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Abstract

This paper presents an algorithm for a complete and efficient calibration
of the Heston stochastic volatility model. We express the calibration as a
nonlinear least-squares problem. We exploit a suitable representation of the
Heston characteristic function and modify it to avoid discontinuities caused
by branch switchings of complex functions. Using this representation, we
obtain the analytical gradient of the price of a vanilla option with respect
to the model parameters, which is the key element of all variants of the ob-
jective function. The interdependency between the components of the gra-
dient enables an efficient implementation which is around ten times faster
than a numerical gradient. We choose the Levenberg-Marquardt method to
calibrate the model and do not observe multiple local minima reported in
previous research. Two-dimensional sections show that the objective func-
tion is shaped as a narrow valley with a flat bottom. Our method is the
fastest calibration of the Heston model developed so far and meets the speed
requirement of practical trading.

Keywords: pricing, Heston model, model calibration, optimisation,
Levenberg-Marquardt method.

1. Introduction

Pricing financial derivatives is an established problem in the operational
research literature; see for example Fusai et al. [19] and references therein
contained. Here we deal with the calibration of the Heston stochastic
volatility model [26], which is important and popular for derivatives pricing
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[5, 7, 36]. The particular topic of model calibration also involves numerical
optimisation, which is a core subject of operational research.

A sophisticated model may reflect the reality better than a simple one,
but usually is more challenging to implement and calibrate. This is espe-
cially true with mathematical models for the pricing of derivatives and the
estimation of risk. The most basic model, introduced by Black and Scholes
(BS) [8], assumes that the underlying price follows a geometric Brownian
motion with constant drift and volatility. The price of a vanilla option is
then given as a function of a single parameter, the volatility. However, the
BS model does not adequately take into account essential characteristics
of market dynamics such as fat tails and skewness of the distribution of
log returns and the correlation between the value of the underlying and its
volatility. It has also been observed that the volatility starts to fluctuate
when the market reacts to new information. Thus, several extensions of
the BS model were suggested thereafter, including the family of stochastic
volatility (SV) models, which introduces a second Brownian motion to de-
scribe the fluctuation of the volatility. We study one of the most important
SV models; it was proposed by Heston [26] and is defined by the system of
stochastic differential equations

dSt = µStdt+
√
vtStdW

(1)
t , (1a)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW

(2)
t , (1b)

with
dW

(1)
t dW

(2)
t = ρdt, (1c)

where St is the underlying price and vt its variance; the parameters κ, v̄, σ, ρ
are respectively called the mean-reversion rate, the long-term variance, the
volatility of volatility, and the correlation between the Brownian motions

W
(1)
t and W

(2)
t that drive the underlying and its variance; moreover there is

a fifth parameter v0, the initial value of the variance.
Model calibration is as crucial as the model itself. Calibration consists

in determining the parameter values so that the model reproduces market
prices as accurately as possible. Both the accuracy and the speed of cali-
bration are important because practitioners use the calibrated parameters
to price a large number of complicated derivative contracts and to develop
high-frequency trading strategies.

In this paper, we propose to efficiently calibrate the Heston model using
an analytical gradient and numerical optimisation. In Section 2, we briefly
review the existing research. In Section 3, we formulate the objective func-
tion and derive its analytical gradient. In Section 4, we present a complete
algorithm to calibrate the Heston model using the Levenberg-Marquardt
(LM) method. We also discuss some points where a carefully designed nu-
merical scheme may improve the performance. In Section 5, we present
numerical results.
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Throughout, we use bold uppercase letters for matrices, e.g. J , and
bold lowercase letters for column vectors, e.g. θ; a superscript ᵀ for the
transpose of a matrix or vector; e for a vector of all ones [1, . . . , 1]ᵀ; E[·] for
expectations; 1A(·) for the indicator function of the set A; Re(·) for the real
part and Im(·) for the imaginary part of a complex number; ‖ · ‖ for the
l2-norm; ‖ · ‖∞ for the l∞-norm; log for the natural logarithm.

2. Previous work on Heston model calibration

In the literature, there are two main approaches to calibrate the Heston
model: historical and implied. The first fits historical time series of the prices
of an option with a fixed strike and maturity, typically by the maximum
likelihood method or the efficient method of moments [1, 17, 27]. The second
fits the volatility surface of an underlying at a fixed time, i.e., options with
several strikes and maturities, to obtain the implied parameter set. Our work
follows the second approach, as that is what is used in real-time pricing and
risk management. In the following, we survey obstacles and existing methods
for the Heston model calibration related to the second approach.

2.1. Recognised difficulties

Firstly, the calibration is in a five-dimensional space. There is no con-
sensus among researchers on whether the objective function for the Hes-
ton model calibration is convex or irregular. The results of some proposed
methods [10, 23, 33] depend on the initial point, which was attributed to a
non-convex objective function, but might simply reflect on the inadequacy
of the methods. To find a reasonable initial guess, short-term or long-term
asymptotic rules are used; see Jacquier and Martini [28] for a detailed re-
view. However, recently Gerlich et al. [22] claimed a convergence to the
unique solution independent of the initial guess and suggested that the He-
ston calibration problem may have some inherent structure leading to a
single stationary point. On the other hand, dependencies among the pa-
rameters do exist. For example, it is known that κ and σ offset each other:
limt→+∞Var(vt) = σ2v̄/κ, so that a parameter set with large values of κ and
σ gives a fit comparable to a set with small values of κ and σ. Intuitively,
the fact that different parameter combinations yield similar values of the
objective function can be due to the objective function being flat close to
the optimum; see Section 5 in this paper.

Secondly, the analytical gradient for the Heston calibration problem is
hard to find and has not been available so far because it was believed that
the expression of the Heston characteristic function is overly complicated to
provide an insightful analytical gradient: of course, a gradient can be ob-
tained with symbolic algebra packages, but the resulting expressions are in-
tractable. Instead, numerical gradients obtained by finite difference methods
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have been used in gradient-based optimisation methods; however, numerical
gradients have a larger computational cost and a lower accuracy.

2.2. Existing methods

We review some heuristics to reduce the dimension of the calibration and
then the optimisation methods that have been applied so far.

2.2.1. Heuristics for dimension reduction

Since the Heston parameters are closely related to the shape of the im-
plied volatility surface [13, 21, 23, 29] (v0 controls the position of the volatil-
ity smile, ρ the skewness, κ and σ the convexity, and κ times the difference
between v0 and v̄ the term structure of implied volatility), efforts have been
made to simplify the calibration to a lower dimension by presuming some of
the parameter values based on knowledge available for the specific volatility
surface. The initial variance v0 is usually set to the short-term at-the-money
(ATM) BS implied variance, which is based on the term structure of the BS
implied volatility in the Heston model [21, p. 34-35]. A practical calibration
experiment [10, p. 29-30] verified the linearity between the initial variance
and the BS implied variance for maturities in the range of 1 to 2 months.
Clark [13, Eq. (7.3)] suggested the heuristic assumption κ = 2.75/τ and
v̄ = σATM(τ), where σATM(τ) is the ATM BS implied volatility with time to
maturity τ . Chen [10] proposed a fast intraday recalibration by fixing κ to
the same as yesterday’s and v0 to the 2-month ATM implied volatility, which
are heuristics actually adopted in the industry. These assumptions help with
an incomplete calibration, but may misguide the iterate to a limited domain
and thus to a wrong convergence point.

2.2.2. Stochastic optimisation methods

Researchers who believed that a descent direction is unavailable have de-
voted their attention to stochastic optimisation methods, including Wang-
Landau [10], differential evolution and particle swarm [24], simulated an-
nealing [34], etc. To increase the robustness, a deterministic search such as
Nelder and Mead using the MATLAB function fminsearch is often com-
bined with these stochastic optimisation algorithms. Almost all research
using stochastic techniques reports issues with performance. GPU technol-
ogy has been applied with simulated annealing to speed up the calibration
of the SABR model, a member of the family of SV models. Using 2 nVIDIA
Geforce GTX470 GPUs it took 421.72 seconds to calibrate 12 instruments
achieving a 10−2 maximum error [18], which is still too slow for real-time
use.

2.2.3. Deterministic optimisation methods

Deterministic optimisation solvers available with commercial packages
have been proved to be unstable as the performance largely depends on
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the quality of the initial guess: this applies to the Excel built-in solver
[33] and to the MATLAB solver lsqnonlin [6, 20, 34]. Gerlich et al. [22]
adopted a Gauss-Newton framework and kept the feasibility of the iterates
by projecting to a cone determined by the constraints. The gradient of the
objective function was calculated by finite differences and thus costs a large
number of function evaluations.

To sum up, existing calibration algorithms are either based on ad hoc
assumptions or not fast or stable enough for practical use. In this work, we
will focus on deterministic optimisation methods without any presumption
on the values of the parameters.

3. Problem formulation and gradient calculation

The idea of calibrating a volatility model is to minimise the difference
between the vanilla option price calculated with the model and the one
observed in the market. In this section, we first formulate the calibration
problem in a least-squares form. Then, we present the pricing formula of
a vanilla option under the Heston model with four algebraically equivalent
representations of the characteristic function, discussing their numerical sta-
bility and suitability for analytical derivation. We calculate the analytical
gradient of the objective function which can be used in any gradient-based
optimisation algorithm.

3.1. The inverse problem formulation

Denote by C∗(Ki, τi) the market price of a vanilla call option with strike
Ki and time to maturity τi := Ti− t, C(θ;Ki, τi) the price computed via the
Heston analytical formula (9) with the parameter vector θ := [v0, v̄, ρ, κ, σ]ᵀ.
We assemble the residuals for the n options to be calibrated

ri(θ) := C(θ;Ki, τi)− C∗(Ki, τi), i = 1, . . . , n (2)

in the residual vector r(θ) ∈ Rn, i.e.,

r(θ) := [r1(θ), r2(θ), . . . , rn(θ)]ᵀ . (3)

We treat the calibration of the Heston model as an inverse problem in
the nonlinear least-squares form

min
θ∈Rm

f(θ), (4)

where m = 5 indicates the dimension, and

f(θ) :=
1

2
‖r(θ)‖2 =

1

2
rᵀ(θ)r(θ). (5)
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Since there are many more market observations than parameters to be found,
i.e., n� m, the calibration problem is overdetermined.

Our objective function is the sum of squared differences of price on a
set of strikes and maturities. The precise choice of objective function is a
non-trivial matter and, in an accounting sense, ultimately depends on the
trade population on an actual trading book. The choice of strikes and ma-
turities is also non-trivial. For example, choosing the same strikes (even
as a percentage of spot as in [11, Table 1]) will lead to these strikes being
more OTM for shorter than for longer dated maturities; this could lead to
miscalibration of the longer dated smile and computational underflow prob-
lems in the calculation of shorter ended options. To remedy this, we use the
standard approach in foreign exchange (FX) which is to use strikes defined
by given Deltas, namely ATM, and 25 and 10 Delta1 call and put options
(see [13, Section 3.3]). With regards to the actual objective function, other
possibilities have been considered (see [12] for a review) which according to
loc. cit. can lead to different solutions. One such function used in industry
is the sum of squared differences of implied volatilities [14, Section 13.2]. As
stated in [14] this quantity can be approximated by dividing the difference
in price by the Vega2 and it is relevant when the price bid/offer spread in
volatility terms is independent of strike. Note that this is not always the case
as less liquid OTM options will be quoted with a wider bid/offer spread in
volatilities. Calibrating to implied volatility will cause OTM options, with
lower Vega, to weigh more in the objective function and so the resulting
calibration, compared to the one based on the price, will privilege OTM
over ATM options. As our algorithm also approximates Vega it might also
help exploring the optimization problem in terms of implied volatility as a
subject of future work. Since the gradient will be derived from the pricing
formula, for us it is most straightforward and consistent to minimise the
pricing error in the current work.

Before applying any technique to solve the problem (4)–(5), one needs to
bear in mind that the evaluation of C(θ;Ki, τi) is expensive for the purpose
of calibration; hence, one would like to minimise the number of computations
of Eq. (9) when designing the algorithm. Moreover, the explicit gradient of

1The sensitivity of BS European option price with respect to spot price.
2The sensitivity of European option price with respect to volatility. Note that there are

several possible notions of Vega. For instance, Vega used in hedging positions, or “trader
Vega”, is the result of bumping actual market data prior to calibration and pricing. In FX,
the market practice is to quote OTM options as Risk Reversal and Strangle volatilities,
sensitivity to these quantities is often called Rega and Sega. For the purposes of calibration
to implied volatilities, the relevant Vega is what is sometimes referred in industry as the
“fenics Vega” defined by the BS expression for Vega evaluated on the implied volatility.
Another Vega that occurs is the sensitivity of prices to model parameters that reflect the
overall level of the smile, such as v0 in the Heston model, this is sometimes alluded to as
“model Vega”. The hope is that all these different measures are roughly comparable.
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C(θ;Ki, τi) with respect to θ is not available in the literature as it is deemed
to be overly complicated. This is indeed true if one starts from the commonly
used expressions for the characteristic function by Heston [26, Eq. (17)] or
Schoutens et al. [37, Eq. (17)]. However, as shown in the next section, a
more convenient choice of the functional form of the characteristic function
by del Baño Rollin et al. [15, Eq. (6)] eases the derivation of its analytical
gradient.

3.2. Pricing formula of a vanilla option and representations of the charac-
teristic function

For a spot price St, an interest rate r and a dividend rate q, the price of
a vanilla call option with strike K and time to maturity τ := T − t is

C(θ;K, τ) = e−rτE[(ST −K)1{ST≥K}(ST )] (6a)

= e−rτ
(
E[ST1{ST≥K}(ST )]−KE[1{ST≥K}(ST )]

)
(6b)

= Ste
−qτP1(θ;K, τ)−Ke−rτP2(θ;K, τ). (6c)

In the Heston model, P1(θ;K, τ) and P2(θ;K, τ) are solutions to certain
pricing PDEs [26, Eq. (12)] and are given as

P1(θ;K, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
e
−iu log K

S0

iu

φ(θ;u− i, τ)

φ(θ;−i, τ)

)
du, (7)

P2(θ;K, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
e
−iu log K

S0

iu
φ(θ;u, τ)

)
du, (8)

where i is the imaginary unit, φ(θ;u, τ) is the characteristic function of
the logarithm of the stock price process, φ(θ;−i, τ) = F/S0, and F :=
Ste

(r−q)τ = is the forward price. Thus, the formula for pricing a vanilla call
option becomes

C(θ;K, τ) =
1

2
(Ste

−qτ −Ke−rτ )

+
e−rτ

π

[
S0

∫ ∞
0

Re

(
e
−iu log K

S0

iu
φ(θ;u− i, τ)

)
du

−K
∫ ∞

0
Re

(
e
−iu log K

S0

iu
φ(θ;u, τ)

)
du

]
. (9)

The characteristic function was originally given by Heston as [26, Eq. (17)]

φ(θ;u, τ) := E

[
exp

(
iu log

St
S0

)]
= exp

{
iu log

F

S0
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+
κv̄

σ2

[
(ξ + d)τ − 2 log

1− g1e
dτ

1− g1

]
+
v0

σ2
(ξ + d)

1− edτ

1− g1edτ

}
, (10)

where

ξ := κ− σρiu, (11a)

d :=
√
ξ2 + σ2(u2 + iu), (11b)

g1 :=
ξ + d

ξ − d
. (11c)

Kahl and Jäckel [30] pointed out that when evaluating this form as a
function of u for moderate to long maturities, discontinuities appear be-
cause of the branch switching of the complex power function Gα(u) =
exp(α logG(u)) with G(u) := (1−g1e

dτ )/(1−g1) and α := κv̄/σ2, which ap-
pears in Eq. (10) as a multivalued complex logarithm. This depends on the
fact that G(u) has the shape of a spiral as u increases, and when it repeat-
edly crosses the negative real axis, the phase of G(u) jumps from −π to π.
Then the phase of Gα(u) changes from −απ to απ, causing a discontinuity
when α is not a natural number.

Albrecher et al. [2] found that this happens when the principal value of
the complex square root d is selected, as most numerical implementations of
complex functions do, but can be avoided if the second value is used instead.
They proved that this alternative representation, originally proposed by
Schoutens et al. [37, Eq. (17)], is continuous and gives numerically stable
prices in the full-dimensional and unrestricted parameter space:

φ(θ;u, τ) = exp

{
iu log

F

S0

+
κv̄

σ2

[
(ξ − d)τ − 2 log

1− g2e
−dτ

1− g2

]
+
v0

σ2
(ξ − d)

1− e−dτ

1− g2e−dτ

}
, (12)

where

g2 :=
ξ − d
ξ + d

=
1

g1
. (13)

Another equivalent form of the characteristic function was proposed later
by del Baño Rollin et al. [15, Eq. (6)]. We correct the expression in that
paper by adding the term −κv̄ρτiu/σ to the exponent, resulting in

φ(θ;u, τ) = exp

(
iu log

F

S0
− κv̄ρτiu

σ
−A

)
B2κv̄/σ2

, (14)

where

A :=
A1

A2
, (15a)
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A1 := (u2 + iu) sinh
dτ

2
, (15b)

A2 :=
d

v0
cosh

dτ

2
+

ξ

v0
sinh

dτ

2
, (15c)

B :=
deκτ/2

v0A2
. (15d)

Del Baño Rollin et al. introduced their expression to analyse the log-spot
density, and since then it has not been used for any other purpose. It was
obtained by manipulating the complex moment generating function; besides
being more compact, it replaces the exponential functions in the exponent
with hyperbolic functions, which makes the derivatives easier. Therefore,
we will use this expression to obtain the analytical gradient.

-4 -2 2 4

-4

-2

2

4

Re γ(u)

Im γ(u)

(a) γ(u), u ∈ [0, 500].

Re logA2(u)
23.5 24 24.5 25

Im
lo
g
A

2
(u
)

-4

-2

0

2

4

6

8

logA2 =
dt

2 + log
(

d+ξ
2v0

+ d−ξ
2v0

e−dt

)

logA2 = log( d

v0
cosh dt

2 + ξ
v0
sinh dt

2 )

(b) logA2(u), u ∈ [0, 4].

Fig. 1: Trajectories of γ(u) and two equivalent forms of logA2(u) in the complex plane.
The curves were generated using the parameters in Table 1 with time to maturity τ = 15.

Table 1: Parameters specification.

Model parameters Market parameters

κ 3.00 S0 1.00

v̄ 0.10 K 1.10

σ 0.25 r 0.02

ρ −0.80 q 0

v0 0.08

However, the same discontinuity problem pointed out by Kahl and Jäckel
appears here too. It comes from the factor B2κv̄/σ2

, or more specifically
from A2 in the denominator of B. Fig. 1a shows a trajectory of γ(u) :=
(A2(u) log log |A2(u)|)/|A2(u)|. The double-logarithmic scaling of the radius
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compensates the rapid outward movement of the spiralling trajectory of
A2(u) [2, 30]. For the curve we adopt the same hue h ∈ [0, 1) as Kahl and
Jäckel [30], h := log10(u+ 1) mod 1, which means that segments of slowly
varying colour represent rapid movements of A2(u) as a function of u.

We thus modify the representation by rearranging logA2 to

logA2 = log

(
d

v0
cosh

dτ

2
+

ξ

v0
sinh

dτ

2

)
(16a)

= log
d(edτ/2 + e−dτ/2) + ξ(edτ/2 − e−dτ/2)

2v0
(16b)

= log
(d+ ξ)edτ/2 + (d− ξ)e−dτ/2

2v0
(16c)

= log

[
edτ/2

(
d+ ξ

2v0
+
d− ξ
2v0

e−dτ
)]

(16d)

=
dτ

2
+ log

(
d+ ξ

2v0
+
d− ξ
2v0

e−dτ
)
. (16e)

Fig. 1b shows the trajectories of the two equivalent formulations of logA2.
The rearrangement (16e) resolves the discontinuities arising from the loga-
rithm with Eq. (15c) as an argument. Then we insert Eq. (16e) into logB
and denote the final expression as D:

logB = log
d

v0
+
κτ

2
− logA2 (17a)

= log
d

v0
+

(κ− d)τ

2
− log

(
d+ ξ

2v0
+
d− ξ
2v0

e−dτ
)

=: D. (17b)

So we propose a new representation of the characteristic function which
is algebraically equivalent to all the previous expressions and does not show
the discontinuities of Eqs. (10) and (14) for large maturities:

φ(θ;u, τ) = exp

(
iu log

F

S0
− κv̄ρτiu

σ
−A+

2κv̄

σ2
D

)
. (18)

We have discussed four equivalent representations of the Heston charac-
teristic function, three from previous research and one newly proposed here
by us. We compare them in Fig. 2: the plot of our expression is continuous
and overlaps Schoutens et al.’s, while the other two exhibit discontinuities
due to the multivalued complex functions. Moreover our expression, like the
one by del Baño Rollin et al. from which it was obtained, has the advantage
of being easily derivable, as shown in the next section. These properties are
summarised in Table 2.
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u

0 1 2 3 4

R
e
φ
(θ
;u

,
τ
)

-0.5

0

0.5

1

Heston, Eq.(10)
Schoutens et al., Eq.(12)
del Baño Rollin et al., Eq.(14)
Cui et al., Eq.(18)

Fig. 2: Four equivalent representations of the Heston characteristic function. The curves
were generated using the parameters in Table 1 with time to maturity τ = 15. Eq. (10)
jumps at u = 1, Eq. (14) jumps at u = 2, while Eqs. (12) and (18) are continuous.

Table 2: Properties of the four representations of the Heston characteristic function.

Numerically continuous Easily derivable

Heston 7 7

Schoutens et al. 3 7

del Baño Rollin et al. 7 3

Cui et al. 3 3

3.3. Analytical gradient

We use ∇ = ∂/∂θ for the gradient operator with respect to the param-
eter vector θ and ∇∇ᵀ for the Hessian operator. For convenience, we omit
to write the dependence of the residual vector r on θ.

3.3.1. The basic theorem of the analytical gradient

Let J = ∇rᵀ ∈ Rm×n be the Jacobian matrix of the residual vector r
with elements

Jji =

[
∂ri
∂θj

]
=

[
∂C(θ;Ki, τi)

∂θj

]
, (19)

and H(ri) := ∇∇ᵀri ∈ Rm×m be the Hessian matrix of each residual ri
with elements

Hjk(ri) =

[
∂2ri
∂θj∂θk

]
. (20)

Following the nonlinear least-squares formulation (4)–(5), one can easily
write the gradient and Hessian of the objective function f as

∇f = Jr, (21a)
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∇∇ᵀf = JJᵀ +

n∑
i=1

riH(ri). (21b)

Theorem 1. Assume that an underlying asset S follows the Heston pro-
cess (1). Let θ := [v0, v̄, ρ, κ, σ]ᵀ be the parameters in the Heston model,
C(θ;K, τ) be the price of a vanilla call option on S with strike K and time
to maturity τ . Then the gradient of C(θ;K, τ) with respect to θ is

∇C(θ;K, τ) =
e−rτ

π

[∫ ∞
0

Re

(
e
−iu log K

S0

iu
∇φ(θ;u− i, τ)

)
du

− K

∫ ∞
0

Re

(
e
−iu log K

S0

iu
∇φ(θ;u, τ)

)
du

]
, (22)

where ∇φ(θ;u, τ) = φ(θ;u, τ)h(u), h(u) := [h1(u), h2(u), . . . , h5(u)]ᵀ with
elements

h1(u) = −A
v0
, (23a)

h2(u) =
2κ

σ2
D − κρτiu

σ
, (23b)

h3(u) = −∂A
∂ρ

+
2κv̄

σ2d

(
∂d

∂ρ
− d

A2

∂A2

∂ρ

)
− κv̄τiu

σ
, (23c)

h4(u) =
1

σiu

∂A

∂ρ
+

2v̄

σ2
D +

2κv̄

σ2B

∂B

∂κ
− v̄ρτ iu

σ
, (23d)

h5(u) = −∂A
∂σ
− 4κv̄

σ3
D +

2κv̄

σ2d

(
∂d

∂σ
− d

A2

∂A2

∂σ

)
+
κv̄ρτiu

σ2
; (23e)

ξ, d,A,A1, A2, B,D, φ(θ;u, τ) are defined in Eqs. (11a), (11b), (15), (17b)
and (18), respectively.

Proof. Eq. (22) results from differentiating the vanilla option pricing func-
tion (9) under the integral sign; this can be done because the integrand and
its gradient are continuous. Then the problem reduces to the derivation of
the gradient of the characteristic function φ(θ;u, τ). Starting from Eq. (14)
and following the chain rule, one can get ∇φ(θ;u, τ) as discussed below.

Since v0 and v̄ are only in the exponent and are not involved with the
definition of A or B, we directly obtain

∂φ(θ;u, τ)

∂v0
= −A

v0
φ(θ;u, τ), (24)

∂φ(θ;u, τ)

∂v̄
=

2κ logBφ(θ;u, τ)

σ2
. (25)

Next we derive the partial derivative with respect to ρ, since it provides
some terms that can be reused for the rest. We have

∂φ(θ;u, τ)

∂ρ
= φ(θ;u, τ)

(
−κv̄τiu

σ
− ∂A

∂ρ

)
+ φ(θ;u, τ)

2κv̄

σ2

1

B

∂B

∂ρ
(26a)
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= φ(θ;u, τ)

[
−κv̄τiu

σ
− ∂A

∂ρ
+

2κv̄

σ2d

(
∂d

∂ρ
− d

A2

∂A2

∂ρ

)]
(26b)

= φ(θ;u, τ)

[
−∂A
∂ρ

+
2κv̄

σ2d

(
∂d

∂ρ
− d

A2

∂A2

∂ρ

)
− κv̄τiu

σ

]
, (26c)

where

∂d

∂ρ
= −ξσiu

d
, (27a)

∂A2

∂ρ
= −σiu(2 + ξτ)

2dv0

(
ξ cosh

dτ

2
+ d sinh

dτ

2

)
, (27b)

∂B

∂ρ
=
eκτ/2

v0

(
1

A2

∂d

∂ρ
− d

A2
2

∂A2

∂ρ

)
, (27c)

∂A1

∂ρ
= − iu(u2 + iu)τξσ

2d
cosh

dτ

2
, (27d)

∂A

∂ρ
=

1

A2

∂A1

∂ρ
− A

A2

∂A2

∂ρ
. (27e)

By merging and rearranging terms, we find that

∂A

∂κ
=

i

σu

∂A

∂ρ
, (28a)

∂B

∂κ
=

i

σu

∂B

∂ρ
+
Bτ

2
, (28b)

which are inserted into

∂φ(θ;u, τ)

∂κ
= φ(θ;u, τ)

(
−∂A
∂κ

+
2v̄

σ2
logB +

2κv̄

σ2B

∂B

∂κ
− v̄ρτ iu

σ

)
(29)

to reach the expression (23d). Similarly, Eq. (23e) can be obtained by apply-
ing the chain rule to Eq. (14), and the intermediate terms for ∂φ(θ;u, τ)/∂σ
can be written in terms of those for ∂φ(θ;u, τ)/∂ρ, that is

∂d

∂σ
=

(
ρ

σ
− 1

ξ

)
∂d

∂ρ
+
σu2

d
, (30a)

∂A1

∂σ
=

(u2 + iu)τ

2

∂d

∂σ
cosh

dτ

2
, (30b)

∂A2

∂σ
=
ρ

σ

∂A2

∂ρ
− 2 + τξ

v0τξiu

∂A1

∂ρ
+
στA1

2v0
, (30c)

∂A

∂σ
=

1

A2

∂A1

∂σ
− A

A2

∂A2

∂σ
. (30d)

In the end, we replace logB appearing in Eqs. (25) and (29) with D, defined
in Eq. (17b), to ensure the numerical continuity of the implementation.

Next we discuss the computation of the integrands in Eq. (22) and their
convergence.
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3.3.2. Efficient calculation and convergence of the integrands
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(a) 60 days to maturity.
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ū

(b) 90 days to maturity.
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(c) 180 days to maturity.
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(d) 252 days to maturity.

Fig. 3: Convergence of the integrands: Re
(
φ(θ;u, τ)(K/S0)−iu/(iu)

)
in the Heston pricing

formula for C(θ;K, τ) (dark blue) and Re
(
φ(θ;u, τ)h(u)(K/S0)−iu/(iu)

)
in the compo-

nents of its gradient ∂C/∂θ (other colors); hj(u), j = 1, . . . , 5 are respectively relevant for
∂C/∂θj . The black circle indicates the value ū where all integrands are below 10−8.

All integrands have the form Re
(
φ(θ;u, τ)hj(u)(K/S0)−iu/(iu)

)
and

hj(u) is a product of elementary functions depending on which parameter
is under consideration. It has been pointed out in the original paper by He-
ston [26] that the term Re

(
φ(θ;u, τ)(K/S0)−iu/(iu)

)
is a smooth function

that decays rapidly and presents no difficulties; its product with elementary
functions decreases fast too. A visual example is shown in Fig. 3, with pa-
rameters given in Table 1. In our time units, τ = 1 is a trading year made
of 252 days.

Denote as ū the value of u for which all integrands are not larger than
10−8. For our testing parameter set, we observe in Figs. 3 and 4 that ū
decreases when τ increases. This is due to the fact that the more spread-out
a function is, the more localised its Fourier transform is (see the uncertainty
principle in physics): as τ increases, the probability density of ST stretches
out, while its Fourier transform φ(θ;u, τ) squeezes. More specifically, if X
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and U are random variables whose probability density functions are, apart
of a constant, Fourier pairs of each other, the product of their variances is a
constant, i.e., Var(X)Var(U) ≥ 1. Based on this observation, one can adjust
the truncation according to the maturity of the option and hence do fewer
integrand evaluations for options with longer maturities.

log τ
3 3.5 4 4.5 5 5.5 6

lo
g
ū

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Fig. 4: As the time to maturity τ increases, the value ū for which all integrands evaluate
to 10−8 or less decreases.

In order to obtain the integrands in Eq. (22), one only needs to compute
φ(θ;u, τ) and h(u). After rearranging and merging terms, we find that
calculating h(u) can be boiled down to obtaining the intermediate terms
(27), (28) and (30). It is a favorable result that the components of h(u)
share these common terms because then the gradient ∇C(θ;K, τ) can be
obtained by vectorizing the quadrature for all the integrands as illustrated
in Algorithm 3.1.

Algorithm 3.1. Vectorised integration in the Heston gradient.

1 Specify N grid nodes (uk)
N
k=1 and N corresponding weights (wk)

N
k=1.

2 for k = 1, 2, . . . , N do
3 Compute h(uk).
4 end
5 for j = 1, 2, . . . , 5 do
6 Compute∫∞

0
K−iu

iu φ(θ;u, τ)hj(u)du ≈
∑N

k=1
K−iuk

iuk
φ(θ;uk, τ)hj(uk)wk.

7 end

Due to the interdependence among components of h(u), this scheme is
faster than computing and integrating each component hj(u) individually.
Next, we discuss the choice of the numerical integration method and of
the key parameters N , uk and wk, but we point out that this vectorised
quadrature is compatible with any numerical integration method. Also note
that the evaluation of φ(θ;uk, τ)hj(uk) is independent of K, thus for a given
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τ one can factorize the computation of φ(θ;uk, t)hj(uk) across strikes. This
is crucial when working with a model that is heavier than the Heston model,
although not adopted in our prototype implementation.

3.3.3. Integration scheme

The computation of the integrals in the pricing function (9) and the gra-
dient function (22) dominates the cost of calibration. Thus, we discuss the
proper choice of the numerical integration scheme. Specifically, we compare
the trapezoidal rule (TR) and the Gauss-Legendre rule (GL). In Figs. 5a and
5b, we plot the error of the integral evaluation respectively in the pricing
formula and its gradient. The horizontal axis is the number of quadrature
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(b) for the gradient function

Fig. 5: Comparison between TR (full blue for mean and dotted purple for maximum and
minimum) and GL (full red for mean and dotted pink for maximum and minimum) for
the error of the integral evaluation under the Heston model.

nodes N and the vertical axis is the log10 scale of the absolute error of
integration, which is defined as

εintegration := |Φ(N)− Φ(Nmax)|, (31)

where Φ(N) is the value of the integration with N nodes, N is selected
equidistantly in the range [10, 100], Nmax should be ∞ and is chosen as
1000 in our case. For the plots we use 40 options with different strikes and
maturities. More details on these options are given in Section 5.

The error converges faster for GL than TR and has always a smaller
variation when more options are involved. In order to achieve an average
accuracy of 10−8, GL requires 40 nodes and TR requires 70. In order for the
integrations for all the options to achieve an accuracy at 10−8, GL requires
60 nodes and TR requires much more than 100.

Besides the fast convergence of the integral error, GL is advantageous
in its selection of nodes. GL rescales the domain of integration to [−1,+1],
selects nodes that are symmetric around the origin, and assigns the same
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weight to each symmetric pair of nodes. Thus, a further reduction in com-
putation can be achieved by making use of the common terms of a node and
its opposite. Based on these benefits, we choose the GL integration scheme
with about 60 nodes to calibrate the Heston model.

3.3.4. Comparison with numerical gradient

Previous calibration methods approximate the gradient by a finite dif-
ference scheme. A central difference scheme is the approximation

∇C(θ;K, τ) ≈ C(θ + ε;K, τ)− C(θ − ε;K, τ)

2ε
, (32)

where ε := εe and ε is small. Different values of the increment ε could
be chosen for each component θj ; for simplicity we have taken it constant.
The size of the difference, ε, has a non-trivial effect on the approximation.
An excessively small value of ε is not able to reflect the overall function
behavior at the point and may lead to a wrong moving direction. Moreover
the numerical gradient naturally has an error and one cannot expect to find
a solution with a better accuracy than that of the gradient. In most cases,
the iteration stagnates when the error of the objective function is roughly
the same size as the error of the gradient.

Besides the instability caused by an inappropriate choice of ε, a numerical
gradient has a higher computational cost than an analytical gradient. Recall
that the evaluation of one option price C(θ;K, τ) requires the evaluation of
two integrals as in Eq. (9). Let n be the number of options to be calibrated.
At each iteration, one needs to compute 20n integrals if using the finite
difference scheme while only 2n integrals if using the analytical form with the
vectorised integration scheme. To give a more intuitive comparison between
the two methods, we perform a preliminary experiment with ε = 10−4 and
n = 40 using the MATLAB function quadv with an adaptive Simpson rule
for the numerical integration. In Table 3, we report the CPU time as an
average of 500 runs and the number of calls of the integral function for each
method. In order to give a relative sense of speed that is independent of the
machine, the CPU time for analytical gradient is scaled to unity, and that
for numerical gradient results about 16 times longer.

Table 3: A comparison between numerical and analytical gradients for n = 40 options.

Computational cost Numerical gradient Analytical gradient

CPU time (arbitrary units) 15.8 1.0

Number of integral evaluations 800 80

Considering the 94% of saving in computational time and the exempt
from deciding ε, we propose to use the analytical Heston gradient with vec-

17



torised quadrature in a gradient-based optimisation algorithm to calibrate
the model.

4. Calibration using the Levenberg-Marquardt method

In this section, we present the algorithm for a complete and fast calibra-
tion of the Heston model using the LM method [35].

The LM method is a typical tool to solve a nonlinear least-squares prob-
lem like Eq. (4). The search step is given by

∆θ = (JJᵀ + µI)−1∇f, (33)

where I is the identity matrix and µ is a damping factor. By adaptively
adjusting µ, the method changes between the steepest descent method and
the Gauss-Newton method: when the iterate is far from the optimum, µ is
given a large value so that the Hessian matrix is dominated by the scaled
identity matrix

∇∇ᵀf ≈ µI; (34)

when the iterate is close to the optimum, µ is assigned a small value so that
the Hessian matrix is dominated by the Gauss-Newton approximation

∇∇ᵀf ≈ JJᵀ, (35)

which omits the second term
∑n

i=1 riH(ri) in Eq. (21b). The approxima-
tion (35) is reliable when either ri or H(ri) is small. The former happens
when the problem is a so-called small residual problem and the latter hap-
pens when f is nearly linear. The viewpoint is that the model should yield
small residuals around the optimum because otherwise it is an inappropri-
ate model. The Heston model has been known to be able to explain the
smile and skew of the volatility surface. Therefore, we conjecture it to be
a small residual problem and adopt the approximation of the Hessian in
Eq. (35) as converging to the optimum. There are various implementations
of the LM method, such as MINPACK [16], LEVMAR [31], sparseLM [32] etc.
We adopt the LEVMAR package which is a robust and stable implementa-
tion in C/C++ distributed under GNU. Although its documentation does
not report a use in computational finance, LEVMAR has been integrated into
many open source and commercial products in other applications such as
astrometric calibration and image processing. See Algorithm 4.1.

In lines 1 and 5 of Algorithm 4.1, the option pricing function is evaluated.
In lines 1 and 8, the gradient function is evaluated. The values of µ0 and ν0

in line 2 are the default choice of LEVMAR. In line 4, a 5× 5 linear system is
solved; in LEVMAR this is done by an LDLT factorization with the pivoting
strategy of Bunch and Kaufman [9] using the LAPACK [4] routine.
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Algorithm 4.1. Levenberg-Marquardt algorithm to calibrate the He-
ston model.

1 Given the initial guess θ0, compute ‖r(θ0)‖ and J0.
2 Choose the initial damping factor µ0 = τ max {diag(J0)} and ν0 = 2.
3 for k = 0, 1, 2, . . . do
4 Solve the normal equations (33) for ∆θk.
5 Compute θk+1 = θk + ∆θk and ‖r(θk+1)‖.
6 Compute δL = ∆θk

ᵀ(µk∆θk + Jkr(θk)) and
δF = ‖r(θk)‖ − ‖r(θk+1)‖.

7 if δL > 0 and δF > 0 then
8 Accept the step: compute Jk+1, µk+1 = µk, νk+1 = νk.
9 else

10 Recalculate the step: set µk = µkνk, νk = 2νk and repeat from
line 4.

11 end
12 if the stopping criterion (36) is met then
13 Break.
14 end

15 end

The stopping criterion for the LM algorithm is when one of the following
is satisfied:

‖r(θk)‖ ≤ ε1, (36a)

‖Jke‖∞ ≤ ε2, (36b)

‖∆θk‖
‖θk‖

≤ ε3, (36c)

where ε1, ε2 and ε3 are tolerance levels. The first condition (36a) indicates
that the iteration is stopped by a desired value of the objective function
(4)–(5). The second condition (36b) indicates that the iteration is stopped
by a small gradient. The third condition (36c) indicates that the iteration
is stopped by a stagnating update.

5. Numerical results

In this section, we present our experimental results for the calibration
of the Heston model. We first describe the data and then report the per-
formance of our calibration method in comparison with the fastest previous
method. We examine the Hessian matrix at the optimal solution which re-
veals the reason of the multiple optima observed in previous research. In
the end, we test on three parameterisations that are typical for certain op-
tions. The result justifies the computational efficiency and robustness of our
method for practical problems.
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5.1. Data

In order to check whether the optimal parameter set found by the algo-
rithm is the global optimum, we first presume a parameter set θ∗ specified
in Table 1, and then use it to generate a volatility surface that is typically
characterised by these options: the ∆10 call and put options, ∆25 call and
put options, and ∆50 (i.e., ATM) call options with maturity from 30 to 360
days. Here ∆ := ∂C(θ;K, τ)/∂S is the BS Greek, i.e., the sensitivity of
the option price with respect to the movement of its underlying spot. In
Table 4, we give the BS implied volatilities of 40 options that are generated
by θ∗. This is a quoting style of the volatility surface commonly used in the
financial industry, where ∆ is a measure equivalent to the strike K. We de-
note call and put options using superscripts, respectively as ∆call and ∆put.
The target is thus to find a parameter set θ† that can replicate the volatility

Table 4: Implied volatility surface for calibration.

Maturity in days ∆put
10 ∆put

25 ∆call
50 ∆call

25 ∆call
10

30 2.5096 1.4359 0.2808 0.2540 0.2369

60 2.4351 1.3216 0.2847 0.2606 0.2417

90 2.3823 1.2955 0.2878 0.2660 0.2489

120 2.3383 1.2677 0.2904 0.2699 0.2548

150 2.2996 1.2407 0.2925 0.2745 0.2598

180 2.2619 1.2166 0.2943 0.2777 0.2641

252 2.1767 1.1671 0.2975 0.2837 0.2722

360 2.0618 1.1136 0.3007 0.2897 0.2803

surface in Table 4. If θ† is far from θ∗ or in other words, depends on the
initial guess θ0, then one concludes that local optimal parameter sets exist.
Otherwise the problem presents only a global optimum.

We validated our method using different optimal parameters and initial
guesses in a reasonable range given in Table 5. The procedure is described
in Algorithm 5.1. We did not impose Feller condition, 2κv̄ > σ2, when
generate these parameters because it has been a common knowledge that
Feller condition is barely satisfied in practice [2], especially in FX market
[13, Table 6.3].

Following this procedure, we validated Algorithm 4.1 with 10 000 test
cases. An average of the distances between the initial guesses θ0 and the
optima θ∗ is given in Table 5. The results of the tests are discussed in the
next section.
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Table 5: Reasonable ranges to randomly generate Heston model parameters and the av-
erage absolute distance between the initial guess θ0 and the optimum θ∗.

Range for model parameters Absolute deviation from θ∗

κ (0.50, 5.00) |κ0 − κ∗| 1.5097

v̄ (0.05, 0.95) |v̄0 − v̄∗| 0.2889

σ (0.05, 0.95) |σ0 − σ∗| 0.2875

ρ (−0.90,−0.10) |ρ0 − ρ∗| 0.2557

v0 (0.05, 0.95) |(v0)0 − v
∗
0 | 0.3063

Algorithm 5.1. Validation procedure.

1 for i = 1, 2, . . . , 100 do
2 Generate a vector of parameters θ∗i , each component of which is

an independent uniformly distributed random number in the
interval specified in Table 5.

3 for j = 1, 2, . . . , 100 do
4 Generate an initial guess θ0j , each component of which is an

independent uniformly distributed random number in the
interval specified in Table 5.

5 Validate Algorithm 4.1 using the initial guess θ0j to find θ∗i .

6 end

7 end

5.2. Performance

The computations were performed on a MacBook Pro with a 2.6 GHz
Intel Core i5 processor, 8 GB of RAM and OS X Yosemite version 10.10.5.
The pricing and gradient functions for the Heston model were coded in C++
using Xcode version 7.3.1. We use LEVMAR version 2.6 [31] as the LM solver
setting the tolerances in Eqs. (36) to ε1 = ε2 = ε3 = 10−10. However, in our
experiments the LM iteration was always stopped by meeting the condition
on the objective function (36a). We use GL integration with N = 64 nodes
and for simplicity we truncate the upper limit of the integration in Eq. (22)
at ū = 200 which shall be enough for pricing and calibrating in all cases.
The code is provided in the supplementary material.

The proposed method succeeds in finding the presumed parameter set in
9 843 cases out of 10 000 without any constraints on the search space and in
9 856 cases restraining the search to the intervals specified in Table 5. The
average CPU time for the whole calibration process is less than 0.3 seconds.
See Table 6 for detailed information on the whole validation set. In Table 7
and in the rest of this section we specify the information for a representative
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example with the parameters θ∗ specified in Table 1 and the initial guess
θ0 = [1.20, 0.20, 0.30,−0.60, 0.20]ᵀ.

Table 6: Information about the optimisation: average over 10 000 testing cases.

Absolute deviation from θ∗ Error measure Computational cost

|κ† − κ∗| 1.54× 10−3 ‖r0‖ 1.39× 10−1 CPU time (seconds) 0.29

|v̄† − v̄∗| 2.40× 10−5 ‖r†‖ 2.94× 10−11 LM iterations 12.82

|σ† − σ∗| 3.79× 10−3 ‖J†e‖∞ 1.47× 10−5 price evaluations 14.57

|ρ† − ρ∗| 1.52× 10−2 ‖∆θ†‖ 3.21× 10−4 gradient evaluations 12.82

|v†0 − v∗0 | 6.98× 10−6 linear systems solved 13.57

Table 7: Information about the optimisation of a representative example.

Absolute deviation from θ∗ Error measure Computational cost

|κ† − κ∗| 1.09× 10−3 ‖r0‖ 4.73× 10−2 CPU time (seconds) 0.29

|v̄† − v̄∗| 2.18× 10−6 ‖r†‖ 1.00× 10−12 LM iterations 13

|σ† − σ∗| 4.70× 10−5 ‖J†e‖∞ 1.21× 10−5 price evaluations 14

|ρ† − ρ∗| 9.89× 10−6 ‖∆θ†‖ 2.50× 10−4 gradient evaluations 13

|v†0 − v∗0 | 1.18× 10−6 linear systems solved 13
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Fig. 6: The convergence of the LM method.

The convergence of the residual rk and the relative distance of each
parameter towards the optimum is plotted in Fig. 6. In Figs. 7a and 7b, we
plot the pricing error on the implied volatility surface at the initial point
θ0 and the optimal point θ†, respectively. As can be seen, the pricing error
decreases from 10−2 to 10−7 after 13 steps.
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Fig. 7: Pricing error on the implied volatility surface.

This result contrasts the conclusion of previous research: local optimal
parameters are not intrinsically embedded in the Heston calibration prob-
lem, but rather caused by an objective function shaped as a narrow valley
with a flat bottom and a premature stopping criterion.

We plot the contours for ‖r‖ when varying 2 out of 5 parameters. Start-
ing from θ0, the iteration path is shown with contour plots in Fig. 8. The
initial point θ0 is marked with a black circle and the true solution θ∗ is
marked with a black plus symbol. The red lines with asterisks are the it-
eration paths of θk, k = 1, . . . , 13. For almost all pairs, the first step is a
long steepest descent step that is nearly orthogonal to the contour. The rest
are relatively cautious steps with the Gauss-Newton approximation of the
Hessian. The contour plots do not show evidence for local minima, at least
not in 2 dimensional sections.
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Fig. 8: Contours of ‖r‖ and iteration path for (θi, θj).
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Fig. 8: (cont.) Contours of ‖r‖ and iteration path for (θi, θj).
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Fig. 8: (cont.) Contours of ‖r‖ and iteration path for (θi, θj).

The Gauss-Newton approximation of the Hessian matrix at the optimal
solution is given in Table 8.

Table 8: The Hessian matrix ∇∇ᵀf(θ∗).

∂κ ∂v̄ ∂σ ∂ρ ∂v0

∂κ 5.26× 10−5

∂v̄ 9.65× 10−3 2.26× 10+1

∂σ −5.49× 10−4 −7.66× 10−2 7.46× 10−3

∂ρ 1.61× 10−4 2.00× 10−2 −2.34× 10−3 7.56× 10−4

∂v0 5.28× 10−3 1.18× 10+1 −3.53× 10−2 8.40× 10−3 9.69× 10−1

The Hessian matrix is ill-conditioned with a condition number of 3.978×
106. The elements ∂2f(θ∗)/∂κ2 and ∂2f(θ∗)/∂ρ2 are of a much smaller order
than the others. This suggests that the objective function, when around the
optimum, is less sensitive to changes of κ and ρ. The effect of κ on the
objective function is weak because option prices depend on the integrated
volatility, which is little sensitve to the degree of oscillation of volatility; ρ
controls the slope of the smile, so this parameter is difficult to identify if a
narrow range of moneyness is used for calibration.

In other words, the objective function is more stretched along these two
axes as can be verified looking at the contours, for example in Figs. 8a and
8b. The ratio between ∂2f(θ∗)/∂κ2 and ∂2f(θ∗)/∂v̄2 is of order 10−6, which
indicates a great disparity in sensitivity: changing 1 unit of v̄ is comparable
to changing 106 units of κ. On the other hand, this explains the so-called
local minima reported in previous research. When one starts from a different
initial point and stops the iteration with a high tolerance, it is possible that
the iterate lands somewhere in the region where κ and ρ are very different.
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There are two possible approaches that one can seek to deal with this: the
first is to scale the parameters to a similar order and search on a better-
scaled objective function; the second is to decrease the tolerance level for the
optimisation process, meaning to approach the very bottom of this objective
function.

In Table 9, we present the performance of the LM method with analytical
gradient (LMA), the LM method with numerical gradient (LMN), and a
feasibility perturbed sequential quadratic programming method (FPSQP)
[22] adopted in UniCredit bank. As the concrete implementation of FPSQP
is owned by the bank, we only extract their test results. The computational
cost can be compared through the number of evaluations of the pricing
function (9) per iteration, expressed as a multiple of the number n of options
to be calibrated. LMA requires about n pricing function evaluation per

Table 9: Performance comparison between solvers.

LMA LMN FPSQP

Stopping criterion ‖r(θk)‖ ≤ 10−10 ‖r(θk)‖ ≤ 10−10 ‖∆θk‖ ≤ 10−6

Iterations 13 22 -

Price evaluations per iteration 1.08n 1.70n 6.00n

step. LMN requires more for the gradient approximation, but the difference
is not large since LMN uses a rank-one update for the subsequent Jacobian
matrices. FPSQP requires about 5.5 times more than that of LMA and
achieves only a lower accuracy for the stopping criterion for the gradient.

We tested our method also on a few realistic model parameterisations. In
Table 10, we present three test cases that are representative respectively for
long-dated FX options, long-dated interest rate options and equity options
[3]. They are believed to be prevalent and challenging for the simulation of
Heston model [25]. Each component of the initial guess is an independent

Table 10: Test cases with realistic Heston model parameters. Case I: long-dated FX
options. Case II: long-dated interest rate options. Case III: equity options.

Case I Case II Case III

κ∗ 0.50 0.30 1.00

v̄∗ 0.04 0.04 0.09

σ∗ 1.00 0.90 1.00

ρ∗ -0.90 -0.50 -0.30

v∗0 0.04 0.04 0.09
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uniformly distributed random number in the ±10% range of the correspond-
ing optimum. This choice is due to the fact that practitioners usually choose
the initial guess as the last available estimation which is expected to be close
to the solution if the calibration is frequent enough and the market does not
change drastically. We test each case with 100 initial guesses. Our previous
test range in Table 5 has covered these cases too, but here we would like
to focus on the performance of our method when applied to these typical
examples and thus justify its computational efficiency and robustness for
practical application. The information about the convergence as an average
of the 100 initial guesses is given in Table 11. For the practical cases with
initial guesses in the vicinity, it takes less than or around one second to
obtain the optimal solution.

Table 11: Calibration results for three typical realistic cases, reporting an average on 100
initial guesses for each of them.

Case I Case II Case III

|κ† − κ∗| 2.87× 10−2 1.35× 10−3 1.20× 10−3

Absolute |v̄† − v̄∗| 4.80× 10−3 4.52× 10−5 2.11× 10−5

deviation |σ† − σ∗| 5.29× 10−2 7.48× 10−4 3.94× 10−4

from θ∗ |ρ† − ρ∗| 3.65× 10−2 1.69× 10−5 1.46× 10−5

|v†0 − v∗0 | 2.14× 10−3 1.46× 10−5 1.07× 10−5

‖r0‖ 2.70× 10−4 4.51× 10−5 1.02× 10−4

Error ‖r†‖ 1.12× 10−4 9.24× 10−11 3.33× 10−11

measure ‖J†e‖∞ 1.77× 10−1 4.63× 10−6 4.15× 10−6

‖∆θ†‖ 6.88× 10−21 1.63× 10−8 5.10× 10−5

CPU time 0.40 1.11 0.15

Computational LM iterations 16.83 51.52 6.86

cost Price evaluations 23.38 52.60 7.86

Gradient evaluations 16.83 51.52 6.86

Linear systems solved 23.38 51.52 6.86

6. Conclusion

We proposed a new representation of the Heston characteristic function
which is continuous and easily derivable. We derived the analytical form
of the gradient of the Heston option pricing function with respect to the
model parameters. The result can be applied in any gradient-based algo-
rithm. An algorithm for a full and fast calibration of the Heston model is
given. The LM method succeeds in finding the global optimal parameter
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set within a reasonable number of iterations. The method is validated by
randomly generated parameterisations as well as three typical cases of Hes-
ton model parameterisations for long-dated FX options, long-dated interest
rate options and equity options. The resulting parameters can replicate
the volatility surface with an l2-norm error of 10−10 and an l1-norm error
around 10−7. The cheap computational cost and the stable performance for
different initial guesses make the proposed method suitable for the purpose
of high-frequency trading. Several numerical issues are discussed. We also
present the final Hessian matrix and contours of the objective function. We
point out that either a rescaling of the parameters or a low tolerance level is
needed to find the global optimum. There is still room for improvement of
this calibration algorithm. For example, the integrals in the pricing formula
(9) can be consolidated [36, Eq. 1.71], so that only one single numerical
integration required instead of two. It is also worth investigation how the
choice of objective function and the observation points effect the calibration
performance.
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