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The scattering equations give striking formulas for massless scattering amplitudes at tree level and, as
shown recently, at one loop. The progress at loop level was based on ambitwistor-string theory, which
naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop
expansion in terms of the genus of the world sheet is equivalent to an expansion in terms of nodes of a
Riemann sphere, with the nodes carrying the loop momenta. In this paper, we show how to obtain two-loop
scattering equations with the correct factorization properties. We adapt genus-two integrands from the
ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching
standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills
theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the color
dependence, which includes nonplanar contributions.
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I. INTRODUCTION

The Cachazo-He-Yuan (CHY) formulas provide remark-
able tree-level expressions for scattering amplitudes in
theories of massless particles, written as an integral over
marked points on the Riemann sphere. The integral local-
izes as a sum over the solutions to the scattering equations
[1]. This formalism generalizes earlier work of Roiban,
Spradlin and Volovich [2] based on Witten’s twistor string
theory [3]. The CHY formulas themselves originate in
ambitwistor-string theory [4]: this provided a loop-level
formulation [5,6] giving new formulas at genus one (torus)
[5,7] and two [8] for type II supergravities in 10 dimen-
sions. In [9,10], we showed how the torus formulas reduce
to formulas on a nodal Riemann sphere, by means of
integration by parts in the moduli space of the torus. The
node carries the loop momentum. We proposed that an
analogous reduction was possible at any genus, leading to a
new formalism that could become a practical tool in the
computation of scattering amplitudes. In the one-loop case,
our explicit analysis provided a proof that the formulas
from ambitwistor strings reproduce the correct answer.
Furthermore, on the nodal Riemann sphere, the formalism
is more flexible than on the torus, and the formulas could be
extended to a variety of theories with or without super-
symmetry. An alternative approach to the one-loop scatter-
ing equations was pursued in [11,12].

However, one loop is not such a stringent test of the
framework, as many difficulties arise only at higher loops.
The Feynman tree theorem, for example, shows how to
construct one-loop integrands from tree formulas, if mas-
sive legs are allowed, and massive legs had already
been considered in this context [13]; an example of our
formulas has been reproduced following such an approach
[14]. However, the situation is more difficult at higher loops
despite recent progress inspired by the tree theorem [15].
In [9], we gave a brief sketch as to how the loop-level

scattering equations are obtained by reduction to the
nodal Riemann sphere. In this article, we give a precise
formulation at two loops. To fix the details of the reduction
to the sphere, we use a factorization argument that leads to
new off-shell scattering equations. An alternative approach
[16] applies higher-dimensional tree-level rules for the
integration of the scattering equations to give diagrams for
a scalar theory; however, our aim here is to give a
framework that yields loop integrands on a nodal
Riemann sphere for complete amplitudes. With this, we
adapt genus-two supergravity integrands (type II, d ¼ 10)
to a doubly nodal sphere, leading to the correct integrand
for the four-point amplitude in maximal supergravity. We
then conjecture an adjustment that gives instead a super-
Yang-Mills integrand. These are checked both by factori-
zation and numerically. Nonsupersymmetric integrands
require certain degenerate solutions to the scattering
equations (on which the supersymmetric integrands van-
ish). We characterize these degenerate solutions here, but
leave the subtler nonsupersymmetric integrands for the
future.

II. FROM HIGHER GENUS TO THE SPHERE

The higher genus scattering equations were formulated
in the ambitwistor-string framework on Riemann surfaces
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Σg of genus g [5,6], in terms of a meromorphic 1-form Pμ,
μ ¼ 1;…; d (the momentum of the string) that solves

∂P ¼
Xn
i¼1

kiδ2ðz − ziÞdz ∧ dz; ð1Þ

where zi are n marked points on Σg. The solution is
written as

P ¼
Xn
i¼1

kiω
ðgÞ
zi;z0ðzÞ þ

Xg
r¼1

lrω
ðgÞ
r ; ð2Þ

where ωðgÞ
r , r ¼ 1;…; g span a basis of holomorphic

1-forms on Σg dual to a choice of a cycles ar, and

ωðgÞ
zi;z0ðzÞ are meromorphic differentials with simple poles

of residues �1 at zi and z0 and vanishing a-cycle
integrals. The dependence on the auxiliary point z0 drops
by momentum conservation. The lr ∈ Cd parametrize the
zero modes of P and will play the role of the loop
momenta.
The genus-g scattering equations are a minimal set of

conditions on the zi and moduli of Σg required for P2 to
vanish globally. They include n conditions

ki · PðziÞ ¼ 0; i ¼ 1;…; n ð3Þ

that set the residues of the simple poles of P2 at the zi to
zero. These fix the locations of zi on the surface. Once these
are imposed, the quadratic differential P2 is holomorphic,
so it has 3g − 3 further degrees of freedom, corresponding
to the moduli of the surface (its shape). We therefore
impose another 3g − 3 scattering equations to reach
P2 ¼ 0. This can be done by writing

P2 ¼
Xg
r;s¼1

ursω
ðgÞ
r ωðgÞ

s ; ð4Þ

where the urs only depend on the moduli of Σg and on
the kinematics, and setting an independent 3g − 3 subset
of the urs to zero. In total, the scattering equations
localize the full moduli space integral to a discrete set of
points. For g ¼ 2, 3, there are precisely 3g − 3 urs’s, thus
we simply set them all to zero and the ambitwistor-string
loop integrand reads

MðgÞ
n ¼

Z
Mg;n

Id3g−3μ
Y
r≤s

δðursÞ
Yn
i¼1

dziδðki · PðziÞÞ; ð5Þ

where I is a correlator depending on the theory and the
holomorphic δ functions are 2πiδðfðzÞÞ ¼ ∂ð1=fÞ. We
stress that this is a formula for the loop integrand, and the

n-point g-loop amplitude is
R
dDl1 � � � dDlgM

ðgÞ
n .

To reduce this expression to one on nodal Riemann
spheres, the heuristics described in [9], based on the
explicit genus-one calculation, was to integrate by parts
(or use residue theorems) in the moduli integral g times.
This relaxes the delta functions ∂ð1=urrÞ to give measure
factors

Q
r1=urr, with the integration by parts yielding

residues at the boundary of moduli space where all the
chosen a cycles contract to give double points, leaving a
Riemann sphere with g pairs of double points. This
leaves 2g − 3 moduli that can be identified with the
moduli of 2g points on the Riemann sphere, correspond-
ing to the g nodes, modulo Möbius transformations.
These moduli are fixed by 2g − 3 remaining scattering
equations.
On the nodal Riemann sphere Σ, the basis of 1-forms

descending from the ωðgÞ
r ’s dual to the pinched a cycles,

given by the pairs of double points σr� , is

ωr ¼
ðσrþ − σr−Þdσ

ðσ − σrþÞðσ − σr−Þ
; r ¼ 1;…; g ð6Þ

so now

P ¼ dσ
Xn
i¼1

ki
σ − σi

þ
Xg
r¼1

lrωr: ð7Þ

From (4) the coefficient of the double poles at σr�
identifies urr as urr ¼ l2

r . Thus the measure factor becomesQ
r1=l

2
r . Furthermore, the quadratic differential

Sg ¼ P2 −
Xg
r¼1

l2
rω

2
r ð8Þ

now only has simple poles at the σi and σr� . The nþ 2g
off-shell scattering equations were then proposed in [9] to
be ResσAS ¼ 0. There are three relations between these
equations so that only nþ 2g − 3 of them need to be
imposed to enforce S ¼ 0. The three relations follow
from the vanishing of the sum of residues of S multiplied
by three independent tangent vectors to the sphere.
There is an ambiguity at two loops and higher, however.

We could equally well have defined S as

~Sg ¼ P2 −
Xg
r¼1

l2
rω

2
r þ

X
r<s

arsωrωs; ð9Þ

where the ars are linear combinations of the urs. Wewill see
that ars ¼ αðurr þ ussÞ ¼ αðl2

r þ l2
sÞ is a better choice

where α ¼ �1 at two loops. This does not change the
heuristic argument as it corresponds to replacing the
original urs ¼ 0 scattering equations for the moduli by
nondegenerate linear combinations thereof. The choice
α ¼ 1 (or equivalently −1) at two loops will be forced
upon us by requiring correct factorization channels.
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Thus our formula on the nodal Riemann sphere is

MðgÞ
n ¼ 1Qg

r¼1 l
2
r

Z
M0;nþ2g

I0

dnþ2gσ

volSLð2;CÞ
Ynþ2g

A¼1

0δðEAÞ; ð10Þ

where EA ¼ ResσA
~Sg, with the index A spanning the n

marked points and the 2g double points. The delta functions
enforce the off-shell scattering equations [17]. In the first
instance, I0 will be taken to be the nodal limit of the
higher-genus world sheet correlator from the ambitwistor-
string type II supergravity in d ¼ 10 (together with a cross
ratio motivated by factorization). This can be extended to
theories for which no higher-genus expression is known, as
we will demonstrate explicitly for super-Yang-Mills theory.

III. THE 2-LOOP SCATTERING EQUATIONS

We now take g ¼ 2 with σ1� and σ2� the double points
corresponding to l1 and l2. The two-loop scattering
equations are the vanishing of the residues of

S ≔ P2 − l2
1ω

2
1 − l2

2ω
2
2 þ αðl2

1 þ l2
2Þω1ω2: ð11Þ

We adopt the shorthand notation ðABÞ ¼ σA − σB. The
scattering equations 2EA ¼ ResσASðσÞ are then given by

�E1� ¼ 1

2

Lð2þ2−Þ
ð1�2þÞð1�2−Þ þ

X
i

l1 · ki
ð1�iÞ ;

�E2� ¼ 1

2

Lð1þ1−Þ
ð2�1þÞð2�1−Þ þ

X
i

l2 · ki
ð2�iÞ ;

Ei ¼
ki · l1ð1þ1−Þ
ði1þÞði1−Þ þ ki · l2ð2þ2−Þ

ði2þÞði2−Þ þ
X
j≠i

ki · kj
ðijÞ ;

ð12Þ

where L ¼ αðl2
1 þ l2

2Þ þ 2l1 · l2. In particular, for
α ¼ �1, L ¼ �ðl1 � l2Þ2. The equations are not inde-
pendent, since there are three linear relations between them,

X
A

EA ¼ 0;
X
A

σAEA ¼ 0;
X
A

σ2AEA ¼ 0: ð13Þ

We will see that α ¼ �1 follows from the correct
factorization.

A. Poles and factorization

Factorization channels of the integrand are related by the
scattering equations to the boundary of the moduli space of
the Riemann surface, where a subset of the marked points
coalesce. Conformally, these configurations are equivalent
to keeping the marked points at a finite distance, but
pinching them off on another sphere, connected to the
original one at the coalescence point σI .

When Σ degenerates in this way, the scattering equations
force a kinematic configuration where an intermediate
momentum goes on shell [18], corresponding to a potential
pole in the integrand. The pole can thus be calculated as
σA → σI for A ∈ I from

X
A∈I

ðσA − σIÞEA ¼ 0: ð14Þ

Note however that whether this singularity is realized in a
specific theory depends on the integrand I0.
Let KI ¼

P
i∈Iki (with external particles only). The

location of the singularities in terms of the external and
loop momenta can then be characterized as follows:

(i) When σ1� , σ2� ∉ I, (14) simply gives K2
I ¼ 0, the

standard factorization channel as for tree amplitudes,
where a pole can appear in some intermediate
propagator in massless scattering.

(ii) When σ1� ∈ I, but σ2� ∉ I, we find the (potential)
pole 2l1 · KI � K2

I as at 1-loop [9], where such
poles arise from certain partial fraction relations and
shifts in the loop momenta, and coincide with the
“Q-cut” poles [15].

(iii) The crucial new configuration at two loops is given
by σ1þ, σ2� ∈ I, corresponding to the condition

Lþ 2ðl1 � l2Þ · KI þ K2
I ¼ 0; ð15Þ

with L as above. As detailed in [15], the partial
fraction identities and shifts always give a quadratic
propagator of the form ðl1 � l2 þ KIÞ2 at two
loops; see also Appendix A. Therefore, requiring
the correct behavior under factorization determines
� ¼ þ and α ¼ 1, or � ¼ − and α ¼ −1. While
both options are fully equivalent up to reparamet-
rization of the loop momenta, we will choose the
former for the rest of the paper.
For σ1þ, σ2þ ∈ I, this choice leads to a potential

pole at ðl1 þ l2 þ KIÞ2. However, for σ1þ, σ2− ∈ I,
we are left with an unphysical potential pole at
ðl1þl2Þ2þ2ðl1−l2Þ ·KIþK2

I ¼0. The require-
ment that this pole is absent from the final answer
will give important restrictions on the integrand I0.

(iv) Let us briefly comment on the only other new
scenario at 2-loops—to have both σ1� ∈ I. Since
their contributions cancel in (14), this just leads to
K2

I ¼ 0, although now associated to two 1-loop
diagrams joined by an on-shell propagator.

The criterion for an integrand I0 to give a simple
kinematic pole in the final formula at one of these potential
singularities is that I0 should have a pole of order 2jIj − 2
as the marked points coalesce, as described in detail in
Sec. 4.1 of [10]. If the pole has lower degree, the final
formula will not have a factorization pole in this channel.
This gives an important criterion for determining the
precise forms of possible integrands I0.
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B. Degenerate and regular solutions

The off-shell scattering equations �Er�ðσr�Þ ¼ 0 asso-
ciated to the node r have the same functional form, when
seen as functions of σ ¼ σrþ and σr− respectively. We
distinguish between regular solutions, when σr� are differ-
ent roots of Er�ðσÞ ¼ 0, and degenerate solutions with
σrþ ¼ σr− the same root, for generic momenta. These
degenerate solutions can be summarized by the factoriza-
tion diagrams given in Fig. 1, and can be understood as
forward limits of the (dþ g-dimensional) tree-level scatter-
ing equations; see Appendix B for details and [14,19] for a
discussion at one loop.
However, not all solutions of the dþ 2-dimensional

scattering equations survive in the forward limit. Consider a
degeneration parameter τ which vanishes in the forward
limit. While there are degenerate solutions with σrþr− ∼ τ2,
the zero locus of (12) excludes them, and thus the two-loop
integrands localize on the degenerate solutions with
σrþr− ∼ τ and on

Nreg ¼ ðnþ 1Þ! − 4n!þ 4ðn − 1Þ!þ 6ðn − 3Þ! ð16Þ

regular solutions (with σrþr− ∼ 1). Moreover, we shall see
that the supersymmetric integrands only receive contribu-
tions from the regular solutions. As an important conse-
quence, unphysical poles in the form of Gram determinants
arising from double roots in Er�ðσÞ are absent for super-
symmetric theories: as discussed in [14] and Appendix B,
these poles can be localized on the degenerate solutions.
For nonsupersymmetric theories, however, degenerate sol-
utions may contribute, and one must check that contribu-
tions with unphysical poles vanish upon loop integration, as
detailed in [14] at one loop.

IV. SUPERSYMMETRIC TWO-LOOP
AMPLITUDES

We now consider explicit expressions at four points
for maximal supergravity and super-Yang-Mills. These
expressions are examples of (10) for g ¼ 2, n ¼ 4. The

representation of loop integrands that arises can be con-
nected to a standard Feynman-like representation, after use
of partial fractions and shifts in the loop momenta as in [9]
at one loop; see Appendix A.

A. Four-point supergravity integrand

We use the integrand that arises directly from the
degeneration of the genus-two (ambitwistor) string
[8,20–22]. Define

Δi;j ¼ ω1ðσiÞω2ðσjÞ − ω1ðσjÞω2ðσiÞ ð17Þ

and

Ŷ ¼ ðk1 − k2Þ · ðk3 − k4ÞΔ1;2Δ3;4 þ cycð234Þ
3ð1þ2þÞð1þ2−Þð1−2þÞð1−2−Þ ; ð18Þ

where cyc(234) is a sum over cyclic permutations. Our
prescription for the four-point supergravity integrand is

ISUGRA
0 ¼ ðK ~KÞŶ2 ð1þ2−Þð1−2þÞ

ð1þ1−Þð2þ2−Þ ; ð19Þ

where K ~K is the standard kinematical supersymmetry
prefactor K ¼ ðk1 · k2Þðk2 · k3ÞASYM

tree ð1; 2; 3; 4Þ and
~K ¼ ðk1 · k2Þðk2 · k3Þ ~ASYM

tree ð1; 2; 3; 4Þ, so that the super-
gravity states in the scattering are the direct product of
super-Yang-Mills untilded (left) and tilded (right) states.
The cross ratio is inserted by hand to remove poles in the

unphysical factorization channels discussed in the previous
section. This is an important aspect of our prescription. We
set the relative sign between l1 and l2 to beþ, consistently
with the ðl1 þ l2Þ2 factors in the scattering equations. This
choice implies that the degenerations of the worldsheet at
ð1þ2þÞ → 0 or ð1−2−Þ → 0 occur when ðl1 þ l2�
KIÞ2 → 0, where KI is a partial sum of the external
momenta. These physical poles can be realized in the
formula. However, the numerator in the cross ratio sup-
presses unphysical poles of the type ðl1 þ l2Þ2�
2ðl1 − l2Þ · KI þ K2

I → 0, which might have arisen when
ð1þ2−Þ → 0 or ð1−2þÞ → 0.
We have evaluated our formula numerically and checked

that it matches the known result for this amplitude [23],

Mð2Þ
4

K ~K
¼ ðk1 · k2Þ2½Iplanar12;34 þ Iplanar34;21 þ Inon-planar1;2;34

þ Inon-planar3;4;21 � þ cycð234Þ: ð20Þ

The planar and nonplanar double-box integrands are
written down in the “shifted” representation in
Appendix A. It is also possible to check the factorization
of this formula explicitly.

FIG. 1. Different possible world sheet degenerations: case A
(top), case B (middle), case C (bottom).
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B. Four-point super-Yang-Mills integrand

There is no fully well-defined ambitwistor model that
would give a first principle derivation of a super-Yang-
Mills integrand, however the tree and one-loop results
motivated us to postulate the following expression:

ISYM
0 ¼ KŶIPTð2Þ; ð21Þ

where K is again the standard kinematical supersymmetry
prefactor. The new and crucial ingredient is the extension to
two loops of the Park-Taylor factor, IPTð2Þ. In [9], we
presented the analogous object at one loop. We will
comment later on the general form, and first focus on
the explicit formula for the four-point two-loop case,
including the nonplanar (NP) contributions,

IPTð2Þ ¼ ½N2
cCP

1234 þ CNP;1
1234�½trð1234Þ þ trð4321Þ�

þ NcC
NP;2
12;34trð12Þtrð34Þ þ cycð234Þ; ð22Þ

where Nc is the rank of the gauge group and trð12 � � �Þ≡
trðTa1Ta2 � � �Þ denote the color traces. We have, for the
planar part

CP
1234 ¼ cP1234ð1þ; 1−; 2þ; 2−Þ þ cP1234ð1−; 1þ; 2−; 2þÞ

þ cP1234ð2þ; 2−; 1þ; 1−Þ þ cP1234ð2−; 2þ; 1−; 1þÞ;

with

cP1234ða; b; c; dÞ ¼
1

ðabdc1234Þ þ
1

ðab1dc234Þ
þ 1=2
ðab12dc34Þ þ

1

ðacdb1234Þ
þ cycð1234Þ;

where (123 � � �m) stands for ð12Þð23Þ � � � ðm1Þ. For the
double-trace contribution, we have

CNP;2
12;34 ¼ cNP12;34ð1þ; 1−; 2þ; 2−Þ þ cNP12;34ð1−; 1þ; 2−; 2þÞ

þ cNP12;34ð2þ; 2−; 1þ; 1−Þ þ cNP12;34ð2−; 2þ; 1−; 1þÞ;

with

cNP12;34ða; b; c; dÞ ¼
1=2

ðac12db34Þ þ
2

ðacd12b34Þ
þ 1

ða1cd2b34Þ þ permð12; 34Þ;

where perm(12,34) denotes the eight permutations
(1 ↔ 2), (3 ↔ 4) and ð12Þ ↔ ð34Þ. The remaining con-
tribution is determined by the ones already given, as seen in
[24],

CNP;1
1234 ¼ 2½CP

1234 þ CP
1342 þ CP

1423� − CNP;2
13;24: ð23Þ

We checked numerically that our proposal matches the
known result of [25]. For instance, using the color
decomposition of Eq. (22), we get for the planar part

Mð2ÞP
1234

K
¼ k1 · k2I

planar
12;34 þ k4 · k1I

planar
41;23 : ð24Þ

The two-loop Parke-Taylor formula IPTð2Þ is nontrivial,
and may seem hard to extend for higher multiplicity or loop
order. We propose, however, that in general it can be
computed from the correlator of a current algebra on the
Riemann sphere, which was our procedure at four points.
This extends the tree-level result of [26] and, more
generally, follows by analogy to the heterotic string [27],
where gauge interactions have a closed stringlike nature as
in ambitwistor-string theory [4]. The sum over states at a
node of the Riemann sphere translates into a sum over the
Lie algebra index of two additional operator insertions per
loop momentum. To eliminate the contributions from the
unwanted poles, we drop Parke-Taylor terms that have
orderings where loop momentum insertions appear with
alternate signs as in ð1þ · 1− · 2þ · 2−·Þ, keeping only terms
with orderings of the type ð1þ · 1− · 2− · 2þ·Þ; here ·
denotes any external particles. For instance, we keep
contributions such as 1=ð1þ1−2−2þ1234Þ, but discard
terms like 1=ð1þ1−2þ2−1234Þ. This achieves the same
effect as the cross ratio appearing in the supergravity
integrand. Moreover, we only include contributions with
a single cyclic structure, e.g. (123456), and discard con-
tributions with subcycles, e.g. (123)(456). These properties
can be verified in the expressions above. Our two-loop
Parke-Taylor expressions should be applicable to Yang-
Mills theories with or without supersymmetry.

V. DISCUSSION

We have obtained scattering equation formulas for two-
loop integrands on the Riemann sphere, following the
heuristic reduction of genus-two ambitwistor-string for-
mulas by integration by parts on the moduli space of
Riemann surfaces as in [9]. Our analysis is not a rigorous
derivation from the genus-two ambitwistor-string formulas
of [8], and in particular does not fix the parameter α in the
off-shell scattering equations. Nevertheless, we have seen
that factorization fixes the ambiguity in α, and this choice
leads to correct two-loop integrands for maximally super-
symmetric theories. A more refined analysis of the ambit-
wistor-string degeneration should uniquely fix the
scattering equations and the details of the integrands (such
as the cross ratio in the supergravity case). It would also
give us the tools to address the higher-loop case, where we
expect different boundary contributions (e.g. at three loops
“mercedes” vs “ladder” graphs) in the integration by parts
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on the moduli space associated to different classes of
scattering equations.
There are clearly many other challenges. It should also

be possible to obtain integrands for nonsupersymmetric
theories, as we did in [10] at one loop. These will in
principle also have support on the degenerate solutions to
the two-loop scattering equations, which we studied here;
see [28–30] and references therein for recent work on the
scattering equations. For both supersymmetric and non-
supersymmetric Yang-Mills and gravity at higher points,
we need to understand the higher-loop analogues of the
CHY Pfaffians on the Riemann sphere with and without
supersymmetry. The extent of supersymmetry should be
determined by the particular sum over spin structures, as in
[10] at one loop. More generally, we would like to extend
our results to a new formalism, where our formulas arise
directly as correlation functions of vertex operators on the
nodal Riemann sphere. A natural question is then what type
of quantum field theories admit such a formulation; there
are CHY formulas and ambitwistor-string models for a
variety of theories [6,31,32]. Finally, it would be important
to clarify the relation of these ideas to full string theory,
which has been the subject of recent works [33–35].
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APPENDIX A: SHIFTED INTEGRANDS FOR
PLANAR AND NONPLANAR DOUBLE BOXES

In this section, we give the representation of double-box
integrands with shifted loop momenta that appear in the
formalism of the loop-level scattering equations [9].
Consider the planar double-box integrand with standard
quadratic propagators,

1

l2
1ðl1−k1Þ2ðl1þk2Þ2l2

2ðl2−k4Þ2ðl2þk3Þ2ðl12þk23Þ2
;

ðA1Þ

where we use the notation l12 ¼ l1 þ l2 and
kij ¼ ki þ kj. The choice of canonical loop momenta
arising from the shifts requires that this integrand is split
into two different contributions—one for which l1 þ l2 is
in the middle of the box, (A), and one for which l1 or l2 is
(B). In the case (A), we obtain 9 terms, corresponding to
applying the partial fraction identity and shifts to the 3

factors containing only l1, and to the 3 factors containing
only l2. This gives

IA12;34ðl1;l2Þ ¼
1

l2
1l

2
2
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2; ðA2Þ

with
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1
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CCCA:

In case (B), take l1 to be in the middle propagator of the
box first, as in

1

l2
1l

2
2ðl2−k4Þ2ðl2þk3Þ2ðl12þk3Þ2ðl12−k4Þ2ðl12þk23Þ2

:

ðA3Þ

There are again 9 terms, because there are 3 factors with l2

and 3 factors with l12. After symmetrizing also in the
choice of l2 versus l12, we get

IB12;34ðl1;l2Þ ¼
1

l2
1l

2
2

V12aVa
2; ðA4Þ

with V2 given as above and

V12 ¼ ðvðl12Þ; vðl12 þ k4Þ; vðl12 − k3ÞÞ;

vðl12Þ ¼
1

ðl12 þ k23Þ2ð−2l12 · k2 − k223Þð2l12 · k1 − k223Þ
þ 1

ðl12 þ k3Þ2ð2l12 · k2 þ k223Þð−2l12 · k34Þ
þ 1

ðl12 − k4Þ2ð−2l12 · k1 þ k223Þð2l12 · k34Þ
:

The total contribution from the planar double box is
obtained after the further symmetrization of the loop
momentum choices:
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Iplanar12;34 ¼ 1

12
ðIA12;34 þ IB12;34 þ IB34;12 þ ½l1 ↔ l2�

þ ½l1 → −l1;l2 → −l2�Þ; ðA5Þ

where the numerical factor takes into account the symmet-
rizations over three types of shifts and the four types of loop
momentum choices.
The nonplanar double box is analogous. Starting with

case (C) where there are three propagators with l12,

1

l2
1ðl1−k2Þ2l2

2ðl2−k1Þ2l2
12ðl12þk4Þ2ðl12þk34Þ2

; ðA6Þ

we obtain

IC1;2;34ðl1;l2Þ¼
1

l2
1l

2
2

1

ð2l1 ·k2Þð2l2 ·k1Þ
ðtðl12Þþ tðl12

þk12Þ− tðl12þk1Þ− tðl12þk2ÞÞ; ðA7Þ

with

tðl12Þ¼
1

l2
12ð2l12 ·k4Þð2l12 ·k34þk234Þ

þ 1
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þ 1

ðl12þk34Þ2ð−2l12 ·k34−k234Þð−2l12 ·k3−k234Þ
:

The other case, (D), is when there three propagators with l1

or l2, say l2:

1
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: ðA8Þ

Then we get

ID1;2;34ðl1;l2Þ ¼
1

l2
1l

2
2
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1NabUb

2; ðA9Þ

with
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1
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�
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1
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;
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�
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Finally, the total contribution from the nonplanar double
box is

Inon-planar1;2;34 ¼ 1

12
ðIC12;34 þ ID12;34 þ ID34;12 þ ½l1 ↔ l2�

þ ½l1 → −l1;l2 → −l2�Þ: ðA10Þ

APPENDIX B: ANALYSIS OF THE
DEGENERATE SOLUTIONS

In this section, we give a more detailed analysis of the
two-loop scattering equations and their solutions. As at one
loop [14,19], the key is to study the dþ g-dimensional
(massless) tree-level scattering equations for 2g additional
particles, then reduce to d dimensions and take the forward
limit:

dμðdþ2Þ
0;nþ4 → dμðdÞ2;n ≡

Q
AσA

volðSLð2;CÞÞ
Y
A

δðEAÞ: ðB1Þ

In particular, while this procedure reconstructs the two-loop
scattering equations EA on the nodal Riemann sphere (12),

it retains enough information of the massive scattering
equations (in d dimensions) to analyze the different classes
of solutions. The main incentive for this study is an
unphysical pole arising from double roots in the loop
scattering equations. We will see explicitly how this pole
can be reduced to a specific subset of the solutions, which
do not contribute for the supersymmetric theories discussed
in this article.
At two loops, our starting points are thus the dþ 2-

dimensional massless scattering equations for nþ 4 par-
ticles with momenta fk1� ; k2� ; kig,

Eðdþ2Þ
A ¼

X
B

kA · kB
ðABÞ ; ðB2Þ

with A ∈ f1�; 2�; 1;…; ng, where we have suggestively
indexed the particles that will give rise to the loop
momentum under the forward limit by 1� and 2�. In
particular, we take the external particles ki to only have
components in d dimensions, and we denote this
d-dimensional part of k1� , k2� by ~l1�, ~l2� respectively.
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It is now always possible to choose the remaining
components of k1� , k2� such that the scattering equations
reduce to

EðdÞ
1� ¼

~l1þ · ~l1− þm2
1

ð1�1∓Þ þ
X
r¼2�

~l1� · ~lr � 1
2
ðm2

1 þm2
2Þ

ð1�rÞ

þ
Xn
i¼1

~l1� · ki
ð1�iÞ ðB3aÞ

EðdÞ
2� ¼

~l2þ · ~l2− þm2
2

ð2�2∓Þ þ
X
r¼1�

~l2� · ~lr � 1
2
ðm2

1 þm2
2Þ

ð2�rÞ

þ
Xn
i¼1

~l2� · ki
ð2�iÞ ðB3bÞ

EðdÞ
i ¼

Xn
j¼1

ki · kj
ðijÞ þ

X
r¼1�;2�

ki · ~lr

ðirÞ : ðB3cÞ

Note in particular that in the forward limit (governed by a
parameter τ → 0), where

~lr� ¼ �lr þ
τ

2
qr; l2

r ¼ m2
r ; ðB4Þ

these equations smoothly limit onto the two-loop scattering
equations (12). However, as first pointed out in [19] at one
loop, not all their solutions have a smooth limit as well—
the zero locus of (12) excludes a subset of the solutions. To
see this, first recall that we distinguish two different classes
of solutions: since the two-loop scattering equations
Er ≡�Er� have the same functional form as functions
of σ ¼ σr� respectively, there are both “regular solutions”
with σr� localizing on different roots of Er and “degenerate
solutions,” where σrþ ¼ σr− . Moreover, perturbing around
the soft limit, the degenerate solutions come in three
variations, see Fig. 1:

case A: σ1þ ¼ σ1− , but σ2þ ≠ σ2− (or σ2þ ¼ σ2−,
but σ1þ ≠ σ1−)
case B: σ1þ ¼ σ1− and σ2þ ¼ σ2− , but σ1þ ≠ σ2þ
case C: σ1þ ¼ σ1− ¼ σ2þ ¼ σ2− .

For each degeneration of the nodal Riemann sphere, we
distinguish furthermore between two types of solutions,
depending on the rate of coalescence of σr� . For the soft
limit parameter τ as above, they behave as

regular∶ σrþr− ∼ 1

type I∶ σrþr− ∼ τ

type II∶ σrþr− ∼ τ2:

While the type II solutions contribute for the dþ 2-

dimensional tree-level scattering equations Eðdþ2Þ
A , the zero

locus of (12) excludes them, and thus the two-loop
integrands localize on the type I solutions and the regular
solutions.
Case A. To see this explicitly, let us perturb around the

forward limit and focus on the case A. Both these solutions
and the type B solutions bear a close resemblance to one
loop [19], and our discussion will proceed in analogy. We
take the forward limit (B4), where q is a fixed vector with
q2 ≠ 0, and moreover

σ2� ¼ σI � εþOðε2Þ; ðB5Þ

to restrict to the degenerate solutions only, and then study
the scattering equations perturbatively in ε and τ. To the
relevant order, the scattering equations become

EA
i ¼ l1 · ki

ði1þÞ −
l1 · ki
ði1−Þ þ

Xn
j¼1

ki · kj
ðijÞ þOðε; τÞ; ðB6aÞ

EA
1� ¼ �

Xn
i¼1

l1 · ki
ð1�iÞ þOðε; τÞ; ðB6bÞ

EA
2� ¼ � τ2q22

2ε
�
Xn
i¼1

l2 · ki
ðIiÞ þ τ

2

X
i

q2 · ki
ðIiÞ − ε

X
i

l2 · ki
ðIiÞ2

þ� 1
2
ðl1 þ l2Þ2 þ τ

2
ð�q1 · l2 þ q2 · l1Þ þ τ2

4
q1 · q2

ðI1þÞ

þ∓ 1
2
ðl1 þ l2Þ2 þ τ

2
ð∓q1 · l2 − q2 · l1Þ þ τ2

4
q1 · q2

ðI1−Þ
þOðετ; ε2Þ: ðB6cÞ

To leading order, the first two equations are the scattering
equations at one loop, while the equations E2� are best
understood in their polynomial form, F 0 ≡ E2þ þ E2− and
εF 1 ≡ σ2þE2þ þ σ2−E2− ;

FA
0 ¼ τ

Xn
i¼1

q2 · ki
ðIiÞ − ε

Xn
i¼1

l2 · ki
ðIiÞ2 þOðετ; τ2Þ ðB7aÞ

FA
1 ¼

Xn
i¼1

l2 · ki
ðIiÞ þ τ2q22

ε
þOðτ; εÞ: ðB7bÞ

Evidently, there are two dominant balances for ε in
terms of τ: ε ∼ τ from (B7a) (type I in the notation
above), and ε ∼ τ2 from (B7b) (type II). We can now
confirm that the zero locus of the two-loop scattering
equations excludes the type II solutions with ε ∼ τ2,
since this dominant balance includes a term τ2q22=ε ∼ 1,
which is absent in (12).
Moreover, each case gives n solutions for the coales-

cence point σI , and one solution for ε. Together with the
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ðn − 1Þ! − 2ðn − 2Þ! (nondegenerate) solutions to the
one-loop scattering equations on the nodal sphere, this
leads to nððn − 1Þ! − 2ðn − 2Þ!Þ solutions of each type.
This is as expected: since the momentum flowing through
the node connecting the two spheres is soft due to the back-
to-back loop momenta �l2, the location of the connecting
node σI does not affect the other nþ 2 marked points. The
prefactor n originates from the equation determining the
location of the soft node in terms of the other marked
points. This reflects the known results for a soft particle
scattering with N hard particles—the scattering equations
for the N particles decouple, giving ðN − 3Þ! solutions,
while the equation determining the location of the soft
particle is of degree N − 2.
Case B. Case B follows by analogy. Starting from the

forward limit and restricting to the degenerate solutions

σ1� ¼ σI1 � ε1 þOðε21Þ; σ2� ¼ σI2 � ε2 þOðε22Þ;
ðB8Þ

the tree-level scattering equations Ei decouple. To leading
order, the remaining scattering equations in their poly-
nomial form have the same functional form as in case
A, FA

0;1ðσI; εÞ ¼ FB
0;1ðσI2 ; ε2Þ ¼ FB

0;1ðσI1 ; ε1Þjl2→l1;q2→q1 .
Therefore, there are four types of degenerate solutions,
with σ1þ1− ∼ σ2þ2− ∼ τ; σ1þ1− ∼ τ and σ2þ2− ∼ τ2 (and with
σ1� , σ2� interchanged); and σ1þ1− ∼ σ2þ2− ∼ τ2. However,
only σ1þ1− ∼ σ2þ2− ∼ τ is a solution to the two-loop
scattering equations for the same reason discussed above.
When counting the number of solutions, there are now
(n − 2) solutions for each of the coalescence points σI1;2 ,
and ðn − 3Þ! solutions to the tree-level scattering equations,
thus ðn − 2Þ2ðn − 3Þ! solutions for type I in total.
Case C. While the cases A and B work in close analogy

to one loop due to the decoupling of the scattering
equations on the main Riemann sphere, the case C
degeneration is a new feature at two loops. In contrast
to the discussion above, there are now four remaining
equations on the Riemann sphere containing the loop
momenta, determining the location of the connecting node
as well as the separations of the loop nodes. The most
convenient parametrization for the marked points is

σr� ¼σIþεxr� ; with xrþ ¼xrþyr and xr− ¼xr: ðB9Þ

Möbius invariance on the sphere guarantees that we can
always fix the locations of two of these, e.g. xr (with the
connecting node taken to be at xI ¼ ∞ on the sphere
containing the loop momenta). After imposing both the
forward limit and (B9) to restrict to case C, the scattering
equations are most concise in the polynomial form

FC
a ¼

X
r¼1�;2�

xarEC
r ; a ¼ 0; 1; 2; 3: ðB10aÞ

In particular, we find that FC
3 contains a term of the form

FC
3 ¼ ðl1 þ l2Þ2

2ε
y1y2 þOð1Þ; ðB11Þ

with all other terms of order Oð1Þ. Thus, we conclude that
we only obtain solutions for

y1 ∼ τ and y2 ∼ 1 or y1 ∼ 1 and

y2 ∼ τ or y1 ∼ y2 ∼ τ:

A closer investigation reveals that in fact neither of the
former cases gives a consistent dominant balance, and thus
our solutions are of the form y1 ∼ y2 ∼ τ,

σr� ¼σIþεxr� ; with xrþ ¼xrþτwr and xr− ¼xr:

ðB12Þ

This leads to only solutions of type I, with ε ∼ τ.
Moreover, since wr and ε appear linearly in the equa-
tions, there is exactly one solution for each of them. The
remaining polynomial in σI is of degree 6ð2n − 3Þ after
eliminating wr and ε, and thus we find 6ð2n − 3Þðn − 3Þ!
solutions.
Number of solutions. This discussion can be summarized

in Table I. As discussed, the type II solutions are excluded
by the two-loop limit. The factor of 2 in the case A comes
from interchanging l1 and l2. In particular, this implies
that the two-loop scattering equations have Nreg solutions,
with

Nreg ¼ ðnþ 1Þ! − 4n!þ 4ðn − 1Þ!þ 6ðn − 3Þ!: ðB13Þ

Degenerate solutions in supersymmetric theories.
Following the discussion in Sec. 4.1 of [10], the measure
for the degenerate solutions becomes

(i) Case A: dμ2;n ¼ ðδðε − τFAÞdεd~μIÞdμ1;n
(ii) Case B: dμ2;n ¼ ðδðε1 − τFB1

Þdε1d ~μI2Þðδðε2−
τFB2

Þdε2d~μI2Þdμ0;n
(iii) Case C: dμ2;n ¼ ε5ðδðε − τFCÞdεd ~μIÞdμ0;n

Here, we have extracted the ε dependence explicitly, so d ~μI
represents the remaining measure on the loop-momentum
Riemann sphere. For the super-Yang-Mills (19) and super-
gravity integrands (21) at two loops, we find that

TABLE I. Number of solutions corresponding to various
degenerations, as shown in Fig. 1.

Type I Type II

Case A 2nððn − 1Þ! − 2ðn − 2Þ!Þ 2nððn − 1Þ! − 2ðn − 2Þ!Þ
Case B ðn − 2Þ2ðn − 3Þ! 3ðn − 2Þ2ðn − 3Þ!
Case C 6ð2n − 3Þðn − 3Þ!
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Case A∶ ISUGRA ∼ ε3 I sYM ∼ ε1

Case B∶ ISUGRA ∼ ε31ε
3
2 I sYM ∼ ε11ε

1
2

Case C∶ ISUGRA ∼ 1 I sYM ∼ ε−2:

Therefore, all supersymmetric two-loop amplitudes behave
as OðεÞ for all degenerate solutions. The supersymmetric
integrands thus only receive contributions from the regular
solutions with σrþr− ∼ 1.
Absence of the unphysical pole. As pointed out in [14] at

one loop, the loop-level scattering equations on the
Riemann sphere contain unphysical poles. To see this,
recall that the scattering equations at the nodes have the
same functional form ErðσÞ, and the regular solutions are
characterized by localizing σr� on different roots. A special
case thus arises when ErðσÞ develops degenerate roots, and
thus regular solutions become degenerate. As discussed
above, when a solution is degenerate σrþ ¼ σr− , the
scattering equations separate into lower loop-order equa-
tions, and the remaining marked points are independent of
σr� . Thus, denoting the sphere containing the marked
points (and possibly one pair of nodes associated to the

loop momenta in case A) by ΣI, each unphysical pole is
given by the discriminant of Er [14],

Δ ¼
Y

sol for σi∈ΣI

DiscðErÞ: ðB14Þ

Note that this argument does not make any reference to the
form of the other scattering equations (apart from requiring
that they decouple for degenerate solutions), and thus the
treatment of the unphysical pole at two loops proceeds
exactly as at one loop. More specifically, integrating
by parts localizes the contribution of the unphysical pole
to the degenerate solutions. In particular, since the inte-
grands for super-Yang-Mills and supergravity vanish on
these solutions, this implies that the degenerate pole never
occurs.
For nonsupersymmetric theories, more care is needed

since the degenerate solutions will contribute in general.
Just as at one loop, it is thus necessary to show that the
contribution from the pole (and the integrand in this
channel) is homogeneous in the loop momenta and thus
vanishes upon integration.
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