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Highlights 

• Cyanobacteria use type IV pili to move directly towards a light source 
• Spherical cyanobacteria are micro-lenses which focus light to sense light 

direction 
• Synechocystis sp. PCC 6803 can integrate multiple stimuli to regulate its 

phototaxis response 
• Phototaxis is relevant in phototrophic biofilms 

 

Abstract 

Cyanobacteria are able to move directly towards or away from a light source, a process 
called phototaxis. Recent studies have revealed that the spherical unicellular 
cyanobacterium Synechocystis sp. PCC 6803 exhibits a cell polarity in response to 
unidirectional illumination and that micro-optic properties of cyanobacterial cells are the 
basis of their directional light sensing. Further functional and physiological studies 
highlight a very complex control of cyanobacterial phototaxis by sensory proteins, 
histidine kinases and response regulators. Notably, PATAN domain response regulators 
appear to participate in directional control of phototaxis in the cyanobacterium 
Synechocystis sp. PCC 6803. In this review we explain the problem of directional light 
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sensing at the small scale of bacteria and discuss our current understanding of signal 
transduction in cyanobacterial phototaxis. 

Introduction 

Many prokaryotes have more complex lifestyles than would be suspected from 
observation under standard laboratory conditions, as the predominant form of bacterial 
and archaeal life in nature is not a planktonic culture. Prokaryotic cells can live in a 
single or multi-species biofilm, can become motile to reach better conditions or can 
enter a starvation program to survive under harsh conditions. Mechanisms which control 
these lifestyle decisions have been studied in great detail in some model bacteria. Since 
the advent of molecular techniques, cyanobacteria have been mainly studied as model 
systems for plant-like photosynthesis or carbon and nitrogen fixation. Although motility 
in cyanobacteria was discovered in the 19th century [1], with excellent further studies in 
the 1960-1970s [2,3] to reveal fundamental mechanisms of light-driven motility, our 
current understanding of phototaxis remains far from the detailed understanding of the 
chemotaxis system in flagellated bacteria.  However, recent research has revealed how 
cyanobacteria sense the direction of light and which regulators might be involved in 
control of their phototactic behavior.  

How do cyanobacteria move in response to a light signal? 

Cyanobacteria do not assemble flagella. Instead they use different motility mechanisms 
including type IV pili and possibly also surface proteins and slime extrusion [4]. The 
unicellular coccoid cyanobacterium Synechocystis sp. PCC 6803 (hereafter 
Synechocystis), a model organism for photosynthesis studies and biotechnological 
applications, has been shown to use type IV pili for twitching movement on surfaces 
similar to the motility described for Pseudomonas and Myxococcus [5]. Many 
filamentous cyanobacteria are also motile. It was hypothesized that a polysaccharide 
secretion system, the so-called junctional pore complex, extrudes slime directionally, 
thereby pushing the cells forward [6].  However, in the filamentous strain Nostoc 
punctiforme, the junctional pore complex of the differentiated motile filaments known as 
hormogonia was recently shown to be partially composed of type IV pilus structures, 
and polysaccharide secretion does not provide the directional motive force [7,8]. 
Instead, a type IV pilus-like nanomotor is suggested to drive motility in filamentous 
cyanobacteria, commensurate with unicellular strains. Cyanobacterial motility is partially 
controlled by light, and several genes that are important for phototaxis have been 
identified. These encode homologs of the chemotaxis (Che) signal transduction 
pathway, and photoreceptors implicated in directional light sensing [9,10]. 

Chemotactic bacteria typically show a biased random walk, with changes in the 
direction of flagella rotation leading to switching between a running mode and tumbling 
with random reorientation to a new direction [11]. For a biased movement within a 
chemical gradient, cells have to detect concentration changes. However, bacterial cells 
are too small for direct detection of spatial differences in the concentration of an 



attractant or repellent. Instead they change the sensitivity of their chemoreceptors to 
external stimuli during movement, thereby measuring temporal changes in the 
concentration of a substance. This memory mechanism works close to the physical 
limits of sensing [12]. Phototaxis in Synechocystis and some filamentous cyanobacteria 
appears fundamentally different, because cells do not exhibit a biased random walk: 
rather, they can move directly towards a light source [2,13].  

Model for regulation of phototaxis in cyanobacteria 

We recently proposed a model whereby spherical Synechocystis cells exploit their 
micro-optic properties to sense light direction [13] (Fig. 1). Essentially the cell acts as a 
microscopic eyeball. Light impacting the front side is focused at the distal side of the 
cell. We showed that this light spot is at least 4 times brighter than the incoming light 
intensity. For discussion of the micro-optical properties of bacteria, see Box 1. 

The sharp focal point on the cell surface is most probably sensed by photoreceptors, 
which then transduce the signal to downstream regulators with homology to chemotaxis 
proteins. The link between these regulators and the motility apparatus remains 
uncertain, but it appears that localized signal transduction pathways cause the cells to 
move away from the focused light spot at the distal side, thereby moving towards the 
external light source. In Synechocystis there are at least six CheY-like response 
regulators fused to so-called PATAN domains [14]. Five of these were shown to be 
involved in regulation of motility or are part of a gene cluster encoding gene products 
with similarity to chemotaxis proteins. Three of these clusters include a known 
photoreceptor protein and are involved in directional control (Fig. 2). PixJ1 is a 
blue/green sensing cyanobacteriochrome fused to a methyl accepting chemotaxis 
protein (MCP) [15], PixD is a BLUF (blue light sensor using FAD) photoreceptor [16] 
and UirS is a UV-A light sensor [17]. What is the evidence that these proteins are 
involved in directional light sensing? Inactivation of the receptor protein always leads to 
a 180° change in the direction of movement, meaning that the cells have reversed the 
orientation of phototaxis but not lost their ability for directional light-sensing. Wild-type 
cells move towards low-intensity far-red, red, green and also white light, whereas UV 
light at about 50 µmol photons m-2 s-1 induces negative phototaxis. Consequently, pixJ1 
[18] and pixD [16] mutants move away from light qualities that induce positive 
phototaxis, whereas a uirS mutant moves towards a UV-light source [17,19]. 
Interestingly, overexpression of the PATAN domain response regulator LsiR (encoded 
in the uir gene cluster) leads to negative phototaxis also under red light [17]. This 
implies that the PATAN-domain regulators control local assembly of type IV pili in 
response to photoreceptor activation. The PATAN domain was named after the PatA 
protein, which is involved in spatial heterocyst organization in filamentous cyanobacteria 
[20]. PATAN domains are not confined to cyanobacteria and were shown to regulate 
gliding motility in Myxococcus xanthus [21]. In our model we suggest that these 
response regulators interact with the type IV pilus machinery in response to light, 
thereby inactivating or activating pilus assembly on one side of the cell. We hypothesize 



that these response regulators act through a common target and constitute the 
fundamental pathway for phototactic orientation in Synechocystis. While the possible 
target remains unidentified, the ultimate outcome of locally-activated PATAN-response 
regulators is most likely the spatial organization of the motor ATPases. The pilus 
extension ATPase PilB1 is known to localize  in a crescent shape at the leading edge of 
motile Synechocystis cells [22] and we suppose that the retraction ATPases PilT1/2 
may also relocalize. 

Our knowledge of the signal transduction components involved in cyanobacterial 
phototaxis comes largely from null mutant phenotypes. Loss of a particular photosensor 
or signal transduction component could affect phototaxis in at least two distinct ways, 
which are not easy to distinguish experimentally. The signal transduction component 
could be responsible for transmitting information for directional light sensing. 
Alternatively, it could be helping to control the expression of other components that are 
more directly involved in phototaxis. This leaves open the possibility that the known 
photosensors and their associated signal transducers might merely be involved in 
tuning the phototactic response through regulation of gene expression, as suggested by 
Sugimoto et al. [23]. Directional light signaling would then involve something else, 
possibly localized signals arising from the photosynthetic apparatus. In our view, the 
photoreceptors PixJ1, UirS and PixD remain the best candidates for directional light 
sensing, but to test their roles we need more information on their sub-cellular 
localization and interactions. A true directional light sensor should be rather evenly 
distributed around the cell perimeter, and it should initiate a post-translational signal 
transduction pathway that directly regulates the motility apparatus [13]. 

 

Complex decisions and cross-talk between light sensing and other environmental 
signals 

Even from our limited knowledge of motility control in Synechocystis, it is clear that the 
cells make complex decisions, influenced by multiple sensory inputs on different 
timescales. For example, light-dependent synthesis of cyclic nucleotide second 
messengers plays an important role in tuning cyanobacterial phototaxis. In different 
cyanobacterial species, the intracellular cAMP content is regulated in a light-dependent 
manner [24–27]. Synthesis of cAMP by the adenylate cyclase Cya1 and binding by the 
cAMP receptor protein Sycrp1 are crucial for motility at the biofilm level in 
Synechocystis [28]. Although the exact mechanism is unknown it seems that Sycrp1 is 
a transcriptional activator of minor pilins and cell surface proteins that could control cell-
cell interactions during phototaxis. 

In many bacteria, the transition between motile and sessile lifestyles is regulated by the 
second messenger c-di-GMP. The hybrid photoreceptor Cph2 is a key signaling system 
that regulates this behavioral switch in Synechocystis. It comprises an N-terminal 
red/far-red interconverting phytochrome fused to a c-di-GMP degrading EAL domain 



and a green- and blue-absorbing C-terminal cyanobacteriochrome linked to a GGDEF 
domain [29,30]. Excessive blue light illumination activates c-di-GMP synthesis by the 
GGDEF domain, leading to elevated c-di-GMP levels that inhibit motility through an 
unknown signal transduction pathway [30]. The co-occurrence of many cyanobacterial 
signaling proteins consisting of various combinations of phytochrome, GGDEF and EAL 
domains indicates that c-di-GMP constitutes an important signaling pathway in 
cyanobacteria to adapt to changing environmental factors, especially light quality [31]. 

The modulation of Synechocystis phototaxis by ethylene provides an example of a 
chemical sensory input into motility control. Many cyanobacteria live in biofilms together 
with other microorganisms or even enter into symbiotic interactions with fungi, protists 
or plants. This coexistence means that cyanobacterial cells are exposed to signals 
released by different organisms and recent research indicates that certain chemical 
cues also influence phototaxis. Ethylene is a phytohormone that is synthesized in 
response to various biotic and abiotic stresses and plays various roles in plant 
development [32]. But ethylene is also synthesized by some microorganisms and 
therefore can act as an universal signal in plant-bacterial communities [33]. In addition, 
ethylene is also produced photochemically from organics in aquatic environments. 
Recently it was shown that externally applied ethylene accelerates motility in 
Synechocystis phototaxis [34]. Ethylene is sensed by the same receptor protein UirS 
that senses UV-A light (Fig. 2). The protein is therefore also called SynETR1 (for 
Synechocystis Ethylene response 1) [35]. It consists of an N-terminal ethylene-binding 
domain followed by an UV-A absorbing cyanobacteriochrome domain and finally a C-
terminal histidine kinase domain. Upon UV-A irradiation, autophosphorylation of the 
histidine kinase of UirS is enhanced and phosphate is transferred to the response 
regulator UirR. Phosphorylated UirR binds to the promoter of the downstream 
transcriptional unit consisting of the putative sRNA gene csiR1 and the PATAN domain 
response regulator LsiR and activates transcription [36]. Ethylene seems to inactivate 
UirS/SynETR1, thereby promoting positive phototaxis, because mutants lacking the 
ethylene binding domain show accelerated movement. 

Future studies are likely to reveal still further complexity in sensory information 
processing for control of motility in Synechocystis. For example, the phototactic 
photoreceptor PixJ1, shows strong similarity to the MCP domain of chemoreceptors and 
is encoded in the tax1 operon together with associated signal transduction components 
[37]. But the Synechocystis genome also includes the tax2 and tax3 operons, which are 
similar to tax1 except that the equivalents of PixJ1 are MCP-like proteins that lack the 
photoreceptor domain [38]. The stimuli detected by the proteins encoded in the tax2 and 
tax3 operons are unknown, but they are likely to feed further chemical or mechanical 
signals into the control of motility. The way in which Synechocystis integrates 
information from so many sources to regulate its motility will be an exciting topic for 
future research. 

 



Biological role of cyanobacterial phototaxis 

Many studies on Synechocystis have used a non-motile mutant background, perhaps 
giving the impression that this is a planktonic organism. However, from the gene content 
and behavior of Synechocystis it is plausible that, in its natural environment, this 
bacterium readily develops biofilm communities [39]. In photosynthetic mats, phototactic 
motility is important for optimizing the photosynthetic performance of filamentous 
cyanobacteria [40]. In mixed photosynthetic mats also containing organotrophs, motility 
can lead to diel migrations and a stratification of these communities.  In such biofilms, 
which are only a few millimeters thick, there is no need for fast migration of cells. 
Instead, the movement needs to be robust and able to operate in the viscous 
exopolysaccharide matrix of a biofilm. Type IV pili are indeed a major factor for biofilm 
formation of many heterotrophic bacteria like Pseudomonas. In addition, the positive 
phototaxis response of Oscillatoria filaments in mats is extremely precise and relatively 
fast [40]. Within 20 minutes, filaments were able to move into a light area spotted onto 
the mat. When the light was turned off, the filaments quickly moved back into the mat. 
There is little quantitative knowledge of light penetration into phototrophic biofilms and 
the ways that it may be influenced by cellular organisation, and very little understanding 
of the dynamics of mat organisation. Our recent work [13] has established that bacterial 
cells are very effective optical structures, capable of focusing light and also trapping it 
by total internal reflection. We think that this insight will be crucial to the understanding 
of the structure, dynamic organisation and function of photosynthetic biofilms. 
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BOX 

Micro-optic properties of spherical cyanobacterial cells and their influence on 
phototactic behaviour 

Directional light perception by Synechocystis depends on the cell focusing a sharp 
image at the edge of the cell furthest from the light source [13]  (Fig. 1). The optical 
properties of a cell depend on its size and shape, its refractive index, and the refractive 
index of the surrounding medium.  Synechocystis cells are roughly spherical and around 
3 µm in diameter. Objects at these scales of just a few times the wavelength of light 
have optical properties that cannot be predicted from simple ray diagrams. Uniform 
microspheres of similar size to Synechocystis cells are able to focus light beyond the 
optical diffraction limit. This phenomenon is called a photonic nanojet, characterized as 



a narrow, high-intensity light beam emerging from the shadow-side surface of an 
illuminated dielectric microcylinder or microsphere [41]. Microlenses are currently being 
tested for super-resolution nanoscopy [42]. It has been observed that the generation of 
focused light beams by Synechocystis cells strongly resemble photonic nanojets [13]. 
These phenomena were observed by photolithography for cells on a dry surface, and 
also by fluorescence microscopy for cells on the wet agar surface used for phototaxis 
assays. They could be predicted by finite difference time domain (FDTD) simulations 
using the Maxwell equations, considering air as the medium and modelling the cell as a 
sphere with a uniform refractive index of 1.4. This value is reasonable, as optofluidic 
imaging of cells of other bacteria indicates refractive indices in the range of 1.37-1.42 
[43].  

It has been questioned whether this light focusing could work effectively for cells fully 
immersed in water with a refractive index of 1.33 [44]. Indeed, simple ray diagrams 
would suggest that water immersion would reduce the sharpness of the focus. However, 
studies on micro-optical effects within eukaryotic cells show that very small differences 
in refractive index between different parts of the cell can have dramatic effects on light 
path through the cell. For example, small refractive index contrasts within retinal glia 
cells (1.415 for heterochromatin, 1.385 for euchromatin and 1.36 for the surrounding 
tissue) allow the nuclei to act as converging lenses [45,46]. It has been suggested that 
mitochondria act as optical waveguides, based on refractive indices of 1.43-1.5 for the 
mitochondria and 1.35 for the surrounding cytoplasm [47]. 

The surrounding medium that is physiologically relevant for phototaxis is uncertain. It is 
highly likely that cells are surrounded by extracellular polymeric substances (EPS) 
which could have a refractive index different from water. Interestingly, EPS, which are 
thought to act as a lubricant during surface-based movement, also enhance phototactic 
orientation [48] and it is possible that EPS could enhance light focusing capabilities by 
changing the refractive index near the cell surface. Moreover, it is obviously an over-
simplification to regard cells as microspheres with uniform refractive index. Light 
interacting with a Synechocystis cell must pass through the aqueous environment, then 
the extracellular matrix, the crystalline S-layer, cell membranes, thylakoid membranes, 
the cytoplasm and the nucleoid. There may well be strong refractive index contrasts 
between these closely-packed layers. The implications for the optical properties of the 
cell remain to be explored.  
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Figure 1. Model for directional light sensing in the spherical unicellular cyanobacterium 
Synechocystis, which has cells about 3 µm in diameter. Unidirectional light is focused at 
the distal edge of the cell, where it is perceived by photoreceptors. For positive 
phototaxis, localized signal transduction in the vicinity of the focused light spot 
inactivates the Type IV pilus apparatus. The pili that remain active are at the side of the 
cell facing the light source, leading to movement towards the light [13]. 



 
Figure 2. Components involved in regulation of phototaxis in Synechocystis 6803, 
showing putative taxis proteins and a schematic cyanobacterial type IV pilus. Three 
photoreceptors (PixJ1, UirS and PixD) are known to regulate phototaxis. Inactivation of 
each of them or of some of the downstream signal transduction components leads to a 
change in direction of movement in comparison to the wild type. It is not firmly 
established how the light signals (flash symbols) are transduced to the pilus base, but 
we hypothesize that this response is mediated by differentially localized CheY-like 
response regulators. These include PATAN-domain proteins shown with bold outlines. 
The second messenger molecules cAMP and c-di-GMP regulate motility of the cells, but 
not directional movement. Dynamic localization of PilB1 at the front side of the cell was 
demonstrated in [22].  The binding of the putative RNA chaperone Hfq to PilB1 was 
shown in [49].  
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