaments [57] to support its relevance for experimental applications.

3.2 Brownian Functionals and the Feynman-Kac Equation

Let us consider a free diffusive brownian process Y = (Y (t), t ≥ 0), i.e., Ẏ (t) =
√

2σ ξ(t),
with ξ being a white Gaussian noise [with properties specified by Eqs. (2.98)], which de-
scribes the state of some physical system at time t. In order to characterise such system,
one usually introduces suitable observables, which can provide information on its proper-
ties, and measures them on a finite time interval [0, t]. In mathematical terms, a general
observable of Y can be defined as a functional of its stochastic paths [139]:

W (t) =

∫ t

0
U(Y (r)) dr , (3.1)
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where the function U(x) is some prescribed arbitrary smooth function. Brownian function-
als of the type of Eq. (3.1) have found several applications, as many different phenomena
can be modelled by choosing the function U suitably. For instance, W can describe fluc-
tuating interfaces (U(x) = x2), local and occupation times [U(x) = δ(x), U(x) = Θ(x)

respectively], advection of particles [U(x) = x and Y interpreted as a velocity], like the
Obukhov’s model for particles in a turbulent flow [142, 143], and even stock prices’ dy-
namics [U(x) = e−β x, with β real positive parameter] [139, 144]. Thus, we review in this
section how one can characterise the statistical properties of normal diffusive W and Y .

As discussed in Sec. 2.2, the statistics of W is completely determined by its PDF
P (w, t) = 〈δ(w −W (t))〉, which is obtained by first computing the joint PDF P (w, y, t) =

〈δ(w −W (t)) δ(y − Y (t))〉 and secondly by integrating out the y variable. For later con-
venience, we consider its Fourier transform P̂ (p, y, t) =

〈
e i pW (t)δ(y − Y (t))

〉
, where the

average is over all the paths Y (τ) starting at a specified initial position y0 at τ = 0 and
ending at the position y at time τ = t. Different techniques, e.g., path-integral arguments
[145, 139] or more mathematical ones based on the Itô formula [109], are employed to derive
the evolution equation of P̂ (p, y, t), which is given by the Feynman-Kac (FK) formula:

∂

∂t
P̂ (p, y, t) = i p U(y) P̂ (p, y, t) +

σ

2

∂2

∂y2
P̂ (p, y, t). (3.2)

While its physical relevance has just been clarified, Eq. (3.2) also represents a milestone
in the theory of stochastic processes, as it provides the stochastic representation of the
solutions of a partial differential equation of the type of Eq. (3.2). In details, if f(p, y, t)

is a solution of Eq. (3.2), with initial condition f(p, y, 0) = g(y), then the stochastic
representation holds: f(p, y, t) =

〈
g(Y (t))ei pW (t)

〉
with the dynamics of Y specified by

the operator in the second term of the rhs of Eq. (3.2) (here a free diffusive BM) and
W defined as in Eq. (3.1) with the function U defined by the first term in the rhs of of
Eq. (3.2) [109]. In our following discussion, we will recover Eq. (3.2) as a special case.

3.3 The Generalised Feynman-Kac Equation

The derivation of the FK formula Eq. (3.2) generated an intense research activity along
two main directions, i.e., (i) the derivation of its solution for relevant choices of U and (ii)
the derivation of its extension to more general stochastic processes, specifically CTRWs.
Indeed, a fractional extension of Eq. (3.2) has been recently derived in [146, 147, 148]
by using a similar approach to that discussed in Sec. 2.1.2 to derive fractional evolution
equation for the position PDF of a CTRW. In details, the authors first derived the analogue
of the Montroll-Weiss Eq. (2.17) for the joint PDF P (w, y, t), which accounts also for the
displacement ofW during the jumps of the walker, and then they took the diffusive limit of
its Fourier-Laplace transform. They derived the following Fractional FK (FFK) equation:

∂

∂t
P̂ (p, y, t) = i p U(y) P̂ (p, y, t) +Kα

∂2

∂y2
D1−α
t P̂ (p, y, t), (3.3)

where we introduce the fractional substantial derivative D1−α
t [149, 150], which is defined

in Laplace space as [λ + i p U(y)]1−α and Kα is a generalised diffusion coefficient. The
FFK Eq. (3.3) is relevant, as it first provided a quantitative description of the statistical
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properties of the functionals of a CTRW. However, such derivation does not prove the link
between their stochastic representation in terms of subordinated Langevin equations and
the solutions of Eq. (3.3) (see Fig. 3.1). Thus, in order to have a comprehensive framework
to describe functionals of the CTRW, including both the corresponding fractional evolution
equation and their stochastic description, one needs to prove Eq. (3.3) directly from the
subordinated Langevin equations, in analogy to what has been done for Eq. (3.2). We will
provide such proof as a special case in the following discussion.

Figure 3.1: Equivalence between the random walk picture of CTRWs and their stochastic
description in terms of subordinated Langevin equations before our work. While this
equivalence has been recently proved for the FFP Eq. (2.29) [151, 152], this is not the
case for the FFK Eq. (3.3). Indeed, its first derivation in Refs. [146, 147, 148] employs
the random walk techniques presented in Sec. 2.1, but it does not discuss if it can be
equivalently derived from the stochastic dynamical equations. This is obtained in [140].

3.3.1 Langevin Description of Anomalous Stochastic Processes

In this section, we extend the formulation of CTRWs in terms of subordinated Langevin
equations [79], already discussed in Sec. 2.1.2, to arbitrary waiting time distributions.
Specifically, this will be obtained by relaxing the hypothesis on its asymptotic tails. Instead,
the waiting time distribution will be characterised in full generality by its characteristic
function and corresponding Laplace exponent Eq. (2.156). We will further elucidate how
the statistics of the waiting times is determined below. Finally, we will derive a FK formula
for such anomalous processes and their functionals defined as in Eq. (3.1).

Let us focus on a process in 1-dim. As discussed in Sec. 2.1.2, the stochastic trajectory
of a CTRW is determined by introducing two processes X and T with Langevin equations:

Ẋ(s) = F (X(s)) + σ(X(s)) · ξ(s), (3.4a)

Ṫ (s) = η(s). (3.4b)

The CTRW Y (t) is then obtained by time-changing the process X. Specifically, we define
Y (t) = X(S(t)), with S specified by Eq. (2.47). The dynamics of X is that of a normal
diffusive process in the operational time s, i.e., we require ξ(s) to represent a white Gaussian
noise with properties given by Eq. (2.98). Furthermore, we adopt the Itô convention for the
multiplicative term of Eqs. (3.4a). In order to assure the existence and uniqueness of their
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corresponding time-changed solution Y , the functions F (x) and σ(x) need to satisfy (i) the
Lipschitz condition, i.e., there exists a positive constant L such that ∀x, y ∈ R we have:
|F (x)− F (y)|+ |σ(x)− σ(y)| ≤ L|x− y| and (ii) the assumption that if X is càdlàg, then
both F (X) and σ(X) are càglàd functions, i.e., they have left-continuous with right limits
paths [120]. The noise η(s) models the waiting times of the anomalous diffusion process
in the operational time s, which we assume independent of the X process, i.e., the noises
ξ(s) and η(s) are statistically independent. In the case of CTRWs, η(s) is a one-sided
stable Lévy noise of order 0 < α ≤ 1 [101], whose integrated process T has characteristic
function:

〈
e−λT (s)

〉
= e−sλ

α [see Eqs. (2.156, 2.158)]. In physical terms, T represents the
elapsed physical time of the process (as already discussed in details in Sec. 2.1.2).

To extend this picture to arbitrary waiting times, we consider η(s) as a more general
type of noise, which can be modelled by a general one-sided (monotonically increasing)
Lévy process with finite variation [101, 107]. As highlighted in Sec. 2.2.3, such a process
satisfies the minimal assumptions needed to assure independent and stationary waiting
times and causality of T . Thus, η(s) is fully characterised by its characteristic functional:

G[u(s)] =
〈
e−

∫ +∞
0 u(s)η(s) ds

〉
= e−

∫ +∞
0 Φ(u(s)) ds , (3.5)

with the Laplace exponent Φ specified by Eq. (2.156). Different functional forms of Φ

correspond to different distribution laws of the waiting times and of the renewal process T .
The renewal nature of T is expressed by Eq. (3.4b) as T (s) =

∫ s
0 η(τ) dτ . The characteristic

function
〈
e−λT (s)

〉
is thus directly obtained from Eq. (3.5) by setting u(s′) = λΘ(s − τ)

leading to
〈
e−λT (s)

〉
= e−sΦ(λ) [see Eqs. (2.156)]. Therefore, T is a sum over waiting

time increments ∆t =
∫ ∆s

0 η(τ) dτ over a small time step ∆s with characteristic function〈
e−λ∆t

〉
= e−∆sΦ(λ), which can be used to simulate the process Y (t) within a suitable

discretization scheme [81]. Remarkably, the full multi-point statistics of T becomes easily
accessible, because the functional Eq. (3.5) contains the information about the whole noise
trajectory. By choosing Φ suitably, many different waiting time statistics can be captured,
i.e., Y (t) can be modelled according to the observed experimental dynamics. If we choose
a power law Φ(λ) = λα we recover the CTRW case with waiting times characterized by
a diverging first moment. If instead Φ(λ) = λ, T is simply a deterministic drift, T = s,
and Y (t) reduces to a normal diffusion (Brownian limit) with waiting times following an
exponential distribution [9]. With these minimal assumptions, both the processes T (s)

and S(t) are monotonically non decreasing, this also implying that S has paths of finite
variation, as we discussed in Sec. 2.2.1. In addition, we can prove the relation [131]:

Θ(s− S(t)) = 1−Θ(t− T (s)). (3.6)

Moreover, recalling that T (s) is strictly increasing, as it is defined in Eq. (3.4b) as an
integral over a one-sided process, S(t) can be shown to have continuous paths (see Sec. 2.2.4
and Ref. [104]), thus implying that the corresponding Itô formula does not have jump terms
nor second order terms and it is given by Eq. (2.91) [for a general smooth function f(s)]:

f(S(t))− f(0) =

∫ t

0

∂f

∂s
(S(τ)) dS(τ) . (3.7)
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Consequently, if we choose f(S(t)) = Θ(s− S(t)) and we use Eq. (3.6), we obtain:

Θ(t− T (s)) =

∫ t

0
δ(s− S(t)) dS(t) , (3.8)

or equivalently in its corresponding differential form:

δ(t− T (s)) = δ(s− S(t))Ṡ(t). (3.9)

We note that Ṡ(t) = lim∆t→0
S(t+∆t)−S(t)

∆t is a shorthand notation to denote an integration
with respect to the time-change. With this notation, we can rewrite the coupled Langevin
Eqs. (3.4a, 3.4b) as a time-changed stochastic differential equation [120]. In details, we
first write Eq. (3.4a) in its integrated form as below (we assume X(0) = y0):

X(s)− y0 =

∫ s

0
F (X(τ)) dτ +

∫ s

0
σ(X(τ)) dB(τ) . (3.10)

If we now apply directly the time change, we obtain the integrated equation for Y :

Y (t)− y0 =

∫ S(t)

0
F (X(τ)) dτ +

∫ S(t)

0
σ(X(τ)) dB(τ) , (3.11)

which can then be further simplified by employing the general result presented in Eq. (2.167a).
In our specific case, we derive the following:

Y (t)− y0 =

∫ t

0
F (X(S(τ)) dS(τ) +

∫ t

0
σ(X(S(τ))) dB(S(τ))

=

∫ t

0
F (Y (τ)) dS(τ) +

∫ t

0
σ(Y (τ)) dB(S(τ)) , (3.12)

which can finally be written as a Langevin equation by taking its time derivative:

Ẏ (t) = F (Y (t))Ṡ(t) + σ(Y (t)) · ξ(S(t))Ṡ(t). (3.13)

This result is relevant as it expresses the evolution of the increments of Y directly in terms
of those of the time change S. For clarity, we recall that ξ(S(t))Ṡ(t) denotes an increment
over the time-changed brownian motion: ξ(S(t))Ṡ(t) = lim∆t→0

B(S(t+∆t))−B(S(t))
∆t . This

follows straightforwardly from Eq. (2.93), by recalling that ∆S(t) = S(t+ ∆t)− S(t)→ 0

for ∆t→ 0, as the paths of S are continuous and monotonically increasing. We note that
the conditions on F and σ for the existence and uniqueness of the solution Y reported
previously are a direct consequence of the fact that both Y and S(t) are semimartingales
[120] and can be proved from the time-changed Langevin Eq. (3.13) by employing Theorem
7, Chapter 5 of Ref. [106].

Let us now introduce a second stochastic process W = (W (t), t ≥ 0), which we define
as a general functional of the anomalous process Y according to Eq. (3.1), and recall a
few general properties of both the processes Y and W . First, Y can be shown to be a
semimartingale, as long as the parent process X in Eq. (3.4a) is a semimartingale as well
[119]. In our specific case, X is a Brownian diffusive process, i.e., it satisfies this property.
Secondly, we note that W (t) is a finite variation process and that the paths of both Y

and W are continuous due to the continuity of those of S [120] and to the fact that the
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composition of two continuous function, i.e., of X(s) and S(t), is continuous. In order to
use the Itô formula Eq. (3.15), we need the quadratic variation of Y . Recalling Eq. (2.114)
and the formula for time-changed processes Eqs. (2.167a, 2.167b) [120], we obtain:

[Y, Y ]t = [X,X]S(t) =

∫ S(t)

0
σ2(X(τ)) dτ

=

∫ t

0
σ2(X(S(τ)) dS(τ) =

∫ t

0
σ2(Y (τ))Ṡ(τ) dτ . (3.14)

We note that this same result was derived with a different approach earlier in Ref. [153].

3.3.2 Derivation of the Generalised Feynman-Kac Equation

Let us consider the joint process Z(t) = (Y (t),W (t)). As suggested in Sec. 2.2.4, the
process Z is a semi-martingale with continuous paths, as well as Y and W . Thus, we can
write its Itô formula (for a general smooth function f) by adapting Eq. (2.164) [102]:

f(Z(t)) = f(Z0) +
1

2

∫ t

0

∂2f

∂y ∂w
(Z(τ)) d[Y,W ]τ +

∫ t

0

∂

∂y
f(Z(τ)) dY (τ)

+

∫ t

0

∂

∂w
f(Z(τ)) dW (τ) +

1

2

∫ t

0

∂2

∂y2
f(Z(τ)) d[Y, Y ]τ +

1

2

∫ t

0

∂2

∂w2
f(Z(τ)) d[W,W ]τ (3.15)

In order to simplify this equation we need the following ingredients: (i) the time-discretised
form of Eq. (3.13) that expresses the increments of Y in terms of the time-change increments
dS(t) ; (ii) the explicit computation of the quadratic variation of Y Eq. (3.14); (iii) the
quadratic variation [W,W ]t and covariation [Y,W ]t, which are both null as W is a finite
variation process. Further recalling from Eq. (3.1) that dW (t) = U(Y (t)) dt , we obtain:

f(Z(t)) = f(Z0) +

∫ t

0

∂

∂w
f(Z(τ))U(Y (τ)) dτ +

∫ t

0

∂

∂y
f(Z(τ))F (Y (τ))Ṡ(τ) dτ

+
1

2

∫ t

0

∂2

∂y2
f(Z(τ))σ2(Y (τ))Ṡ(τ) dτ +

∫ t

0

∂

∂y
f(Z(τ))σ(Y (τ))ξ(S(τ))Ṡ(τ) dτ . (3.16)

The equation for the double Fourier transform of the joint PDF P̂ (p, k, t) can be derived
by evaluating Eq. (3.16) for f(Z(t)) = ei k Y (t)+i pW (t). Specifically, we obtain:

f(Z(t)) = f(Z0) + i p

∫ t

0
f(Z(τ))U(Y (τ)) dτ + i k

∫ t

0
f(Z(τ))F (Y (τ))Ṡ(τ) dτ

− k2

2

∫ t

0
f(Z(τ))σ2(Y (τ))Ṡ(τ) dτ + i k

∫ t

0
f(Z(τ))σ(Y (τ))ξ(S(τ))Ṡ(τ) dτ . (3.17)

Finally we need to take the ensemble average over the realisations of the noises ξ and η,
the latter determining the realisations of the process S. Within the Itô prescription, the
last integral in the rhs of Eq. (3.17) cancels out. Indeed, let us introduce a finite time-
discretisation with step size ∆t and let N = t/∆t. We denote: Zi = Z(ti), Si = S(ti) and
Yi = Y (ti). The stochastic integral then reads as:

∫ t

0
f(Z(τ))σ(Y (τ))ξ(S(τ))Ṡ(τ) dτ = lim

N→∞
∆t→0

N−1∑
i=0

f(Zi)σ(Yi)[B(Si+1)−B(Si)]. (3.18)
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Let us take the average over ξ first. For each fixed realisation of S we can then write:
〈f(Zi)σ(Yi)[B(Si+1)−B(Si)]〉 = 〈f(Zi)σ(Yi)〉 〈B(Si+1)−B(Si)〉 = 0 which is due to (i)
the independence of the increments of B, that enables us to factorise the average because
both Zi, Yi only depends on its previous increments, and (ii) to the zero first moment of
B. Thus, the averaged Eq. (3.17) reduces to the following:

〈f(Z(t))〉 = f(Z0) + i p

∫ t

0
〈f(Z(τ))U(Y (τ))〉 dτ

+

〈∫ t

0
f(Z(τ))

[
i k F (Y (τ))− k2

2
σ2(Y (τ))

]
Ṡ(τ) dτ

〉
, (3.19)

where in the second integral in its rhs we can recognise the Fourier transform of the FP
operator of Eq. (3.4a): LFP (y) = − ∂

∂yF (y) + 1
2
∂2

∂y2σ
2(y). Consequently, if we now make

the inverse Fourier transform of Eq. (3.19), we obtain the equation:

∂

∂t
P̂ (p, y, t) = i p U(y) P̂ (p, y, t) + LFP (y)

∂

∂t

〈∫ t

0
ei pW (τ)δ(y − Y (τ))Ṡ(τ) dτ

〉
. (3.20)

In order to close the equation, we still need to relate the averaged stochastic integral in
the rhs of Eq. (3.20) to P̂ (p, y, t). We first note that W can be written as a subordinated
process, by making the change of variables τ = S(r), i.e., T (τ) = r, in Eq. (3.1):

W (t) = A(S(t)) A(s) =

∫ s

0
U(X(τ))η(τ) dτ , (3.21)

where the noise η(s) explicitly appears from Eq. (3.4b). Thus, by employing the property
1 =

∫ +∞
0 δ(s− S(t)) ds and then considering the same discretisation scheme and notation

used in Eq. (3.18) to expand in series the stochastic integral, we obtain:∫ t

0
ei pW (τ)δ(y − Y (τ))Ṡ(τ) dτ =

∫ t

0

[∫ +∞

0
ei pA(s)δ(y −X(s))δ(s− S(τ)) ds

]
Ṡ(τ) dτ

= lim
N→∞
∆t→0

N−1∑
i=0

[∫ +∞

0
ei pA(s)δ(y −X(s))δ(s− Si) ds

]
(Si+1 − Si)

= lim
N→∞
∆t→0

N−1∑
i=0

[∫ +∞

0
ei pA(s)δ(y −X(s))δ(ti − T (s)) ds

]
(τi+1 − τi)

=

∫ t

0

[∫ +∞

0
ei pA(s)δ(y −X(s))δ(τ − T (s)) ds

]
dτ , (3.22)

where (i) the continuity of the paths of S implies that no jump terms appear in the series
expansion (see Sec. 2.2.1) and (ii) we used Eq. (3.9) to relate the stochastic increments of
S to those of T . If we take the average over the realisations of the two noises η and ξ of
both sides of Eq. (3.22) and then the time derivative of the resulting expression, we obtain:

∂

∂t

〈∫ t

0
ei pW (τ)δ(y − Y (τ))Ṡ(τ) dτ

〉
=

∫ +∞

0

〈
ei pA(s)δ(y −X(s))δ(t− T (s))

〉
ds

(3.23)
Remarkably, the rhs side of this equation can be related in Laplace space to the joint PDF
P̂ (p, y, t). By using again the representation of W as a subordinated process in Eqs. (3.21)
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and the property used to derive Eq. (3.22), P̂ (p, y, t) can be rewritten as follows:

P̂ (p, y, t)=
〈
ei pA(S(t))δ(y −X(S(t)))

〉
=

∫ +∞

0

〈
ei pA(s)δ(y −X(s))δ(s− S(t))

〉
ds (3.24)

In this form, the Laplace transform of Eq. (3.24) can be computed straightforwardly.
Indeed, recalling the dynamical equation of T Eq. (3.4b) and Eq. (3.6), we derive:

∫ +∞

0
δ(s− S(t))e−λ t dt =

∂

∂s

∫ +∞

0
Θ(s− S(t))e−λ t dt

=
∂

∂s

∫ +∞

0
[1−Θ(t− T (s))] e−λ t dt =

∂

∂s

∫ T (s)

0
e−λ t dt = η(s)e−λT (s). (3.25)

In conclusion, the Laplace transform of Eq. (3.24) is readily given by:

̂̃
P (p, y, λ) =

∫ +∞

0

〈〈
e−λT (s)+i pA(s)η(s)δ(y −X(s))

〉〉
ds . (3.26)

In Eq. (3.26), we explicitly highlighted that the ensemble average is made over the two
different noises η and ξ, whose independence allows us to change arbitrarily the order in
which these averages are performed. Such freedom can be readily employed to simplify
Eq. (3.26) by expressing the η(s)-dependent part of the integrand as a derivative of the
characteristic functional G[k(l)] in Eq. (3.5). Indeed, by performing the average with
respect to η(s) first and recalling that X does not depend on it, this implying that the
delta function can be taken out of such average, the only quantity needed to be computed
is
〈
e−λT (s)+i pA(s)η(s)

〉
. This can be obtained as follows:〈

η(s)e−λT (s)+i pA(s)
〉

=
〈
η(s)e−

∫ s
0 [λ−i p U(X(r))]η(r) dr

〉
= − 1

λ− i p U(X(s))

∂

∂s

〈
e−

∫ s
0 [λ−i p U(X(r))]η(r) dr

〉
= − 1

λ− i p U(X(s))

∂

∂s
e−

∫ s
0 Φ(λ−i p U(X(r))) dr

=
Φ(λ− i p U(X(s)))

λ− i p U(X(s))

〈
e−

∫ s
0 [λ−i p U(X(r))]η(r) dr

〉
(3.27)

where we used the characteristic functional Eq. (3.5) with k(l) = (λ− i p U(X(l))) Θ(s−l).
Substituting Eq. (3.27) back into Eq. (3.26), we derive the following relation:

̂̃
P (p, y, λ) =

Φ [λ− i p U(y)]

λ− i p U(y)

∫ +∞

0

〈
e−λT (s)+i pA(s)δ(y −X(s))

〉
ds , (3.28)

where now the brackets denote again an average over both η, ξ. To conclude, we note that
the Laplace transform of the rhs of Eq. (3.23) is equal to the integral in Eq. (3.28). Thus,

by expressing it in terms of ̂̃P (p, y, λ), taking its inverse Laplace transform and substituting
in Eq. (3.20), we derive the Generalised FFK (GFFK) formula:

∂

∂t
P (p, y, t) = i p U(y)P (p, y, t)

+ LFP (y)

[
∂

∂t
− i p U(y)

] ∫ t

0
K(t− τ) ei p U(y)(t−τ) P (p, y, τ) dτ , (3.29)
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where the memory kernel is related to Φ trough the following relation (in Laplace space):

K(λ) = Φ(λ)−1. (3.30)

We highlight that this derivation of Eq. (3.29) provides the generalization of the Feynman-
Kac theorem to anomalous processes with arbitrary waiting time distributions.

3.3.3 Special Cases and Extensions

In this section we first show that the GFFK Eq. (3.29) provides as special cases several
different results earlier presented in the literature. Specifically, we can derive:

• The generalised Fractional Fokker-Planck Equation.
If we set p = 0, we find a Generalised Fractional FP (GFFP) equation for the position
PDF [154]:

∂

∂t
P (y, t) = LFP (y)

∂

∂t

∫ t

0
K(t− τ)P (y, τ) dτ . (3.31)

• The generalised Klein-Kramers Equation.
If we set U(x) = x in Eq. (3.1), Y and W correspond respectively to the velocity
and the position of an anomalously diffusing particle. Thus, after inverse Fourier
transform, Eq. (3.29) yields a generalised Fractional Klein-Kramers (KK) equation
[149, 150]:

∂

∂t
P (x, v, t) = − ∂

∂x
v P (x, v, t)

+ LFP (y)

[
∂

∂t
+

∂

∂x
v

]∫ t

0
K(t− s)P (x− v(t− s), y, s) ds . (3.32)

We note that the shift in the position PDF in the memory integral elucidates the
presence of the same retardation effects found for CTRWs [149, 150].

In addition, by suitably choosing the Laplace exponent Φ, we recover both normal diffusive
processes and CTRWs. Specifically, we obtain:

• Normal Diffusion.
This is obtained by setting Φ(λ) = λ, i.e., K(t) = 1. In this case, Eqs. (3.29,3.31,3.32)
reduces respectively to the normal FK Eq. (3.2), FP and KK equations.

• CTRWs.
This is obtained by setting Φ(λ) = λα. In this case indeed, the integral operators in
Eqs. (3.29,3.31) reduces to the fractional substantial derivative [149, 150, 146, 147,
155] and the RL operator respectively [156, 151].

We finally discuss two extensions of Eq. (3.29), i.e., (i) the case of a general prescription
for the multiplicative term in Eq. (3.4a) and (ii) the case of time-dependent forces.

Extension to multiplicative processes with general prescription

This first generalisation is obtained by recalling that processes with general prescription
can be written in terms of processes with the Itô one by suitably choosing the coefficients
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of the Langevin equation (see Sec. 2.2.2). We consider the subordinated equations:

Ẋ(s) = F (X(s)) + σ(X(s)) ? ξ(s) Ṫ (s) = η(s) (3.33)

where we adopt the generalised α prescription defined in Eq. (2.101) for the multiplicative
term. However, this process is equivalently described by Eqs. (3.4a, 3.4b), i.e. with the
Itô prescription, by using the mapping proposed in Eqs.(2.130a, 2.130b). Thus, Eqs. (3.29,
3.30) still holds for the subordinated Eqs. (3.33) with the modified FP operator:

LFP (y) = − ∂

∂y

[
F (y) + κσ(y)σ′(y)

]
+

1

2

∂2

∂y2
σ2(y). (3.34)

Extension to processes with time dependent force terms

In the presence of time dependent forces, Eq. (3.29) with the substitution LFP (y) →
LFP (y, t) = − ∂

∂yF (y, t) + 1
2
∂2

∂y2σ
2(y) was already proved in the specific case of CTRWs

starting from a master equation approach in [147]. We recall that time dependence in the
external force is introduced in the subordinated Langevin Eqs. (3.4a, 3.4b) by making the
function F depend explicitly on T . Thus, the time dependent problem is written as below:

Ẋ(s) = F (X(s), T (s)) + σ(X(s)) · ξ(s), Ṫ (s) = η(s). (3.35)

The same conditions on F and σ, that we presented for Eqs. (3.4a, 3.4b), are also sufficient
to ensure the existence and uniqueness of the time-changed solution Y (t) of Eqs.(3.35)
[120]. There are two main differences with the previous case of Eq. (3.4a). On the one
hand, the processes X and T are no longer independent, such that the previous derivation
of Eq. (3.28) does not hold any more. Specifically, the delta function in Eq. (3.26) needs to
be kept inside the average over the realisations of the noise η. On the other hand, differently
from the time independent case where the stochastic paths of X, and consequently those
of F , have continuous paths, in the case of Eq. (3.35), due to the dependence of X on the
Lévy process T , both its paths and those of F are generally discontinuous, with random
jumps in correspondence to those of T . However, thanks to the finite variation of the paths
of T , both X and the time-changed process Y are still semimartingales and additionally
the paths of F are càdlàg. Thus, the Stiltjes integral of F is well defined and we can
integrate Eq. (3.35) as follows:

X(s)− y0 =

∫ s

0
F (X(τ), T (τ)) dτ +

∫ s

0
σ(X(τ)) dB(τ) . (3.36)

We note that the integral over F is done with respect to a process with finite variation and
continuous paths, here specifically a deterministic drift, such that the contribution from
the random jumps of T is still null. As before, we can then write:

Y (t)− y0 =

∫ S(t)

0
F (X(τ), T (τ)) dτ +

∫ t

0
σ(X(τ)) dB(τ)

=

∫ t

0
F (X(S(τ), T (S(τ))) dS(τ) +

∫ t

0
σ(X(S(τ))) dB(S(τ))

=

∫ t

0
F (Y (τ), τ) dS(τ) +

∫ t

0
σ(Y (τ)) dB(S(τ)) , (3.37)



3.3 The Generalised Feynman-Kac Equation 57

where we employed again Eq. (2.167a). After taking its time derivative, we derive the
following equation for the increments of Y [120]:

Ẏ (t) = F (Y (t), t)Ṡ(t) + σ(Y (t)) · ξ(S(t))Ṡ(t). (3.38)

This result elucidates that Y has still continuous paths and that Eq. (3.15) still holds.
Similar arguments as in the previous derivation can be made, leading to the same Eq. (3.20)
with LFP (y, t) and the same averaged stochastic integral, which needs to be related to the
joint PDF. As already highlighted, the proof Eq. (3.28) needs a detailed analysis, as both
X and W depend on the realisations of the noise η. Starting from Eq. (3.26), we write:

P (p, y, λ) =

∫ +∞

0

〈
e−λT (s)+i pA(s)η(s)δ(y −X(s))

〉
ds

=

∫ +∞

0

〈
δ(y −X(s))

[
η(s) e−

∫ s
0 η(r)[λ−i p U(X(r))] dr

]〉
ds

= − 1

λ− i p U(y)

∫ +∞

0

〈
δ(y −X(s))

∂

∂s
e−

∫ s
0 η(r)[λ−i p U(X(r))] dr

〉
ds , (3.39)

where we used again the definition Eq. (3.21) and the properties of the delta function to
factorise the term [λ − i p U(y)]. However, as already highlighted, the factors inside the
ensemble average can no longer be separated. Nevertheless, this expression can still be
simplified if we look at its discretised form. We consider a partition π = {0 = s0 < s1 <

. . . < sN = s} of the interval [0, s] with constant mesh ∆s and N = s/∆s. We denote:
X(si) = Xi and η(si) = ηi. We recall that ηi are RVs with characteristic function specified
by Φ, such that ∆Ti = ηi ∆s is the corresponding T increment. Noting that the delta
function only imposes a condition on the final point, we can write:〈

δ(y −X(s))
∂

∂s
e−

∫ s
0 η(r)[λ−i p U(X(r))] dr

〉
= lim

N→∞
∆s→0

〈
e−

∑N+1
j=1 ηj [λ−i p U(Xj−1)]∆s − e−

∑N
j=1 ηj [λ−i p U(Xj−1)]∆s

∆s

〉∣∣∣∣∣
XN=y

= lim
N→∞
∆s→0

〈
e−

∑N
j=1 ηj [λ−i p U(Xj−1)]∆s

[
e−∆s ηN+1[λ−i p U(XN )] − 1

∆s

]〉∣∣∣∣∣
XN=y

= lim
N→∞
∆s→0

〈
e−

∑N
j=1 ηj [λ−i p U(Xj)]∆s

〉〈e−∆s ηN+1[λ−i p U(y)] − 1

∆s

〉
, (3.40)

where in the first line we discretised the derivative in s and in the second line we factorised
the average over the last increment ∆T = ∆s ηN+1. This is allowed because (i) U(XN )

only depends on the increments of the process T up to N , which are independent on the
final increment (as T is a Lévy process), and (ii) the end point value is conditioned to y,
i.e., U(XN ) = U(y), which is no longer a RV. The average is then computed with Eq. (3.5):〈

e−∆s ηN+1[λ−i p U(y)] − 1

∆s

〉
=
e−∆sΦ(λ−i p U(y)) − 1

∆s
. (3.41)
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Substituting this term into Eq. (3.40) and taking the continuum limit ∆s→ 0, we obtain:

〈
δ(y −X(s))

∂

∂s
e−

∫ s
0 η(r)[λ−i p U(X(r))] dr

〉
=

− Φ(λ− i p U(y))
〈
δ(y −X(s))e−

∫ s
0 η(r)[λ−i p U(X(r))] dr

〉
, (3.42)

leading with Eq. (3.39) to the same relation Eq. (3.28) also in the case of time dependent
forces. The rest follows as in the earlier derivation. Thus, we have shown that Eq. (3.29)
with the substitution LFP (y) → LFP (y, t) is the GFFKE of processes described by the
subordinated Langevin Eqs. (3.35), where time dependent forces are present. Recalling that
the only difference with Eq. (3.29) consists in the time dependence of the FP operator,
the Brownian and CTRW special cases yield again the FK equation and its fractional
extension, but with explicit time dependence in the force term. If we further set p = 0,
we obtain the GFFP Eq. (3.31) with time dependent FP operator, which is placed on
the left of the memory integral. Thus, our formalism naturally provides a solution to
this issue, i.e., the position of the FP operator with respect to the memory integral, in a
more general framework than CTRWs, in which specific case it has long been long debated
[157, 151, 158, 152].

3.4 Multipoint Structure of Anomalous Processes

In this section, we provide a characterisation of the multipoint structure of the processes
Y (t) and W (t). To this aim, we explicitly use their stochastic description Eqs. (3.4a-3.4b)
and Eq. (3.1). Indeed, functions of both these processes evaluated at different times cannot
be derived from Eq. (3.29), as this formula only describes functions evaluated at a single
time. Within this discussion, we will also obtain useful properties of the time-change S(t)

and we will further obtain a formula for the two-point correlation function of Y , only
involving integrals of single-time functions.

3.4.1 General Formalism

We first recall the standard technique used to compute ensemble averaged single point
functions of Y and W . In the specific case of Eqs. (3.4a, 3.4b), (i) the dynamics of X is
not coupled to T and (ii) the noises η(s) and ξ(s) are independent. Thus, the average of
a general smooth function f(y, t) = 〈f(Y (t))〉 can be written as below:

f(y, t) =

∫ +∞

0
〈f(X(s)) δ(s− S(t))〉ds =∫ +∞

0
〈f(X(s))〉 〈δ(s− S(t))〉ds =

∫ +∞

0
〈f(X(s))〉h(s, t) ds , (3.43)

where we factorise the ensemble average on the realisations of the two noises and we intro-
duce the single point PDF of S: h(s, t) = 〈δ(s− S(t))〉. This object can then be computed
exactly by recalling Eq. (3.6) [131]. In details, we have: h(s, t) = − ∂

∂s 〈Θ(t− T (s))〉. In
Laplace space, this is readily computed. We have:

∫ +∞
0 e−λt 〈Θ(t− T (s))〉dt =

〈
e−λT (s)

〉
,

so that h(s, t) is related in Laplace space to the characteristic function of the subordinator



3.4 Multipoint Structure of Anomalous Processes 59

T . If we use Eq. (3.5) with the test function k(s′) = λΘ(s− s′), we obtain [159]:

h̃(s, λ) = − 1

λ

∂

∂s

〈
e−λT (s)

〉
=

Φ(λ)

λ
e−sΦ(λ). (3.44)

Consequently, if 〈f(X(s))〉 is known, the combination of Eqs. (3.43, 3.44) provides the
corresponding quantity for Y (t), at least in Laplace space if an analytical inverse transform
of Eq. (3.44) is not available. Specifically, we obtain the following result in Laplace space:

f̃(y, λ) =

∫ +∞

0
〈f(X(s))〉 h̃(s, λ) ds (3.45)

In addition, we can compute straightforwardly the first moment of W (t). Recalling its
definition Eq. (3.1), we have: Ẇ (t) = U(Y (t)), such that in Laplace space we find:
λ W̃ (λ) = Ũ(Y (λ)) =

∫ +∞
0 e−λ t U(Y (t)) dt . If we now solve with respect to W̃ , take

its ensemble average and use Eq. (3.45), we obtain the following equation:

〈
W̃ (λ)

〉
=

1

λ

∫ +∞

0
〈U(X(s))〉 h̃(s, λ) ds . (3.46)

As a further example of application of Eq. (3.44), we provide a characterisation of the
moments of the time-change S, which are given in Laplace space by the following formula:

〈[
S̃(λ)

]n〉
=

∫ +∞

0
sn h̃(s, λ) ds =

n!

λ [Φ(λ)]n
. (3.47)

In particular, for n = {1, 2} we obtain respectively the first and second moments:
〈
S̃(λ)

〉
=

1/[λΦ(λ)] and
〈[
S̃(λ)

]2
〉

= 2/[λ [Φ(λ)]2]. In the specific case of a CTRW subordinator,

i.e., Φ(λ) = λα, we then recover the following results [131]: 〈S(t)〉 = tα/Γ(1 + α) and〈
[S(t)]2

〉
= 2 t2α/Γ(1 + 2α).

We now consider an averaged two point function of the process Y , i.e., a quantity of
the type: f(y2, t2; y1, t1) = 〈f(Y (t1), Y (t2))〉 [131]. Following the same procedure, we find:

f(y2, t2; y1, t1) =

∫ +∞

0

∫ +∞

0
〈f(X(S(t2)), X(S(t1)))δ(s2 − S(t2))δ(s1 − S(t1))〉 ds2 ds1

=

∫ +∞

0

∫ +∞

0
〈f(X(s2), X(s1))〉 〈δ(s2 − S(t2))δ(s1 − S(t1))〉ds2 ds1

=

∫ +∞

0

∫ +∞

0
〈f(X(s2), X(s1))〉h(s2, t2; s1, t1) ds2 ds1 (3.48)

where we factorise the ensemble average, thanks to the independence of the noises η
and ξ and of the processes X and T , and we introduce the two point PDF of S(t) as:
h(s2, t2; s1, t1) = 〈δ(s2 − S(t2))δ(s1 − S(t1))〉. Again, we can exploit Eq. (3.6) to relate this
object to the characteristic functional of the process T. In details, we find: h(s2, t2; s1, t1) =
∂2

∂s2 ∂s1
〈Θ(t2 − T (s2))Θ(t1 − T (s1))〉, with the averaged quantity being related in Laplace

space to the two point characteristic function of T : Z̃(λ2, s2;λ1, s1) =
〈
e−λ2T (s2)e−λ1T (s1)

〉
.

Indeed, by making a double Laplace transform we obtain the following relation:

h̃(s2, λ2; s1, λ1) =
1

λ1λ2

∂2

∂s2 ∂s1
Z̃(λ2, s2;λ1, s1). (3.49)
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We still need to find a closed equation for the two-point characteristic function Z. Indeed,
its computation follows straightforwardly by distinguishing the two cases t2 > t1 and
t2 < t1 and suitably separating the integrals over the noise η:

Z̃(λ2, s2;λ1, s1) = Θ(s2 − s1)
〈
e−(λ1+λ2)

∫ s1
0 η(τ) dτ e

−λ2

∫ s2
s1

η(τ) dτ
〉

+ Θ(s1 − s2)
〈
e−(λ1+λ2)

∫ s2
0 η(τ) dτ e

−λ1

∫ s1
s2

η(τ) dτ
〉
. (3.50)

Recalling that the increments of a Lévy process are independent and stationary, we can
factorise the average in Eq. (3.50) and use Eq. (3.5) to compute each of the averages over
distinct time intervals. In details, we obtain:

Z̃(λ2, s2;λ1, s1) = Θ(s2 − s1)e−s1 Φ(λ1+λ2)e−(s2−s1)Φ(λ2)

+ Θ(s1 − s2)e−s2 Φ(λ1+λ2)e−(s1−s2)Φ(λ1). (3.51)

If we then substitute this result in Eq. (3.49) and perform the time derivatives, we obtain:

h̃(s2, λ2; s1, λ1) = δ(s2 − s1)
Φ(λ1)− Φ(λ1 + λ2) + Φ(λ2)

λ1λ2
e−s1Φ(λ1+λ2)

+ Θ(s2 − s1)
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1λ2
e−s1Φ(λ1+λ2)e−(s2−s1)Φ(λ2)

+ Θ(s1 − s2)
Φ(λ1) [Φ(λ1 + λ2)− Φ(λ1)]

λ1λ2
e−s2Φ(λ1+λ2)e−(s1−s2)Φ(λ1). (3.52)

In the case of CTRWs, Eq. (3.52) recovers the result first presented in [131]. Consequently,
if the corresponding two-point function of X(s), i.e., 〈f(X(s2), X(s1))〉, is known, the
combination of Eqs. (3.48, 3.52) provides the corresponding quantity for Y , at least in 2D
Laplace transform. This is indeed given by the formula below:

f̃(y2, λ2; y1, λ1) =

∫ +∞

0

∫ +∞

0
〈f(X(s2), X(s1))〉 h̃(s2, λ2; s1, λ1) ds1 ds2 (3.53)

Similarly to the single point case, we can employ Eq. (3.52) to compute the two-point
correlation functions of W . Recalling that ∂2/(∂t1 ∂t2)W (t1)W (t2) = U(Y (t1))U(Y (t2)),
or in double Laplace transform: λ1 λ2 W̃ (λ1)W̃ (λ2) = Ũ(Y (λ1)) Ũ(Y (λ2)), we find:

〈
W̃ (λ1)W̃ (λ2)

〉
=

1

λ1λ2

∫ +∞

0

∫ +∞

0
e−λ1 t1e−λ2 t2 〈U(Y (t2))U(Y (t1))〉 dt1 dt2

=
1

λ1λ2

∫ +∞

0

∫ +∞

0
〈U(X(s2)), U(X(s1))〉 h̃(s2, λ2; s1, λ1) ds2 ds1 (3.54)

where in the second line we use the same steps of Eq. (3.48).
As a further application of Eq. (3.52), we compute the two-point correlation function

of S. Recalling its definition, we can write:

〈S(t1)S(t2)〉 =

∫ +∞

0

∫ +∞

0
s1 s2 h(s2, t2; s1, t1) ds1 ds2 , (3.55)
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which in Laplace space and by direct substitution of Eq. (3.52) becomes:

〈
S̃(λ1)S̃(λ2)

〉
=

Φ(λ1)− Φ(λ1 + λ2) + Φ(λ2)

λ1λ2

∫ +∞

0
s2e−sΦ(λ1+λ2) ds (3.56)

+
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1λ2

∫ +∞

0

∫ +∞

0
Θ(s2 − s1)s1 s2 e

−s1Φ(λ1+λ2)e−(s2−s1)Φ(λ2) ds1ds2

+
Φ(λ1) [Φ(λ1 + λ2)− Φ(λ1)]

λ1λ2

∫ +∞

0

∫ +∞

0
Θ(s1 − s2)s1 s2 e

−s2 Φ(λ1+λ2)e−(s1−s2)Φ(λ1) ds1ds2

where the remaining integrals can then be computed analytically. In particular, for the one
in the first line of Eq. (3.56) we find:

∫ +∞
0 s2e−sΦ(λ1+λ2) ds = 2/[Φ(λ1 + λ2)]3. The other

two integrals can be solved with the change of variables: (s′2, s
′
1) = (|s2− s1|,min (s2, s1)).

In this new coordinates the integrals factorise, as we show below (for one of them):∫ +∞

0

∫ +∞

0
Θ(s2 − s1)s1 s2 e

−s1Φ(λ1+λ2)e−(s2−s1)Φ(λ2) ds1ds2

=

∫ +∞

0
s′2e
−s′2Φ(λ2) ds′2

∫ +∞

0
s′1e
−s′1 Φ(λ1+λ2) ds′1 +

1

Φ(λ2)

∫ +∞

0
(s′1)2e−s

′
1 Φ(λ1+λ2) ds′1

=
1

Φ(λ2)

[
2

[Φ(λ1 + λ2)]3
+

1

Φ(λ1 + λ2)

]
(3.57)

Recalling that the third integral in Eq. (3.56) can be obtained by simply exchanging the
indexes in Eq. (3.57), we derive the following result:

〈S(λ1)S(λ2)〉 =
Φ(λ1)− Φ(λ1 + λ2) + Φ(λ2)

λ1λ2

2

[Φ(λ1 + λ2)]3

+
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1λ2

{
1

Φ(λ2)

2

[Φ(λ1 + λ2)]3
+

1

[Φ(λ2)Φ(λ1 + λ2)]2

}
+

Φ(λ1) [Φ(λ1 + λ2)− Φ(λ1)]

λ1λ2

{
1

Φ(λ1)

2

[Φ(λ1 + λ2)]3
+

1

[Φ(λ1)Φ(λ1 + λ2)]2

}
, (3.58)

which after simple algebra simplifies to the following formula:

〈S(λ1)S(λ2)〉 =
1

λ1λ2Φ(λ1 + λ2)

[
1

Φ(λ1)
+

1

Φ(λ2)

]
. (3.59)

In the CTRW case we recover: 〈S(λ1)S(λ2)〉 =
[
λ−1−α

1 λ−1
2 + λ−1−α

2 λ−1
1

]
/(λ1+λ2)α [131].

Exact results in physical time are obtained by solving Eqs. (3.53, 3.54) in Laplace
space and then by taking the Laplace inverse transform of the solutions found. However,
these solutions often include terms containing the expression 1/Φ(λ1 +λ2), for instance in
Eq. (3.59). This term can be manipulated by defining a two point operator K

(
∂
∂t1

+ ∂
∂t2

)
,

acting on a general two-point smooth function g(t1, t2), whose Laplace transform reads:∫ +∞

0
e−λ1t1

∫ +∞

0
e−λ2t2K

(
∂

∂t1
+

∂

∂t2

)
g(t1, t2) dt2 dt1 =

g(λ1, λ2)

Φ (λ1 + λ2)
, (3.60)

which can be used to make the Laplace inverse transform of general expressions involv-
ing such factor, as it admits an exact integral expression in physical time. By recalling



3.4 Multipoint Structure of Anomalous Processes 62

Eq. (3.30), we can write the following:∫ +∞

0

∫ +∞

0
e−λ1t1−λ2t2δ(t2 − t1)K(t1) dt1 dt2 =

∫ +∞

0
e−(λ1+λ2)tK(t) dt

= K̃(λ1 + λ2) =
1

Φ(λ1 + λ2)
. (3.61)

Combining this result with the convolution theorem, we can define the two-point operator
K as a two-fold convolution, i.e., K

(
∂
∂t1

+ ∂
∂t2

)
g(t1, t2) = K(t1)δ(t2 − t1) ∗ ∗g(t1, t2).

Introducing the notation t∗ = min(t1, t2), the operator has the following integral form:

K

(
∂

∂t1
+

∂

∂t2

)
g(t1, t2) =

∫ t∗

0
K(s) g(t1 − s, t2 − s) ds (3.62)

3.4.2 Two-point Correlation Function for Stationary Parent Processes

In this section, we compute the two-point correlation function of Y , when we consider
a process X having correlation function 〈X(s1)X(s2)〉 = H(s2 − s1) in the stationary
regime, where H is a general smooth decreasing function. Thus, we will compute explicitly
Eq. (3.53) with the further assumption t2 ≥ t1. Recalling that the process S is increasing,
but not strictly, such assumption induces the relation: S(t2) ≥ S(t1), or equivalently
s2 ≥ s1, i.e., we need to keep only the first and second term in Eq. (3.52). This condition
also holds in the case t2 > t1, due to the presence of the trapping events in the trajectories of
the anomalous diffusing particle. In this case indeed S(t2) = S(t1). For later convenience,
we treat the contributions from these two terms separately. First, the contribution of the
term proportional to Θ(s2 − s1) can be written in Laplace transform as follows:

〈
Ỹ (λ1)Ỹ (λ2)

〉
=

Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1 λ2
×

×
∫ +∞

0

∫ +∞

0
e−s1 Φ(λ1+λ2)e−(s2−s1) Φ(λ2)Θ(s2 − s1)H(s2 − s1) ds1 ds2

=
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1 λ2

∫ +∞

0

∫ +∞

0
e−s

′
1 Φ(λ1+λ2)e−s

′
2 Φ(λ2)H(s′2) ds′1ds′2

=
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1 λ2 Φ(λ1 + λ2)
H̃(Φ(λ2)) , (3.63)

where we solved the corresponding integrals with the same coordinate change as in Eq. (3.57).
If we further separate the terms in its rhs, we obtain:

〈
Ỹ (λ1)Ỹ (λ2)

〉
=

Φ(λ2)

λ1 λ2
H̃(Φ(λ2))− [Φ(λ2)]2

λ1 λ2 Φ(λ1 + λ2)
H̃(Φ(λ2)) . (3.64)

If we now define auxiliary functions f1,2(t) by specifying their Laplace transform as below:

f̃1(λ) =
Φ(λ)

λ
H̃(Φ(λ)) f̃2(λ) = − [Φ(λ)]2

λ
H̃(Φ(λ)) (3.65)

the inverse Laplace transform of Eq. (3.64) can be written straightforwardly as below:

〈Y (t1)Y (t2)〉 = f1(t2) +

∫ t1

0
K(s)f2(t2 − s) ds (3.66)
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The specific form of the functions f1,2 can be obtained once both the process X and
the Laplace exponent of the subordinator Φ are specified. As a sanity check, we note
that for Φ(λ) = λ (Brownian limit), we find: f̃1(λ) = H̃(λ) and f̃2(λ) = −λ H̃(λ), i.e.,
f1(t) = H(t) and f2(t) = ∂tH(t), such that we have 〈Y (t1)Y (t2)〉 = H(t2) +

∫ t1
0

∂
∂sH(t2 −

s) ds = H(t2) + H(t2 − t1) −H(t2) = H(t2 − t1), which recovers the assumption on the
X-correlation. We here neglected the value at zero of H in the Laplace inverse transform
of f2, as it does not contribute to the correlation function. This point can be further shown
by substituting f̃1,2 directly in Eq. (3.64) and make the Laplace inverse transform of the
resulting expression. Secondly, the contribution of the term proportional to δ(s2 − s1) is
given in Laplace transform as follows:〈

Ỹ (λ1)Ỹ (λ2)
〉

=
Φ(λ1)− Φ(λ1 + λ2) + Φ(λ2)

λ1 λ2
×

×
∫ +∞

0

∫ +∞

0
e−s1 Φ(λ1+λ2)δ(s2 − s1)H(s2 − s1) ds1 ds2

= H0

[
− 1

λ1 λ2
+

Φ(λ1)

λ1 λ2 Φ(λ1 + λ2)
+

Φ(λ2)

λ1 λ2 Φ(λ1 + λ2)

]
, (3.67)

with the definition H0 = H(0). This result can be rewritten in the more compact form:〈
Ỹ (λ1)Ỹ (λ2)

〉
= H0 C̃(λ1, λ2) with the auxiliary function C defined as below:

C̃(λ1, λ2) =

[
− 1

λ1 λ2
+

Φ(λ1)

λ1 λ2 Φ(λ1 + λ2)
+

Φ(λ2)

λ1 λ2 Φ(λ1 + λ2)

]
. (3.68)

As a sanity check, we note that in the Brownian limit (Φ(λ) = λ) Eq. (3.68) becomes:
C̃(λ1, λ2) = −1/[λ1 λ2] + [λ1 + λ2]/[λ1 λ2 (λ1 + λ2)] = 0, i.e., the contribution from the
trapping events is null, as required. Interestingly, the Laplace inverse transform of C can
be done analytically, by introducing a third auxiliary function:

w̃(λ) =
Φ(λ)

λ
. (3.69)

By recalling Eqs. (3.61, 3.62), we easily obtain [t∗ = min(t1, t2)]:

L−1

{
Φ(λ1)

λ1 λ2

1

Φ(λ1 + λ2)

}
(t1, t2) =

∫ t∗

0
K(s)w(t1 − s) ds

= Θ(t1 − t2)

∫ t2

0
K(s)w(t1 − s) ds + Θ(t2 − t1)

∫ t1

0
K(s)w(t1 − s) ds

= Θ(t1 − t2)

∫ t2

0
K(s)w(t1 − s) ds + Θ(t2 − t1), (3.70)

where the second integral is solved exactly by using the convolution theorem and Eq. (3.61).
Clearly, the third term in Eq. (3.68) is obtained from the previous result by simply ex-
changing the indexes. With our assumption on the ordering of the times, we obtain:

C(t1, t2) =

∫ t1

0
K(s)w(t2 − s) ds (3.71)
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Thus, putting together Eqs. (3.66, 3.71), we obtain the final result:

〈Y (t1)Y (t2)〉 = f1(t2) +

∫ t1

0
K(s)f2(t2 − s) ds +H0

∫ t1

0
K(s)w(t2 − s) ds (3.72)

The result Eq. (3.72) indicates that the two-point correlation function of the anomalous
process Y can be expressed in terms of an integral of single-time functions, thus highlighting
a simple underlying structure.

As a second check, we consider the case of CTRW dynamics and show the consistency
of our results with those presented in [86]. We first look at Eq. (3.66). In this case, we
have: f̃1(λ) = λα−1 H̃(λα) and f̃2(λ) = −λ2α−1 H̃(λα). We further consider the case of X
being an Ornstein-Uhlenbeck (OU) process with friction coefficient γ and noise intensity
D. Thus, H(s) = D

2 γ e
−γ s, i.e., in Laplace space H̃(λ) = D

2 γ
1

λ+γ , in the stationary regime,
corresponding to the limit s2 > s1 →∞ with |s2 − s1| finite [83]. Thus, we can compute:
f1(λ) = D

2 γ
1

λ+γ λ1−α , i.e., f1(t) = D
2 γEα(−γ tα), and f2(λ) = − D

2 γ
λ2α−1

γ+λα , whose Laplace
inverse transform is obtained by using Eq. (A.10): f2(t) = − D

2 γ t
−αEα,1−α(−γ tα). Thus,

Eq. (3.72) becomes:

〈Y (t1)Y (t2)〉 =
D

2 γ
Eα(−γ tα2 )− D

2 γ

1

Γ(α)

∫ t1

0
sα−1 (t2 − s)−αEα,1−α(−γ (t2 − s)α) ds

=
D

2 γ
Eα(−γ tα2 )− D

2 γ

1

Γ(α)

+∞∑
n=0

(−γ)n

Γ(1− α+ αn)

∫ t1

0
sα−1 (t2 − s)−α+αn ds

=
D

2 γ
Eα(−γ tα2 )− D

2 γ

1

Γ(α)

+∞∑
n=0

(−1)n(γ tα2 )n

Γ(1− α+ αn)
B

(
t1
t2
, α, 1− α+ αn

)
(3.73)

where we employed the series expansion of the ML function Eq. (A.9) and we introduce the
incomplete beta function B(z, a, b) =

∫ z
0 y

a−1(1 − y)b−1 dy . If we now consider the limit
t2 > t1 → ∞ (with ∆t = t2 − t1 finite), the incomplete beta functions have the scaling:
B (t1/t2, α, 1− α+ αn) ∼ B (1, α, 1− α+ αn) = Γ(α) Γ(1−α+αn)

Γ(1+αn) , such that the series in
the rhs of Eq. (3.73) has the following asymptotic scaling:

1

Γ(α)

+∞∑
n=0

(−1)n(γ tα2 )n

Γ(1− α+ αn)
B

(
t1
t2
, α, 1− α+ αn

)
∼

+∞∑
n=0

(−1)n(γ tα2 )n

Γ(1 + αn)
= Eα(−γ tα2 ). (3.74)

Thus, the two terms in Eq. (3.73) cancel out in this limit and this first contribution
converges to zero, consistently with [86] (in our case indeed the first moment with respect
to the Boltzmann distribution is null, i.e., 〈x〉B = 0). Regarding the second contribution,
we obtain: C(t1, t2) = B(t1/t2,α,1−α)

Γ(α) Γ(1−α) and H0 = D
2 γ , i.e., we recover the scaling of [86]. This

result suggests that the universal scaling behaviour of the two point correlation function
of Y , found in Ref. [86] for the specific CTRW case, may hold for general waiting time
distributions with the scaling function w. Further checks will be performed in future work.

The result presented in Eq. (3.72) is relevant as it describes the general behaviour of
the correlation function of anomalous processes, obtained by subordination of a process
X admitting a stationary regime. Indeed, transient terms eventually appearing in the
correlation function of X can be shown to disappear for t2 > t1 → ∞ using Tauberian
theorems. We motivate this claim by elucidating the case already discussed before of X
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being an OU process. In this specific case, the transient component of the correlation
function has the temporal part described by the function H(s1 + s2) = H(s1)H(s2), with
H(s) = e−γ s. As before, we can use Eqs. (3.48, 3.52) to write (in Laplace space):

〈
Ỹ (λ1)Ỹ (λ2)

〉
=

Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1 λ2
×

×
∫ +∞

0

∫ +∞

0
e−s1 Φ(λ1+λ2)e−(s2−s1) Φ(λ2)Θ(s2 − s1)H(s2)H(s1) ds1 ds2

=
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

λ1 λ2

∫ +∞

0
e−s

′
1 Φ(λ1+λ2)H(2 s′1)ds′1

∫ +∞

0
e−s

′
2 Φ(λ2)H(s′2)ds′2

=
Φ(λ2) [Φ(λ1 + λ2)− Φ(λ2)]

2λ1 λ2 Φ(λ1 + λ2)
H̃(Φ(λ2)) H̃

(
1

2
Φ(λ1 + λ2)

)
. (3.75)

In the specific OU case, H̃(λ) = 1/(λ+ γ), i.e., we obtain:

〈
Ỹ (λ1)Ỹ (λ2)

〉
=

Φ(λ2)[Φ(λ1 + λ2)− Φ(λ2)]

λ1 λ2

1

γ + Φ(λ2)

1

2 γ + Φ(λ1 + λ2)

=
Φ(λ2)

λ1 λ2

[
1

γ + Φ(λ2)
− 1

2 γ + Φ(λ1 + λ2)
− γ

[2 γ + Φ(λ1 + λ2)][γ + Φ(λ2)]

]
. (3.76)

We note that Eq. (3.76) does not have an explicit integral expression in time, as no suitable
technique to make the Laplace inverse transform of the term 1/[γ+Φ(λ1 +λ2)] is available.
Indeed, Eq. (3.61) is not useful in this case. However, for the purpose of our discussion, we
can employ Tauberian theorems to show that Eq. (3.76) do not contribute to the correlation
function in the limit t2 > t1 → ∞. Indeed, recalling that Φ(0) = 0, the leading order of
the denominators in Eq. (3.76) are the following: γ + Φ(λ) ≈ γ, 2 γ + Φ(λ) ≈ 2 γ and
[2 γ + Φ(λ)][γ + Φ(λ)] ≈ 2 γ2. Thus, in this scaling regime the term in square brackets in
Eq. (3.76) is null and the transient term cancels out. A similar calculation shows that also
the transient contribution from the flat intervals converges to zero in this scaling regime.

3.5 A Toolbox for Data Analysis

Earlier in this Chapter, we constructed a complete framework for the analysis of anomalous
stochastic processes and of their general functionals, comprising (i) a Langevin descrip-
tion of their stochastic coarse-grained dynamics in terms of the subordinated Eqs. (3.4a,
3.4b), (ii) fractional evolution equations for their PDFs, in particular the GFFK Eq. (3.29)
and GFFP Eq. (3.31), and (iii) the characterisation of their multipoint functions, among
which correlation functions are the most relevant for application to experimental datasets.
Thanks to the flexibility in the choice of both the waiting time distribution, i.e., of the
function Φ in Eq. (3.5), and of the auxiliary process X, this formalism can generate several
different dynamical processes, yet mainly unexplored. Consequently, our general results
constitute an essential tool-kit of methods to interpret anomalous diffusive dynamics ob-
served in experimental datasets, for instance of molecules’ transport in biological systems.

In this section, we will look at specific examples to elucidate the potentialities of this
formalism. Specifically, we will study two examples of dynamics for the process X in
Eq. (3.4a): (i) the free diffusive case, i.e., F (x) = 0, σ(x) =

√
2σ and (ii) the harmonic

oscillator case, i.e., F (x) = −γx, σ(x) =
√

2σ. Here, γ and σ are positive real constants.
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Correspondingly, we will investigate its time averaged linear functional: W (t) = W (t)/t,
with W (t) as in Eq. (3.1) with U(x) = x. In the case (i) we will study the MSD of both X
and W (t); in the case (ii), we will study both their MSD and their two-point correlation
function. In both cases, we will look at different examples of Φ.

General MSD

Let us first derive general equations for the MSD of X and W in both cases (i-ii). First,
we start from the GFFP Eq. (3.31) in Laplace space (P (y, 0) is the PDF of the initial
position):

λP̃ (y, λ)− P (y, 0) =
λ

Φ(λ)

[
− ∂

∂y
F (y) +

1

2

∂2

∂y2
σ2(y)

]
P̃ (y, λ). (3.77)

This equation can be employed to derive the moments of Y (t) for general Φ. For instance,
the first moment, which is given in Laplace space

〈
Ỹ (λ)

〉
=
∫ +∞
−∞ yP̃ (y, λ) dy , can be

computed by multiplying Eq. (3.77) by y on both sides and performing the integral. This
leads to the following result:

λ
〈
Ỹ (λ)

〉
− λ

Φ(λ)

〈
F̃ (Y (λ))

〉
= y0. (3.78)

where we interpret the force dependent term as:
〈
F̃ (Y (λ))

〉
=
∫ +∞
−∞ F (y)P̃ (y, λ) dy . Sim-

ilarly, recalling that
〈
Ỹ 2(λ)

〉
=
∫∞
−∞ y

2P̃ (y, λ) dy , we obtain for the second moment:

λ
〈
Ỹ 2(λ)

〉
− 2λ

Φ(λ)

〈
Ỹ (λ)F̃ (Y (λ))

〉
− λ

Φ(λ)

〈
σ̃2(Y (λ))

〉
= y2

0 (3.79)

with the terms depending on F and σ being interpreted as in the previous case, i.e.,〈
Ỹ (λ)F̃ (Y (λ))

〉
=
∫ +∞
−∞ y F (y)P̃ (y, λ) dy and

〈
σ̃2(Y (λ))

〉
=
∫ +∞
−∞ σ2(y)P̃ (y, λ) dy . Simi-

lar formulas can be obtained for higher order moments. In the specific case (i), we find:〈
Ỹ (λ)

〉
=
y0

λ
(3.80a)〈

Ỹ 2(λ)
〉

=
y2

0

λ
+

2σ

λΦ(λ)
(3.80b)

or equivalently in time space, by recalling Eq. (3.30), 〈Y (t)〉 = y0 and
〈
Y 2(t)

〉
= y2

0 +

2σ
∫ t

0 K(τ) dτ . These results indeed lead to the following MSD:

M̃SDY (λ) =
2σ

λΦ(λ)
MSDY (t) = 2σ

∫ t

0
K(τ) dτ . (3.81)

As a sanity check, we note that for K(t) = tα−1/Γ(α) (CTRW case), we obtainMSD(t) =

2σ tα/Γ(1 + α) [9]. In the case (ii), we obtain instead the following formulas:

〈
Ỹ (λ)

〉
=
y0

λ

Φ(λ)

Φ(λ) + γ
(3.82a)〈

Ỹ 2(λ)
〉

=

[
y2

0 +
2σ

Φ(λ)

]
Φ(λ)

λ [Φ(λ) + 2γ]
(3.82b)
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An exact inverse Laplace transform can no longer be found, unless we specify Φ(s). The
corresponding MSD is given in Laplace space by:

M̃SDY (λ) =
1

2γ + Φ(λ)

{
2σ

λ
+

2γ2y2
0

λ [γ + Φ(λ)]

}
. (3.83)

Let us find now analogous results for W (t). Form the definition Eq. (3.1), we trivially
obtain that the first moment is given in Laplace space by:

〈
W̃ (λ)

〉
=
〈
Ũ(Y (λ))

〉
/λ, with

the definition:
〈
Ũ(Y (λ))

〉
=
∫ +∞
−∞ U(y) P̃ (y, λ) dy . Further recalling that

〈
W̃ 2(λ)

〉
=

− ∂2

∂p2

∫ +∞
−∞

̂̃
P (p, y, λ) dy

∣∣∣∣
p=0

, one can derive the relation:
〈
W̃ 2(λ)

〉
= 2

λ

〈
W̃ (λ)Ỹ (λ)

〉
, by

taking the second order partial derivative of the GFFK formula Eq. (3.29) in Laplace-

Fourier transform. We need to compute:
〈
W̃ (λ)Ỹ (λ)

〉
= −i ∂

∂p

∫ +∞
−∞ y

̂̃
P (p, y, λ) dy

∣∣∣∣
p=0

.

This is done similarly to the case of Y , by multiplying both sides of the Laplace-Fourier
transform of Eq. (3.29) by y and then first by integrating over such variable and secondly
by taking the derivative in p. After evaluating this expression for p = 0, we obtain:

λ

∫ +∞

−∞
y
̂̃
P (p, y, λ) dy − Y0 = ip

∫ +∞

−∞
y U(y)

̂̃
P (p, y, λ) dy

+

∫ +∞

−∞
yLFP (y)

(λ− ipy)
̂̃
P (p, y, λ)

Φ(λ− ipy)
dy , (3.84)

where both the FP operator and U needs to be specified to obtain closed analytical results.
In the case (i) and for a linear functional, i.e., U(y) = y,

〈
W̃ (λ)Ỹ (λ)

〉
=
〈
Ỹ 2(λ)

〉
, thus

leading, by recalling Eq. (3.80b), to the following result:

〈
W̃ 2(λ)

〉
=

2

λ2

〈
Ỹ (λ)

〉
=

2 y2
0

λ3
+

4σ2

λ3 Φ(λ)
. (3.85)

After Laplace inverse transform, we obtain:

〈
W 2(t)

〉
= y2

0t
2 + 2σ2

∫ t

0
(t− τ)2K(τ) dτ . (3.86)

In the case (ii) instead we obtain the following result:

〈
W 2(λ)

〉
=

[
2

λ2
− 2γΦ′(λ)

λΦ(λ)[γ + Φ(λ)]

] 〈
Y 2(λ)

〉
, (3.87)

with
〈
Ỹ 2(λ)

〉
specfied by Eq. (3.82b). As for the second moment of X, we cannot make

its Laplace inverse transform, unless we specify the function Φ.

Two-Point Correlation Function of the Anomalous Harmonic Oscillator

We here consider the two point correlation functions of Y and W in the case (ii). We
further assume t2 ≥ t1. Recalling that correspondingly we have S(t2) ≥ S(t1), due to the
monotonicity of S, we have also s2 ≥ s1. The correlation function of X(s) is given below:

〈X(s2)X(s1)〉 =

(
y2

0 −
σ

γ

)
e−γ(s1+s2) +

σ

γ
e−γ(s2−s1). (3.88)
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We have two terms: (i) a transient contribution with time dependence e−γ (s1+s2) and (ii)
the contribution surviving at equilibrium with time dependence e−γ(s2−s1). The transient
term has been shown to converge asymptotically to zero for long times in Sec. 3.4.2. Thus,
we will neglect it, by assuming x2

0 = σ/γ. Thus, for t2 > t1, the correlation function of Y
is given by Eq. (3.72) with w as in Eq. (3.69) and the following functions f1, f2:

f̃1(λ) =
σ

γ

Φ(λ)

λ[γ + Φ(λ)]
f̃2(λ) = −σ

γ

[Φ(λ)]2

λ[γ + Φ(λ)]
(3.89)

∼ t−1.2

p(
Δt
)

Δt
p(
Δt
)

Δt

∼ t−1.25

∼ t−1.9∼ e−4Δt

Δ

Δ

Δ

a) b)

Figure 3.2: Probability of waiting time increments over an arc-length step ∆s = 0.001 for
different subordinators (blue lines). This is obtained by numerical inverse Laplace trans-
form of their characteristic function e−∆sΦ(λ). (a) Tempered Lévy stable subordinator of
order parameter α = 0.25 and tempering parameter µ = 1. This subordinator interpolates
between power-law distributed waiting times (p(∆t) ∼ ∆t−α−1) and exponentially dis-
tributed waiting times (p(∆t) ∼ e−[1/(αµα−1)] ∆t) respectively for small/large increments,
thus generating an hybrid dynamics between a CTRW and normal diffusion. (b) Mixture of
two independent Lévy stable subordinators of parameters α1 = 0.2, α2 = 0.9, B1 = B2 = 1.
This subordinator interpolates between waiting times distributed as power-laws with dif-
ferent exponents (p(∆t) ∼ ∆t−α2−1 or p(∆t) ∼ ∆t−α1−1 respectively for small/large ∆t).
Thus, the dynamics generated is an hybrid between different types of subdiffusive CTRWs.

3.5.1 The Tempered Stable Subordinator

As a first example, we consider η to be a tempered Lévy stable noise with tempering index
µ and stability index 0 < α ≤ 1, whose Lévy exponent is given by Φ(λ) = (µ+ λ)α−µα, as
we discussed in Sec. 2.2.3. Thus, we can compute the probability of waiting time increments
p(∆t) over a finite arc-length step ∆s as the numerical inverse Laplace transform of the
their characteristic function e−∆sΦ(λ) (shown in Fig. 3.2a). This subordinator interpolates
between exponentially distributed (µ → ∞) and power-law distributed (µ = 0) waiting
times, i.e., p(∆t) ∼ ∆t−1−α or p(∆t) ∼ e−[1/(αµα−1)]∆t respectively for small or large
increments. Thus, we will expect it to generate an hybrid dynamics between a CTRW
and normal diffusive behaviour [160, 161, 162, 159, 163]. According to Eq. (3.62), the
corresponding memory kernel in the GFK Eq. (3.29) has Laplace transform: K̃(λ) =

1/[(µ+ λ)α − µα]. By using Eq. (A.10) and L{e−µ tf(t)}(λ) = f̃(λ + µ), we derive its
expression in time [164]:

K(t) = e−µttα−1Eα,α((µt)α) . (3.90)

Substituting these formulas into Eqs. (3.81, 3.85), we can derive the MSD of Y and W

for a free diffusive X. First, we study their asymptotic behaviour for short(long) times by
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taking the limit λ→∞(λ→ 0) (Tauberian theorems). In the case of Y , we find:

Φ(λ) ∼
λ→∞

λα −→ MSDY (λ) ∼
λ→∞

2σ
λ1+α ,

Φ(λ) ∼
λ→0

α
µ1−αλ −→ MSDY (λ) ∼

λ→0

2σ
αµα−1

1
λ2 .

(3.91)

Thus, we obtain the following scaling behaviour in time:

MSDY (t) ∼
t→0

2 σ

Γ(1 + α)
tα, MSDY (t) ∼

t→∞

2 σ

αµα−1
t. (3.92)

According to our prediction, the MSD of the anomalous process Y exhibits a crossover be-
tween subdiffusive behaviour for short times and normal one for long times. This crossover
regime is verified by numerical simulations of Eqs. (3.4a, 3.4b) in Fig. 3.3a(main). In this
case, by employing Eq. (3.81), we can obtain the following exact formula:

MSDY (t) = 2σ

∫ t

0
e−µ τ τα−1Eα,α((µ τ)α) dτ

=
∞∑
n=0

2σ µαn

Γ(α+ αn)

∫ t

0
e−µ τ τα(1+n)−1 dτ =

2σ

µα

∞∑
n=0

γ(α(1 + n), µ t)

Γ(α+ αn)
, (3.93)

where we used the series expansion of the ML function Eq. (A.9) and we introduced an
incomplete gamma function. As a sanity check, we note that for µ = 0, only the first
term in the series expansion survives, i.e., we obtain the MSD of an ordinary CTRW
MSDY (t) = 2σ tα/Γ(1 + α). In addition, for α = 1, we recover the normal MSD of a free
diffusion brownian motion. Similar calculations can be done in the case of W by using
Eq. (3.85). In this case, we obtain the scaling behaviour:

MSDW (t) ∼
t→0

4σ2

Γ(3 + α)
t3+α, MSDW (t) ∼

t→∞

4σ2

3αµα−1
t3, (3.94)

which shows that the time averaged linear functional W exhibits the same crossover of Y ,
as we also verify in numerical simulations [Fig. 3.3a(inset)]. Below, we calculate the exact
MSD:

MSDW (t) = 2σ2

∫ t

0
e−µ τ τα−1Eα,α((µ τ)α) (t− τ)2 dτ

= 2σ2
∞∑
n=0

µαn

Γ(α+ αn)

∫ t

0
e−µ τ τα(1+n)−1(t− τ)2 dτ

= 2σ2 t2+α
∞∑
n=0

(µ t)αn

Γ(α+ αn)
M(α(1 + n), 3 + α(1 + n),−µ t), (3.95)

where M is a confluent hypergeometric function (see Appendix A.1).
We next consider the case (ii) when X(s) in Eq. (3.4a) is an OU process, such that

Y (t) intermediates between a fractional harmonic oscillator and a normal diffusive one.
The MSD of the time-averaged W -process is given in closed form by Eq. (3.87), whose
Laplace inverse transform can be performed numerically. Its plot as a function of time is
presented in Fig. 3.3b. We find that the MSD exhibits an α-dependent plateau for t→∞
in the CTRW limit (µ = 0) highlighting the ergodicity breaking of the process [146]. For
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µ 6= 0 instead the MSD shows the CTRW scaling for short times, but converges to zero for
t→∞ as in the Brownian limit (µ→∞, black solid line) confirming the ergodic nature of
this anomalous process (Fig. 3.3b). Thus, the MSD of a general anomalous process needs
to be observed for a sufficiently long time to properly assess ergodicity breaking.

We next consider the two-point correlation functions. To this aim, we need to compute
the functions w, f1 and f2, whose Laplace transform is obtained by substituting Φ in
Eqs. (3.69, 3.89). In this case, their Laplace inverse transform can be obtained exactly (see
Appendix C), so that we obtain the following solutions (γ 6= µα):

w(t) = −µα +
t−α e−µ t

Γ(1− α)
+

µα

Γ(1− α)
γ(1− α, µ t), (3.96a)

f1(t) =
σ

γ(γ − µα)
[−µα + γ g(α, γ, µ; t)] , (3.96b)

f2(t) = −σ
γ

[
1

γ − µα
(
µ2α − γ2g(α, γ, µ; t)

)
+
t−α e−µt

Γ(1− α)
+

µα

Γ(1− α)
γ(1− α;µt)

]
(3.96c)

with the function g specified as below:

g(α, γ, µ; t) =
∞∑
n=0

(−1)n((γ − µα)tα)n

Γ(1 + αn)
M(αn, 1 + αn,−µt). (3.97)

The effect of µ 6= 0 is evident (Fig. 3.3c,d), thus allowing to distinguish a CTRW from a
process with waiting times distributed according to a tempered Lévy-stable law. We note
that in the case γ = µα, the Laplace inverse transform of f1,2 reduces to:

f1(t) =
σ

µα

[
1− 1

µα Γ(α)
γ(α, µ t)

]
, (3.98a)

f2(t) = − σ

µα

[
−2µα +

t−α e−µt

Γ(1− α)
+

µα

Γ(1− α)
γ(1− α;µt) +

µα

Γ(α)
γ(α, µ t)

]
(3.98b)

3.5.2 Weighted Sum of Lévy Stable Subordinators

As a second example, we assume η to be given by a mixture of two independent Lévy
stable subordinators with different order parameters 0 < α1 < α2 ≤ 1. Thanks to their
independence, the corresponding Laplace exponent of η is given by the sum of its two com-
ponents: Φ(λ) = B1 λ

α1 +B2 λ
α2 with B1, B2 ≥ 0. We plot the corresponding probability

of waiting time increments over finite ∆s in Fig. 3.2b. As one can infer from the plot,
this subordinator interpolates between waiting times distributed according to power laws
with different exponents. Specifically, the larger order parameter governs the scaling for
small increments, i.e., p(∆t) ∼ ∆t−1−α2 ; conversely, the smaller one determines the scaling
exponent for large increments, i.e., p(∆t) ∼ ∆t−1−α1 . Thus, we will expect the generated
dynamics to be an hybrid model between two different subdiffusive CTRWs. According
to Eq. (3.62), the Laplace transform of its corresponding kernel in the GFFK Eq. (3.29)
is given by K̃(λ) = 1/[B1 λ

α1 + B2 λ
α2 ]. Its Laplace inverse transform is obtained by
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Figure 3.3: Here, X(s) is (a) a free diffusion [F (x) = 0 and σ(x) = 1 in Eq. (3.4a)] or
(b-d) an Ornstein-Uhlenbeck (OU) process [F (x) = −x and σ(x) = 1 in Eq. (3.4a)], η(s)
is a tempered Lévy stable noise (α = 0.25) and U(x) = x. (a) We plot the MSD of Y and
W = W (t)/t (inset) for different values of the tempering parameter µ. The crossover from
subdiffusive to normal scaling respectively for short and large times is evident. For µ = 0,
we recover a CTRW with power-law MSD for all times. (b) We plot the MSD of W for
different values of µ and null initial condition (y0 = 0). While for µ = 0 (CTRW case),
the MSD approaches an α-dependent plateau, signalling its ergodicity breaking, for µ 6= 0
the MSD has its same scaling for short times but it converges to zero for long times, as in
the Brownian limit (black solid line). This highlights that ergodicity is recovered by the
tempered stable subordinated OU process. (c-d) Two-point correlation functions of Y and
W = W (t)/t respectively for y2

0 = σ/γ and finite t.

employing the convolution theorem and recalling Eqs. (A.10, A.15). We obtain [75]:

K(t) =
1

B2

∫ t

0

(t− τ)α1−1

Γ(α1)
τα2−α1−1Eα2−α1,α2−α1

(
−B1

B2
τα2−α1

)
dτ

=
tα2−1

B2
Eα2−α1,α2

(
−B1

B2
tα2−α1

)
, (3.99)

where the integral of the three parameter Mittag-Leffler (ML) function is calculated in
Eq. (A.15). Similarly to the case previously studied, we elucidate the MSD behaviour of
both Y and W . In the case of Y , by applying Tauberian theorems, we find the following
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scaling behaviour:

Φ(λ) ∼
λ→∞

B2 λ
α2 −→ MSDY (λ) ∼

λ→∞
2σ
B2

1
λ1+α2

,

Φ(λ) ∼
λ→0

B1 λ
α1 −→ MSDY (λ) ∼

λ→0

2σ
B1

1
λ1+α1

,
(3.100)

or equivalently after inverse Laplace transform:

MSDY (t) ∼
t→0

2σ

B2 Γ(1 + α2)
tα2 , MSDY (t) ∼

t→∞

2σ

B1 Γ(1 + α1)
tα1 . (3.101)

As predicted from the analysis of the waiting time increments statistics, this model interpo-
lates between subdiffusive CTRWs with different characteristic exponents [Fig. 3.4a(main)].
The exact analytical formula can be obtained by simply integrating Eq. (3.99), which is
realised by suitably adapting Eq. (A.15). We then find:

MSDY (t) =
2σ

B2
tα2 Eα2−α1,1+α2

(
−B2

B1
tα2−α1

)
. (3.102)

In the case of W , by recalling Eq. (3.86), we obtain the following asymptotic behaviour:

MSDW (t) ∼
t→0

4σ2

B2Γ(3 + α2)
t2+α2 , MSDW (t) ∼

t→∞

4σ2

B1 Γ(3 + α1)
t2+α1 . (3.103)

Thus, as for the tempered stable subordinator, the time averaged linear functional W
exhibits the same crossover of Y [Fig. 3.4a(inset)]. Below, we calculate the exact MSD:

MSDW (t) =
4σ2

B2
t2+α2 Eα2−α1,3+α2

(
−B2

B1
tα2−α1

)
. (3.104)

We next consider the case (ii) of X in Eq. (3.4a) being an OU process. We plot the
numerical Laplace inverse transform of Eq. (3.87) in Fig. 3.4b. The process approaches a
plateau in the long-time limit with the same scaling of the CTRW case (B2 = 0, black solid
line), thus highlighting its weak ergodicity breaking [146]. This result, further supported
by the opposite behaviour observed for the tempered Lévy stable subordinator, suggests
that a major role in determining the weak ergodicity breaking of the process is played
by the power-law scaling of the waiting time increments distribution. The corresponding
scaling for small times is instead different from that of the CTRW.

We finally consider the two point correlation functions of both Y and W . The inverse
Laplace transform of Eqs. (3.69, 3.89) with this specific choice of Φ can be derived by
applying the technique presented in Refs. [75] (see Appendix C for the detailed calculation).
We find the following exact analytical results:

w(t) =
B1

Γ(1− α1)
t−α1 +

B2

Γ(1− α2)
t−α2 , (3.105a)

f1(t) =
σ

γ

[
1− γ

B2
tα2 H(t;α1, α2)

]
, (3.105b)

f2(t) =
σ

γ

[
−γ +

B1

Γ(1− α1)
t−α1 +

B2

Γ(1− α2)
t−α2 +

γ2

B2
tα2 H(t;α1, α2)

]
, (3.105c)
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with H being the auxiliary function specified below:

H(t;α1, α2) =

∞∑
n=0

(−1)n
(
γ

B2
tα2

)n
E1+n
α2−α1,1+α2(1+n)

(
−B1

B2
tα2−α1

)
. (3.106)
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Figure 3.4: Here, X(s) is (a) free diffusion [F (x) = 0 and σ(x) = 1 in Eq. (3.4a)] or (b)
an Ornstein-Uhlenbeck process [F (x) = −x and σ(x) = 1 in Eq. (3.4a)], η is the sum
of two independent Lévy stable noises (α1 = 0.2, α2 = 0.9) with exponent specified in
the main text (B1 = 1) and U(x) = x. (a) MSD of Y (main) and W = W (t)/t (inset)
for different values of the parameter B2 (for initial position y0 = 0). The crossover from
subdiffusive dynamics with different scaling exponents (∼ tα2/tα1 respectively for short
and long times) is evident. The same behaviour is displayed by the time-averaged linear
functional W (inset). (b) MSD of W for different values of B2 and null initial position
(Y0 = 0). The CTRW limiting case (B2 = 0) is highlighted (black solid line). In all cases
the MSD approaches the same plateau of the CTRW, signalling their ergodicity breaking
[146]. The scaling behaviour is instead different for B2 6= 0 for short times. (c-d) Two-point
correlation function of Y and W for y2

0 = σ/γ and finite t.

3.5.3 Curvature Modulation at the Crossover Region

In this section, we investigate a further choice of Φ, which will enable us to model MSD
data exhibiting a crossover scaling between subdiffusive and normal diffusive regimes [124,
57, 126] in a more flexible way than with the tempered Lévy stable subordinator. In that
case, indeed, the tuning of the parameter µ both changes the timescale with which the
process approaches the normal diffusive regime, which becomes smaller as we increase its
value, and the corresponding diffusion coefficient. This is proved by the µ−dependence of
the plateau for long times of the rescaled MSD in Fig. 3.3a. Here instead, our aim is to
define a Φ, such that the curvature at the crossover between the two pure power laws, i.e.,
the timescale of the process approaching the normal diffusive regime, can be modulated
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without changing the final diffusion coefficient. Thus, we suggest the more flexible double
power law form:

Φ(λ) = d1

(
λ

d2

)α1
[

1 +

(
λ

d2

)1/β
](α2−α1)β

(3.107)

where 0 < α1, α2 ≤ 1 and d1, d2, β > 0. Recalling Eq. (3.30), the corresponding memory
kernel in the GFFK Eq. (3.29) is given in Laplace transform as follows:

K̃(λ) =
dα2

2

d1

λ−α1[
d

1/β
2 + λ1/β

](α2−α1)β
, (3.108)

which leads via Eq. (A.10) to a three parameter ML function in time:

K(t) =
dα2

2

d1
tα2−1E

β(α2−α1)
1/β,α2

(
−d1/β

2 t1/β
)
. (3.109)

The parameters α1, α2 determine the scaling behaviour of the waiting time increments
probability, and consequently of the MSD of Y and W in the case of X free diffusive. By
applying Tauberian theorems, we obtain:

Φ(λ) ∼
λ→∞

d1 λ
α2/dα2

2 −→ MSDY (λ) ∼
λ→∞

2σ dα2
2 /[d1 λ

1+α2 ],

Φ(λ) ∼
λ→0

d1 λ
α1/dα1

2 −→ MSDY (λ) ∼
λ→0

2σ dα1
2 /[d1 λ

1+α1 ],
(3.110)

corresponding to the following scaling in time:

MSDY (t) ∼
t→0

2σ
dα2

2

d1

tα2

Γ(1 + α2)
, MSDY (t) ∼

t→∞
2σ

dα1
2

d1

tα1

Γ(1 + α1)
. (3.111)

Thanks to the fact that K in Eq. (3.109) is given by a three parameter ML, the MSD of
Y , according to Eq. (3.81), follows straightforwardly by adapting the formula Eq. (A.15):

MSDY (t) = 2σ
dα2

2

d1
tα2E

β(α2−α1)
1/β,1+α2

(
−d1/β

2 t1/β
)
. (3.112)

Similarly, recalling Eqs. (3.85, 3.86), the scaling behaviour of the linear functional W can
be obtained straightforwardly:

MSDW (t) ∼
t→0

4σ2 d
α2
2

d1

t2+α2

Γ(3 + α2)
, MSDW (t) ∼

t→∞
4σ2 d

α1
2

d1

t2+α1

Γ(3 + α1)
, (3.113)

together with its exact analytical expression [yet again obtained by using Eq. (A.15)]:

MSDW (t) = 4σ2 d
α2
2

d1
t2+α2E

β(α2−α1)
1/β,3+α2

(
−d1/β

2 t1/β
)

(3.114)

Thus, the rescaled functional W has the same asymptotic scaling behaviour of Y .
We now apply our formalism, with the Φ defined in Eq. (3.107), to MSD data of mi-

tochondria diffusing in mating S. cerevisiae cells, depleted of actin microfilaments, which
were obtained with Fourier imaging correlation spectroscopy in Ref. [57]. This MSD ex-
hibits a crossover from a transient subdiffusive scaling of exponent α = 0.66 to normal
diffusion, which we cannot capture quantitatively by using a tempered Lévy stable subor-
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dinator, because the experimental curvature at the crossover between the two power laws is
different from the predicted one. Instead, if we time-change a purely diffusive X(s) process
with the Φ in Eq. (3.107), we can tune the parameter β, such that the curvature between
the power laws is well reproduced. By employing a least-squares method, with α1 = 1 and
α2 = 0.66 to fix the asymptotic scaling respectively for long/small times, we determine
that the choice of parameters: d1 = 4.53, d2 = 0.02 and β = 0.85 yields an excellent
model of the experimental data across the double power-law region (see Fig. 3.5a). These
specific parameters, along with the functional form of Φ, uniquely determine the waiting
time increments probability, which can be employed to simulate the underlying anomalous
diffusion process. We plot such quantity in Fig. 3.5b. In agreement with the asymptotic
analysis in Eqs. (3.110), Φ interpolates between power-law distributed [p(∆t) ∼ ∆t−1−α2 ,
α2 = 0.66 in this case] and exponentially distributed (corresponding to a regime of normal
diffusion) waiting time increments. In this plot, we also elucidate the role of the curvature
parameter β, by plotting p(∆t) for different values of β, but yet close to the optimal value
obtained by the experimental fit. On the one hand, β directly determines the timescale
needed by the process to reach the normal diffusive regime, which becomes larger as β
increases. On the other hand, it does not affect the coefficient in the exponential function,
describing the asymptotic scaling of the distribution in the normal diffusive regime, which
is instead equal to d2/d1. This is different from the case of the tempered Lévy stable
subordinator, whose corresponding coefficient depends explicitly on µ (see Fig. 3.2a).

We further investigate in Fig. 3.6a the MSD behaviour forX being an OU process and Φ

being defined by Eq. (3.107) with the parameters of the experimental fit. We also compare
it with three limiting cases: (i) normal diffusion (denoted “Brownian”, black solid line),
which is obtained from Eq. (3.107) by setting α2 = α1 = 1 and d1 = d2; (ii) subdiffusive
CTRW of exponent α = 0.66, which is obtained with the choice: α2 = α1 = 0.66 and
d1 = d2 (black solid line); (iii) hybrid subdiffusive dynamics generated by the sum of two
Lévy stable subordinators of exponents α2 = 0.66, α1 = 1, which is obtained by setting
β = 1/(α2 − α1) (d1,2 as in the fit). On the one hand, we note that the MSD converges to
the same plateau in the cases (ii, iii), which share the same power-law asymptotic behaviour
of the waiting time increments probability for large ∆t with exponent α = 0.66. On the
other hand, the hybrid model generated by the Φ in Eq. (3.107) with parameters specified
by the experimental fit exhibits the same scaling behaviour of the CTRW for small times,
whereas its MSD converges to zero for long times, thus recovering the same behaviour
of the Brownian case. Thus, our hybrid model recovers ergodicity for long times, as in
the case of the harmonic oscillator subordinated to a tempered Lévy stable process (see
Fig. 3.3b). Recalling that these two hybrid models share the same exponential scaling of
the waiting time increments, our result confirms that ergodicity breaking in anomalous
stochastic dynamics is strictly related to the existence of heavy-tailed distributed waiting
times, this corresponding to trapping events in the physical system. which corresponds to
the physical scenario where the system gets trapped during its dynamics.

To conclude, we plot in Fig. 3.6b the predicted two-point correlation function of an
OU process subordinated with the Φ in Eq. (3.107) with parameters specified by the fit
in Fig. 3.5a. Despite the complex form of the waiting time distribution, the correlation
function decays exponentially for long difference times, i.e., 〈Y (t)Y (t+ ∆t)〉 ∼ a e−b∆t

for long ∆t. The values of the parameters a, b are determined by a direct fit of the tail
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(∆t ≥ 102) of the correlation function: a = 0.4854, b = 0.004193. Finally, we provide the
Laplace inverse transform of w, f1, f2 in Eqs. (3.69, 3.89) (see Appendix C.3 for details):

w(t) =
d1

dα2
2

t−α2E
β(α1−α2)
1/β,1−α2

(
−d1/β

2 t1/β
)

(3.115a)

f1(t) =
σ

γ

[
1− γ d

α2
2

d1
tα2 G(t)

]
, (3.115b)

f2(t) = −σ
γ

[
−γ +

d1

dα2
2

t−α2E
β(α1−α2)
1/β,1−α2

(
−d1/β

2 t1/β
)

+ γ2 d
α2
2

d1
tα2 G(t)

]
, (3.115c)

with G being the auxiliary function specified below:

G(t) =
∞∑
n=0

(−1)n
(
γ
dα2

2

d1

)n
tα2 nE

β(1+n)(α2−α1)
1/β,1+α2(1+n)

(
−d1/β

2 t1/β
)
. (3.116)
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Figure 3.5: (a) Fit of the MSD data of mitochondria diffusing in S. cerevisiae cells depleted
of actin microfilaments of Ref. [57]. Here, X(s) is pure diffusion [F (x) = 0, σ(x) = 1 in
Eq. (3.4a)] and Φ is given by Eq. (3.107) with α1 = 1, α2 = 0.66 [140]. (b) Waiting
time increments probability p(∆t), obtained by numerical inverse Laplace transform of
e−∆sΦ(λ) with ∆s = 0.001 and Φ as in Eq. (3.107) with α1 = 1, α2 = 0.66, different
sample values of β and the other parameters specified by the fit. Waiting time increments
are either power-law [p(∆t) ∼ ∆t−1−α2 ] or exponentially [p(∆t) ∼ e−(d2/d1)∆t] distributed
respectively for small/large ∆t. The resulting subordinated process is an hybrid between
a CTRW of exponent α = 0.66 and normal diffusion.

3.6 Outlook and Future Work

In this Chapter we fully characterised a class of anomalous stochastic processes, which
generalise the CTRWs by accounting for more general waiting time distributions than the
ordinary Lévy stable one with power-law decaying tails. Specifically, such distributions are
determined by their characteristic functional Φ in Eq. (3.5), which is required to satisfy
the minimal conditions given therein. We provided: (i) an explicit description of their
stochastic dynamics in terms of subordinated Langevin equations, (ii) the GFFK Eq. (3.29),
describing their joint statistics with one of their observables, and (iii) analytical formulas
for the multipoint functions of both the process and its observables. All these results are
derived for general Φ, which enables one to readily adapt them for any specific choice of
it. We proved this point explicitly by applying our formalism to the case of both free
diffusion and an OU process subordinated by either a tempered Lévy stable subordinator
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Figure 3.6: Here, X(s) is an OU process [F (x) = −x, σ(x) = 1 in Eq. (3.4a)], η(s) is
specified by the Φ in Eq. (3.107) and U(x) = x. (a) MSD of W (t) = W (t)/t (for initial
position y0 = 0) for different sets of parameters: (i) α1 = 1, α2 = 0.66 and the other
parameters as determined from the fit (blue solid line); (ii) α1 = α2 = 1 and d1 = d2

(Brownian limit, black solid line); (iii) α1 = α2 = 0.66 and d1 = d2 (CTRW limit, black
solid line); (iv) α1 = 1, α2 = 0.66, β = 1/(α2 − α1) and d1,2 as in the fit (red solid line).
Both (i-ii) correspond to exponentially distributed waiting time increments for large ∆t
and generate a subordinated process preserving ergodicity. Conversely, (iii-iv) correspond
to power-law distributed waiting time increments and generate a subordinated process
breaking ergodicity. This result confirms that heavy-tailed p(∆t), i.e., trapping events in
physical terms, causes ergodicity breaking. (b) Two point correlation function of Y for the
fit parameters for y2

0 = σ/γ and finite t. The decay is exponential for large ∆t.

or a mixture of two independent Lévy stable noises with different order parameters. The
different properties observed for these two processes, for instance ergodicity breaking which
may be either broken or preserved, clearly demonstrate the richness of our formalism, that
can be employed to generate several different dynamical processes.

This flexibility in the choice of the waiting time distribution also renders our formalism
of great relevance for the analysis of experimental data exhibiting anomalous diffusive
behaviour, as we showed with the specific application to the position MSD data of diffusing
mitochondria in S. Cerevisiae cells depleted of actin microfilaments of Ref. [57]. With the Φ

given in Eq. (3.107), we obtained an excellent fit of the experimental MSD and characterised
both the waiting time increments statistics and the two-point correlation function of the
corresponding subordinated OU process. While the former one can be used together with
Eqs. (3.4a, 3.4b) to simulate the underlying diffusion process, the second one constitutes a
testable prediction to assess if the model correctly describes the observed biological system.
In addition, our formalism would readily provide many other quantities of interest, for
instance first passage times statistics, which could be used as further tests of the validity
of the theoretical model. Furthermore, we note that several different parent processes
X, which can be either additive or multiplicative (with generalised α-prescription), can
also be chosen. This will indeed play a major role in determining the properties of the
corresponding subordinated process, which we have not yet explored extensively.

For future work, it will be interesting to elucidate if our formalism can also generate
superdiffusive dynamics. So far, only the integrated process W displayed such behaviour,
whereas we would be interested in observing it either for the dynamics of Y or for that of
W . Relatedly, it would be relevant to verify if a suitable choice of X and Φ exists that
could generate an hybrid process, whose MSD exhibits a crossover between subdiffusive
and superdiffusive behaviour. The relevance of such dynamical behaviour is supported by
recent experiments on the dynamics of Escherichia Coli chromosomal loci [130].



CHAPTER 4

Langevin Formulation of a Subdiffusive Continuous-Time Random Walk in

Physical Time

In this Chapter, we propose an equivalent Langevin formulation of a force-free CTRW
without subordination. By introducing a new type of white non-Gaussian noise, we express
the CTRW dynamics in terms of a single Langevin equation in physical time with additive
noise. We characterise such noise in terms of its full multi-point statistics and of its
characteristic functional and compare it with the SBM, an alternative stochastic model of
subdiffusive dynamics with Gaussian statistics. These two noises are identical up to the
2nd order correlation functions, but different in the higher order statistics. We extend our
formalism to general waiting time distributions and force fields and compare our results
with those of SBM. In the presence of external forces, our proposed noise generates a new
class of stochastic processes, resembling CTRWs but with forces acting at all times. These
results complement those in Chapter 3 within the general scope of formulating more general
anomalous processes than CTRWs that can be compared with experiments.

4.1 Motivation

As extensively discussed in Chaps. 1 and 3, many systems in nature live in complex non-
equilibrated or highly crowded environments, thus exhibiting anomalous diffusive patterns,
which deviate from the well known Fick’s law Eq. (1.2) of purely thermalised systems
[18, 9, 19]. Their distinctive feature is instead a power-law scaling of the MSD, as given
in Eq. (1.7) [54, 18, 165, 9, 19], with the value of its exponent characterising the different
types of anomalous behaviour, i.e., subdiffusion (0 < α < 1) or superdiffusion (α > 1).

Examples of such anomalous processes are found in both physical and living systems.
In particular these latter ones have recently been in the focus of experimental research,
thanks to the huge improvements obtained in the experimental techniques employed in
biology, which enabled researchers to provide joint position-velocity datasets of several
different systems, from migrating cells to molecules and/or organelles moving within the
cell, revealing such anomalous diffusive behaviour. We refer to Chaps. 1, 3 for a detailed
overview of experimental evidence of anomalous diffusive behaviour in such systems.
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Considering this wide variety of systems, which simultaneously exhibit anomalous scal-
ing of the MSD and other anomalous features, for instance in their multipoint correlation
functions [131, 132, 133, 134, 135, 136, 137], one needs to have a complete set of well
studied models that can be employed to fit the experimental data and infer the specific
microscopic processes underlying the observed dynamics. For subdiffusive processes, the
most commonly used models are the CTRW [28, 9], which has already been discussed
thoughtfully in Chapter 2, and the SBM [166, 167, 168, 169].

Contrarily to the CTRW that was introduced as a natural generalization of a random
walk on a lattice [28] with waiting times between the jumps and their size being sampled
from general and independent probability distributions, the SBM has been recently in-
troduced as a Gaussian model of anomalous dynamics [166], which is able to provide the
same anomalous scaling of the MSD in Eq. (1.7) for all its temporal evolution. If B(t) is
a usual Brownian motion, its scaled version is defined by making a power-law change of
time with exponent α: B(tα). Although being commonly used to fit data [170, 29, 167], it
has recently been shown to be a non stationary process with paradoxical behaviour under
confinement, i.e., in the presence of a linear viscous-like force, as its MSD unboundedly
decreases towards zero. This is suggested to be ultimately caused by the time dependence
of the environment, either of the temperature or of the viscosity. As a consequence, it has
been ruled out as a possible alternative model of anomalous thermalized processes [169].

Thus, the aim of this Chapter is twofold. On the one hand, complementarily to the
results presented in Chapter 3, (i) we generalise CTRWs to account for external forces that
are exerted on the all temporal evolution of the system, i.e., both during the jumps, as in
the CTRW, and during the waiting times. On the other hand, (ii) we clarify the behaviour
of SBM under confinement, by comparing it with these new anomalous processes.

Specifically in the case of (i), we derive a novel type of noise, allowing us to express
a free diffusive CTRW in terms of a single Langevin equation in physical time. We fully
characterise its properties by providing its characteristic functional and the complete hi-
erarchy of its multipoint correlation functions, that we then compare with those of the
noise driving a SBM. We discuss both purely power-law waiting times and general waiting
time distributions [159, 140]. We show that their correlation functions are identical up to
the two point ones, but different for higher orders: the noise driving SBM is a Gaussian
noise, while our new noise driving a CTRW is naturally non-Gaussian. Here, all odd cor-
relation functions vanish, as for a typical Gaussian noise, but the even ones do not satisfy
Wick’s theorem [110, 111]. Finally, we show that the newly defined noise enables us to
define a class of CTRW-like anomalous processes with forces acting at all times, thus being
fundamentally different from their corresponding ordinary CTRWs.

Regarding (ii), we revisit the behaviour of the SBM under confinement and show that
its MSD correctly converges to a plateau as it is typical of confined motion [92], provided
that we use more general time changes with truncated power-law tails. This suggests that
the anomaly observed in [169] is mainly due to the localizing effect of the external linear
force, which is able to trap the particle in the zero position if we allow for infinitely long
waiting times between the jumps to eventually occur in the long time limit.
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4.2 Generalisation of CTRW and Scaled Brownian Motion

In this first section we recall definitions and properties of the free diffusive CTRW and
of the SBM, which will be useful later in the discussion. We are mainly interested in
their stochastic Langevin formulation and in both their FP equation and MSD. We then
generalise these results to the case of arbitrary waiting time distributions and time trans-
formations respectively for the CTRW and the SBM.

4.2.1 CTRW

As we discussed in Sec. 2.1.2, the Langevin representation of a CTRW is obtained by
introducing two auxiliary processes X(s) and T (s), which we assume for now to be purely
diffusive and Lévy stable with parameter α (0 < α ≤ 1) respectively. Their dynamics is
specified by the following Langevin equations [79] [adapted from Eqs. (2.46a, 2.46b)]:

Ẋ(s) =
√

2σ ξ(s) Ṫ (s) = η(s) (4.1)

where ξ(s) and η(s) are two independent noises. For X(s) to be a normal diffusion, we
require ξ(s) to be a white Gaussian noise with 〈ξ(s)〉 = 0 and 〈ξ(s1)ξ(s2)〉 = δ(s2−s1) [see
Eqs. (2.98)]. On the other hand, η(s) is a stable Lévy noise with parameter α (0 < α ≤ 1)
[101]. The anomalous CTRW is then derived by making a randomization of time, i.e.,
by considering the time-changed (or subordinated) process: Y (t) = X(S(t)), with S(t)

being the inverse of T (s) as defined in Eq. (2.47). The process Y (t) is easily shown to
satisfy Eq. (1.7) exactly for all its time evolution, by recalling that the PDF of S(t) has
the Laplace transform h̃(s, λ) = λα−1e−sλ

α [131] and that
〈
X2(s)

〉
= 2σ s. Indeed, by

recalling Eq. (3.45), we obtain in Laplace space:

〈
Ỹ 2(λ)

〉
=

∫ +∞

0

〈
X2(s)

〉
h̃(s, λ) ds =

2σ

λ1+α
, (4.2)

whose inverse Laplace transform confirms its anomalous scaling [9]:

〈
Y 2(t)

〉
=

2σ

Γ(1 + α)
tα. (4.3)

As expected, this same MSD is obtained by taking the diffusive limit of the microscopic
random walk formulation of the CTRW, where we allow for asymptotically power-law
distributed waiting times between the jumps of the walker, whose amplitudes are drawn
from a distribution with finite variance [9]. In this limit, as we discussed in Sec. 2.1,
the model provides the fractional diffusion Eq. (2.29) for the PDF of Y (t). It is then
natural to study if the set of Eqs. (4.1) can provide this same FP equation. This has been
proved in [151, 55, 140], and in a more general set-up in Chapter 3, with the specification:
Kα = σ

Γ(1+α) in Eq. (2.29), thus confirming the equivalence in the diffusive limit of the single
point statistics of the random walk picture and of the subordinated Langevin Eqs. (4.1).

4.2.2 Scaled Brownian Motion

If instead of a stochastic time change, we consider the deterministic time transformation
t → t∗ = tα in the normal diffusive process X(t) (now in the physical time t), we obtain
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the SBM: Y∗(t) = X(t∗). Its equivalent Langevin equation is given by [166, 167, 168, 169]:

Ẏ∗(t) =
√

2ασ tα−1 ξ(t), (4.4)

with ξ(t) being a white Gaussian noise (with the same properties as before, but in the
physical time t). By using Eq. (4.4) we can prove straightforwardly that the MSD of Y∗(t)
is the same as Eq. (4.3) and that the corresponding FP equation is given by:

∂

∂t
P (y, t) = ασ tα−1 ∂

2

∂y2
P (y, t), (4.5)

which has time dependent diffusion coefficient [171]. This process preserves all the prop-
erties of Brownian motion [166]: it is indeed Gaussian with time-dependent variance and
Markov, as the monotonicity of the time change preserves the ordering of time. Further-
more, Y∗(t) is self-similar and it has independent increments for non overlapping intervals.
However, differently from Brownian motion, it is strongly non stationary [169]. Further-
more, Y∗(t) turns out to be the mean-field approximation of the CTRW, as it describes
the motion of a cloud of random walkers performing CTRW motion in the limit of a large
number of walkers [168]. Recent investigation have also shown that SBM exhibits rich
ageing properties, which strongly differentiates it from the standard BM [172].

4.2.3 Arbitrary Waiting Time Distributions and Time Transformations

In this section, we review the generalisation of Eqs. (4.1) to arbitrary waiting time dis-
tributions of the underlying random walk [173, 174, 154, 175, 159, 140] that we discussed
in Chapter 3 and then derive the analogous extension of the SBM to general time trans-
formations. We recall that such extension in the case of CTRWs is obtained naturally
by choosing a different process T (s) with the only assumption of it being strictly increas-
ing in order to preserve the causality of time. Thus, we consider η(s) in Eq. (4.1) to be
an increasing Lévy noise with paths of finite variation and characteristic functional [101]
given by Eq. (3.5), where Φ(u(s)) is a non negative function with Φ(0) = 0 and strictly
monotone first derivative, while u(s) is a test function. We recall that for Φ(s) = sα we
recover the CTRW model. Under these assumptions, the integrated process T (s) is a a
one-sided strictly increasing Lévy process with finite variation. Furthermore, we assume
η(s) to be independent on the realizations of ξ(s) in Eq. (4.1). As a consequence of the
finite variation and the monotonicity of the paths of T (s) respectively, S(t) has continuous
and monotone paths, with this second property implying the fundamental relation [131]
Eq. (3.6). Similarly to Eq. (4.2), we can derive the corresponding MSD by recalling that
h̃(s, λ) = Φ(λ)

λ e−sΦ(λ) [159, 140], which is given by Eq. (3.81). Furthermore, the PDF of
Y (t) is obtained by solving the generalized FP equation [140] [adapted from Eq. (3.31)]:

∂

∂t
P (y, t) = σ

∂2

∂y2

∂

∂t

∫ t

0
K(t− τ)P (y, τ) dτ , (4.6)

with K specified by Eq. (3.30). Its solution can be found for general Φ(s) in Laplace space:

P̃ (y, λ) =
1

λ

√
Φ(λ)

2σ
e−

√
Φ(λ)
2σ
|y|. (4.7)



4.2 Generalisation of CTRW and Scaled Brownian Motion 82

−20 −15 −10 −5 0 5 10 15 20
10

−3

10
−2

10
−1

10
0

y

P
(y
,t
)

10
−2

10
0

10
2

10
410

−5

10
−3

10
−1

10
1 〈Y 2(t)〉/t

 

 

µ = 0
µ = 10−4

µ = 10−3

µ = 10−2

Figure 4.1: PDF (main) and MSD normalised to t (inset) of an anomalous process Y (t)
obtained by subordination of a free diffusion by a tempered Lévy stable process of temper-
ing index µ and stability parameter α = 0.2. The PDF is obtained by numerical Laplace
inversion of Eq. (4.7) at t = 103 (black dotted lines in the inset) [178]. The smooth
transition from the non-Gaussian PDF typical of CTRWs (µ = 0) and the Gaussian one
of normal diffusion (µ → +∞) is evident. Note also the corresponding transition from
anomalous to normal scaling of the MSD for increasing µ at time t. Simulations, obtained
with the Algorithm 1 of Sec. 2.1.2 and the techniques of [81, 161] for the generation of the
corresponding RVs (summarised in App. B), agree perfectly with the analytical results.

We look as an example at the case of a tempered stable Lévy noise with tempering index µ
and stability index α [176], which is obtained by setting Φ(λ) = (µ+λ)α−µα, i.e., K(t) =

e−µ t tα−1Eα,α(µ t)α [164]. As already pointed out, the CTRW case is recovered by setting
µ = 0, meaning that we do not truncate the long tails of the distribution, thus accounting
for very long waiting times with a power-law decaying probability of occurrence. We plot
in Figure 4.1 the numerical Laplace inverse of Eq. (4.7) (main) and the corresponding MSD
(inset) at a fixed time t = 1000 (dotted line in the inset), which is given by Eq. (3.93) [177].
As expected, for µ = 0 we recover the typical non Gaussian shape of the PDF of a free
diffusive CTRW [9]. However, for increasing values of µ, the PDF of Y (t), although still
being non Gaussian, broadens, thus getting closer to a Gaussian. This has also evident
consequences on the dynamical behaviour of the MSD, which for increasing values of µ
goes from a pure subdiffusive scaling to a normal one (inset), as predicted by Eqs. (3.92).

We now discuss the corresponding extension of the SBM to arbitrary time transforma-
tions involving the kernel K(t) obtained by Laplace inverse transform of Eq. (3.30). We
then generalize Eq. (4.4) by adopting K(t) as the time dependent coefficient of the white
Gaussian noise ξ:

Ẏ∗(t) =
√

2σK(t) ξ(t) =
√

2σζ(t), (4.8)

where we define the correlated noise ζ(t) with 〈ζ(t)〉 = 0 and two-point correlation function:
〈ζ(t1)ζ(t2)〉 = 2σK(t1)δ(t1 − t2). This explicit time dependence manifestly signals that
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ζ(t) is a non stationary noise. It is easily shown that the MSD of Y∗(t) is identical to
the one of Y (t) given by Eq. (3.81). However, even if they share the same MSD, Y (t)

and Y∗(t) provide different PDFs. Indeed, Y∗(t) corresponds to a time rescaled Brownian
motion X(t∗) with transformation:

t∗ =

∫ t

0
K(τ) dτ . (4.9)

In the case of the usual Brownian motion the corresponding diffusion equation has a Gaus-

sian solution: P (y, t) = 1√
4πσt

e−
(y−y0)2

4σt for the initial condition P (y, 0) = δ(y − y0). Since
Y∗(t) is just Brownian motion in the rescaled time t∗, we obtain similarly a Gaussian
solution, provided we choose the same initial condition:

P (y, t) =
1√

4πσt∗
e−

(y−y0)2

4σt∗ , (4.10)

with t∗ as in Eq. (4.9). We see that P (y, t) is a solution of the diffusion equation:

∂

∂t
P (y, t) = σK(t)

∂2

∂y2
P (y, t), (4.11)

with the time dependent diffusion constant: D(t) = σK(t). We remark that Eq. (4.4) can
be recovered from these general results by setting Φ(λ) = λα, i.e., K(t) = tα−1/Γ(α) and
t∗ = tα/Γ(1 + α). However, in order to have exact equivalence, we need to neglect the
constant multiplicative factors in both K(t) and t∗ and make the substitution: σ → ασ.

4.3 Langevin Formulation of a CTRW in Physical Time

In this section, we formulate an alternative Langevin description of the process Y defined
in Eqs. (4.1) directly in physical time, i.e., without formally employing the subordination
technique. This will be obtained by defining a novel type of noise, whose characterisation
will be provided both in terms of its higher order correlation functions, that will also be
compared with those of the SBM, and of its characteristic functional [16].

4.3.1 Definition of the Noise

Starting from Eqs. (4.1) and using the property 1 =
∫ +∞

0 δ(s− S(t)) ds , we obtain:

Y (t) =
√

2σ

∫ +∞

0
δ(s− S(t))

[∫ s

0
ξ(τ) dτ

]
ds

=
√

2σ

∫ +∞

0

[
− ∂

∂s
Θ(t− T (s))

] [∫ s

0
ξ(τ) dτ

]
ds

=
√

2σ

∫ +∞

0
Θ(t− T (s))ξ(s) ds , (4.12)

where the fundamental relation between the paths of T and S Eq. (3.6) is used to obtain
the second equality and we then get the third one with an integration by parts. We remark
that the boundary term

[
−Θ(t− T (s))

∫ s
0 ξ(τ) dτ

]∣∣+∞
0

is zero trivially for s = 0, but it
vanishes also for s → +∞ because T (s) is increasing, thus always being larger than any
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fixed (and finite) time t. Written as in Eq. (4.12), Y (t) is a differentiable (in a generalised
sense) function of time, i.e., we can take its derivative and derive the Langevin equation:

Ẏ (t) =
√

2σ ξ(t) (4.13)

where we define the noise as below:

ξ(t) =

∫ +∞

0
ξ(s)δ(t− T (s)) ds , (4.14)

whose properties are fully determined by the choice of the waiting time distribution, or
equivalently of the function Φ(s) in Eq. (3.5). By recalling the independence of ξ(s) and
η(s), it is straightforward to show that ξ(t) has zero average. In addition, we can employ
these properties to compute the two point correlation function of ξ in Laplace space:

〈
ξ̃(λ1)ξ̃(λ2)

〉
=

∫ +∞

0

∫ +∞

0
〈ξ(s1)ξ(s2)〉

〈
e−λ1 T (s1)e−λ2 T (s2)

〉
ds1 ds2

=

∫ +∞

0

∫ +∞

0
δ(s2 − s1)

〈
e−λ1 T (s1)e−λ2 T (s2)

〉
ds1 ds2

=

∫ +∞

0

〈
e−(λ1+λ2)T (s)

〉
ds =

1

Φ(λ1 + λ2)
(4.15)

where in the second line we use the property of the white Gaussian noise ξ and we compute
in the third line the characteristic function of T by using Eq. (3.5). Further recalling
Eq. (3.61), we obtain for its inverse Laplace transform the following result:

〈
ξ(t1)ξ(t2)

〉
= K(t1)δ(t1 − t2) (4.16)

with K(t) being specified by Eq. (3.30). Consequently, the character of the noise ξ(t)
significantly depends on the choice of the function Φ(s) in Eq. (3.5). Thus, Eq. (4.13)
defines a new Langevin model driven by a generalised and typically non Gaussian noise,
except possibly for particular choices of the memory kernel K(t). Such model is able to
reproduce the dynamics of free diffusive anomalous processes with arbitrary waiting time
distribution equivalently to the subordinated Langevin Eqs. (4.1).

The explicit time dependence of the two point correlation function of ξ via the function
K highlights the non stationary character of such noise, which implies that the integrated
process Y no longer satisfies the scaling properties of the ordinary Brownian motion, except
for spatial reflection, that does not involve the time variable. For instance, let us consider (i)
the process Y , obtained by integration of Eq. (4.13), whose two point correlation functions
thus reads as 〈Y (t1)Y (t2)〉 = 2σ

∫Min(t1,t2)
0 K(τ) dτ [obtained via double integration of

Eq. (4.16)], and (ii) the process Z(t) = Y (t0 ± t) − Y (t0) with t0 ∈ R+ and t ∈ R+ or
t ∈ [0, t0] respectively. It is a well known result that, if one considers a Brownian motion
B(t) instead of Y , the process Z(t) is still a Brownian motion [104]. This result states the
invariance of Brownian motion with respect to temporal translations (Z defined with +)
and reflections (Z defined with −) On the contrary, in the present case the statistics of
Z(t) is different from that of the original process Y . As an example, we compute below its
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two point correlation function. On the one hand, for Z defined with +, we have (t1 < t2):

〈Z(t1)Z(t2)〉=〈[Y (t0 + t1)− Y (t0)][Y (t0 + t2)− Y (t0)]〉

=〈Y (t0 + t1)Y (t0 + t2)〉−〈Y (t0 + t1)Y (t0)〉−〈Y (t0 + t2)Y (t0)〉+〈Y (t0)Y (t0)〉

=2σ

[∫ t0+t1

0
−
∫ t0

0
−
∫ t0

0
+

∫ t0

0

]
K(τ) dτ = 2σ

∫ t0+t1

t0

K(τ) dτ ; (4.17)

on the other hand, for Z defined with −, we obtain:

〈Z(t1)Z(t2)〉=〈[Y (t0 − t1)− Y (t0)][Y (t0 − t2)− Y (t0)]〉

=〈Y (t0 − t1)Y (t0 − t2)〉−〈Y (t0 − t1)Y (t0)〉−〈Y (t0 − t2)Y (t0)〉+〈Y (t0)Y (t0)〉

=2σ

[∫ t0−t2

0
−
∫ t0−t1

0
−
∫ t0−t2

0
+

∫ t0

0

]
K(τ) dτ=2σ

∫ t0

t0−t1
K(τ) dτ . (4.18)

Both these results differ from the corresponding one of Y , i.e., in this case the invariance
with respect to temporal translations and reflections is broken. Note that, if we set K(t) =

1, i.e., the Brownian case, we recover 〈Z(t1)Z(t2)〉 = 2σ t1 in both cases. If we now define
Z(t) = t Y (1/t), corresponding to a temporal inversion, we obtain:

〈Z(t1)Z(t2)〉 = 2σ t1 t2

∫ Min(1/t1,1/t2)

0
K(τ) dτ , (4.19)

which again shows that the invariance, holding for the Brownian motion, is not preserved.
At last, we define Z(t) = c−H Y (c t), where c > 0 and H are constants. If Y is a Brownian
motion, Z is again a Brownian motion with H = 1/2. This result states the invariance of
Brownian motion with respect to a diffusive rescaling. In our case, this property is related
to the self-similarity of the waiting time distribution, which only holds in the specific case
of a Lévy stable subordinator, i.e., K(t) = tα−1/Γ(α). To support this argument, we
compute the two point correlation function for this specific choice:

〈Z(t1)Z(t2)〉 = c−2H 〈Y (c t1)Y (c t2)〉 = 2σ c−2H 1

Γ(α)

∫ Min(c t1,c t2)

0
τα−1 dτ

= 2σ c−2H+α 1

Γ(α)

∫ Min(t1,t2)

0
τ ′
α−1

dτ ′ , (4.20)

which is equal to that of Y if we set H = α/2. Thus, the time-changed process Y is still
invariant with respect to diffusive rescaling if we choose a tempered Lévy stable waiting
time distribution. In the general case, though, also this property no longer holds.

We highlight that so far the standard renewal picture underlying conventional CTRWs,
which we discussed in Sec. 2.1.2, still applies. Eq. (4.13) is essentially the time derivative of
Eq. (2.48) expressing the process in terms of stochastic increments. Differences will appear
when external forces act on the diffusion processes. This case is discussed in Sec. 4.4.

4.3.2 Characterisation of the Multipoint Correlation Functions

The definition in Eq. (4.14) enables us to derive a complete characterization of the mul-
tipoint correlation structure of ξ(t). As a preliminary step, we need to compute the
Laplace transform of the multipoint characteristic function of T (s), i.e., the quantity
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Z(t1, s1; . . . ; tN , sN ) =
〈∏N

m=1 δ(tm − T (sm))
〉
, ∀N ∈ N. By using Eq. (4.1), we find:

Z̃(λ1, s1; . . . ;λN , sN ) =

〈
N∏
m=1

e−λm
∫ sm
0 η(s′m) ds′m

〉
. (4.21)

Let us first assume an ordering for the sequence of times: s1 < s2 < . . . < sN and com-
pute the corresponding Eq. (4.21). If we rearrange the exponent by separating successive
intervals, we obtain:

Z̃(λ1, s1; . . . ;λN , sN ) =

〈
e
−λN

∫ sN
sN−1

η(s′N ) ds′N −...−(λN+...+λ1)
∫ s1
0 η(s′1) ds′1

〉
=
〈
e−

∑N−1
m=0[(

∑N
n=m+1 λn)]

∫ sm+1
sm

η(s′m) ds′m+1

〉
=

N−1∏
m=0

〈
e−(

∑N
n=m+1 λn)

∫ sm+1
sm

η(s′m) ds′m+1

〉
=

N−1∏
m=0

e−(sm+1−sm)Φ(
∑N
n=m+1 λn), (4.22)

where we define s0 = 0 to simplify the notation and we exploited the independence of
the increments of T (s) to factorise the ensemble average. Furthermore, the final result
Eq. (4.22) is derived by using the stationarity of the increments of T and Eq. (3.5). How-
ever, in the general case where no a-priori ordering is assumed, we need to consider all
the possible ordered sequences. We then introduce the group of permutations of N objects
SN , whose elements act on the sequence: s = (s1, . . . , sN ). When we make a permutation
of s, we obtain a new sequence with permuted indices: s′ =

(
sσ(1), . . . , sσ(N)

)
. All the

possible orderings of s are thus obtained by summing over all the permutations in SN . If
we assume that sσ(0) = 0, ∀σ ∈ SN , i.e., the initial time is kept fixed by the permutations,
and we use the result of Eq. (4.22), we derive:

Z̃(λ1, s1; . . . ;λN , sN ) =
∑
σ∈SN

N−1∏
m=0

Θ
(
sσ(m+1) − sσ(m)

)
e−[sσ(m+1)−sσ(m)]Φ(

∑N
n=m+1 λσ(n))

(4.23)
with the ordering of the permuted sequence being specified by the product of Heaviside
functions. By factorising out the first term, we obtain the fundamental result:

Z̃(λ1, s1; . . . ;λN , sN ) =
∑
σ∈SN

e−sσ(1)Φ(
∑N
m=1 λm)×

×
N−1∏
m=1

Θ
(
sσ(m+1) − sσ(m)

)
e−[sσ(m+1)−sσ(m)]Φ(

∑N
n=m+1 λσ(n)) (4.24)

As an example, we calculate the two-point case Z̃(λ1, s1;λ2, s2) [140]. Indeed, if we set
N = 2 in Eq. (4.24) and consider the two possible permuted sequences: s = (s1, s2) and
s′ = (s2, s1), we recover Eq. (3.51). We can now use Eq. (4.24) to compute the correlation
functions of ξ(t). Indeed, from Eq. (4.14) we obtain ∀N ∈ N:

〈
ξ(t1) . . . ξ(t2N )

〉
=

[
2N∏
m=1

∫ +∞

0
dsm

]〈
2N∏
m=1

ξ(sm)

〉〈
2N∏
m=1

δ(tm − T (sm))

〉
, (4.25)
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where we are allowed to factorise the ensemble average due to the independence of the
noises ξ and η. This equation can be simplified by recalling the Wick theorem for the
white Gaussian noise ξ(s) [Eq. (2.98)] [110, 111]:〈

2N∏
j=1

ξ(tj)

〉
=

1

N2N

∑
σ∈S2N

N∏
j=1

〈
ξ
(
tσ(2N−j+1)

)
ξ
(
tσ(j)

)〉
=

1

N2N

∑
σ∈S2N

N∏
j=1

δ
(
tσ(2N−j+1) − tσ(j)

)
. (4.26)

Consequently, we can substitute it in Eq. (4.25) and obtain:

〈
ξ(t1) . . . ξ(t2N )

〉
=

1

N2N

∑
σ∈S2N

[
2N∏
m=1

∫ +∞

0
dsm

]
×

×
N∏
j=1

δ
(
sσ(2N−j+1) − sσ(j)

)〈2N∏
i=1

δ(ti − T (si))

〉

=
1

N2N

∑
σ∈S2N

[
N∏
m=1

∫ +∞

0
dsσ(m)

]
×

×

〈
N∏
j=1

δ
(
tσ(2N−j+1) − T

(
sσ(j)

))
δ
(
tσ(j) − T

(
sσ(j)

))〉
(4.27)

with N integrals being solved by using the delta functions obtained from the correlation
functions of the white Gaussian noise 〈ξ(s1) . . . ξ(s2N )〉. If we make a Laplace transform
of Eq. (4.27), we obtain an expression involving Z̃(λ1, s1; . . . ;λN , sN ):

〈
2N∏
j=1

ξ̃(λj)

〉
=

1

N2N

∑
σ∈S2N

[
N∏
m=1

∫ +∞

0
dsm

]
×

× Z̃
(
λσ(1)+λσ(2N), s1; . . . ;λσ(N)+λσ(N+1), sN

)
. (4.28)

Note that we changed the name of the integrated variables to simplify the notation. This
formula can be further simplified by using Eq. (4.24). By substituting it and making a
further permutation of the indices, we obtain:〈

2N∏
j=1

ξ̃(λj)

〉
=

1

N2N

∑
σ∈S2N

∑
σ′∈SN

[
N∏
m=1

∫ +∞

0
dsσ′(m)

]
×

× e−sσ′(1)Φ(
∑N
m=1 λm)

N−1∏
m=1

[
Θ
(
sσ′(m+1) − sσ′(m)

)
×

×e−[sσ′(m+1)−sσ′(m)]Φ(
∑N
n=m+1(λσ(σ′(n))+λσ(2N−σ′(n)+1)))

]
, (4.29)
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where the N integrals can then be solved by making suitable changes of variables. This
leads to the following result for the Laplace transform of even multipoint functions of ξ(t):〈

ξ̃(λ1) . . . ξ̃(λ2N )
〉

=
1

N2NΦ
(∑2N

m=1 λm

) ∑
σ∈S2N

×

×
∑
σ′∈SN

N−1∏
m=1

1

Φ
(∑N

n=m+1

(
λσ(σ′(n)) + λσ(2N−σ′(n)+1)

)) . (4.30)

We remark that odd multipoint correlation functions are zero; indeed, if we make the
substitution 2N → 2N + 1 in Eq. (4.25), we obtain an expression depending on the odd
multipoint correlation functions of ξ, i.e., 〈ξ(s1) . . . ξ(s2N+1)〉, which vanish ∀N ∈ N [see
Eq. (2.98)]. The corresponding quantities in time are derived by making the inverse Laplace
transform of Eq. (4.30), which can be written as a 2N−fold convolution:

〈
ξ(t1) . . . ξ(t2N )

〉
=

1

N2N
K(t1)

N−1∏
i=1

δ(ti+1 − ti) ∗2N g(t1, . . . , t2N ) (4.31)

where the function g is defined in Laplace space as follows:

g̃(λ1, . . . , λ2N ) =
∑
σ∈S2N

∑
σ′∈SN

N−1∏
m=1

1

Φ
(∑N

n=m+1

(
λσ(σ′(n)) + λσ(2N−σ′(n)+1)

)) . (4.32)

In Eq. (4.31) K(t) is the memory kernel defined in Eq. (3.30). The set of Eqs. (4.31, 4.32)
can be used to compute all the multipoint correlation functions of ξ(t) and consequently of
Y (t). It is straightforward to recover the two point case Eq. (4.30), whereas we compute
below the four point function. First, we need to compute Eq. (4.32) in time space:

g(t1, t2, t3, t4) = [K(t1)δ(t2 − t1)δ(t3)δ(t4) +K(t1)δ(t1 − t3)δ(t2)δ(t4)

+K(t2)δ(t2 − t4)δ(t1)δ(t3) +K(t1)δ(t1 − t4)δ(t2)δ(t3)

+K(t2)δ(t2 − t3)δ(t1)δ(t4) +K(t3)δ(t3 − t4)δ(t1)δ(t2)] (4.33)

and then solve the (2N)!N !
N2N

∣∣∣
N=2

= 6 convolution integrals of Eq. (4.31). This can be done
explicitly, so that we derive:

〈
ξ(t1)ξ(t2)ξ(t3)ξ(t4)

〉
= [K(min(t1, t2))K(|t1 − t2|)δ(t4 − t1)δ(t3 − t2)

+K(min(t1, t3))K(|t1 − t3|)δ(t4 − t3)δ(t2 − t1)

+K(min(t1, t4))K(|t1 − t4|)δ(t3 − t1)δ(t4 − t2)] . (4.34)

We verified that the same similar structure of the time dependent coefficients is shared
by the six point correlation function. Considering the recursive structure evident from
Eqs. (4.31, 4.32), we conjecture the following formula for the even correlation functions in
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time space (with t0 = 0 kept fixed by the permutations):〈
2N∏
j=1

ξ(t)

〉
=

1

N2N

∑
σ∈S2N

N∏
m=1

δ
(
tσ(2N−m+1) − tσ(m)

)
×

×
∑
σ′∈SN

Θ
(
tσ(σ′(m)) − tσ(σ′(m−1))

)
K
(
tσ(σ′(m)) − tσ(σ′(m−1))

)
. (4.35)

4.3.3 Comparison with the Scaled Brownian Motion

Once the underlying noise structure of the CTRW is revealed by Eqs. (4.31, 4.32, 4.35), a
comparison with the corresponding multipoint correlation functions of the noise ζ(t) of the
SBM reveals important common features of these two processes. Indeed, the correlation
functions of ζ(t) are obtained straightforwardly by using the definition of Eq. (4.8) and the
Wick theorem in Eq. (4.26):〈

2N∏
j=1

ζ(tj)

〉
=

1

N2N

∑
σ∈S2N

N∏
m=1

K
(
tσ(m)

)
δ
(
tσ(2N−m+1) − tσ(m)

)
. (4.36)

Odd correlation functions of ζ(t) are zero as for ξ(t). As an example to better clarify our
discussion, we provide the four point correlation function:

〈ζ(t1)ζ(t2)ζ(t3)ζ(t4)〉 = K(t1)K(t2)δ(t1 − t3)δ(t2 − t4)

+K(t1)K(t3)δ(t1 − t2)δ(t3 − t4)

+K(t2)K(t4)δ(t1 − t4)δ(t2 − t3). (4.37)

A first remark has to be done when we set N = 2, thus studying the two point correlation
function. As already anticipated, this is the same for both the noises ξ(t) and ζ(t) and equal
to Eq. (4.16), thus explaining why the corresponding integrated processes Y (t) and Y∗(t)
share the same MSD. On the contrary, differences are evident only if we look at the higher
order correlation functions. Thus, the two integrated processes are distinguishable only by
looking at quantities that depend on them, e.g. their PDFs or their corresponding higher
order correlation functions. Furthermore, by comparing Eqs. (4.35, 4.36), we can observe
the same similar structure of the delta functions, typical of white Gaussian processes, but
with a different correlated and mainly not factorizable time structure of the coefficients in
the case of ξ(t), which depends on the difference between successive time in the ordered
sequences. This ultimately causes its non Gaussian typical character. In fact, in the specific
case of a constant memory kernel, for all times or in some scaling limit, the two noises
coincide and reduce to a standard Brownian motion.

4.3.4 Characteristic Functional of the Noise

We conclude the characterisation of the noise ξ by deriving its characteristic functional:
G[u(s)] =

〈
ei

∫ +∞
0 u(s) ξ(s) ds

〉
. We remark that the brackets here denote an average over

the realisations of both the noises ξ and η (or T equivalently). By substituting Eq. (4.14)
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into this expression, we obtain the following equation for a general test function u(s):

G[u(s1)] =

〈
exp

[
i

∫ +∞

0
u(s1)

(∫ +∞

0
ξ(s2)δ(s1 − T (s2)) ds2

)
ds1

]〉
=

〈
exp

[
i

∫ +∞

0
ξ(s2)

(∫ +∞

0
u(s1)δ(s1 − T (s2)) ds1

)
ds2

]〉
=

〈
exp

[
i

∫ +∞

0
ξ(s)h(s) ds

]〉
. (4.38)

Here we changed the order of integration and introduced the auxiliary function h:

h(s) =

∫ +∞

0
u(s′)δ(s′ − T (s)) ds′ , (4.39)

which depends only on the process T , i.e., on the different realisations of the noise η. For
each of these realisations, h is completely determined and it can be used as a test function
in the characteristic functional of ξ. Thus, Eq. (4.38) can be simplified if we compute the
average over ξ first. For a general Gaussian noise, either white or coloured, of correlation
function 〈ξ(s1) ξ(s2)〉 = σ(s2 − s1), we obtain [179]:〈

exp

[
i

∫ +∞

0
ξ(s)h(s) ds

]〉
=

〈
exp

[
−
∫ +∞

0

∫ +∞

0
h(s1)h(s2)σ(s2 − s1) ds1 ds2

]〉
.

(4.40)
We note that the average in the rhs of this equation is now only on the noise η. If we
further substitute Eq. (4.39) back into Eq. (4.40), we obtain the final result:

G[u(r)] =

〈
exp

[
−
∫ +∞

0

∫ +∞

0
u(r1)u(r2)Λ(r1, r2; T ) dr1 dr2

]〉
, (4.41a)

Λ(r1, r2; T ) =

∫ +∞

0

∫ +∞

0
δ(r1 − T (s1))δ(r2 − T (s2))σ(s2 − s1) ds1 ds2 . (4.41b)

We remark again that the ensemble average in the rhs of Eq. (4.41a) is only over the
different stochastic paths of η. In the specific case of ξ being a white Gaussian noise, we
have σ(s2 − s1) = δ(s2 − s1), so that Eq. (4.41b) simplifies as below:

Λ(r1, r2; T ) =

∫ +∞

0

∫ +∞

0
δ(r1 − T (s1))δ(r2 − T (s2))δ(s2 − s1) ds1 ds2

=

∫ +∞

0
δ(r1 − T (s))δ(r2 − T (s)) ds

= δ(r2 − r1)

∫ +∞

0
δ(r1 − T (s)) ds , (4.42)

where we suitably employed the properties of the delta function. Substituting this result
into Eq. (4.41a), we obtain the following characteristic functional:

G[u(r)] =

〈
exp

[
−
∫ +∞

0

∫ +∞

0

∫ +∞

0
u(r1)u(r2)δ(r2 − r1)δ(r1 − T (s)) ds dr1 dr2

]〉
=

〈
exp

[
−
∫ +∞

0

∫ +∞

0
[u(r)]2δ(r − T (s)) ds dr

]〉
=

〈
exp

[
−
∫ +∞

0
[u(T (s))]2 ds

]〉
. (4.43)
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Therefore, the characteristic functional of ξ can be expressed as a nonlinear functional of
the process T . As a sanity check, we recover the PDF of a free diffusive CTRW. This is
obtained by setting: u(r) =

√
2σ kΘ(t− r) in Eq. (4.43) and recalling Eq. (3.6):

P̂ (k, t) =

〈
exp

[
−2σ k2

∫ +∞

0
Θ(t− T (s)) ds

]〉
=

〈
exp

[
−2σ k2

∫ +∞

0
[1−Θ(s− S(t))] ds

]〉
=
〈
exp

[
−2σ k2 S(t)

]〉
. (4.44)

As expected, we obtain the characteristic function of a time-changed free diffusion.

4.4 Models with External Forces

We now consider models of anomalous processes in the presence of external forces [78, 180,
157, 151, 181]. Let us first focus on the random walk picture of the CTRW and assume
that external force fields, which depend on the position of the walker, only modify its
dynamics during the jumps. In the continuum limit, these forces are naturally included
in the Langevin equation of the process X(s), i.e., Eq. (3.4a). Thus, if we consider the
overdamped regime, we obtain the following equations [79]:

Ẋ(s) = F (X(s)) +
√

2σ ξ(s), (4.45a)

Ṫ (s) = η(s), (4.45b)

where the function F (x) is required to satisfy the Lipschitz condition so that the time-
changed solution Y exists and is unique (see Sec. 3.3.1). However, different scenarios may
be observed in experiments where forces can modify the position of the walker also during
the waiting times between different jumps, without changing the underlying waiting time
distribution. For instance, we would expect this situation to occur for the motion of an
organelle inside the cytoplasm of a freely migrating cell, or which is driven by an external
field. This different situation turns out not to be easily described with the time-change
technique, as it is not clear how to modify the Langevin subordinated equations in order to
account for these further changes in the position variable. However, the characterization
of the noise ξ(t) provided by Eqs. (4.31, 4.32), or equivalently by Eq. (4.35), enables us to
describe it with a new class of models, defined with the Langevin equation:

Ẏ (t) = F (Y (t)) +
√

2σ ξ(t). (4.46)

As before, in order to prove the existence and uniqueness of a solution Y of this equation,
we require F to satisfy the Lipschitz condition. This is proved by comparing Eq. (4.46)
with the general time-changed stochastic differential Equation (4.1) of Ref. [120].

The difference between the dynamical behaviours generated by the two models becomes
clear when we look at their simulated trajectories. In Figure 4.2 we plot the paths of Y (t)

obtained both via subordination of Eqs. (4.45a, 4.45b) (panel b) and via integration of
Eq. (4.46) (panel a) for a linear viscous-like force F (x) = −γx with γ positive real constant.
On the one hand, in the subordinated dynamics (dotted arrows, panel b) we observe time
intervals where the corresponding anomalous process Y (t) is constant, meaning that the
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walker, in the corresponding renewal picture, is waiting for the next jump to occur without
any force being able to modify its position. On the other hand, during these same intervals
the process Y (t) generated by Eq. (4.46) is rapidly damped towards zero (dotted arrows,
panel a), meaning that the walker is being driven by the external force. While indeed
external forces act only during the jump times in the standard subordinated case, in the
case of Eq. (4.46) they affect the dynamics of the system for all times, without intrinsically
modifying the statistics of the waiting times and equivalently the relation between the
number of steps and the physical time. We mention that another scenario involving external
fields directly modifying the waiting time distribution of the random walk has been recently
discussed in [182], but this formalism does not have an evident connection with ours.

Clearly, both in the standard subordinated picture and in the case of our new ξ−driven
processes the inclusion of a force changes the renewal picture for the position variable Y (t),
which can no longer be expressed as a superposition of i.i.d. position increments as in
Eqs. (2.41, 2.48). These increments, indeed, now depend on the accumulated position up
to the time before the jump, which also makes the two models discussed so far different. On
the contrary, the process T (s), i.e., the stochastic process of the jump times parametrized
by the arc-length still represents a renewal process in both cases, since the waiting times
are unaffected by the force.

In the following, we present a comparison of the MSD obtained from Eqs. (4.45a, 4.45b,
4.46) for a tempered Lévy stable subordinator as in Sec. 4.2.3 and for different choices of
the external force F (x). Specifically, we look at either a constant or a linear force. Except
when explicitly stated we assume zero initial condition, so that the MSD coincides with
the second order moment. We recall that the model of Eq. (4.46) defined with the time
scaled noise ζ(t) instead of ξ(t) provides the same MSD.

4.4.1 Constant Force Case

We first look at the case of a constant homogeneous force field: F (Y (t)) = F with F ∈ R+,
for which Eq. (4.46) becomes:

Ẏ (t) = F +
√

2σ ξ(t). (4.47)

This equation can be solved formally for the exact trajectory of Y (t):

Y (t) = F t+
√

2σ

∫ t

0
ξ(τ) dτ (4.48)

and then used, together with Eq. (4.16), to derive the MSD:

〈
Y 2(t)

〉
= F 2 t2 + 2σ

∫ t

0
K(τ) dτ (4.49)

or equivalently in Laplace transform as a function of Φ(s):

〈
Ỹ 2(λ)

〉
=

2F 2

λ3
+

2σ

λΦ (λ)
. (4.50)



4.4 Models with External Forces 93

−2

−1

0

1

2

Y
(t

)

0 20 40 60 80 100
−2

−1

0

1

2

t

Y
(t

)

(a)

(b)

Figure 4.2: Simulated trajectories of a CTRW with a linear viscous-like force acting along
its all time evolution [panel a, Eq. (4.46)] or acting only during the jumps [panel b, subor-
dinated Eqs. (4.45a, 4.45b)]. Numerical algorithms are adapted from [81]. The difference
on how the force affects the dynamics during trapping events is evident (dotted arrows):
(a) the force acts on the particle, thus damping Y (t) towards zero; (b) the force does not
act, so that the particle gets physically stuck and Y (t) is kept constant.

In the subordinated case, the MSD is computed with the same technique of Eq. (3.45) by
using the specific variance

〈
X2(s)

〉
=
(
F 2 s2 + 2σ s

)
. In Laplace space we obtain:

〈
Ỹ 2(λ)

〉
=

2F 2

λ [Φ(λ)]2
+

σ2

λΦ(λ)
. (4.51)

The Laplace inverse transform of both Eqs. (4.50, 4.51) is plotted, together with their
corresponding scaling behaviours, in Figure 4.3 (main panel and inset respectively). In the
small time limit, we find that they both share the same power-law scaling of Eq. (3.92).
However, their scaling behaviour for long times is fundamentally different. On the one
hand, Eq. (4.50) provides the long time scaling:

〈
Y 2(t)

〉
∼ F 2 t2. Hence, the constant

force in this limit induces a crossover from subdiffusive to ballistic dynamics. Examples
of this nonlinear behaviour have been recently discovered in the dynamics of chromosomal
loci, which exhibit rapid ballistic excursions from their fundamental subdiffusive dynamics,
caused by the viscoelastic properties of the cytoplasm [31, 130]. Furthermore, it is evident
that the exponential damping of the waiting time distribution does not affect the long time
scaling, differently from the corresponding scaling of Eqs. (4.51), which turns out to be
(Figure 4.3, inset): 〈

Y 2(t)
〉
∼


(
Fµ1−α

α

)2
t2 µ 6= 0

2F 2

Γ(1+2α) t
2α µ = 0

(4.52)

Thus, we find the same crossover to ballistic diffusion when µ 6= 0, but with different
µ-dependent scaling coefficients, whereas in the CTRW case (µ = 0) this crossover pattern
is lost and the power-law scaling is conserved, although with a different exponent.
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Figure 4.3: MSD of an anomalous process with tempered stable (α = 0.2) distributed
waiting times in the presence of a constant force acting throughout the all temporal evolu-
tion (main panel) or only during the jump times (inset). These two different scenarios are
obtained with the ξ−driven process or with the subordination technique, i.e., by numerical
Laplace inverse transform of Eqs. (4.50, 4.51) respectively. The different long time scal-
ing is evident: (main) the ξ−driven process exhibits crossover to ballistic diffusion in all
cases and without any dependence on the tempering parameter µ; (inset) the time-changed
process exhibits crossover to ballistic diffusion with µ-dependent scaling coefficient when
µ 6= 0, whereas it still scales as a power-law with exponent 2α for µ= 0.

4.4.2 Harmonic Potential Case

We now consider an external harmonic potential, leading to a friction-like force: F (Y (t)) =

−γY (t) with γ real positive constant. Thus, Eq. (4.46) provides the following:

Ẏ (t) = −γY (t) +
√

2σ ξ(t). (4.53)

As before, we can solve formally Eq. (4.53) for the trajectory of Y (t) and use it together
with Eq. (4.16) to compute the Laplace transform of the corresponding MSD:〈

Ỹ 2(λ)
〉

=
2σ

(λ+ 2 γ) Φ (λ)
. (4.54)

On the contrary, in the subordinated case we can proceed as in Eq. (3.45) by substituting:〈
X2(s)

〉
= σ

γ

(
1− e−2 γ s

)
. One can thus obtain the result below:〈

Ỹ 2(λ)
〉

=
σ

λ [2γ + Φ(λ)]
. (4.55)

We plot in Figure 4.4 the numerical Laplace inverse transform of Eqs. (4.54, 4.55) (main
panel and inset respectively), along with their scaling behaviour for small times. While
the small time scaling is in both cases the same as in Eq. (3.92), we observe a different
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behaviour in the long time limit. Indeed, we find for Eq. (4.54) the following scaling laws:

〈
Y 2(t)

〉
∼

{
µ1−α/(γ α) µ 6= 0

σ tα−1/[γ Γ(α)] µ = 0
(4.56)

Thus, in the CTRW case the MSD decreases as a power-law towards zero. If we recall
that this process is equal to the SBM up to the MSD, this is the same anomaly already
reported in [169]. However, we also show that Y (t) correctly converges to a plateau for
µ 6= 0, this being the expected dynamical behaviour of confined diffusion. By recalling that
the waiting times are tempered Lévy stable distributed, the interpretation of the mentioned
anomaly becomes clear. Indeed, the truncation of the power-law tails of the waiting time
distribution is fundamental to let the system find a stationary state, so that the MSD can
converge to a plateau, which is typical of confined diffusion. In fact, no damping of the
tails is done in the CTRW case, meaning that very long trapping events may still happen
with non zero, but small probability. Thus, if we wait long enough, i.e., in the long time
limit, these events eventually occur. However, Eq. (4.53) establishes that the system is
affected by the external linear force also during such events, which then damps all the
oscillations of the system. This implies that the MSD should decrease to zero, because
the system is not able to disperse and gets immobilized in y = 0. On the contrary, in the
subordinated case the effect of the external force is stopped during the trapping events, so
that the system does not get trapped in the zero position for long times. Indeed, the MSD
for different values of µ share the same long-time plateau:

〈
Y 2(t)

〉
∼ σ

γ .
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Figure 4.4: MSD of an anomalous process with tempered stable (α = 0.2) distributed
waiting times in the presence of a linear viscous force acting at all times (main panel) or
only during the jump times (inset). These two cases are obtained with the ξ−driven process
or with the subordination technique, i.e., by numerical Laplace inversion of Eqs. (4.54, 4.55)
respectively. Whereas for small times the two processes exhibit subdiffusive scaling, their
long time behaviour differs: (main) the MSD of the ξ−driven process decreases to zero in
the CTRW case (µ = 0), whereas it converges to a µ-dependent plateau for µ 6= 0; (inset)
in the subordinated case all the curves converge to the same plateau.
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4.5 Outlook and Future Work

In this Chapter, we identified the underlying noise structure of a free diffusive CTRW with
an arbitrary waiting time distribution and we defined its corresponding stochastic force.
This enabled us to write a new Langevin equation, describing its dynamics directly in
physical time and equivalently to the original formulation obtained with the subordination
technique. We then derived a general formula, both in Laplace space and in physical time,
providing all its multipoint correlation functions, which, although presenting the same
time structure of white Gaussian processes, have time dependent coefficients with a non
factorisable dependence on the memory kernel generated by the corresponding subordinator
of the equivalent time-changed formulation. Thus, except for the specific choice of a
constant kernel, which recovers the factorisability of these coefficients, but reduces the
noise to a standard Brownian motion, our new ξ−noise was shown to be naturally both
non Gaussian and non Markov. We also provide its characteristic functional.

We then investigated the dynamics exhibited by processes driven by the ξ−noise in the
presence of external force fields and compared it with the one observed for usual subor-
dinated processes. In general terms, we found that these processes belong to a new class
of CTRW-like processes where external forces are exerted on the system at all times, i.e.,
both when the corresponding walker jumps or waits for the next jump to occur. Of course,
this is different from the original subordinated model, where external forces are implicitly
assumed to modify the dynamics only during the jump times. Consequently, during the
typical trapping events of subdiffusive dynamics the anomalous process Y (t) becomes con-
stant on the one hand, when it is generated via subordination, or it is deterministically
driven by the force on the other hand, when it is driven by the ξ−noise in physical time.

Furthermore, we found that these processes have the same MSD of those obtained
with the characteristic noise of the SBM with time dependent diffusion coefficient being a
function of their memory kernel. This relation indeed both provides a better interpretation
for the anomaly reported in Ref. [169] and show that the correct scaling of the MSD typical
of confined motion can be obtained by choosing more general time transformations, which
prevent an unbounded decay of the diffusion coefficient.

For future work it will be interesting to investigate the ageing and ergodicity breaking
properties of our new class of processes [93]. This might further differentiate it from other
anomalous processes such as the SBM. The properties of time-integrated observables of
the ξ−driven processes, which are expressed as functionals of their fluctuating trajectories,
are also an open problem. For functionals of CTRWs, closed-form evolution equations
can be derived that generalise the Feynman-Kac framework to anomalous processes [149,
150, 148, 147]. A further generalisation to anomalous processes with arbitrary waiting
time distributions has been derived in Chapter 3 of this Thesis [140], which highlights the
connection between the waiting time distribution and the memory kernel appearing in the
fractional evolution equations [see Eq. (3.30)]. It will be relevant to study whether similar
closed form equations can be formulated for functionals of processes driven by our ξ−noise.



CHAPTER 5

Galilean Invariance of Anomalous Stochastic Processes

In this Chapter, we aim at understanding the role of Galilean invariance for stochastic dif-
fusive processes, either normal or anomalous. In this context, a natural distinction between
strong and weak Galilean invariance, i.e., invariance with respect to Galilean transforma-
tions of their characteristic Langevin equations of motion or of their corresponding PDFs
respectively, needs to be introduced. By looking explicitly at the full Hamiltonian dynamics
of the Mori-Zwanzig model [15, 183], we first clarify that the generalised Langevin equation
naturally breaks strong Galilean invariance, because of the non commutativity of Galilean
transformations and of the coarse-graining procedure. Due to its general character, this
result also clarifies that strong Galilean invariance is not preserved by anomalous diffusive
dynamics. On the contrary, we discuss how weak Galilean invariance is always preserved
for normal diffusion, whereas one may or may not require it to be satisfied in the case of
anomalous diffusive processes. This choice leads to different types of dynamical behaviour.
On the one hand, if weak Galilean invariance is broken, we recover the ordinary CTRW; on
the other hand, if weak Galilean invariance is preserved, we obtain a different dynamics that
we characterise both in terms of fractional advection-diffusion equation (with a phenomeno-
logical argument first) and Langevin equations (for constant external force). Interestingly,
we find that these equations correspond to those driven by the noise ξ of Chapter 4. We
remark that our proof also holds in the superdiffusive regime. We conclude by discussing
Fluctuation-Dissipation relations for these processes.

5.1 Galilean Invariance of Transport Processes

In this first section, we review the notion of Galilean invariance within the context of
transport processes. Our general interest is to study how the equations of motion (EOMs)
of a diffusive particle, either normal or anomalous, change in different inertial reference
frames, which are related by suitable Galilean transformations [184]. In particular, we
consider frames uniformly moving with a fixed constant velocity between themselves. Thus,
we first review the specific form of the coordinate change connecting them. We then discuss
how this general setup naturally leads to distinguish between different levels of invariance,

97
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namely a strong one, which occurs directly at the level of the EOMs, and a weak one, which
instead only occurs at a statistical level, i.e., for averaged properties, like the position PDF.

Let us define two reference frames S and S̃ with space, velocity and time coordinates
(x, v, t ) and

(
x̃, ṽ, t̃

)
respectively. We note that clocks, i.e., the time variables, can always

be synchronised, such that we have t̃ = t. We further assume that S̃ is moving with constant
velocity v0 with respect to S and that its axes are oriented as those of S, to which they
coincide at the initial time t0 = 0. Thus, the Galilean transformation connecting them is
defined as:

x̃ = x− v0 t, (5.1)

ṽ = v − v0. (5.2)

The corresponding transformation rules for the differentials follow straightforwardly:

∂

∂t̃
=
∂x

∂t̃

∂

∂x
+
∂v

∂t̃

∂

∂v
+
∂t

∂t̃

∂

∂t
= v0

∂

∂x
+
∂

∂t
, (5.3a)

∂

∂ṽ
=
∂x

∂ṽ

∂

∂x
+
∂v

∂ṽ

∂

∂v
+
∂t

∂ṽ

∂

∂t
=

∂

∂v
, (5.3b)

∂

∂x̃
=
∂x

∂x̃

∂

∂x
+
∂v

∂x̃

∂

∂v
+
∂t

∂x̃

∂

∂t
=

∂

∂x
. (5.3c)

Let us now consider the motion of a particle, whose position and velocity are described
respectively by two functions of time X̃(t ) and Ṽ (t ) in S̃, with initial conditions given
by: Ṽ (0) = V0 and X̃(0) = x0. If the physical system, composed of the moving particle
and its environment, is specified, the Equations Of Motion (EOMs) of the particle can be
derived in closed form. Let them be specified by two suitable functions F̃1,2, such that
˙̃
V (t) = F̃1(t) and ˙̃

X(t) = F̃2(t). Analogously in S, the EOMs of the particle, whose
velocity and position are described by the different functions V (t) and X(t), are given by
the following: V̇ (t) = F1(t) and Ẋ(t) = F2(t) for suitable F1,2. Such EOMs are strong
Galilean Invariant if the time evolution of (X̃(t), Ṽ (t)) and (X(t), V (t)) is the same in
both S̃ and S. Recalling the transformation rules of the particle’s position and velocity
Eqs. (5.1, 5.2), this is equivalent to the following relations being satisfied for all times:
F̃1(t) = F1(t) and F̃2(t) = F2(t) + v0.

However, in experiments the full system is usually not known and only the statisti-
cal properties of the particle’s position and velocity can be characterised. If we perform
experimental measurements in the reference frame S, quantities that can be fully de-
termined are the position PDF P̃ (q̃, t) = 〈δ(q̃ − X̃(t))〉 and joint position-velocity PDF
P̃ (q̃, r̃, t) = 〈δ(q̃− X̃(t))δ(r̃− Ṽ (t))〉. Clearly, analogous quantities P (q, t) = 〈δ(q −X(t))〉
and P (q, r, t) = 〈δ(q −X(t)) δ(r − V (t))〉 can be determined if the measurements are per-
formed in the other frame S. We define the particle’s motion, or equivalently the processes
(X̃(t), Ṽ (t)), weak Galilean Invariant (GI) if these distributions are Galilean scalars, i.e., if
they are invariant with respect to the change of reference frame S̃ → S. Clearly, imposing
this condition induces a set of transformation rules also for the sample-space variables q̃
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and r̃ [185]. Recalling Eqs. (5.1, 5.2) connecting (X(t), V (t)) to (X̃(t) , Ṽ (t)), we can write:

P̃ (q̃, t) =
〈
δ
(
q̃ − X̃(t)

)〉
=
〈
δ
(

(q̃ + v0 t)−
(
X̃(t) + v0 t

))〉
= 〈δ(q −X(t))〉 = P (q, t), (5.4)

which implies the transformation rule: q̃ = q−v0 t and the relation P (q, t ) = P̃ (q − v0 t, t ),
or equivalently in Fourier-Laplace space P (k, λ) = P̃ (k, λ− i v0 k) [186]. Similarly, we can
impose the invariance condition to the joint position-velocity PDF:

P̃ (q̃, r̃, t) =
〈
δ
(
q̃ − X̃(t)

)
δ
(
r̃ − Ṽ (t)

)〉
=
〈
δ(q −X(t)) δ

(
(r̃ + v0)−

(
Ṽ (t) + v0

))〉
= 〈δ(q −X(t))δ(r − V (t))〉 = P (q, r, t), (5.5)

which now implies the additional transformation rule: r̃ = r− v0. In addition, we find the
relation: P (q, r, t) = P̃ (q − v0 t, r − v0, t), or equivalently in double Fourier and Laplace
space P (p, k, λ) = ei k v0P̃ (p, k, λ − i p v0). Thus, if the stochastic process observed in the
experiments is weak GI, Eqs. (5.1, 5.2) both applies to the frame coordinates and to the
sample-state variables of both the velocity and position [185]. Clearly, if the motion of the
particle is strong GI, it is also weak GI. An example of this implication is represented by
the Navier-Stokes equations [185]. In the rest of this Chapter, we will study the GI of both
normal and anomalous diffusive processes in terms of the new definitions just presented.

5.2 Normal Diffusive Processes

In this section, we first look at the transformation properties of normal diffusive processes
with respect to the Galilean coordinate change defined in Eqs. (5.1, 5.2). In this case,
indeed, microscopic models of interacting particles are available, e.g., the Kac-Zwanzig
model [15], from which an underdamped Langevin EOM of a tracer particle immersed
in a heat bath can be formally derived. This enables us to study the problem of GI
from first principles, i.e., by considering the system of bath particles and tagged one in a
different Galilean frame and derive the corresponding transformed Langevin EOM. In this
way, we show that the underdamped Langevin equation, which describes the dynamics
of the tagged particle, cannot preserve strong GI (as already suggested by earlier studies
[187, 188]), because the Galilean transformations and the coarse-graining procedure, which
is employed to derive it, naturally do not commute. Nevertheless, we find that weak GI
is instead always preserved for normal diffusive dynamics, because the change of reference
frame does not modify the statistical properties of the stochastic driving force.

5.2.1 The underdamped Langevin equation

Let us first review the Kac-Zwanzig model of a thermal heat bath. This is a system of
n harmonic oscillators with trajectories described in S by the curves (xi(t), vi(t)) and
coupled with a tracer particle with trajectory (X(t), V (t)) [15, 183]. For simplicity, we
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neglect external forces and set all the masses equal to unity. This system is fully described
in terms of its Hamiltonian function H = HB + HT , where HB,T are the Hamiltonian
functions of the bath particles and of the tracer respectively, which are given as follows:

HT =
[V (t)]2

2
HB =

n∑
j=1

 [vj(t)]
2

2
+
ω2
j

2

(
xj(t)−

γj
ω2
j

X(t)

)2
 . (5.6)

The corresponding EOMs of both the bath particles and the tracer can be derived straight-
forwardly by computing the corresponding Hamilton equations:

Ẋ(t) = V (t) V̇ (t) =
n∑
j=1

γj

(
xj(t)−

γj
ω2
j

X(t)

)
, (5.7)

ẋj(t) = vj(t) v̇j(t) = −ω2
j xj(t) + γj X(t). (5.8)

Our aim is then to integrate out the n variables of the bath particles and derive a closed
EOM for the tracer velocity V (t). We first solve the coupled Eqs. (5.8) for xj(t):

xj(t) = xj(0) cos (ωj t) + vj(0)
sin (ωj t)

ωj
+ γj

∫ t

0

sin (ωj (t− s))
ωj

X(s) ds , (5.9)

perform an integration by parts of the integral in the rhs of Eq. (5.9) and substitute the
result obtained back into Eq. (5.7). We finally derive the following EOM [15, 183]:

V̇ (t) = −
∫ t

0
K(t− s)V (s) ds + F (t) (5.10)

where the memory kernel K and F are the deterministic functions defined below [15]:

K(t) =

n∑
j=1

γ2
j

ω2
j

cos (ωj t), (5.11a)

F (t) =

n∑
j=1

γj vj(0)
sin (ωj t)

ωj
+

n∑
j=1

γj

(
xj(0)− γj

ω2
j

X(0)

)
cos (ωj t). (5.11b)

The bath trajectories only enter the definition of F Eq. (5.11b) through their initial con-
ditions, so that, if they were known, F (t) could be determined exactly at each time.
However, in realistic experiments it is not possible to obtain such information. Instead,
through repeated independent measurements, each corresponding to a different set of initial
conditions, one can determine statistically the properties of F . Thus, one usually consider
a coarse-grained model, i.e., where we do not specify the details of the microscopic bath
of particles, and assume F to be a stochastic driving force with specified statistical prop-
erties: (i) 〈F (t)〉 = 0 and (ii) 〈F (t1)F (t2)〉 = kB T K(t1 − t2), where kB is the Boltzmann
constant and T is the temperature of the system. These specific properties are determined
by considering in the Kac-Zwanzig model an ensemble of initial states (xj(0), vj(0)) for the
bath particles drawn from a canonical distribution at the same temperature T [15].

Let us now investigate this same system, before the coarse-graining, in the moving
frame S̃. Let (x̃i(t), ṽi(t)) and (X̃(t), Ṽ (t)) be the position and velocity variables of the
bath particles and of the tracer respectively. Clearly, an observer in this frame would repeat
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the same calculations before in the new coordinates and obtain the following equation:

˙̃
V (t) = −

∫ t

0
K(t− s) Ṽ (s) ds + F̃ (t) , (5.12)

F̃ (t) =
n∑
j=1

γj ṽj(0)
sin (ωj t)

ωj
+

n∑
j=1

γj

(
x̃j(0)− γj

ω2
j

X̃(0)

)
cos (ωj t), (5.13)

where (i) F̃ depends on the initial conditions in the new coordinates and (ii) K is the same
as in Eq. (5.11a). According to the definition given in the previous section, strong GI is
here preserved if the EOMs of the particle, i.e., Eqs. (5.12, 5.10), are the same in both
reference frames. Recalling the transformation rules Eqs. (5.1, 5.2), which imply that the
relations x̃j(0) = xj(0), X̃(0) = X(0) and ṽj(0) = vj(0) − v0 hold, we find, on the one
hand, the following transformation rule for F̃ :

F̃ (t) = F (t)− v0

n∑
j=1

γj
ωj

sin (ωj t). (5.14)

On the other hand, the frictional term explicitly transforms as
∫ t

0 K(t− s) Ṽ (s) ds =∫ t
0 K(t− s) V (s) ds − v0

∑n
j=1

γ2
j

ω3
j

sin (ωj t), thus leading to the transformed equation:

V̇ (t) = −
∫ t

0
K(t− s)V (s) ds + F (t)− v0

n∑
j=1

γj
ωj

(
1− γj

ω2
j

)
sin(ωj t). (5.15)

The third term appearing in the rhs of Eq. (5.15) quantitatively estimates the breaking of
GI of the underdamped Langevin equation and it accounts for both a contribution from
the frictional term, damping the frame velocity, and one from the bath particles trough
the dependence on their initial velocities of the function F . However, in the specific case
γj = ω2

j , this term disappears and the GI of the equation is restored. We show below
that this is ultimately due to the GI of the Newton EOMs of both the bath particles
and the tracer, which only holds if this condition is satisfied. Indeed, we can express the
Hamiltonian functions in S̃ in terms of the coordinates of S (apart from constant terms
not contributing to the EOMs) as below:

H̃T = HT − v0 V (t) (5.16a)

H̃B = HB − v0

n∑
j=1

vj(t)− v0 t
n∑
j=1

ω2
j

(
1− γj

ω2
j

)(
xj(t)−

γj
ω2
j

X(t)

)
. (5.16b)

Here, GI is broken by both (i) the kinetic term, which is velocity dependent, and by (ii)
the interaction potential between the tracer and the bath particles, which contributes to
the third term in the rhs of Eq. (5.16b). Interestingly, this term is null when γj = ω2

j . The
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corresponding Hamiltonian EOMs are reported below:

˙̃
X(t) = V (t)− v0

˙̃
V (t) =

n∑
j=1

γj

(
xj(t)−

γj
ω2
j

X(t)

)
− v0 t

n∑
j=1

γj

(
1− γj

ω2
j

)
, (5.17)

˙̃xj(t) = vj(t)− v0
˙̃vj(t) = −ω2

j xj(t) + γj X(t) + v0 t ω
2
j

(
1− γj

ω2
j

)
. (5.18)

As suggested, the condition γj = ω2
j eliminates the time dependent term in the Newton

Eqs. (5.17, 5.18), thus making them strong GI. Our calculation shows that the Mori-
Zwanzig formalism leads to a strong GI underdamped Langevin equation if the interaction
potential between the tracer and the bath particles is pairwise and dependent on the
difference between their positions, i.e., it has the functional form V (|xj(t) − X(t)|) for
j = 1, . . . , n. In addition, it elucidates that both the transformation rule of F and the
GI of the underdamped Langevin equation depend on the specific microscopic model of
the heat bath. Thus, when F (t) is described by a stochastic driving force, i.e., we neglect
the details of the underlying heat bath, (i) an explicit transformation rule, like Eq. (5.14),
for the stochastic random force cannot be defined and (ii) the resulting underdamped
Langevin equation always breaks strong GI, due to both the contribution of the friction
term damping the frame velocity and of the stochastic force. However, as the constant shift
in Eq. (5.14) do not depend on the initial conditions of the bath particles, the stochastic
forces in S̃ and S have the same statistical properties, this suggesting that the processes
(X(t), V (t)), described by the underdamped Langevin Eq. (5.10), satisfy weak GI.

5.2.2 Transport evolution equations

We consider Eq. (5.12) when K(t) = γ δ(t) [15] and F̃ (t) is described by the stochastic
force ξ̃(t), i.e., the EOMs of the particle’s velocity and position

(
X̃(t), Ṽ (t)

)
are given by:

˙̃
X(t) = Ṽ (t)

˙̃
V (t) = −γ Ṽ (t) +

√
2σ ξ̃(t) . (5.19)

According to the earlier discussion, ξ̃(t ) is a white Gaussian noise with
〈
ξ̃(t)

〉
= 0 and〈

ξ̃(t1) ξ̃(t2)
〉

= δ(t2 − t1). Moreover, we have σ = γ kB T (T is the temperature of the
thermal bath). The frame independence of this coefficient is understood by recalling that
σ = γ v2

th, where vth is the thermal velocity of a Brownian particle with massm = 1, i.e., the
square root of its averaged velocity without potential in the stationary state [189]. However,
the uniform motion of the frame only contributes to the two-point velocity correlation
function by a term ∝ e−γ (t1+t2), i.e., null in the long-time limit. Thus, vth =

√
kb T in

both frames. The evolution equation of the joint position-velocity PDF of this process is
given by the KK equation [189]:

∂

∂t
P̃ (q̃, r̃, t) = − ∂

∂q̃
r̃ P̃ (q̃, r̃, t) + γ

∂

∂r̃
r̃ P̃ (q̃, r̃, t) + σ

∂2

∂r̃2
P̃ (q̃, r̃, t ) . (5.20)

We now want to understand how Eq. (5.20) transforms when we move to the reference
frame S and verify that the processes described by Eqs. (5.19) are weak GI. By employing
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Eqs. (5.1, 5.2), we obtain in the frame S the following Langevin equations:

Ẋ(t) = V (t), V̇ (t) = −γ V (t) + γ v0 +
√

2σ ξ(t). (5.21)

Here, according to the previous discussion, ξ(t) is a Gaussian white noise with the same
statistical properties of ξ̃(t). As already suggested, this different noise term accounts for
the effect of the Galilean transformation on the thermal bath particles and elucidates that
the set of Langevin Eqs. (5.19) are not strong GI [187]. Starting from these equations, one
can derive the corresponding KK equation, which is given as below:

∂

∂t
P (q, r, t) = − ∂

∂q
r P (q, r, t) + γ

∂

∂r
(r − v0)P (q, r, t) + σ

∂2

∂r2
P (q, r, t). (5.22)

Clearly, if we perform the inverse change of variables Eqs. (5.1, 5.2) on Eq. (5.22), we find
that Eq. (5.5) needs to be satisfied in order to consistently recover Eq. (5.20). This implies
that weak Galilean invariance is here preserved. On the contrary, strong GI is ultimately
broken by the frictional term damping the frame velocity.

We now pose this same question for the overdamped limit of Eqs. (5.19), which reads
in S̃ as follows (with external position-dependent or constant force):

γ
˙̃
X(t) = F̃

(
X̃(t)

)
+
√

2σ ξ̃(t) . (5.23)

The corresponding position PDF is described by the Smoluchowski equation [189]:

∂

∂t
P̃ (q̃, t ) =

[
−1

γ

∂

∂q̃
F̃ (q̃) +

σ

γ

∂2

∂q̃2

]
P̃ (q̃, t) , (5.24)

which can be obtained explicitly via an adiabatic expansion of Eq. (5.20) [189, 83]. As
before, we want to study how Eq. (5.24) transforms with respect to the Galilean transfor-
mation defined by Eqs. (5.1, 5.2) and verify if also the overdamped process is weak GI.
Similarly to the underdamped case, if we Galilean transform Eq. (5.23), we obtain:

γ Ẋ(t) = γ v0 + F (X(t)) +
√

2σ ξ(t), (5.25)

where F (q) = F̃ (q − v0 t) is the transformed force. Its corresponding evolution equation
reads as follows:

∂

∂t
P (q, t) = −v0

∂

∂q
P (q, t) +

[
−1

γ

∂

∂q
F (q) +

σ

γ

∂2

∂q2

]
P (q, t). (5.26)

Similarly to the KK Eq. (5.22), if we make the change of variables Eqs. (5.1,5.2) on
Eq. (5.26), we find that Eq. (5.4) needs to hold in order to consistently recover Eq. (5.24).

In conclusion, for single particle motion both the Langevin equation, either under-
damped or overdamped, and the corresponding evolution equations are not strong GI, this
being fundamentally rooted in the stochastic description of the thermal bath. Indeed, by
neglecting the details of the bath particles’ motion, one automatically breaks strong GI,
as the term generated by a Galilean transformation of the friction cannot be compensated
by the bath. However, in both cases weak GI is still preserved.
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5.3 Anomalous Diffusive Processes

In this Section we study the transformation properties of anomalous diffusive processes,
based on the CTRW model. Differently from the case of normal processes, rigorous deriva-
tions of the subordinated Langevin Eqs. (3.4a, 3.4b) starting from models of interacting
particles or Boltzmann-type equations are not available, so that we cannot make an analysis
from first principles as in Sec. 5.2.1. Nevertheless, the non commutativity of the Galilean
transformation and of the coarse-graining procedure still holds, as it does not depend on
the type of stochastic dynamics exhibited by the tracer particle. Thus, similarly to normal
processes, also anomalous subordinated Langevin equations and their corresponding frac-
tional evolution equations do not preserve strong GI. However, the remarkable feature of
such anomalous diffusive processes is that they can either preserve weak Galilean invariance
or break it, thus leading to completely different dynamical behaviour. In the latter case we
recover the ordinary CTRW, while in the former case we obtain a new class of anomalous
stochastic processes, that we characterise in terms of their fractional evolution equations.
Later in Sec. 5.5 we will show (for the specific case of an external constant force) that such
processes are those of Chapter 4, described in terms of ξ-driven Langevin equations. This
elucidates that the weak Galilean invariance of fractional evolution equations and their
transformation rules with respect to the Galilean transformation defined in Eqs. (5.1, 5.2)
are intimately related to the role played by external forces in the CTRW dynamics.

Here instead, we first present a phenomenological derivation of a weak GI FFP equa-
tion, both in the subdiffusive and in the superdiffusive regime, which will naturally involve
the fractional substantial derivative [149, 150], i.e., a fractional extension of the material
derivative, instead of the usual RL operator. Within this discussion, we suggest the need
to fix the equations describing weak GI anomalous processes earlier discussed in the litera-
ture. Indeed, these earlier equations generate non-physical PDFs in the subdiffusive regime
and do not possess a Langevin formulation of their corresponding microscopic dynamics
(discussed in details in Sec. 5.5). We conclude by discussing the transformation rules of
the FKK equation under the coordinate change of Eqs. (5.1, 5.2) and the assumption of
Galilean invariant PDFs. We remark that, in the following section, we will suppress the
explicit notation of the Fourier-Laplace transforms used in the previous Chapters and we
will denote them by simply using the independent variables (k, λ) respectively. The symbol
∼ will denote quantities evaluated in the moving reference frame S̃.

5.3.1 Subdiffusive Processes

In the earlier Refs. [78, 190, 9], a FFP equation for the position PDF of a weak GI anoma-
lous subdiffusive walker was built ad-hoc, by exploiting the fact that the position PDFs in
the two reference frames S and S̃ are related by Eq. (5.4), i.e., in Fourier-Laplace space
by a linear shift of the Laplace variable. In this section, we first review this derivation and
then show that the proposed equation do not transform correctly under the Galilean trans-
formation of Eqs. (5.1, 5.2). Let us assume that the process X̃(t) in the comoving frame
S̃ is described by a CTRW, i.e., its position PDF is given in Fourier-Laplace transform by
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the Montroll-Weiss equation with power-law tailed waiting time distribution [9]:

P̃ (k, λ) =

〈
eikX0

〉
λ+Kα k2 λ1−α , (5.27)

where Kα is a generalised diffusion coefficient independent on the frame considered. This
PDF is the solution of the FFP Eq. (2.29). For convenience, we rewrite it here:

∂

∂t
P̃ (q̃, t) = Kα

∂2

∂q̃2 0D
1−α
t P̃ (q̃, t) . (5.28)

together with the RL operator 0D
1−α
t P (q, t), which is given by Eq. (2.30):

0D
1−α
t P (q, t) =

1

Γ(α)

∂

∂t

∫ t

0

P (q, τ)

(t− τ)1−α dτ . (5.29)

According to Eq. (5.4), the GI position PDF P (k, λ) in the laboratory frame S is obtained
by shifting the Laplace variable λ:

P (k, λ) =

〈
eikX0

〉
λ− i v0 k +Kαk2 (λ− i v0 k)1−α . (5.30)

In order to find the corresponding evolution equation, the standard technique consists
in (i) taking the diffusive limit (k, λ) → (0, 0) of Eq. (5.30) and (ii) making the inverse
Fourier-Laplace transform of the result. In this limit, one can make the approximation:
(λ− i v0 k)1−α ≈ λ1−α at the denominator of Eq. (5.30) and obtain the following PDF:

P (k, λ) =

〈
eikX0

〉
λ− i v0 k +Kαk2 λ1−α , (5.31)

corresponding to the fractional evolution equation (denoted as MK in the following) [9]:

∂

∂t
P (q, t) + v0

∂

∂q
P (q, t) = Kα

∂2

∂q2 0D
1−α
t P (q, t). (5.32)

This same technique has been later applied to the case of an arbitrary asymptotic scaling
behaviour of the waiting time distribution in the Montroll-Weiss equation [191]. Therein,
a more general fractional advection-diffusion equation was derived and shown to coincide
to Eq. (5.32) in the case of a power-law tailed waiting time distribution.

However, Eq. (5.32) do not transform as required under the coordinate change of
Eqs. (5.1, 5.2), ultimately originating distributions with peculiar and non-physical fea-
tures (see Sec. 5.4). Let us first see how to modify it, such that Eqs. (5.1, 5.2) transform
it into Eq. (5.28). On the one hand, by using explicitly the transformations of Eqs. (5.1,
5.2), the lhs of Eq. (5.32) changes into:

∂

∂t
P (q, t) + v0

∂

∂q
P (q, t) =

∂

∂t
P̃ (q̃, t) . (5.33)

On the other hand, we obtain for the RL operator:

0D
1−α
t P (q, t)=

1

Γ(α)

[
∂

∂t
− v0

∂

∂q̃

]∫ t

0

P (q̃ + v0 t, τ)

(t− τ)1−α dτ . (5.34)
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The result Eq. (5.34) differs from Eq. (5.29) because of (i) a further integral term with
a spatial derivative at its front and (ii) the function P (q̃ + v0 t, τ) inside the integral op-
erator, which cannot be directly transformed into the rest frame PDF P̃ (q̃, τ). These
issues are intimately related to both the transformation of the sample-space variable and
the non locality of the RL operator. Indeed, the sample-space variable q in S trans-
forms into q̃ + v0 t̃ in S̃, with the v0−dependent term being evaluated at a later time
than τ . Thus, the Galilean transformation naturally induces a retardation effect, i.e.,
P (q̃ + v0 t, τ) = P (q̃ + v0 (t− τ) + v0 τ, τ) = P̃ (q̃ + v0 (t− τ) , τ). The transformation rule
of the RL operator then follows:

0D
1−α
t P (q, t) =

1

Γ(α)

[
∂

∂t
− v0

∂

∂q̃

] ∫ t

0

P̃ (q̃ + v0 (t− τ) , τ)

(t− τ)1−α dτ . (5.35)

Putting together the transformation rules Eqs. (5.33 5.35), the transformed FFPE becomes:

∂

∂t
P̃ (q̃, t ) =

Kα

Γ(α)

∂2

∂q̃2

[
∂

∂t
− v0

∂

∂q̃

] ∫ t

0

P̃ (q̃ + v0 (t− τ) , τ)

(t− τ)1−α dτ , (5.36)

which is different from the previously derived Eq. (5.28), both for the presence of the third
order space derivative in front of the fractional integral and for the shift in the integrand
PDF. Indeed, we can postulate the FFPE correctly transforming under Eqs. (5.1, 5.2), if
we account for the rules Eqs. (5.33, 5.35) just derived. Such equation, which will be called
weak GI FFPE from now, is given by:

∂

∂t
P (q, t) +

∂

∂q
v0 P (q, t) = Kα

∂2

∂q2
D1−α
t P (q, t), (5.37)

where D1−α
t P (q, t) denotes the fractional substantial derivative [149, 150], which is de-

fined in Fourier-Laplace space as F
{
L
{
D1−α
t P (q, t)

}}
(k, λ) = [λ + i v0 k]1−αP (k, λ), or

equivalently in (q, t) space:

D1−α
t P (q, t)=

1

Γ(α)

[
∂

∂t
+ v0

∂

∂q

]∫ t

0

P (q − v0(t− τ), τ)

(t− τ)1−α dτ . (5.38)

As a sanity check, Eq. (5.37, 5.38) can be shown to transform into Eq. (5.28, 5.29) by using
Eqs. (5.33, 5.35) and to reduce to the usual FP Eq. (5.26) in the Brownian limit α = 1 (with
F (q) = 0 and K1 = σ/γ). Indeed, as the time derivative in Eq. (5.38) also operates on the
shift term, we obtain:

[
∂
∂t + v0

∂
∂q

] ∫ t
0 P (q−v0 (t−τ), τ) dτ = P (q, t)+

∫ t
0

[
∂
∂t + v0

∂
∂q

]
P (q−

v0(t− τ), τ) = P (q, t), because ∂
∂tP (q − v0(t− τ), τ) = −v0

∂
∂qP (q − v0(t− τ), τ).

Since its first derivation in the context of the generalised KK equation of a system of
weakly damped inertial particles [149, 150], where it was caused by the Galilean invariance
of the resulting evolution equation, the fractional substantial derivative Eq. (5.38) has
been related in several different systems to the existence of a strong space-time coupling
in the observed dynamical processes. For instance, its generalised version appeared in the
derivation of the FFK Eq. (3.3) [146, 147, 148, 140], which describes the time evolution
of the joint PDF of a CTRW and one of its observables, i.e., a general functional of its
stochastic path, for which such a coupling arises naturally. Indeed, if τ is the waiting time
between two successive jumps of a CTRW, placed at the position x after the earlier jump,
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its corresponding functional U(x) changes of τ U(x) during this interval. Thus, the value
of the functional after the second jump will depend on both the corresponding position
displacement and the waiting time τ , this clearly elucidating the existence of such a natural
space-time coupling in the dynamics of CTRWs’ functionals. Similar fractional substantial
derivatives are also used in the case of Lévy walks [192, 193, 194], where this coupling is
imposed to avoid the instantaneous jumps characterising Lévy flights. Differently from all
these cases, in our derivation of Eq. (5.38) the space-time coupling is naturally induced by
the assumption of a weak GI position PDF. We note that no Langevin description of the
microscopic dynamics leading to the Eqs. (5.32, 5.37) has been found so far. Indeed, only
the microscopic dynamics of CTRWs can be formulated in terms of subordinated equations
[79], though the corresponding FFPE is different from both Eqs. (5.32, 5.37).

We conclude this section by investigating the transformation rule of the fractional KKE
[149, 150, 146, 148, 147, 140]. We will both confirm the GI of its fractional derivative and
show that, similarly to the case of normal diffusive processes, the breaking of GI of the
equation is determined by the frictional term damping the frame velocity. We consider two
auxiliary processes Ỹ (s) and T̃ (s), satisfying the equations [79, 140]:

˙̃
Y (s) = −γ Ỹ (s) +

√
2σ ξ̃(s)

˙̃
T (s) = η̃(s) (5.39)

with ξ̃(s) being a Gaussian white noise with correlation function
〈
ξ̃(s1) ξ̃(s2)

〉
= δ(s2 − s1)

and η̃(s) being a Lévy stable noise of parameter 0 < α < 1 [101, 107]. The anomalous
process is obtained by time-changing the process Ỹ , i.e., by setting Ṽ (t) = Ỹ

(
S̃(t)

)
, where

we define S̃ as the inverse of the process T̃ in terms of the first passage time problem below:

S̃(t) = inf
s>0

{
s : T̃ (s) > t

}
. (5.40)

As the process Ṽ (t) is the velocity of the anomalous particle, we can define the correspond-
ing position as a functional of the Ṽ−paths:

X̃(t) =

∫ t

0
Ṽ (τ) dτ . (5.41)

The corresponding fractional KKE for the joint position-velocity PDF can be derived by
using functional methods and the stochastic calculus of time-changed processes [140]:

∂

∂t
P̃ (q̃, r̃, t) = − ∂

∂q̃
r̃ P̃ (q̃, r̃, t)

+
1

Γ(α)

[
γ
∂

∂r̃
r̃ + σ

∂2

∂r̃2

] [
∂

∂t
+

∂

∂q̃
r̃

] ∫ t

0

P̃ (q̃ − r̃ (t− τ) , r̃, τ)(
t̃− τ

)1−α dτ . (5.42)

Similar arguments as before can be used to make a Galilean transformation of this equation.
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Let us look in details at the transformation rule for the fractional substantial derivative:[
∂

∂t
+

∂

∂q̃
r̃

] ∫ t

0

P̃ (q̃ − r̃ (t− τ) , r̃, τ)

(t− τ)1−α dτ =[
∂

∂t
+ v0

∂

∂q
+

∂

∂q
(r − v0)

] ∫ t

0

P̃ (q − v0 t− (r − v0) (t− τ) , r − v0, τ)

(t− τ)1−α dτ =[
∂

∂t
+

∂

∂q
r

] ∫ t

0

P (q − r(t− τ), r, τ)

(t− τ)1−α dτ (5.43)

where in the second line we used the fact that P̃ (q − v t− (r − v0) (t− τ) , r − v0, τ) =

P̃ (q − r(t− τ)− v0 τ, r − v0, τ) = P (q − r(t − τ), r, τ) due to Eq. (5.5). If we use this
result, we obtain the transformed equation:

∂

∂t
P (q, r, t) = − ∂

∂q
r P (q, r, t)

+
1

Γ(α)

[
γ
∂

∂r
(r − v0) + σ

∂2

∂r2

] [
∂

∂t
+

∂

∂q
r

] ∫ t

0

P (q − r(t− τ), r, τ)

(t− τ)1−α dτ (5.44)

which, similarly to the normal KKE, is not GI due to the frictional term. Furthermore,
Eq. (5.44) is the KKE of the process (V (t), X(t)), where V (t) = Y (S(t)) is an anomalous
process determined by the auxiliary processes V (s) and T (s), satisfying the equations:

V̇ (s) = −γ V (s) + γ v0 +
√

2σ ξ(s), Ṫ (s) = η(s), (5.45)

with the time-change S being defined as before in terms of the inverse of the process T

S(t) = inf
s>0
{s : T (s) > t}, (5.46)

and the position process X is a functional of the stochastic paths of Y :

X(t) =

∫ t

0
Y (τ) dτ . (5.47)

Similarly to the case of normal processes, the noises ξ(t) and η(s) have the same statistical
properties of the corresponding stochastic forces in S̃, though being defined differently. This
explicit transformation of the noise terms signals that the subordinated Langevin equa-
tions, together with the corresponding fractional evolution equations, do not preserve GI.
However, our calculation provides explicit transformation rules for both the fractional KK
Eq. (5.42) and the fractional FP Eq. (5.28) under the Galilean transformation in Eqs. (5.1-
5.2) and elucidates the role played by the fractional substantial derivative Eq. (5.38) in
preserving GI of the corresponding PDFs.

5.3.2 Superdiffusive Processes

Similarly to the subdiffusive case just discussed, the MK Eq. (5.32), here with characteristic
parameter 1 < α < 2, has been first proposed as a GI fractional evolution equation
for superdiffusive dynamics by using an approximation scheme first proposed by Balescu
[195, 196, 197], which, however, do not account for the correct transformation rule of the
RL operator Eq. (5.34). In this section, we will first review this approximation procedure
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[195, 196] and then show how to appropriately modify it in order to derive Eq. (5.37)
(1 < α < 2). By doing so, we will clarify important issues regarding the derivation
of evolution equation for processes driven by general, either Gaussian or non Gaussian,
coloured noise. We remark that the validity of Eq. (5.37) is further supported by the fact
that its solution Eq. (5.30) is a well defined PDF also in the superdiffusive regime (Sec. 5.4).

Let us consider the overdamped Langevin equation in S:

Ẋ(t) = v0 +
√

2σ ξ(t) (5.48)

with ξ(t) being a general coloured noise with two-point power-law correlation function:

〈ξ(t1)ξ(t2)〉 =
1

Γ(α− 1)

1

|t1 − t2|2−α
. (5.49)

If ξ(t) is further assumed to be Gaussian, then Eq. (5.49) is sufficient to specify its proper-
ties and consequently those of X. For instance, in this case one can compute the position
PDF of X by using the characteristic functional of ξ(t) [198, 199], which is defined as [179]:

G[k(s)] =

〈
exp

[
i

∫ ∞
0

k(s) ξ(s) ds

]〉
= exp

[
− 1

Γ(α− 1)

∫ ∞
0

∫ ∞
0

k(s2)k(s1)|s2 − s1|α−2 ds1 ds2

]
(5.50)

with k(s) being an arbitrary test function. By recalling that Eq. (5.48) can be inte-
grated analytically, one can use Eq. (5.50) to compute the characteristic function of X, i.e.,
P (k, t) = ei k X(t). In details, we find:

P (k, t) = exp [i k (X0 + v0 t)]

〈
exp

[
i k
√

2σ

∫ t

0
ξ(τ) dτ

]〉
= exp [i k (X0 + v0 t)]G[

√
2σ kΘ(t− s)]

= exp [i k (X0 + v0 t)] exp

[
−k2 2σ

Γ(α− 1)

∫ t

0
ds1

∫ t

0
ds2 |s2 − s1|α−2

]
= exp

[
i k (X0 + v0 t)− k2Dαt

α
]

(5.51)

with Dα = 2σ
Γ(α+1) being a generalized diffusion coefficient. By taking its Fourier inverse

transform, we obtain a Gaussian PDF with time-dependent variance:

P (q, t) =
1√

8πDα tα
e−

(q−X0−v0 t)
2

8Dα tα (5.52)

This result is further confirmed if we compute its corresponding FP equation. Specifically,
we want to derive the time evolution of the stochastic function: F (q, t) = δ(q−X(t)). We
then take its time derivative and assume the Stratonovich interpretation. We obtain:

∂

∂t
F (q, t) = − ∂

∂q
δ(q −X(t))

d

dt
X(t) = −[v0 +

√
2σ ξ(t)]

∂

∂q
F (q, t) (5.53)

after substituting Eq. (5.48). If we now take the ensemble average of Eq. (5.53) and recall
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that P (q, t) = 〈F (q, t)〉, we obtain the following equation:

∂

∂t
P (q, t) = −v0

∂

∂q
P (q, t)−

√
2σ

∂

∂q
〈ξ(t)F (q, t)〉 , (5.54)

where the quantity 〈ξ(t)F (q, t)〉 can be computed by recalling Novikov’s theorem [112]:

〈ξ(t)F (q, t)〉=
∫ t

0

〈
ξ(t)ξ

(
t′
)〉〈δF (q, t)

δξ(t′)

〉
dt′

=
−1

Γ(α− 1)

∫ t

0

∣∣t− t′∣∣α−2
〈
∂

∂q
F (q, t)

δX(t)

δξ(t′)

〉
dt′=−

√
2σD(t)

∂

∂q
P (q, t), (5.55)

where we used the relation δX(t)
δξ(t′) =

√
2σΘ(t− t′) and we defined the time-dependent

diffusion coefficient D(t) = 1
Γ(α−1)

∫ t
0 (t− t′)α−2 dt′ = tα−1

Γ(α) . If we substitute this result in
Eq. (5.54), we obtain the following FP equation:

∂

∂t
P (q, t) = −v0

∂

∂q
P (q, t) + 2σD(t)

∂2

∂q2
P (q, t), (5.56)

whose solution is consistently given by Eq. (5.52). Interestingly, the FP Eq. (5.56) is the
same recently derived for the SBM [169, 200].

On the contrary, if ξ(t) is non Gaussian, Eq. (5.55) does not hold and one needs to
either compute 〈ξ(t)F (q, t)〉 explicitly by summing all the higher order correlations of
the noise [112] or employ a suitable approximation scheme to derive the corresponding
evolution equation. In the specific case of Eq. (5.48), we can derive the exact equation
[195, 196, 197]:(

∂

∂t
+ v

∂

∂q

)
P (q, t) =

∂2

∂q2

∫ t

0

〈
ξ(t)ξ(t′)

〉
P (q −∆(t, t′), t′) dt′ (5.57)

where the following fluctuating term explicitly appears in the integral in the rhs of Eq. (5.57):

∆(t, t′) = v(t− t′) +

∫ t

t′
ξ(t′′) dt′′ . (5.58)

The presence of this term makes Eq. (5.57) difficult to be solved exactly. Thus, following
Balescu, we can consider a local approximation, which consists in neglecting the fluctuating
term Eq. (5.58). Differently from the original literature [201], we keep the shift term, which
is a contribution that cannot be neglected for general fields. We obtain:(

∂

∂t
+ v

∂

∂q

)
P (q, t) =

∂2

∂q2

∫ t

0
〈ξ(t)ξ(τ)〉P (q − v(t− τ), τ) dτ

=
Kα

Γ(α− 1)

∂2

∂q2

∫ t

0

P (q − v(t− τ), τ)

(t− τ)2−α dτ (5.59)

However, this equation is not yet in the form of Eq. (5.37). To this aim, we need to rewrite
it in terms of the RL operator Eq. (5.29). This indeed requires to adopt a regularization
scheme for the memory integral [150]. We then rewrite the integral as follows:∫ t

0

P (q − v(t− τ), τ)

(t− τ)2−α dτ = lim
∆→0

∫ t

0
K∆(t− τ)P (q − v(t− τ), τ) dτ (5.60)
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where we introduce the auxiliary function:

K∆(t) =

{
K1(t) t < ∆

|t|α−2 t > ∆
(5.61)

With these definitions, we are allowed to treat separately the two integrals:

∫ t

0
K∆(t− τ)P (q − v(t− τ), τ) dτ =

∫ t

t−∆
K1(t− τ)P (q − v(t− τ), τ) dτ

+

∫ t−∆

0

P (q − v(t− τ), τ)

(t− τ)2−α dτ (5.62)

By recalling that (t− τ)α−2 = 1
α−1

d
dt (t− τ)α−1, we can rewrite the second integral as

∫ t−∆

0

P (q − v(t− τ), τ)

(t− τ)2−α dτ =
1

α− 1

[
∂

∂t
+ v

∂

∂q

] ∫ t−∆

0

P (q − v(t− τ), τ)

(t− τ)1−α dτ

− 1

α− 1

1

∆1−αP (q − v∆, t−∆) (5.63)

If we substitute Eq.(5.63) into Eq. (5.62) and assume K1(t) = K1 (constant), we obtain:

∫ t

0
K∆(t− τ)P (q − v(t− τ), τ) dτ =

1

α− 1

[
∂

∂t
+ v

∂

∂q

] ∫ t

0

P (q − v(t− τ), τ)

(t− τ)1−α dτ

+K1

∫ t

t−∆
P (q − v(t− τ), τ) dτ − 1

α− 1

1

∆1−αP (q − v∆, t−∆)

− 1

α− 1

[
∂

∂t
+ v

∂

∂q

] ∫ t

t−∆

P (q − v(t− τ), τ)

(t− τ)1−α dτ (5.64)

Finally, we take the limit ∆→ 0 to recover the fractional integral. If we assume smoothness
of the PDF in this limit, i.e., P (q − v∆, t−∆) ≈ P (q, t), we find:∫ t

t−∆
P (q − v(t− τ), τ) dτ ≈ ∆P (q, t), (5.65a)∫ t

t−∆

P (q − v(t− τ), τ)

(t− τ)1−α dτ ≈ P (q, t)∆α. (5.65b)

In the rhs side of Eq. (5.64) only the first term, i.e., the fractional substantial derivative,
survives in the limit, together with the term: K1∆P (q, t) − 1

α−1
1

∆1−αP (q, t). This term
always converges to zero in the regime 1 < α < 2, whereas it diverges in the subdiffusive
regime. However, in this second case we can set K1 = 1

α−1
1

∆2−α , so that the overall
contribution still converges to zero. In conclusion, our calculation provides a justification
of Eq. (5.37) in the superdiffusive regime, but not its correct Langevin description.

5.4 Comparison between MK and weak GI processes

In this section, we investigate the effect of the approximation proposed in the earlier
Refs. [78, 190, 9], i.e., we will compare both moments and position PDFs of MK and
weak GI processes, respectively described by the FFP Eqs. (5.32, 5.37) with corresponding
solutions in Laplace-Fourier space given by Eqs. (5.30, 5.31). In details, we will (i) show
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that such approximation causes dramatic changes in the statistical properties of weak GI
processes, thus leading to the peculiar, even unphysical in the subdiffusive regime, features
of MK processes, and (ii) identify a suitable parameter and its corresponding scaling limit
for which the position PDFs Eqs. (5.30, 5.31) asymptotically coincide. Except in this
particular regime, we remark that the transformation rule Eq. (5.35) needs to be taken
into account in order to define well-behaved anomalous weak GI processes. For simplicity,
we will denote in the following Xi(t) with i = 1, 2 MK and weak GI processes respectively.

Moments

Let us first compare the moments of MK and weak GI processes. To this aim, we note that
Eqs. (5.30, 5.31) have the general form: Pi(k, λ) =

〈
eikx0

〉
/Di(k, λ), with Di(k, λ) being:

Di(k, λ) =

{
(λ− i v k) +Kα k

2 λ1−α i = 1

(λ− i v k) +Kα k
2 (λ− i v k)1−α i = 2

(5.66)

This simple common structure enables us to compute general results for the moments of
both these processes in terms of Di(k, λ), as we can use the well-known relation:

〈Xn
i (λ)〉 =

(
i
∂

∂k

)n
Pi(k, λ)

∣∣∣∣
k=0

=

(
i
∂

∂k

)n 〈eikx0
〉

Di(k, λ)

∣∣∣∣∣
k=0

. (5.67)

Explicit results for the first two moments are given below:

〈Xi(λ)〉 =
〈x0〉Di(0, λ) + iD′i(0, λ)

D2
i (0, λ)

, (5.68a)

〈
X2
i (λ)

〉
=

〈
x2

0

〉
Di(0, λ) +D′′i (0, λ)

D2
i (0, λ)

+ 2
D′i(0, λ) [〈x0〉 iDi(0, λ)−D′i(0, λ)]

D3
i (0, λ)

. (5.68b)

In Eqs. (5.68a, 5.68b), only derivative up to the second order of the function Di(k, λ)

appear. However, if we compute them for both cases and evaluate them at k = 0, we find
identical results, i.e., Di(0, λ) = λ, D′i(0, λ) = −i v and D′′i (0, λ) = 2Kαλ

1−α. Thus, both
processes have the same first and second moment and consequently the same MSD [9]:

〈
(Xi(t)− x0)2

〉
=

2Kα

Γ(1 + α)
tα + v2 t2. (5.69)

In both cases, we find either subdiffusive (0 < α < 1) or superdiffusive (1 < α < 2)
behaviour for short times and ballistic drift for long times, which is due to the advection of
the moving laboratory frame. We remark that these results do not depend on the specific
initial condition, as the equivalence is shown also for the x0-dependent terms. Intuitively,
MK and weak GI processes have the same MSD because the corresponding FFP Eqs. (5.32,
5.37) differ only by a third order spatial derivative, whose effect cannot be captured by the
MSD. On the contrary, we expect deviations between the two processes, once we look at
higher order moments. For instance, if we compute the third order one, we find that only
one term depends on the third order derivative of Di(k, λ), which is different in the two
cases: D′′′1 (0, λ) = 0 and D′′′2 (0, λ) = 6 i v

(
α−1
λα

)
. Contrarily, all the other terms depend

on its lower order derivatives, thus being equal. The deviation between the third order
moments reads

〈
Y 3

2 (λ)
〉
−
〈
Y 3

1 (λ)
〉

= −6 v
(
α−1
λ2+α

)
, which is independent on x0.
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Position PDFs

A complete understanding of the deviations between MK and weak GI processes is obtained
by looking at their position PDFs Eqs. (5.30, 5.31). To avoid artefacts due to the numerical
Fourier-Laplace inverse transform, we will first derive it analytically in terms of Fox H-
functions and then evaluate them numerically, thus reducing the problem to the numerical
approximation of a Mellin-Barnes complex integral [202]. In the case of weak GI processes,
this is obtained by making the Galilean transformation Eqs. (5.1, 5.2) of the exact solution
in the comoving frame Eq. (5.27) [9]:

P2(q, t) =
1√

4Kα tα
H10

11

[
|q − v0 t|√
Kαtα

∣∣∣∣∣
(
1− α

2 ,
α
2

)
(0, 1)

]
. (5.70)

On the contrary, the derivation of an exact formula for the PDF of MK processes has long
been an open problem. So far, only its corresponding Fourier inverse transform has been
derived [201, 197], whereas a full solution in (x, t)-space is still missing. We propose such
solution in space-time of the position PDF for MK processes as follows:

P1(q, t) =
1√

4πKαtα
Q1(q, t), (5.71)

where Q(q, t) is given as an infinite series of Fox H-functions (∀x 6= 0):

Q1(q, t) = Θ(q)

[ ∞∑
n=0

1

n!

(
v0 t√
Kα tα

)n
H

2,1
2,3

(
q2;α, n

)]

+ Θ(−q)

[ ∞∑
n=0

(−1)n

n!

(
v0 t√
Kα tα

)n
H

2,1
2,3

(
q2;α, n

)]
, (5.72)

where q2 = q2

4Kαtα
and the auxiliary function H2,1

2,3

(
q2;α, n

)
is defined as follows:

H
2,1
2,3(z;α, n)=


(−1)νH2,1

2,3

[
z

∣∣∣∣∣
(

1−2ν
2 , 1

)
,
(

(2−α)(1+2ν)
2 , α

)
(0, 1),

(
1+2ν

2 , 1
)
,
(

1
2 , 1
) ]

n = 2 ν

(−1)νH2,1
2,3

[
z

∣∣∣∣∣ (−ν, 1),((2− α)(1 + ν), α)(
1
2 , 1
)
, (1 + ν, 1) , (0, 1)

]
n = 1 + 2 ν

(5.73)

Finally, its value at the origin is specified by the three-parameter Mittag-Leffler function:

P1(0, t) =
1√

4Kα tα
E

1/2
2−α,(2−α)/2

(
−v

2
0 t

2−α

4Kα

)
. (5.74)

The derivation of Eqs. (5.71-5.74) is presented in the next paragraph. We further note
that the MK PDF is expressed as an expansion in the force field v0, i.e., the velocity of
the moving frame. As a sanity check, we compute the zero-th order term, which must
be equal to the solution in the comoving frame. This is confirmed below (note that the
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corresponding terms in the two series in Eq. (5.71) are equal, i.e., Eq. (5.75) holds ∀x ∈ R):

P1(q, t) =
1√

4πKα tα
H2,1

2,3

[
q2

4Kαtα

∣∣∣∣∣
(

1
2 , 1
)
,
(

2−α
2 , α

)
(0, 1) ,

(
1
2 , 1
)
,
(

1
2 , 1
) ]

=
1√

4πKα tα
H2,0

1,2

[
q2

4Kαtα

∣∣∣∣∣
(

2−α
2 , α

)
(0, 1) ,

(
1
2 , 1
) ] (5.75)

which solves Eq. (5.27) [9]. We used the property Eq. (A.20) of the Fox H-function [202].
We compare in Fig. 5.1 the MK PDF, obtained by numerical evaluation of Eqs. (5.71-

5.73) (left panels) with the weak GI PDF obtained by direct evaluation of Eq. (5.70) (right
panels) for different times and both in the subdiffusive and the superdiffusive regime, i.e.,
α = {0.5, 0.8, 1.2, 1.5} (top to bottom). The two solutions exhibit significant differences
that cannot be neglected. On the one hand, the MK PDFs are characterised by a point
of non differentiability in x = 0 for all times, which is intuitively due to the particular
structure of Eq. (5.71), where the two series over the positive/negative axis have different
signs. We further note that in the subdiffusive regime this distribution has negative values
in the region x < 0, which seriously questions its physical relevance. To confirm that these
values are not due to numerical artefacts in the evaluation of Eqs. (5.71-5.73), we compute
analytically the integral of P1(x, t) on both the regions x ≷ 0:

I+(t) =

∫ ∞
0

P1(q, t) dq =
1

2
+

v0 t√
16Kα tα

F (t) (5.76a)

I−(t) =

∫ 0

−∞
P1(q, t) dq =

1

2
− v0 t√

16Kα tα
F (t) (5.76b)

where we introduce the auxiliary function:

F (t) = E
1/2
2−α,(4−α)/2

(
− v2

0

4Kα
t2−α

)
. (5.77)

We plot I−(t) and the value of the PDF at the origin Eq. (5.74) in Fig. 5.2 (right/left
panel respectively). Both I−(t) and P1(0, t) exhibit negative values for finite time in the
subdiffusive regime, thus confirming that our result on the negativity of the MK PDF in
the subdiffusive regime is reliable and not due to numerical artefacts. Furthermore, due
to (i) the non zero value of this integral for finite time and (ii) the existence of the critical
point, the MK PDF lacks a symmetry axis. On the other hand, the PDF of weak GI
processes still presents a critical point in x = v0 t, which is expected considering that the
process resides in a frame moving with velocity v0. Moreover, we can easily check that the
integrals of P2(x, t) over the intervals [−∞, v0 t] and [v0 t,+∞] are equal for all times, thus
implying that this PDF is symmetric with respect to its critical point.

Derivation of the position PDF of MK Processes

We present in this section the derivation of the Fourier-Laplace inverse transform of
Eq. (5.31). Our approach will be similar to that recently discussed in [203]. For sim-
plicity, we assume X0 = 0. We first write Eq. (5.31) as follows:

P1(k, λ) =
1

λα′ + b(k)λβ + c(k)
, (5.78)
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Figure 5.1: Plot of the position PDFs of MK (left panels) and GI processes (right panels) at
different times in both the subdiffusive (α = {0.5, 0.8}, panels (a,b) and (c,d) respectively)
and the superdiffusive regime (α = {1.2, 1.5}, panels (e,f) and (g,h) respectively). Other
parameters are: v0 = 1, Kα = 1, Y0 = 0. P1(q, t) is obtained by numerical evaluation of
Eqs. (5.71-5.73), whereas P2(q, t) is obtained by numerical evaluation of Eq. (5.70). We
find that MK PDFs exhibit a point of non differentiability in x = 0 for all times, which
breaks the symmetry of the corresponding weak GI PDFs. Indeed, these still exhibit a
critical point, which moves with velocity v0 in time, but they are symmetric with respect
to an axis passing through it. Contrarily to MK PDFs, they do not exhibit any negative
value in the subdiffusive regime (further confirmed by the results in Fig. 5.2). Perfect
agreement of the weak GI PDFs with simulations of the Langevin Eq. (5.102) (coloured
markers) for a constant force v0 is found in the subdiffusive regime.
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Figure 5.2: Plot of P1(0, t), i.e., the value at zero of the MK PDF, Eq. (5.74) (left panel)
and of I−(t), i.e., its integral on the negative axis, Eq. (5.76b) (right panel) both in the
subdiffusive (α = {0.5, 0.8}) and in the superdiffusive regime (α = {1.2, 1.5}). Other
parameters are: v0 = 1, Kα = 1, Y0 = 0. Both P1(0, t) and I−(t) exhibit negative values
in the subdiffusive regime, thus supporting the discussion of the main text.

where we introduce the auxiliary parameters: α′ = 1, β = 1 − α, b(k) = Kα k
2 and

c(k) = −i v0 k. We remark that α′ > β ∀α ∈ (0, 2). We use the series expansion method
first discussed in [75] to write:

P1(k, λ) =
1

c(k)

1

1 + λα′+b(k)λβ

c(k)

=
1

c(k)

λ−βc(k)

λα′−β + b(k)

1

1 + λ−βc(k)

λα′−β+b(k)

=
1

c(k)

λ−βc(k)

λα′−β + b(k)

∞∑
n=0

(−1)n
λ−β n[c(k)]n

[λα′−β + b(k)]n

=

∞∑
n=0

(−1)n[c(k)]n
λ−β−β n

[λα′−β + b(k)]n+1
(5.79)

We can now make a term by term Laplace inverse transform of Eq. (5.79) by recalling
Eq. (A.10). Thus, P1(k, t) is given as a series of three-parameter Mittag-Leffler functions:

P1(k, t) =
∞∑
n=0

(−1)n[c(k)]ntnE1+n
α,1+n (−tα b(k))

=
∞∑
n=0

(i v0 t)
n knE1+n

α,1+n

(
−Kα t

α k2
)
. (5.80)

We now need to make a term by term inverse Fourier transform of Eq. (5.80). To this aim,
we first rewrite it in terms of Fox H-functions by using Eq. (A.11). In our case, we obtain:

E1+n
α,1+n

(
−Kα t

α k2
)

=
1

Γ(1 + n)
H1,1

1,2

[
Kα t

α k2

∣∣∣∣∣ (−n, 1)

(0, 1), (−n, α)

]
. (5.81)
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Secondly, we note that the Fourier inverse transform of the expression just derived can be
written explicitly in terms of the following cosine and sine transforms of Fox H-functions:

F−1

{
knH1,1

1,2

[
Kα t

α k2

∣∣∣∣∣ (−n, 1)

(0, 1), (−n, α)

]}
(q, t) =

1

2π

∫ ∞
−∞

cos (k q)knH1,1
1,2

[
Kα t

α k2

∣∣∣∣∣ (−n, 1)

(0, 1), (−n, α)

]
dk

− i

2π

∫ ∞
−∞

sin (k q)knH1,1
1,2

[
Kα t

α k2

∣∣∣∣∣ (−n, 1)

(0, 1), (−n, α)

]
dk . (5.82)

Let us first assume q > 0. We remark that (i) the first/second integral in the rhs of
Eq. (5.82) is not null only for even/odd indices, i.e., for n = 2ν/1+2ν ∀ ν ∈ N0 respectively,
due to the parity of the Fox H-function appearing in Eq. (5.82) and that (ii) they are equal
to twice the corresponding integral on the semi-half positive line, once not null. Thus, we
can use Eqs. (A.25) to explicitly compute these integral transforms :

∫ ∞
0

cos (k q)k2 νH1,1
1,2

[
Kα t

α k2

∣∣∣∣∣ (−2 ν, 1)

(0, 1), (−2 ν, α)

]
dk =

√
π 22ν

|q|1+2ν
H1,2

3,2

[
4Kα t

α

q2

∣∣∣∣∣
(

1
2 − ν, 1

)
, (−2ν, 1), (−ν, 1)

(0, 1), (−2ν, α)

]
, (5.83a)

∫ ∞
0

sin (k q)k1+2 νH1,1
1,2

[
Kα t

α k2

∣∣∣∣∣ (−(1 + 2 ν), 1)

(0, 1), (−(1 + 2 ν), α)

]
dk =

√
π 21+2ν

|q|2+2ν
H1,2

3,2

[
4Kα t

α

q2

∣∣∣∣∣
(
−1

2 − ν, 1
)
, (−(1 + 2 ν), 1), (−ν, 1)

(0, 1), (−(1 + 2ν), α)

]
. (5.83b)

Finally, by using the relation in Eq. (A.23) we obtain:

F−1

{
knH1,1

1,2

[
Kα t

α k2

∣∣∣∣∣ (−n, 1)

(0, 1), (−n, α)

]}
(q, t) =

1√
π


22ν

|q|1+2νH
2,1
2,3

[
q2

4Kα tα

∣∣∣∣∣ (1, 1), (1 + 2ν, α)(
1
2 + ν, 1

)
, (1 + 2ν, 1), (1 + ν, 1)

]
n = 2ν

(−i)21+2ν

|q|2+2ν H2,1
2,3

[
q2

4Kα tα

∣∣∣∣∣ (1, 1), (2 + 2ν, α)(
3
2 + ν, 1

)
, (2 + 2ν, 1), (1 + ν, 1)

]
n = 1 + 2ν

(5.84)

These results enable us to write Eq. (5.78) explicitly in (x, t)-space in terms of two infinite
series of Fox H-functions (corresponding to the original series over odd and even indices):

P1(q, t) =
1√
π

∞∑
ν=0

(−1)ν(v0 t)
2ν

(2 ν)!

22ν

|q|1+2ν
H2,1

2,3

[
q2

4Kα tα

∣∣∣∣∣ (1, 1), (1 + 2ν, α)(
1
2 + ν, 1

)
, (1 + 2ν, 1), (1 + ν, 1)

]

+
1√
π

∞∑
ν=0

(−1)ν(v0 t)
1+2ν

(1 + 2ν)!

21+2ν

|q|2+2ν
H2,1

2,3

[
q2

4Kα tα

∣∣∣∣∣ (1, 1), (2 + 2ν, α)(
3
2 + ν, 1

)
, (2 + 2ν, 1), (1 + ν, 1)

]
(5.85)
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Finally, we can exploit Eq. (A.24) to absorb the q-dependent multiplicative factors into
the Fox H-functions. For each term separately, we obtain:

22ν

|q|1+2ν
H2,1

2,3

[
q2

4Kα tα

∣∣∣∣∣ (1, 1), (1 + 2 ν, α)(
1
2 + ν, 1

)
, (1 + 2 ν, 1), (1 + ν, 1)

]
=

1√
4Kα tα

(
1√
Kα tα

)2ν

H2,1
2,3

[
q2

4Kα tα

∣∣∣∣∣
(

1
2 − ν, 1

)
,
(
1 + 2ν − α

(
1
2 + ν

)
, α
)

(0, 1),
(

1
2 + ν, 1

)
,
(

1
2 , 1
) ]

(5.86a)

21+2ν

|q|2+2ν
H2,1

2,3

[
q2

4Kα tα

∣∣∣∣∣ (1, 1), (2 + 2ν, α)(
3
2 + ν, 1

)
, (2 + 2ν, 1), (1 + ν, 1)

]
=

1√
4Kα tα

(
1√
Kα tα

)1+2 ν

H2,1
2,3

[
q2

4Kα tα

∣∣∣∣∣ (−ν, 1), (2 + 2ν − α(1 + ν), α)(
1
2 , 1
)
, (1 + ν, 1) , (0, 1)

]
(5.86b)

In the opposite case q < 0 the second term in the rhs of Eq. (5.82) changes sign, so that the
sum over odd indices in Eq. (5.85) has an opposite sign. If we take this into account and
substitute Eqs. (5.86a, 5.86b) into Eq. (5.85), we obtain the result of Eqs. (5.71-5.73). Also
Eq. (5.74), specifying the value of the PDF in x = 0, can be computed similarly. In this
case, only the sum over even indices contributes to the PDF in Eq. (5.80) with coefficients
defined by solving the correspondent integral of Fox function with Eqs. (A.26-A.17):

∫ ∞
0

k2νH1,2
1,1

[√
Kαtα|k|

∣∣∣∣∣
(
−2ν, 1

2

)(
0, 1

2

)
,
(
−2ν, α2

) ] dk =

(
1√
Kαtα

)1+2ν
[
Γ
(

1
2 + ν

)]2
Γ
(
(1 + 2ν)

(
1− α

2

)) .
(5.87)

By substituting such coefficients into the series over even indices, we obtain:

P1(0, t) =
1√

4Kαtα

∞∑
ν=0

(−1)ν(2ν)!

4ν(ν!)2

1

Γ
((

1− α
2

)
(1 + 2ν)

) (v2 t2−α

4Kα

)ν
, (5.88)

which is the series expansion of Eq. (5.74). As a sanity check of our result, we check
the normalisation of Eqs. (5.71-5.73), which is expected as we have from Eq. (5.78) that
P1(k, λ)|k=0 = 1/λ. Due to the different sign of the sums over odd indices, only those
over even ones contribute to the normalisation of the PDF. Due to the parity of the Fox
H-function, the integral can be restricted to the semi-half positive line, i.e., we can write:

∫ +∞

−∞
P1(q, t) dq =

1√
πKα tα

∞∑
ν=0

(−1)ν

(2 ν)!

(
v t√
Kα tα

)2ν

×

∫ ∞
0

H2,1
2,3

[
q2

4Kαtα

∣∣∣∣∣
(

1−2 ν
2 , 1

)
,
(
(2− α)

(
1+2 ν

2

)
, α
)

(0, 1) ,
(

1+2 ν
2 , 1

)
,
(

1
2 , 1
) ]

dq . (5.89)
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At last, we compute the integral of the Fox H-function by recalling Eqs. (A.22-A.26). We
find:

∫ ∞
0

H2,1
2,3

[
q2

4Kαtα

∣∣∣∣∣
(

1−2 ν
2 , 1

)
,
(
(2− α)

(
1+2 ν

2

)
, α
)

(0, 1) ,
(

1+2 ν
2 , 1

)
,
(

1
2 , 1
) ]

dq =

√
Kα tα

∫ ∞
0

H2,1
2,3

[
q

∣∣∣∣∣
(

1−2 ν
2 , 1

2

)
,
(
(2− α)

(
1+2 ν

2

)
, α2
)(

0, 1
2

)
,
(

1+2 ν
2 , 1

2

)
,
(

1
2 ,

1
2

) ]
dq =

√
Kα tαΘ(−1), (5.90)

where the function Θ is defined in Eq. (A.17), which reads in this specific case as:

Θ(s)=
Γ
(
s
2

)
Γ
(

1
2 + ν + 1

2s
)

Γ
(

1
2 −

s
2 + ν

)
Γ
(

1
2 −

1
2s
)

Γ
(
(2− α)

(
1+2 ν

2

)
+ α

2 s
)=

Γ
(
s
2

)
Γ
(

1
2 + ν + 1

2s
)

Γ
(
(2− α)

(
1+2 ν

2

)
+ α

2 s
) ν−1∏
i=0

(
1

2
− s

2
+ i

)
.

(5.91)

We note that for s = −1 all terms, except the one for ν = 0 which is equal to
√
π, cancel

out. Eq. (5.90) is then equal to
√
πKαtα, i.e., the PDF is correctly normalised. Finally,

we recall that, in order to compute Eqs. (5.76a-5.76b), we also need the integral over the
odd series, which can be computed in the same way as Eq. (5.90). Indeed, we find:

∫ ∞
0

H2,1
2,3

[
q2

4Kαtα

∣∣∣∣∣ (−ν, 1) , ((2− α) (1 + ν) , α)(
1
2 , 1
)
, (1 + ν, 1) , (0, 1)

]
dq =

√
Kα tα

∫ ∞
0

H2,1
2,3

[
q

∣∣∣∣∣
(
−ν, 1

2

)
,
(
(2− α) (1 + ν) , α2

)(
1
2 ,

1
2

)
,
(
1 + ν, 1

2

)
,
(
0, 1

2

) ]
dq =

√
Kα tαΘ(−1), (5.92)

where the function Θ in this case is given by:

Θ(s)=
Γ
(

1
2(1− s)

)
Γ
(
1 + ν − s

2

)
Γ
(
1 + ν + s

2

)
Γ
(
1 + s

2

)
Γ
(
(2− α) (1 + ν)− α

2 s
) =

Γ
(

1
2(1− s)

)
Γ
(
1 + ν − s

2

)
Γ
(
(2− α) (1 + ν)− α

2 s
) ν−1∏

i=0

(
1 +

s

2
+ i
)
.

(5.93)

If we evaluate this expression for s = −1, we obtain the following result:

Θ(−1) =
1√
π

Γ
(

3
2 + ν

)
Γ
(

1
2 + ν

)
Γ
(
(2− α)(1 + ν) + α

2

) , (5.94)

which can finally be used to compute Eqs. (5.76a-5.76b). For instance, let us compute
explicitly Eq. (5.76a). Recalling (1 + 2n)! = Γ(2 + 2n) = 1√

π
21+2n Γ(1 + n) Γ(3

2 + n) and
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Eqs. (5.92-5.94), we have:∫ ∞
0

dq P1(q, t) =
1

2
+

1

2
√
π

∞∑
n=0

(−1)n

(1 + 2n)!

(
v0 t√
Kα tα

)1+2n

×

×
∫ ∞

0
H2,1

2,3

[
q

∣∣∣∣∣
(
−n, 1

2

)
,
(
(2− α) (1 + n) , α2

)(
1
2 ,

1
2

)
,
(
1 + n, 1

2

)
,
(
0, 1

2

) ]
dx

=
1

2
+

∞∑
n=0

(−1)n

4 2n Γ(1 + n)

(
v0 t√
Kα tα

)1+2n 1√
π

Γ
(

1
2 + n

)
Γ
(
(2− α)(1 + n) + α

2

)
=

1

2
+

v0 t√
16πKα tα

∞∑
n=0

(−1)n

Γ(1 + n)

Γ
(

1
2 + n

)
Γ
(
(2− α)(1 + n) + α

2

) ( v0 t√
4Kα tα

)2n

,

(5.95)

where in the rhs we obtain the series expansion of Eq. (5.77).

Asymptotic comparison of MK and weak GI distributions

In this section, we investigate if a characteristic scaling parameter exists, such that the MK
and weak GI PDFs asymptotically coincide. To this aim, we first need to express Eq. (5.70)
in the form of Eq. (5.71-5.72), i.e., as a series expansion in the parameter v0. Let us consider
separately the case x ≷ v0 t. In order to Taylor expand the Fox H-function in Eq. (5.70),
we need its hierarchy of derivatives. If we use the properties in Eqs. (A.28-A.24-A.20), we
find:

dn

dzn
H1,0

1,1

[
z

∣∣∣∣∣
(
1− α

2 ,
α
2

)
(0, 1)

]
=

(
1

z

)n
H1,2

2,2

[
z

∣∣∣∣∣ (0, 1),
(
1− α

2 ,
α
2

)
(0, 1), (n, 1)

]

= H1,2
2,2

[
z

∣∣∣∣∣ (−n, 1),
(
1− α

2 (1 + n), α2
)

(0, 1), (−n, 1)

]
= H1,0

1,1

[
z

∣∣∣∣∣
(
1− α

2 (1 + n), α2
)

(0, 1)

]
. (5.96)

With this result, we find the following Taylor expansion (for instance for x > v0 t):

H1,0
1,1

[
q − v0 t√
Kαtα

∣∣∣∣∣
(
1− α

2 ,
α
2

)
(0, 1)

]
=
∞∑
n=0

1

n!

(
v0 t√
Kαtα

)n
H1,0

1,1

[
q√
Kαtα

∣∣∣∣∣
(
1− α

2 (1 + n), α2
)

(0, 1)

]
. (5.97)

We note that for x < v0 t, the Taylor expansion is obtain from Eq. (5.97) by substituting
q → −q and v0 → −v0. We finally obtain the following expansion of Eq. (5.70):

P2(q, t) =
1√

4Kα tα
Q2(q, t), (5.98)

where Q2(q, t) is given as the following series of Fox H-functions:

Q2(q, t) = Θ(q + v t)

[ ∞∑
n=0

1

n!

(
v t√
Kα tα

)n
H1,0

1,1

[
q√
Kαtα

∣∣∣∣∣
(
1− α

2 (1 + n), α2
)

(0, 1)

]]

+ Θ(−q − v t)

[ ∞∑
n=0

(−1)n

n!

(
v t√
Kα tα

)n
H1,1

1,0

[
−q√
Kαtα

∣∣∣∣∣
(
1− α

2 (1 + n), α2
)

(0, 1)

]]
(5.99)
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By comparing Eqs. (5.72,5.99), a natural choice of the scaling parameter is the quantity
ε = q/

√
Kα tα, governing the scaling behaviour of the Fox H-functions. Let us further

assume v0 � 1, such that we can keep only the first order terms in the series expansions
Eqs. (5.72,5.99). Let us focus on the half-positive line, specifically q > v t (in the opposite
case similar arguments hold). From Eq. (5.99) we find immediately the first order term:

P
(1)
2 (x, t) =

v0 t

2Kα tα
H1,0

1,1

[
q√
Kαtα

∣∣∣∣∣
(
1− α, α2

)
(0, 1)

]
. (5.100)

On the other hand, the first order term of Eq. (5.72) can be simplified as follows:

P
(1)
1 (q, t) =

v t

4Kα tα
H1,0

1,1

[
q√
Kαtα

∣∣∣∣∣
(
2− α, α2

)
(1, 1)

]
. (5.101)

Interestingly, these two Fox H-functions have the same scaling behaviour for large values

of the parameter ε, i.e., P (1)
1,2 (q, t) ∼ ε

2α−1
2−α e−

2−α
2 (α2 )

α
2−α ε

2
2−α for ε� 1 [202]. Thus, in this

scaling regime we expect the two solutions to agree. We remark that this result only holds
in the limit of small velocity. Indeed, for general v0 further terms of the series expansions
need to be considered, whose asymptotic behaviour for ε� 1 will be left for future work.

5.5 Langevin Formulation of Weak Galilean Invariant Anoma-
lous Processes

In this section, we provide a characterisation of the microscopic stochastic dynamics of
weak GI anomalous processes, whose position PDF is described by the weak GI FFP
Eq. (5.37). Interestingly, it turns out that these Langevin equations are driven by the
noise ξ introduced in Chapter 4 [200]. We will discuss both the subdiffusive regime (0 <
α < 1), where we will conveniently employ the subordination technique to formally derive
Eq. (5.37), and the superdiffusive regime, where instead we will extend Novikov’s theorem
[see Eq. (2.99)] by summing over the hierarchy of correlation functions of the noise [200].

Subdiffusive regime

Let us consider a process X(t) described by the Langevin equation:

Ẋ(t) = F (X(t)) +
√

2σ ξ(t), (5.102)

where the stochastic noise ξ(t) is defined formally as in Eq. (4.14) [200], with the process
T therein being a Lévy stable process of parameter 0 < α < 1. Recalling that ξ(t) is
the derivative of a time-changed Brownian motion [200], the integrated process Y (t) is a
semi-martingale, so that we can write its Itô formula as follows [102]:

f(X(t)) = f(X0) +

∫ t

0
f ′(X(s)) dX(s) +

1

2

∫ t

0
f ′′(X(s)) d[X,X]s , (5.103)
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which does not exhibit jump terms as X has continuous paths. If we evaluate Eq. (5.103)
for the function f(X(t)) = ei k X(t) and recall that [X,X]s = 2σ

∫ s
0 dS(τ) [153], we obtain:

ei k X(t) = ei k X0 + i k

∫ t

0
ei k X(s) dX(s) − σ k2

∫ t

0
ei k X(s) dS(s)

= ei k X0 + i k

∫ t

0
ei k X(s)F (X(s)) ds

+ i k
√

2σ

∫ t

0
ei k X(s)ξ(s) ds − σ k2

∫ t

0
ei k X(s) dS(s) , (5.104)

where in the second line we used explicitly Eq. (5.102). We note that the term dependent
on ξ(t) is null once we take the ensemble average of Eq. (5.104), due to the fact that ξ has
null first moment. We further note that the ensemble average of f(X(t)) is equal to the
characteristic function of X. Thus, by (i) taking the ensemble average of Eq. (5.104), (ii)
making its Fourier inverse transform and (iii) taking the time derivative of the resulting
equation, we derive the FP equation:

∂

∂t
P (q, t) = − ∂

∂q
F (q)P (q, t) + σ

∂2

∂q2

∂

∂t

〈∫ t

0
δ(q −X(s)) dS(s)

〉
. (5.105)

However, we still need to express the averaged stochastic integral in the rhs of Eq. (5.105)
in terms of P (q, t). For simplicity of notation, let us define the auxiliary function:

Q(q, t) =

〈∫ t

0
δ(q −X(s)) dS(s)

〉
. (5.106)

For a constant drift, i.e., F (X(t)) = v0, we need to prove the relation in Fourier space:

Q(k, t) =
1

Γ(α− 1)

∫ t

0

[∫ τ

0

ei v0 k (τ−s)

(τ − s)2−αP (k, s) ds

]
dτ , (5.107)

or equivalently in Laplace transform λQ(k, λ) = (λ − i v0 k)1−α P (k, λ) (Q(y, 0) = 0).
Indeed, by taking the time derivative of Eq. (5.107) and performing its Fourier inverse
transform, we obtain the same integral as in Eq. (5.59), i.e., the correct fractional substan-
tial derivative after regularization. Consequently, Eq. (5.105) is the same as Eq. (5.37).

We here propose a derivation of Eq. (5.107), i.e., valid for the specific case of a constant
drift, whereas the general treatment of Eq. (5.106) will be discussed in future work. For
F (X(t)) = v0, Eq. (5.102) can be integrated and written as a subordinated process:

X(t) = v0 t+
√

2σ

∫ S(t)

0
ξ(τ) dτ

= v0 T (S(t)) +
√

2σ

∫ S(t)

0
ξ(τ) dτ = Y (S(t)) (5.108)

where we introduce the auxiliary process:

Y (s) = v0 T (s) +
√

2σ

∫ s

0
ξ(τ) dτ . (5.109)
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If we use Eqs. (5.108,5.109) in Eq. (5.106), we can write:

Q(q, t) =

〈∫ t

0

[∫ ∞
0

δ(q −X(s))δ(s− S(τ)) ds

]
dS(τ)

〉
(5.110)

Let us now take the Fourier transform of the previous result, change the orders of the
integrals and substitute the definition of the process Y in Eq. (5.109). We find:

Q(k, t) =

〈∫ t

0

[∫ ∞
0

ei k Y (s)δ(s− S(τ)) ds

]
dS(τ)

〉
=

〈∫ ∞
0

[∫ t

0
ei k v0 T (s)ei k

√
2σ

∫ s
0 ξ(r) dr δ(s− S(τ)) dS(τ)

]
ds

〉
=

∫ ∞
0

〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉[〈∫ t

0
ei k v0 T (s)δ(s− S(τ)) dS(τ)

〉]
ds , (5.111)

where in the third line we use the independence of the processes ξ(s) and T (s) to factorise
the ensemble average. We further rewrite the stochastic integral in the rhs of Eq. (5.111)
in terms of time increments by using the relation Eq. (3.9) [140]:

Q(k, t) =

∫ ∞
0

〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉[〈∫ t

0
ei k v0 T (s)δ(τ − T (s)) dτ

〉]
ds

=

∫ ∞
0

〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉〈
Θ(t− T (s)) ei k v0 T (s)

〉
ds . (5.112)

This result can be further simplified if we take its Laplace transform. By recalling that
L{Θ(t− T (s)} (λ) = 1

λe
−λT (s) and the characteristic functional of T , we obtain:

Q(k, λ) =
1

λ

∫ ∞
0

〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉〈
e−(λ−i k v0)T (s)

〉
ds

=
1

λ

∫ ∞
0

〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉
e−s (λ−i k v0)α ds . (5.113)

On the other hand, we can manipulate directly the position PDF by using (i) the relation
1 =

∫∞
0 δ(s− S(t)) ds and the independence of the processes ξ(s) and T (s) to write:

P (k, t) =

∫ ∞
0

〈
δ(s− S(t)) ei k Y (s)

〉
ds

=

∫ ∞
0

〈
δ(s− S(t)) ei v0 k T (s)

〉〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉
ds (5.114)

and (ii) the relation in Laplace space
∫∞

0 δ(s − S(t))e−λ t dt = η(s) e−λT (s) [140]. We
obtain:

P (k, λ) =

∫ ∞
0

〈
η(s) e−(λ−i v0 k)T (s)

〉〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉
ds (5.115)

Finally, the η-dependent average can be computed in exact terms by using the characteristic
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functional of T . By setting the test function k(r) = Θ(s− r)(λ− i v0 k), we derive:〈
η(s) e−(λ−i v0 k)T (s)

〉
=
〈
η(s) e−

∫∞
0 k(r)η(r) dr

〉
=

−1

λ− i v0 k

d

ds

〈
e−

∫∞
0 k(r)η(r) dr

〉
=

−1

λ− i v0 k

d

ds
e−s (λ−i v0 k)α = (λ− i v0 k)α−1e−s (λ−i v0 k)α . (5.116)

Substituting Eq. (5.116) in Eq. (5.115) and rearranging the terms, we find the relation:∫ ∞
0

〈
ei k
√

2σ
∫ s
0 ξ(r) dr

〉
e−s(λ−i v0 k)α ds = (λ− i v0 k)1−αP (k, λ) (5.117)

However, the lhs of Eq. (5.117) coincides with the integral at the rhs of Eq. (5.113). By
eliminating it, we finally prove Eq. (5.107). To further support this result, we note that
numerical simulations of Eq. (5.102) (v0 = 1, coloured markers) in Fig. 5.1 (panels b,d)
exhibit perfect agreement with the exact position PDF Eq. (5.70) (solid coloured lines).

Superdiffusive regime

In the superdiffusive regime, Eq. (5.102) is still the correct description of the microscopic
dynamics of GI processes. However, no suitable process T can be found to define Eq. (4.14),
i.e., ξ(t) is characterised in terms of its hierarchy of correlation functions [200]. Thus, the
corresponding FPE is given by Eq. (5.54), where

〈
ξ(t)F (q, t)

〉
needs to be computed

explicitly, as Novikov’s theorem does not hold, due to the non Gaussian character of ξ. For
simplicity, let us compute its Fourier transform

〈
ξ(t)F (k, t)

〉
, where in the specific case of

Eq. (5.102) F (k, t) = ei k v0 tei k
√

2σ
∫ t
0 ξ(s) ds . The second exponential is a functional of the

noise path, that can be expanded by using functional Taylor series [112, 204]:

e−i k v0 tF (k, t) = 1 +

∞∑
n=1

1

n!

∫ ∞
0

ds1 . . .

∫ ∞
0

dsnH
(n)(k, s1, . . . , sn) ξ(s1) . . . ξ(sn)

=

[
1 +

∞∑
n=1

(i k
√

2σ)n

n!

∫ t

0
ds1 . . .

∫ t

0
dsn ξ(s1) . . . ξ(sn)

]
(5.118)

where we computed exactly the variational derivatives H(n)(k, s1, . . . , sn):

H(n)(k, s1, . . . , sn) =
δ(n)ei k

√
2σ

∫ t
0 ξ(s) ds

δξ(s1) . . . δξ(sn)

∣∣∣∣∣
ξ=0

= (i k
√

2σ)nΘ(t−s1) . . .Θ(t−sn). (5.119)

Let us take (i) the ensemble average of Eq. (5.118) and (ii) its time derivative. As the odd
correlation functions of ξ are null, only the terms with even indices survive. We obtain:

[
−i v0 k +

∂

∂t

]
〈F (k, t)〉 = ei k v0 t

[
(i k
√

2σ)2

2
K(t) +

(i k
√

2σ)4

4

∫ t

0
K(t− s)K(s) ds

]
+

+ ei k v0 t
∞∑
n=3

(i k
√

2σ)2n

2n

∫ t

0
dsn−2K(t− s2n−2) . . .

∫ s2

0
K(s2 − s1)K(s1) ds1 . (5.120)
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This result can be understood by recalling that the n-th ξ-correlation function contains
(2n)!
2n n! , each corresponding to a different structure of the delta functions. In addition, as
we are integrating over time, we need to consider all the n! possible orderings of the n
distinct times. After integrating, we obtain (2n)!

2n integrals of the type in Eq. (5.120), thus
leading to the final result. At the same time, let us multiply Eq. (5.118) by ξ(t) and take
its ensemble average. By eliminating the null terms, we derive the following equation:

〈
ξ(t)F (k, t)

〉
=
∞∑
n=0

(i k
√

2σ)1+2n

(1 + 2n)!
ei k v0 t

∫ t

0
ds1 . . .

∫ t

0
ds1+2n

〈
ξ(t)ξ(s1) . . . ξ(s1+2n)

〉
(5.121)

We then need to find a relation between Eqs. (5.120,5.121) by solving the integrals over the
ξ-correlations. We start from the integral term of Eq. (5.121). Recalling Eq. (4.35), we find
(i)
∫ t

0 ds1

〈
ξ(t)ξ(s1)

〉
= K(t) for n = 0, (ii)

∫ t
0 ds1

∫ t
0 ds2

∫ t
0 ds3

〈
ξ(t)ξ(s1)ξ(s2)ξ(s3)

〉
=

3
∫ t

0 ds1K(t− s1)K(s1) ds1 for n = 1 and for general n > 1:

ei k v0 t

∫ t

0
ds1 . . .

∫ t

0
ds1+2n

〈
ξ(t)ξ(s1) . . . ξ(s1+2n)

〉
=

(1 + 2n)!

2n
×

×
∫ t

0
dsnK(t− sn)ei k v0 (t−sn)

[
ei k v0 sn

n∏
m=2

∫ sm

0
dsmK(sm − sm−1)K(s1)

]
(5.122)

Substituting these results into Eq. (5.121), we find (sn = s):

〈
ξ(t)F (k, t)

〉
= (i k

√
2σ)ei k v0 tK(t) + (i k

√
2σ)

{∫ t

0
dsK(t− s) ei k v0 t ×[

(i k
√

2σ)2

2
K(s) +

∞∑
n=2

(i k
√

2σ)2n

2n

n∏
m=2

∫ sm

0
dsm−1K(sm − sm−1)K(s1)

]}
. (5.123)

Comparing Eqs. (5.120,5.123), we obtain the equation:

〈
ξ(t)F (k, t)

〉
= (i k

√
2σ)ei k v0 tK(t)

+
(
i k
√

2σ
)∫ t

0
dsK(t− s) ei k v0 (t−s)

[
−i v0 k +

∂

∂s

]
〈F (k, s)〉

=
(
i k
√

2σ
)[
−i v0 k +

∂

∂t

] ∫ t

0
dsK(t− s) ei k v0 (t−s) 〈F (k, s)〉 , (5.124)

If we take the Fourier inverse transform of Eq. (5.124) and plug it in Eq. (5.54), we obtain:

∂

∂t
P (q, t) = −v0

∂

∂q
P (q, t) + 2σ

∂2

∂q2

[
∂

∂t
+ v0

∂

∂q

] ∫ t

0
K(t− s)P (q− v0 (t− s), s), (5.125)

which is equal to Eq. (5.37) for the specific case K(t) = tα−1/Γ(α). As a sanity check, we
remark that we are free to choose 0 < α < 1, thus providing a derivation of Eq. (5.37) in
the subdiffusive regime, which is equivalent to the one presented earlier and exploiting the
subordination technique. This calculation further confirms the validity of Eq. (5.37) in the
superdiffusive regime 1 < α < 2, first shown with the Balescu local approximation, and
simultaneously provide the Langevin equation of the microscopic dynamical processes.
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5.6 Fluctuation-Dissipation Relation of Weak Galilean In-
variant Processes

In this section, we investigate the existence of a Fluctuation-Dissipation Relation of the
first kind (FDRI) for weak GI anomalous processes. We will show that these processes do
not satisfy a normal FDRI, due to the strong space-time coupling required to satisfy the
assumption of weak statistical Galilean invariance. We will then conclude by defining new
ξ−driven processes preserving FDRI, that indeed are no longer weak GI.

We first review the case of Brownian processes, which are weak GI as the anomalous
ones driven by the ξ-noise. Let us consider the overdamped process X(t) in the reference
frame S, where a constant external force F0 is present. Its FPE is obtained from Eq. (5.24):

∂

∂t
P (q, t) =

[
−1

γ

∂

∂q
F0 +

σ

γ

∂2

∂q2

]
P (q, t). (5.126)

By using Eq. (5.126), we can easily compute the first moment of X. Indeed, by recalling
that 〈X(t)〉 =

∫ +∞
−∞ dq q P (q, t) and taking its time derivative, we obtain:

∂

∂t
〈X(t)〉=

∫ +∞

−∞
dq q

∂

∂t
P (q, t)=

∫ +∞

−∞
dq q

[
−1

γ

∂

∂q
F0 +

σ

γ

∂2

∂q2

]
P (q, t) =

1

γ
F0, (5.127)

where the boundary terms left by the integration by parts cancel out due to the property
of the PDF for |q| � 1. If we integrate this equation, we find: 〈X(t)〉 = X0 + F0

γ t. In
a similar way, we can compute the variance of the process X in the absence of external
force. For simplicity, we denote with a pedix 0 all the quantities that are computed for
null external force. Recalling that

〈
X2(t)

〉
0

=
∫ +∞
−∞ dq q2 P0(q, t), we obtain the equation:

∂

∂t

〈
X2(t)

〉
0

=

∫ +∞

−∞
dq q2 ∂

∂t
P0(q, t) =

σ

γ

∫ +∞

−∞
dq q2 ∂2

∂q2
P0(q, t) = 2

σ

γ
, (5.128)

whose time integration yields:
〈
X2(t)

〉
0

= X2
0 + 2 σ

γ t. Putting these results together and
setting X0 = 0, we find that the FDRI holds:

〈X(t)〉 =
F0

2σ

〈
X2(t)

〉
0
. (5.129)

How does this relation transform in a different Galilean frame? According to the transfor-
mation rule of the FP Eq. (5.126), the effect of the external flow, induced by the motion
of the frame, is equivalent to that of a constant external force driving the process [see
Eq. (5.26)]. Thus, calling v0 the velocity of the new frame and exploiting the mentioned
equivalence, the same Eq. (5.129) with F0 substituted by F0 − γ v0 holds.

In the anomalous case we need to distinguish between (i) usual subordinated processes,
i.e., CTRWs, which are not weak GI, and (ii) weak GI anomalous processes whose PDF is
described by Eq. (5.37). Let us first consider the case of a subordinated process X(t) in
the presence of the external constant force F0. Its FFPE reads reads as below [9]:

∂

∂t
P (q, t) =

[
− ∂

∂q
F0 +Kα

∂2

∂q2

]
0D

1−α
t P (q, t). (5.130)
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Similarly to the case of Brownian dynamics, we can compute both 〈X(t)〉 and
〈
X2(t)

〉
0
.

In details, we find:

∂

∂t
〈X(t)〉 =

∫ +∞

−∞
dq q

[
− ∂

∂q
F0 +Kα

∂2

∂q2

]
0D

1−α
t P (q, t) = F0

tα−1

Γ(α)
, (5.131)

whose time integration provides the following result: 〈X(t)〉 = X0+ F0
Γ(1+α) t

α. Analogously,
we obtain for the variance in the absence of external force:

〈
X2(t)

〉
0

= X2
0 + 2Kα

Γ(1+α) t
α.

Putting these results together and setting X0 = 0, we obtain again Eq. (5.129), with σ

substituted by the generalised diffusion coefficient Kα. Thus, a normal FDRI still holds
for CTRWs and in general for processes obtained by subordination of an auxiliary process
satisfying Eq. (5.129). Conversely, in the case of weak GI processes, Eq. (5.37) specifies to:

∂

∂t
P (q, t) = −F0

∂

∂q
P (q, t) +

σ

Γ(α)

∂2

∂q2

[
∂

∂t
+ F0

∂

∂q

] ∫ t

0

P (q − F0(t− τ), τ)

(t− τ)1−α dτ , (5.132)

whose solution is in the form of Eq. (5.30). Thus, we can use Eqs. (5.68a-5.68b) to find:
〈X(t)〉 = X0 + F0 t and

〈
X2(t)

〉
0

= X2
0 + 2σ

Γ(1+α) t
α, leading to the modified relation:

〈X(t)〉 = t1−α Γ(1 + α)
F0

2σ

〈
X2(t)

〉
0

(5.133)

As a sanity check, we note that for α = 1 we recover the FDR Eq. (5.129). Thus, weak
GI anomalous processes violates the normal FDRI Eq. (5.129), as a time dependent factor
naturally appears in Eq. (5.133). As in the case of Brownian dynamics, Eq. (5.133) also
holds in different Galilean reference frames, with the proper measured external force, ac-
counting for the effect of the external flow, due to the transformation rule of Eq. (5.132).
This is different from what we find for CTRWs. As before, if we consider a new frame
moving with velocity v0 with respect to the one where Eq. (5.130) holds and we use the
correct transformation rules Eqs. (5.33, 5.35), we find the transformed equation:

∂

∂t
P (q, t) = v0

∂

∂q
P (q, t) +

[
−F0

∂

∂q
+Kα

∂2

∂q2

]
×

×
[
∂

∂t
− v0

∂

∂q

]
1

Γ(α)

∫ t

0

P (q + v0(t− τ), τ)

(t− τ)1−α dτ , (5.134)

where now the external flow, induced by the moving frame, is no longer equivalent to a
constant external force. In this case, Eq. (5.129) is no longer satisfied as we show below.
Indeed, whereas the quantity

〈
X2(t)

〉
0
is equal to the one computed before in the case of

Eq. (5.130), the other quantity 〈X(t)〉 is different in general and we need to compute it. To
this aim, we first need to compute the solution of Eq. (5.134) and then exploit Eq. (5.67).
In Fourier-Laplace transform, the solution of Eq. (5.134) is given below:

P (k, λ) =

〈
ei k x0

〉
λ+ i k v0 − i k F0 (λ+ i k v0)1−α +Kα k2 (λ+ i k v0)1−α . (5.135)

The first moment corresponding to this equation is given in general by Eq. (5.68a) with
D(k, λ) = λ + i k v0 − i k F0 (λ + i k v0)1−α + σ k2 (λ + i k v0)1−α. Specifically, we obtain:
D(0, λ) = λ, D′(0, λ) = i v0 − i F0 λ

1−α, such that 〈X(λ)〉 = −v0+F0 λ1−α

λ2 , or back in time
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space 〈X(t)〉 = Y0 − v0 t + F0
tα

Γ(1+α) . Recalling that in the absence of force the quantity〈
X2(t)

〉
0
is the same as in the previous cases, we obtain the following modified FDR:

〈X(t)〉 =
F0

2σ

〈
X2(t)

〉
0
− v0

2σ

〈
X2(t)

〉
0

Γ(1 + α) t1−α, (5.136)

which is composed of two different terms: (i) the usual FDR Eq. (5.129) and (ii) a time
dependent correction, with the same structure of Eq. (5.133). As a sanity check, we note
that for α = 1, we find: 〈X(t)〉 = F−v0

2σ

〈
X2(t)

〉
0
, which is of the form of Eq. (5.129) where

the force is equal to the difference between the constant force exerted on the tracer particle
and the external flow, due to the change of reference frame. We further note that if we
choose v0 = F in the Brownian case, the rhs of Eq. (5.136) is null, which is expected as
the Galilean transformation brings the system in its comoving frame, where no resulting
external force acts on the tracer. The result presented in Eq. (5.136) elucidates that (i) the
validity of the FDRI for anomalous processes, and CTRWs in particular, is restricted to the
specific reference frame where Eq. (5.130) holds and that (ii) the long-range interactions
between the bath particles and the tracer break the equivalence between a constant force
and an external flow, which instead holds for Brownian and weak GI anomalous processes.

We conclude this section by showing that we can define ξ−driven processes satisfying
FDRI Eq. (5.129) at the expenses of weak Galilean invariance. Let us consider the following
generalized Langevin equation driven by the ξ noise:∫ t

0
γ(t, s)Ẋ(s) ds = F0 +

√
2Kα ξ(t) (5.137)

where Kα is a generalised diffusion coefficient and γ(t1, t2) is a memory kernel, chosen
such that the FDRI is established for the resulting process X. We remark that the non
stationarity of ξ implies that the kernel γ depends explicitly on both the times t and s, and
not only on their difference as in the usual generalized Langevin equation [205]. Despite
this fact, we show that if a FDR of the second kind is established, also a FDRI holds, thus
confirming results already presented for Gaussian stationary noises [206]. Recalling the
two-point correlation function of ξ [200], we make the following assumption:

γ(t1, t2) =
〈
ξ(t1)ξ(t2)

〉
= K(t1)δ(t2 − t1). (5.138)

Substituting this into Eq. (5.137) we find the following equation:

K(t) Ẋ(t) = F0 +
√

2Kα ξ(t). (5.139)

This equation can now be easily integrated to obtain the stochastic path (we set X0 = 0):

X(t) = F0

∫ t

0

ds

K(s)
+
√

2Kα

∫ t

0

ds

K(s)
ξ(s), (5.140)
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which can finally be used to compute first and second moment:

〈X(t)〉 = F0

∫ t

0

ds

K(s)
(5.141a)

〈
X2(t)

〉
= F 2

0

∫ t

0

ds1

K(s1)

∫ t

0

ds2

K(s2)
+ 2Kα

∫ t

0

ds

K(s)
(5.141b)

Evaluating Eq. (5.141b) for F0 = 0 and comparing it with Eq. (5.141a), we find:

〈Y (t)〉 =
F0

2Kα

〈
Y 2(t)

〉
0
. (5.142)

As a sanity check, we note that in the Brownian limit we have K(t) = 1 and Kα = σ

so that Eq. (5.129) is recovered. As an example, let us consider the case of a power-law
kernel, i.e., K(t) = tα−1/Γ(α). In this case, if we set Kα = σ

Γ(α) , we recover the normal
FDRI Eq. (5.129). In this specific case, Eq. (5.139) reads as follows:

Ẋ(t) = F0 t
1−α +

√
2Kα t

1−α ξ(t). (5.143)

5.7 Outlook and Future Work

In this Chapter, we clarified the role of Galilean invariance for both normal and anomalous
diffusive processes. Specifically, we show that in this context a natural distinction arises
between strong and weak Galilean invariance. While the former is satisfied if the EOMs of
the observed diffusive process are the same in different inertial reference frames in constant
uniform motion between themselves, the latter is satisfied at a coarse-grained, statistical
level, namely when the PDFs of either the position or the velocity in different Galilean
frames are obtained by performing the same Galilean transformation connecting the frame
coordinates on the sample state variables of the distribution. Such transformation of the
PDFs has been recently proposed in Ref. [185] in the framework of the Navier-Stokes
equations. This result agrees with our description, as these equations are strong GI, which
also implies their being weak GI. On the contrary, this is not the case for diffusive processes.

Indeed, starting from the Mori-Zwanzig description of the motion of a particle in a
heat bath [15] and considering such model in different Galilean frames, we showed that
(i) the exact EOM of the tracer particle is strong GI if its interaction with the bath
particles is pairwise and dependent on the difference between their positions and (ii) that
the coarse-graining procedure employed to derive the underdamped Langevin equation,
which introduces a stochastic random force with specified statistical properties to describe
the overall effect of the bath, naturally breaks strong GI. This is caused by the fact that a
transformation rule for such noise term cannot be determined.

Nevertheless, at least for normal diffusive processes, weak Galilean invariance still holds.
On the contrary, in the case of anomalous diffusive processes, different scenarios may be
encountered. In particular, we discussed that CTRWs do not satisfy this property, whereas
the processes introduced in Chapter 4, and described by Langevin equations driven by the
noise defined in Eq. (4.14), do instead. Within this discussion, we derived their fractional
evolution equations (for a constant external force), thus improving the corresponding frac-
tional advection-diffusion equation (MK) earlier presented in the Literature [78, 190, 9].



5.7 Outlook and Future Work 130

Our new proposed equation involves the fractional substantial derivative [150, 149], as the
requirement of weak Galilean invariance naturally induces a strong space-time coupling in
the dynamical evolution of the process, and it holds both in the subdiffusive and in the
superdiffusive regime. Thus, our ξ-driven processes represent the Langevin formulation of
weak GI anomalous processes, and of weak GI CTRWs [207] as a special case.

We remark that the characterisation that we propose here of weak GI anomalous pro-
cesses exclusively holds in the specific case of a constant external force. For future work, it
will be interesting to extend our results for general position dependent forces and to derive
a complete characterisation of their functionals, similarly to what discussed in Chapter
3 for anomalous processes with general waiting time distribution. These results would
provide a complete frame-independent framework, that could be employed to investigate
the stochastic thermodynamics of anomalous stochastic processes of this type [208]. In
addition, it will be necessary to develop efficient numerical techniques for the simulation
of ξ in the superdiffusive regime. Indeed, contrarily to the subdiffusive case, where the
subordination picture can still be employed to simulate it by using the Algorithm 1 in
Sec. 3.3.1, in the superdiffusive case no subordinator T can be defined, such that the for-
mal Eq. (4.14) holds, to the extent of our knowledge. Consequently, one can only employ
the characterisation of the noise in terms of higher order correlation functions given in
Eq. (4.35), for which however no suitable numerical techniques have so far been derived.
Finally, it will be interesting to assess the experimental relevance of weak GI anomalous
processes, by checking for the occurrence of time-shifted PDFs in experimental datasets.



CHAPTER 6

Conclusions

In this Doctoral Dissertation we conducted an extensive investigation of the CTRW model,
which aims at providing a complete toolbox of methods and techniques, which can poten-
tially be employed by experimental researchers in physics, chemistry and biology to inter-
pret experimental data of systems exhibiting anomalous diffusive behaviour. Our theoret-
ical analysis is focused on two main different aspects, covered by the research Chaps. 3-5.

On the one hand, in Chap. 3 we employed the general description of the waiting time
distribution of a CTRW by means of its Laplace exponent to study more general anomalous
diffusive processes, that can account for a wider range of MSD scaling behaviour than the
pure power law, which is obtained in the specific case of Lévy stable distributed waiting
times characteristic of ordinary CTRWs. We then derived the complete characterisation of
these processes and of their observables in terms of (i) the description of their microscopic
dynamics in terms of subordinated Langevin equations, (ii) fractional evolution equations,
specifically the GFFK equation for the joint PDF of the process and its observables, and
(iii) their multipoint correlation functions. In addition, we showed the relevance of our
formalism for experimental applications, by successfully fitting the MSD of diffusing mi-
tochondria in S. Cerevisiae cells and by deriving the two point correlation function of the
corresponding subordinated process, which can be readily tested in the experiments.

On the other hand, in Chaps. 4, 5 we formulated a new class of anomalous stochastic
processes, which share the same renewal picture of CTRWs for the elapsed physical time,
but not for the position variable, when external forces are present. Indeed, differently from
the original model, where such forces affect the dynamics only during the jumps, in the case
of our new processes they are also exerted during the waiting times, thus implying that the
position can no longer be expressed as a sum of i.i.d random variables. We characterise the
microscopic dynamics of these new anomalous processes in terms of Langevin equations
driven by a novel non Gaussian noise, whose properties are determined both in terms of
its characteristic functional and of its hierarchy of correlation functions, which is able to
reproduce the typical fluctuations of a free diffusive CTRW. We further characterised their
fractional evolution equation in the case of a constant external force and show that they
satisfy weak Galilean invariance, contrarily to the case of ordinary CTRWs.
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Despite being calibrated on the specific case of the CTRW model, the detailed formal-
ism that we presented in this Thesis comprises techniques and general ideas that could
well be applied to other commonly used models of anomalous diffusion, for instance the
fractional Brownian motion, Lévy flights and walks, or models of diffusion in viscoelastic
medium, thus laying the foundation of a comprehensive framework for the analysis of gen-
eral anomalous diffusive systems. Such an ambitious scope will be of relevance for both
experimental and theoretical researchers directly working on such systems and/or more
generally interested in the experimental study of diffusive processes in biological systems.

In addition to this general scope, our results pose several questions still unresolved,
that we suggest as possible future work. One major relevant challenge will be to further
test the applicability of the general formulas and techniques provided in Chapter 3 for
the modelling of experimental datasets and their effectiveness in assessing the microscopic
processes underlying the observed experimental dynamics. Even though we discussed in
details one interesting experimental dataset therein, the capability of our formalism in
reproducing other different dynamical behaviours, for instance MSD displaying crossover
from subdiffusion to superdiffusion or ballistic motion recently found in moving chromo-
somal loci of Escherichia Coli [130], needs to be investigated. A second major challenge
will be to test the experimental relevance of the weak GI anomalous stochastic processes,
which could be applicable to experimental systems exhibiting time shifted PDF.

On the theoretical side, the general formulation derived for both the anomalous pro-
cesses with general waiting time distribution and weak GI anomalous processes can be
potentially employed to define toy-models to further elucidate the fundamental nature of
specific properties of CTRWs, for instance weak ergodicity breaking or ageing, with the
aim at understanding if either the choice of the waiting time distribution or how external
forces are included in the dynamical process play a major role in determining them. An-
other major challenge will be to derive the characterisation of the functionals of weak GI
anomalous processes, that was not discussed in the present Thesis. This will also represent
the first preliminary step towards a throughout study of the stochastic thermodynamics
of anomalous processes, which is still an outstanding challenge for ordinary CTRWs, on
which our weak GI anomalous processes will shed some light by providing a consistent
frame-invariant framework for its analysis.



APPENDIX A

Special Functions: Definitions and Useful Relations

In this Appendix, we present definitions and useful relations for several special functions,
which have been used throughout the thesis.

A.1 The Confluent Hypergeometric Function

In this section, we discuss definition, integral representations and scaling behaviour of
the confluent Hypergeometric function. We refer to Refs. [209, 210] for the proof of the
results presented here and for further useful properties. The hypergeometric function is
the solution of the differential equation:

z
d2

dz 2
w + (c− z) d

dz
w − aw = 0 (A.1)

where a, c are parameters and both a regular singularities for z = 0 of exponents 0 and
1− c and an irregular singularity at infinity of rank 1 are present. A series solution of such
equation, corresponding to the exponent 0 at the origin, is given as follows:

1F1(a; b; z) =
∞∑
n=0

(a)n
(b)n

zn

n!
(b 6= 0,−1,−2, . . .) (A.2)

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol. This function is equivalently
denoted as M(a, b, z) or Φ(a, b; z). This series converges for all z, thus defining an entire
function in the complex plane. On the contrary, it is only a meromorphic function in b due
to the presence of the poles. In order to eliminate these singularities and have an entire
function both in a and b for fixed z, the following modified function is often used:

M(a, b, z) =
∞∑
n=0

(a)n
Γ(b+ n)

zn

n!
. (A.3)
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The solution for the second exponent at the origin and its regularised form are the following:

N(a, b, z) = z1−c
1F1(1 + a− b; 2− b; z) (b 6= 2, 3, 4, . . .) (A.4a)

N(a, b, z) =
1

Γ(2− c)
N(a, b, z) = z1−cM(a, b, z) (A.4b)

The following useful integral expression can be found:

1F1(a; b; z) =
Γ(b)

Γ(a) Γ(b− a)

∫ 1

0
sa−1(1− s)b−a−1 ez s ds (Re c > Re a > 0) (A.5)

In particular, let us set b = 1 + a. The following relation is easily shown:

1F1(a; 1 + a;−z) = a

∫ 1

0
sa−1 e−z s ds =

a

za

∫ z

0
sa−1 e−s ds =

a

za
γ(a, z). (A.6)

We conclude this section by reporting the asymptotic behaviour of M , which are relevant
when exploring MSD behaviour. In this case,M is a function of time and we are interested
in the limits t→ 0 or t→∞. We find:

M(a, b, t) ∼ 1

Γ(a)
et ta−b t→∞ (A.7)

M(a, b, t) ∼ 1

Γ(b)
t→ 0 (A.8)

A.2 The Three Parameter Mittag-Leffler Function

In this section, we discuss definition and properties of the three parameter Mittag-Leffler
function. We refer to [211] and references therein for the proof of the following relations
and for other useful properties. The three parameter Mittag-Leffler function is defined as:

Eδα,β (z) =
∞∑
n=0

(δ)n
Γ (β + αn)

zn

n!
(A.9)

where (δ)n = Γ(δ + n)/Γ(δ) is the Pochhammer symbol. The two and one parameter
Mittag-Leffler functions Eα,β (z) and Eα (z) can be obtained as special cases of Eq. (A.9)
by setting δ = 1, and also β = 1 in the latter case. Its Laplace transform is given by:

L
{
zβ− 1Eδα,β (±c zα)

}
(λ) =

λα δ−β

(λα ∓ c)δ
(A.10)

with Re (λ) > |c|1/α. The three parameter Mittag-Leffler function can be expressed as a
Fox H-function (see below for its definition). The exact relation is given by [202, 211]:

Eδα,β (± z) =
1

Γ(δ)
H1,1

1,2

[
∓ z

∣∣∣∣∣ (1− δ, 1)

(0, 1), (1− β, α)

]
. (A.11)

This formula can be derived by solving the corresponding integral Eq. (A.16) with the
residue theorem. In several physical systems, displaying anomalous diffusive behaviour,
this function plays a major role, as it often describes their corresponding MSD (in this
case then z is the time variable). It is then important to study its asymptotic scaling
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for both short and large times. In the latter case, the function Eδα,β (−tα) behaves as a
stretched exponential. Indeed, by looking at the definition Eq. (A.9) we can write:

Eδα,β (−tα) ∼ 1

Γ(β)
− δ tα

Γ(α+ β)

∼ 1

Γ(β)
exp

(
−δ Γ(β)

Γ(α+ β)
tα
)

(A.12)

In the former case, it is convenient to look at the equivalent definition [212, 213, 214]:

Eδα,β (−z) =
z−δ

Γ(δ)

∞∑
n=0

Γ(δ + n)

Γ (β − α(δ + n))

−zn

n!
, (A.13)

which elucidates that in the long time limit the function Eδα,β (−tα) behaves as a power-law:

Eδα,β (−tα) ∼ t−α δ

Γ(β − α δ)
(A.14)

We recall that further extensions of the definition Eq. (A.9) has been derived in Refs. [215,
216], which have proved useful to describe the MSD behaviour of processes subordinated
with a mixture of Lévy stable distributions with different characteristic exponents [203].
In conclusion, we report below the calculation of the convolution integral of a generalised
ML function with a power-law, which is used extensively throughout the main text:∫ t

0
(t− τ)m1 τm2 Eδα,β (c τα) dτ =

∞∑
n=0

(δ)n
Γ (β + αn)

cn

n!

∫ t

0
(t− τ)m1 τm2+αn dτ

=
∞∑
n=0

(δ)nm1! Γ(1 +m2 + αn)

Γ (β + αn)

cn

n!
L−1

{
1

λ2+m1+m2+αn

}
(t)

= m1! t1+m1+m2

∞∑
n=0

(δ)n Γ(1 +m2 + αn)

Γ (β + αn) Γ(2 +m1 +m2 + αn)

(c tα)n

n!
. (A.15)

A.3 The Fox H-Function

In this section, we study the properties of the Fox H-function. All the results presented
here, except where specified, are adapted from Ref. [202]. The Fox H-function is a special
function, which is formally defined in terms of the Mellin-Barnes type integral:

Hm,n
p,q

[
z

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
=

1

2π i

∫
Ω

Θ(s) z−s ds , (A.16)

where i = (−1)−1/2 is the imaginary unity, z 6= 0 and z−s = exp [−s (ln |z|+ i arg z)]. Here,
ln |z| stands for the natural logarithm of |z|, whereas arg z is not necessarily its principal
value. The function Θ(s) is defined in terms of gamma functions as follows:

Θ(s) =

{∏m
j=1 Γ(bj +Bj s)

}{∏n
j=1 Γ(1− aj −Aj s)

}
{∏q

j=1+m Γ(1− bj −Bj s)
}{∏p

j=1+n Γ(aj +Aj s)
} , (A.17)
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where m,n, p, q ∈ N0 with 0 ≤ n ≤ p and 1 ≤ m ≤ q; Aj , Bj ∈ R+; aj , bj ∈ R (or
alternatively C) with i = 1, . . . , p and j = 1, . . . , q. Any empty product in Eq. (A.17) is
to be interpreted as unity. The contour Ω in Eq. (A.17) is suitably chosen to separate
the poles ξj ν = −

(
ν+bj
Bj

)
, with j = 1, . . . ,m and ν ∈ N0, of Γ(bj + Bjs) from the poles

χi ν =
(

1−ai+ν
Ai

)
, with i = 1, . . . , n and same ν, of Γ(1 − aj − Ajs). Thus, the condition

Ai (bj + ν) 6= Bj (ai − 1− ν) ensures the existence of the contour Ω and consequently the
convergence of the integral of Eq. (A.17). A popular choice for the contour Ω consists in
a path running parallel to the imaginary axis from γ − i∞ to γ + i∞, where γ ∈ R =

(−∞,+∞) is chosen arbitrarily such that it separates all the poles ξj ν from all the poles
χi ν . If we choose such a contour, the convergence of the Mellin-Barnes integral Eq. (A.16)
is obtained if a∗ > 0 and | arg z| < 1

2 π a
∗, z 6= 0, with a∗ being the following parameter:

a∗ =
n∑
j=1

Aj −
p∑

j=n+1

Aj +
m∑
j=1

Bj −
q∑

j=m+1

Bj . (A.18)

The integral also converges if a∗ = 0, γ µ+ Re(δ) < −1, arg z = 0 and z 6= 0, where

δ =

q∑
j=1

bj −
p∑
j=1

aj +
p− q

2
. (A.19)

Other equivalent choices of Ω, with the corresponding convergence conditions for the in-
tegral of Eq. (A.17), can be found. A first useful property of the H-function regards its
symmetry under exchange of the pairs of parameters [ap, Ap] and/or [bp, Bp]. Specifically,
the Fox H-function is symmetric under permutations of the pairs (ai, Ai) for i = 1, . . . , n

or separately for i = n + 1, . . . , p; likewise it is symmetric if we make a permutation of
the pairs (bj , Bj) for j = m + 1, . . . , q or separately for j = 1, . . . ,m. A second property
enables us to reduce the order of the H function if some of the pairs [ap, Ap] or [bp, Bp] are
the same. Indeed, this reduction property holds if one of the pairs (ai, Ai) for i = 1, . . . , n

is equal to one of the pairs (bj , Bj) for j = 1+m, . . . , q, or alternatively for i = 1+n, . . . , p

and j = 1, . . . ,m. In these different cases, the Fox H-function reduces to one of lower order
with p, q and n (or m respectively) decreased by one. In formulas, we have:

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq−1, Bq−1), (a1, A1)

]
=Hm,n−1

p−1,q−1

[
z

∣∣∣∣∣ (a2, A2), . . . , (ap, Ap)

(b1, B1), . . . , (bq−1, Bq−1)

]
,

(A.20)
provided n ≥ 1 and q > m; and alternatively:

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, A1), . . . , (ap−1, Ap−1), (b1, B1)

(b1, B1), . . . , (bq, Bq)

]
=Hm−1,n

p−1,q−1

[
z

∣∣∣∣∣ (a1, A1), . . . , (ap−1, Ap−1)

(b2, B2), . . . , (bq, Bq)

]
,

(A.21)
provided m ≥ 1 and p > n. The Fox H-function satisfies the following scaling relation:

Hm,n
p,q

[
zr

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
=

1

r
Hn,m
q,p

[
z

∣∣∣∣∣ [ap, Ap/r]

[bq, Bq/r]

]
∀r ∈ R+/{0} (A.22)
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Other two formulas are relevant for the calculations presented in the thesis. A first relation
enables us to invert the independent variable inside the H-function:

Hm,n
p,q

[
z

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
= Hn,m

q,p

[
1

z

∣∣∣∣∣ [1− bq, Bq]
[1− ap, Ap]

]
; (A.23)

The second one instead enables one to absorb powers of the independent variable of expo-
nent σ ∈ C inside the H-function:

zσHm,n
p,q

[
z

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
= Hm,n

p,q

[
z

∣∣∣∣∣ [ap + σAp, Ap]

[bq + σBq, Bq]

]
. (A.24)

The following two properties have been used thoughtfully in Chapter 5. On the one hand,
we report the Mellin-cosine(sine) transform of the Fox H-function [217]:

∫ +∞

0
zρ−1

{
sin (κz)

cos (κz)

}
Hm,n
p,q

[
azr

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
dz =

2ρ−1√π
κρ

Hm,n+1
p+2,q

[
a

(
2

κ

)r ∣∣∣∣∣
((

3∓1−2ρ
4

)
, r2

)
, [ap, Ap],

((
3±1−2ρ

4

)
, r2

)
[bq, Bq]

]
(A.25)

where the following conditions must be satisfied: (i) α, r, κ > 0, (ii) | arg(a)| < α π
2 , (iii)

Re (ρ) + rmin1≤j≤m Re
(
bj
Bj

)
> (−1∓1)

2 , (iv) Re (ρ) + rmax1≤j≤n Re
(
aj−1
Aj

)
< 1. On the

other hand, we report the Mellin transform of a general H-function:

∫ ∞
0

zξ−1Hm,n
p,q

[
az

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
dz = a−ξΘ(ξ) (A.26)

where the function Θ is defined in Eq. (A.17). Another useful formula enables us to evaluate
a general convolution integral of the Fox H-function. This is given below:

∫ a

0
zα−1(a− z)β−1Hm,n

p,q

[
ω zr(a− z)ρ

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
dz =

aα+β−1Hm,n+2
p+2,q+1

[
ω ar+ρ

∣∣∣∣∣ (1− α, r) , (1− β, ρ), [ap, Ap]

[bq, Bq] (1− α− β, r + ρ)

]
, (A.27)

which holds under the conditions: (i) m,n 6= 0, (ii) r, ρ ≥ 0, (iii) a, a∗ > 0, (iv) | arg(ω)| <
a∗ π2 , (iii) Re (α) + rmin1≤j≤m Re

(
bj
Bj

)
> 0, (iv) Re (α) + ρmin1≤j≤m Re

(
bj
Bj

)
> 0.

Finally, we provide the following formula to compute the derivatives of the H-function:

dr

dxr
Hm,n
p,q

[
(c x+ d)h

∣∣∣∣∣ [ap, Ap]

[bq, Bq]

]
=

(
c

c x+ d

)r
Hm,1+n

1+p,1+q

[
(c x+ d)h

∣∣∣∣∣ (0, h), [ap, Ap]

[bq, Bq], (r, h)

]
(A.28)

We conclude this section by presenting a MATHEMATICA code for the evaluation of the
Fox H-function, which is based on the numerical evaluation of the Mellin-Barnes integral
in Eq. (A.16). We note thatW is a large parameter (W = 100 in the evaluations presented
in the thesis), whereas R ∈ R is chosen such as the poles ξj ν and χi ν are separate.
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Algorithm 2 MATHEMATICA Code for Numerical Evaluation of the H-function
FoxH[m_, n_, p_, q_,A_,B_, z_,R_,W_]:=Module[FoxH[m_, n_, p_, q_,A_,B_, z_,R_,W_]:=Module[FoxH[m_, n_, p_, q_,A_,B_, z_,R_,W_]:=Module[

(*–− Local Variables –− *)(*–− Local Variables –− *)(*–− Local Variables –− *)

{AL, AR, BL, BR, V, s},{AL, AR, BL, BR, V, s},{AL, AR, BL, BR, V, s},

AL = A[[All, 1]]; AR = A[[All, 2]];AL = A[[All, 1]]; AR = A[[All, 2]];AL = A[[All, 1]]; AR = A[[All, 2]];

BL = B[[All, 1]]; BR = B[[All, 2]];BL = B[[All, 1]]; BR = B[[All, 2]];BL = B[[All, 1]]; BR = B[[All, 2]];

(*–−Auxiliary Functions–− *)(*–−Auxiliary Functions–− *)(*–−Auxiliary Functions–− *)

FL[s_, aL_, aR_]:=1− aL− aR s;FL[s_, aL_, aR_]:=1− aL− aR s;FL[s_, aL_, aR_]:=1− aL− aR s;

FR[s_, aL_, aR_]:=aL + aR s;FR[s_, aL_, aR_]:=aL + aR s;FR[s_, aL_, aR_]:=aL + aR s;

(*–−Moment Generating Function –− *)(*–−Moment Generating Function –− *)(*–−Moment Generating Function –− *)

MT[s_]:=Module[{F}, F = 1;MT[s_]:=Module[{F}, F = 1;MT[s_]:=Module[{F}, F = 1;

Do[F*= Gamma[FR[s,BL[[l]],BR[[l]]]], {l, 1,m}];Do[F*= Gamma[FR[s,BL[[l]],BR[[l]]]], {l, 1,m}];Do[F*= Gamma[FR[s,BL[[l]],BR[[l]]]], {l, 1,m}];

Do[F*= Gamma[FL[s,AL[[l]],AR[[l]]]], {l, 1, n}];Do[F*= Gamma[FL[s,AL[[l]],AR[[l]]]], {l, 1, n}];Do[F*= Gamma[FL[s,AL[[l]],AR[[l]]]], {l, 1, n}];

Do[F/= Gamma[FL[s,BL[[l]],BR[[l]]]], {l, 1 +m, q}];Do[F/= Gamma[FL[s,BL[[l]],BR[[l]]]], {l, 1 +m, q}];Do[F/= Gamma[FL[s,BL[[l]],BR[[l]]]], {l, 1 +m, q}];

Do[F/= Gamma[FR[s,AL[[l]],AR[[l]]]], {l, 1 + n, p}];Do[F/= Gamma[FR[s,AL[[l]],AR[[l]]]], {l, 1 + n, p}];Do[F/= Gamma[FR[s,AL[[l]],AR[[l]]]], {l, 1 + n, p}];

Return[F ];Return[F ];Return[F ];

];];];

(*–− Contour Integration (Summation of poles )–− *)(*–− Contour Integration (Summation of poles )–− *)(*–− Contour Integration (Summation of poles )–− *)

V = 1
2πiQuiet [NIntegrate [MT[s] z−s, {s,R− iW,R+ iW}]] ;V = 1
2πiQuiet [NIntegrate [MT[s] z−s, {s,R− iW,R+ iW}]] ;V = 1
2πiQuiet [NIntegrate [MT[s] z−s, {s,R− iW,R+ iW}]] ;

(*–− Return Value of FoxH–− *)(*–− Return Value of FoxH–− *)(*–− Return Value of FoxH–− *)

Return[V ];Return[V ];Return[V ];

]]]



APPENDIX B

Numerical Generation of Random Variables

In this Appendix, we present the numerical algorithms used to generate: (i) Lévy stable
RVs; (ii) tempered Lévy stable RVs. These are used to numerically integrate the Langevin
Eq. (3.4b), which is needed for the simulation of the stochastic trajectories of a CTRW,
as we explained in the Algorithm 1. Extensive Monte Carlo simulations of the trajectories
of a CTRW with either tempered or not Lévy stable waiting time distribution are used to
confirm analytical results in all the research Chapters 3-5.

B.1 Lévy Stable Random Variables

We first focus on how to generate a Lévy stable RV ηα(si,∆s), where i denotes different
sample values and 0 < α ≤ 1 is the order parameter of the stable distribution. We present
the algorithm of Refs. [218, 81]. The steps to be performed are the following:

1. we generate a RV Vi uniformly distributed on the interval ] − π/2, π/2[. This can
be realised by sampling a uniformly distributed RV u1

i on ]0, 1[, which can be done
straightforwardly (for instance with the techniques given in [219]), and then setting
Vi = π

(
u1
i − 1/2

)
. However, equivalent optimised techniques are available;

2. we generate a second independent RV Wi exponentially distributed with mean 1.
This is obtained similarly by sampling another uniformly distributed RV u2

i on [0, 1],
independent on u1

i , and setting Wi = − log (u2
i ) or with other equivalent techniques.

3. we finally generate the Lévy distributed RV by setting:

ηα(si,∆s) = (∆s)1/α sin
[
α
(
Vi + π

2

)]
[cos (Vi)]

1/α

{
cos
[
Vi − α

(
Vi + π

2

)]
Wi

}(1−α)/α

. (B.1)

We refer to the original Refs. [218, 81] for the numerical verification that the RVs ηα(si,∆s)

have the expected distribution. By using adequate random number generators for Vi
and Wi, the resulting Lévy RVs are uncorrelated as required. For α = 1, we obtain:
ηα(si,∆s) = ∆s as expected.
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B.2 Tempered Lévy Stable Random Variables

We now focus on how to generate RVs distributed according to a tempered Lévy stable
distribution with parameters µ (tempering) and α (stability), with 0 < α ≥ 1 as before.
We will use the rejection method of Ref. [161]. The steps to be performed are the following:

1. we generate a first Lévy stable RV ηα(si,∆s) of order parameter α with the algorithm
presented in the earlier section;

2. we then draw a second RV Yi with exponential distribution of parameter µ−1, again
as discussed in the previous section;

3. if Yi < ηα(si,∆s), we reject both and repeat (1− 2); otherwise, we keep ηα(si,∆s).

A proof that this algorithm provides RVs distributed according to a tempered Lévy stable
distribution is found in [161]. We conclude by plotting exemplary stochastic paths of
CTRWs with tempered Lévy stable distributed waiting times with α = 0.5 and µ =

{0, 0.1, 1, 100}. The transition from subdiffusion to normal diffusion, as µ increases, is
evident.

μ=0 μ=0.1

μ=1 μ=100

Figure B.1: (Colors Online) Exemplary stochastic trajectories of CTRWs with tempered
Lévy stable distributed waiting times with order parameter α = 0.5 and different values of
the tempering parameter µ. Simulations of the subordinated Langevin Eqs. (2.46a, 2.46b)
are obtained with the Algorithm 1 and with waiting time increments generated by the
rejection method explained in the main text.



APPENDIX C

Calculation of Two-Point Correlation Functions

In this Appendix we present the calculations of the inverse Laplace transform of the
functions w, f1, f2 defined in Eqs. (3.69, 3.65) for the specific examples presented in the
main text. Specifically, we will choose the process X in Eq. (3.4a) to be an OU process
[F (x) = −γ x and σ(x) =

√
2σ with γ, σ ∈ R+], in which case the Laplace transform

of these functions is given by Eqs. (3.89). We will then specify η in Eq. (3.4b) as (i) a
tempered Lévy stable noise with stability parameter 0 < α < 1 and tempering index µ, (ii)
a mixture of two Lévy stable noises with different exponents 0 < α < β < 1 and (iii) a one
sided Lévy noise with characteristic functional defined by the function Φ in Eq. (3.107).

C.1 Tempered Lévy Stable Subordinator

We first consider the case (i) where η is a tempered Lévy stable noise with parameters
0 < α < 1 (stability) and µ (tempering). As discussed in Sec. 2.2.3, its Laplace exponent
is given by: Φ(λ) = (λ+ µ)α − µα. We can then substitute it in Eqs. (3.89) and rearrange
the terms in a convenient way to make the Laplace inverse transform. For f1, we obtain:

f̃1(λ) =
σ

γ

1

λ

[
1− γ

(λ+ µ)α + γ − µα

]
(C.1)

Clearly, the first term in the brackets transforms back in time as a constant. For the second
term, we need to employ the convolution theorem and the shifting property of the Laplace
transform. In details, for γ 6= µα we can write:

L−1

{
1

λ

1

[(λ+ µ)α + γ − µα]

}
(t) =

∫ t

0
e−µ τL−1

{
1

λα + γ − µα

}
(τ) dτ

=

∫ t

0
e−µ ττα−1Eα,α(−(γ − µα) τα) dτ (C.2)
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where we employed Eq. (A.10) to find the Laplace inverse transform of the integrand
function. Putting everything together, we obtain:

f1(t) =
σ

γ

[
1− γ

∫ t

0
e−µ ττα−1Eα,α(− (γ − µα) τα) dτ

]
(C.3)

The integral can then be solved exactly by series expanding the generalised Mittag-Leffler
function (see Eq. (A.9)). In details, we obtain:∫ t

0
e−µ ττα−1Eα,α(− (γ − µα) τα) dτ =

∞∑
n=0

(−1)n(γ − µα)n

Γ(α+ αn)

∫ t

0
e−µ ττα(1+n)−1 dτ

=
∞∑
n=0

(−1)n

µα(1+n)

(γ − µα)n

Γ(α+ αn)

∫ µ t

0
e−ssα(1+n)−1 ds

=
∞∑
n=0

(−1)n

µα(1+n)

(γ − µα)n

Γ(α+ αn)
γ(α(1 + n), µ t), (C.4)

where we made the change of variables s = µ τ in the second line to write the integral as
an incomplete gamma function. If we recall the relation Eq. (A.6):

γ(α(1 + n), µ t) =
(µ t)α+αn

α(1 + n)
M(α(1 + n), 1 + α(1 + n),−µ t), (C.5)

with M being the confluent hypergeometric function (see Appendix A.1), we can write:

∫ t

0
e−µ ττα−1Eα,α(− (γ − µα) τα) dτ =

∞∑
n=0

(−1)n(γ − µα)n

Γ(1 + α(1 + n))
tα(1+n)M(α(1 + n), 1 + α(1 + n),−µ t) =

−1

γ − µα

[
−1 +

∞∑
n=0

(−1)n[(γ − µα)tα]n

Γ(1 + αn)
M(αn, 1 + αn,−µ t)

]
. (C.6)

In the rhs of this equation, we now find the function g defined in Eq. (3.97). Thus, by
substituting g in Eq. (C.6) and then in Eq. (C.3), we derive the final result that was
presented in Eq. (3.96b):

f1(t) =
σ

γ

[
1− γ

γ − µα
+

γ

γ − µα
g(t;α, γ, µ)

]
=

σ

γ(γ − µα)
[−µα + γ g(t;α, γ, µ)] . (C.7)

In the case γ = µα, the calculation simplifies. We obtain indeed the following:

f̃1(λ) =
σ

γ

1

λ

[
1− γ

(λ+ µ)α

]
(C.8)

whose Laplace inverse transform follows straightforwardly from the convolution theorem:

L
{

1

λ (λ+ µ)α

}
(t) =

1

Γ(α)

∫ t

0
e−µ τ τα−1 dτ =

1

Γ(α)µα
γ(α, µ t) (C.9)

We now consider the function f2 for γ 6= µα. By substituting Φ in its Laplace transform
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in Eqs. (3.89) and rearranging terms, we find the following expression:

f̃2(λ) = −σ
γ

1

λ

[
−γ − µα + (λ+ µ)α +

γ2

(λ+ µ)α + γ − µα

]
(C.10)

The Laplace inverse transform of the first and third term in brackets can be done as before.
We need to focus on the second term. If we employ the shifting property, we can write:

L−1

{
(λ+ µ)α

λ

}
(t) = =

e−µ t

Γ(1− α)

∫ t

0
τ−αL−1

{
λ

λ− µ

}
(t− τ) dτ

=
e−µ t

Γ(1− α)

∫ t

0
τ−α[δ(t− τ) + µ eµ(t−τ)] dτ

=
t−α e−µ t

Γ(1− α)
+

µ

Γ(1− α)

∫ t

0
τ−αe−µ τ dτ

=
t−α e−µ t

Γ(1− α)
+

µα

Γ(1− α)
γ(1− α, µ t) (C.11)

Thus, recalling the result in Eq. (C.6), we obtain the result presented in Eq. (3.96c):

f2(t) = −σ
γ

[
−(γ + µα) +

t−α e−µ t

Γ(1− α)
+

µα

Γ(1− α)
γ(1− α, µ t)− γ2

γ − µα
[−1 + g(t;α, γ, µ)]

]
= −σ

γ

[
µ2α

γ − µα
− γ2

γ − µα
g(t;α, γ, µ) +

t−α e−µ t

Γ(1− α)
+

µα

Γ(1− α)
γ(1− α, µ t)

]
(C.12)

We note that the resul for the case γ = µα follows straightforwardly from Eq. (C.9). In
addition, the expression in time of w is easily derived by using Eq. (C.11).

C.2 Mixture of Two Lévy Stable Subordinators

In this second section, we consider the case (ii), i.e. we assume η = η1 + η2, where η1,2

are independent Lévy stable subordinator with exponents 0 < α1 < α2 < 1. Due to their
independence, the Laplace exponent of η is given by the sum of the exponents of each of
its component, i.e. Φ(λ) = B1 λ

α1 +B2 λ
α2 with B1, B2 ≥ 0. As before, we substitute this

function in Eqs. (3.89) and compute their Laplace inverse transform. On the one hand for
f1 we obtain the following expression:

f̃1(λ) =
σ

γ

1

λ

[
1− γ

γ +B1 λα1 +B2 λα2

]
; (C.13)

on the other hand for f2 we find similarly:

f̃2(λ) = −σ
γ

1

λ

[
−γ +B1 λ

α1 +B2 λ
α2 +

γ2

γ +B1 λα1 +B2 λα2

]
. (C.14)

The expression in time of both these equations can be derived, if we compute the Laplace
inverse transform of the term 1/[γ + B1 λ

α1 + B2 λ
α2 ]. This is obtained by adopting the



C.2 Mixture of Two Lévy Stable Subordinators 144

technique of [75, 203]. Specifically, we write:

1

γ +B1 λα1 +B2 λα2
=

1

λα1 [B1 +B2λα2−α1 ]

1

1 + γ λ−α1

B1+B2 λα2−α1

=
λ−α1

[B1 +B2λα2−α1 ]

∞∑
n=0

(−1)n
γn λ−α1 n

[B1 +B2 λα2−α1 ]n

=

∞∑
n=0

(−1)n
γn λ−α1 (1+n)

[B1 +B2 λα2−α1 ]1+n
(C.15)

This expression is now in a convenient form to be Laplace inverse transformed term by
term. Recalling Eq. (A.10), we obtain ∀n ∈ N0:

L−1

{
λ−α1 (1+n)

[B1 +B2 λα2−α1 ]1+n

}
(t) =

tα2(1+n)−1

B1+n
2

E1+n
α2−α1,α2(1+n)

(
−B1

B2
tα2−α1

)
. (C.16)

Substituting this result back into Eq. (C.15), we obtain the final inverse Laplace transform:

L−1

{
1

γ +B1 λα1 +B2 λα2

}
(t) =

tα2−1

B2

∞∑
n=0

(−1)n
(
γ

B2
tα2

)n
E1+n
α2−α1,α2(1+n)

(
−B1

B2
tα2−α1

)
. (C.17)

For simplicity, we introduce the auxiliary function:

l(t) = tα2−1
∞∑
n=0

(−1)n
(
γ

B2
tα2

)n
E1+n
α2−α1,α2(1+n)

(
−B1

B2
tα2−α1

)
. (C.18)

Thus, by applying the convolution theorem, we obtain the following results:

f1(t) =
σ

γ

[
1− γ

B2

∫ t

0
l(τ) dτ

]
(C.19a)

f2(t) = −σ
γ

[
−γ +B2

t−α2

Γ(1− α2)
+B1

t−α1

Γ(1− α1)
+
γ2

B2

∫ t

0
l(τ) dτ

]
(C.19b)

To get a solution in closed form, we still need to solve the integral over l. This can be
derived by writing the function l in terms of Fox H-functions (see Appendix A.3) trough
Eq. (A.11) and by using the property Eq. (A.27). In details, we can write:∫ t

0
l(τ) dτ =

∞∑
n=0

(−1)n

n!

(
γ

B2

)n
×

×
∫ t

0
τα2(1+n)−1H1,1

1,2

[
B1

B2
τα2−α1

∣∣∣∣∣ (−n, 1)

(0, 1), (1− α2(1 + n), α2 − α1)

]
dτ (C.20)
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The analytical solution of the integral term by term is then obtained by employing Eq. (A.27):

∫ t

0
τα2(1+n)−1H1,1

1,2

[
B1

B2
τα2−α1

∣∣∣∣∣ (−n, 1)

(0, 1), (1− α2(1 + n), α2 − α1)

]
dτ =

tα2(1+n)H1,3
3,3

[
B1

B2
τα2−α1

∣∣∣∣∣ (1− α2(1 + n), α2 − α1), (0, 0), (−n, 1)

(0, 1), (1− α2(1 + n), α2 − α1), (−α2(1 + n), α2 − α1)

]
=

tα2(1+n)H1,2
2,3

[
B1

B2
τα2−α1

∣∣∣∣∣ (1− α2(1 + n), α2 − α1), (−n, 1)

(0, 1), (1− α2(1 + n), α2 − α1), (−α2(1 + n), α2 − α1)

]
=

tα2(1+n)H1,1
1,2

[
B1

B2
τα2−α1

∣∣∣∣∣ (−n, 1)

(0, 1), (−α2(1 + n), α2 − α1)

]
, (C.21)

where we also first simplified the Fox H-function in the first line by computing explicitly the
function Θ in Eq. (A.16) and then employed the reduction formula Eq. (A.20) to further
simplify it in the second line. Substituting this result in Eq. (C.20) and using the relation
Eq. (A.11), we can write:∫ t

0
l(τ) dτ =

∞∑
n=0

(−1)n
(
γ

B2

)n
tα2(1+n)E1+n

α2−α1,1+α2(1+n)

(
−B1

B2
tα2−α1

)
, (C.22)

which is the function H defined in Eq. (3.106), except for the time dependent prefactor.
Thus, from Eqs. (C.19a, C.19b) we obtain directly Eqs. (3.105b, 3.105c).

C.3 One Sided Lévy Noise with Exponent Φ in Eq. (3.107)

In this last section, we consider the case (iii), where the characteristic functional of η is
defined by Eq. (3.107) with d1, d2, β > 0 and 0 < α1, α2 ≤ 1. As before, we substitute this
function in Eqs. (3.89) and compute their Laplace inverse transform. On the one hand for
f1 we obtain the following expression:

f̃1(λ) =
σ

γ

1

λ

1− γ

γ +
d1

dα1
2

λα1

(
1 +

(
λ

d2

)1/β
)β(α2−α1)

−1 (C.23)

The Laplace inverse transform of the second term in its rhs is derived by writing it as:

γ +
d1

dα1
2

λα1

(
1 +

(
λ

d2

)1/β
)β(α2−α1)

−1

=

dα1
2

d1

λ−α1[
1 +

(
λ
d2

)1/β
]β(α2−α1)

1 + γ
dα1

2

d1

λ−α1(
1 +

(
λ
d2

)1/β
)β(α2−α1)


−1

. (C.24)
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We can then expand it in series as below:

γ +
d1

dα1
2

λα1

(
1 +

(
λ

d2

)1/β
)β(α2−α1)

−1

=

dα1
2

d1

∞∑
n=0

(−1)n
(
γ
dα1

2

d1

)n λ−α1(1+n)[
1 +

(
λ
d2

)1/β
]β(α2−α1)(1+n)

, (C.25)

whose term by term Laplace inverse transform is done by recalling Eq. (A.10). We obtain:

L


λ−α1(1+n)[

1 +
(
λ
d2

)1/β
]β(α2−α1)(1+n)

 (t) = d
(1+n)(α2−α1)
2 tα2(1+n)−1E

β(1+n)(α2−α1)
1/β,α2(1+n)

(
−d1/β

2 t1/β
)

(C.26)
After substituting this result in Eq. (C.25), we obtain the following expression in time:

tα2−1d
α2
2

d1

∞∑
n=0

(−1)n
(
γ
dα2

2

d1

)n
tα2 nE

β(1+n)(α2−α1)
1/β,α2(1+n)

(
−d1/β

2 t1/β
)
. (C.27)

We note that Eq. (C.23) also contains a factor 1/λ, which corresponds to a time integration
via the convolution theorem. If we perform such integral term by term, we obtain:∫ t

0
τα2(1+n)−1E

β(1+n)(α2−α1)
1/β,α2(1+n)

(
−d1/β

2 τ1/β
)

dτ = tα2(1+n)E
β(1+n)(α2−α1)
1/β,1+α2(1+n)

(
−d1/β

2 t1/β
)
.

(C.28)
Putting everything together, we obtain the following result:
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2

d1
tα2
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n=0

(−1)n
(
γ
dα2

2

d1

)n
tα2 nE

β(1+n)(α2−α1)
1/β,1+α2(1+n)

(
−d1/β

2 t1/β
)
, (C.29)

which is the series expansion of the function G in Eq. (3.116), except for the time dependent
prefactor. Thus, Eq. (3.115b) follows directly from Eqs. (C.23, C.29). In the case of f2,
we need to determine the term Φ(λ)/λ. In our specific case, we can rewrite it as below:

Φ(λ)

λ
=

d1

dα1
2

λα1−1

[
1 +

(
λ

d2

)1/β
]β(α2−α1)

=
d1

dα2
2

λα1−1[
d

1/β
2 + λ1/β

]β(α1−α2)
, (C.30)

whose inverse Laplace transform can again be computed with Eq. (A.10):

L−1

 λα1−1[
d

1/β
2 + λ1/β

]β(α1−α2)

 (t) = t−α2E
β(α1−α2)
1/β,1−α2

(
−d1/β

2 t1/β
)
. (C.31)

By employing Eqs. (C.29, C.31), the inverse Laplace transform of Eq. (3.89) leads to the
result presented in Eq. (3.115c).
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