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Zero-Shot Scene Classification for High Spatial
Resolution Remote Sensing Images

Aoxue Li, Zhiwu Lu, Liwei Wang, Tao Xiang, and Ji-Rong Wen

Abstract—Due to the rapid technological development of var-
ious sensors, a huge volume of high spatial resolution (HSR)
image data can now be acquired. How to efficiently recognize the
scenes from such HSR image data has become a critical task.
Conventional approaches to remote sensing scene classification
only utilize information from HSR images. Therefore, they always
need a large amount of labeled data and cannot recognize the
images from an unseen scene class without any visual sample
in the labeled data. To overcome this drawback, we propose a
novel approach for recognizing images from unseen scene classes,
i.e. zero-shot scene classification. In this approach, we first use
the well-known natural language process model, word2vec, to
map names of seen/unseen scene classes to semantic vectors. A
semantic-directed graph is then constructed over the semantic
vectors for describing the relationships between unseen classes
and seen classes. To transfer knowledge from the images in
seen classes to those in unseen classes, we make an initial label
prediction on test images by an unsupervised domain adaptation
model. With the semantic-directed graph and initial prediction,
a label-propagation algorithm is then developed for zero-shot
scene classification. By leveraging the visual similarity among
images from the same scene class, a label refinement approach
based on sparse learning is used to suppress the noise in the
zero-shot classification results. Experimental results show that the
proposed approach significantly outperforms the state-of-the-art
approaches in zero-shot scene classification.

Index Terms—Zero-shot learning, scene classification, high
spatial resolution remote sensing images

I. INTRODUCTION

W ITH the development of modern sensor technologies, a
large number of high spatial resolution (HSR) remote

sensing images with abundant spatial and structural patterns
are generated by various sensors everyday [1]–[5]. However,
due to the huge volume and complex composition of remote
sensing image data, it is difficult to directly access the HSR
data that contains the scenes of interest. Therefore, how to
efficiently recognize the scenes from HSR remote sensing
images has become a challenging problem, which has drawn
great interest in the remote sensing field [6]–[11].
In order to recognize and analyze the scenes from HSR

remote sensing images, various scene classification approaches
have been proposed in recent years. Zou et al. proposed a
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deep-belief-network-based feature selection strategy to con-
struct discriminative features for scene classification [12].
Zhao et al. provided a concentric circle-structured multiscale
bag-of-visual-words (BOVW) model using multiple features
for land-use scene classification [13]. An unsupervised quater-
nion feature learning algorithm was proposed by Risojević
et al. for remote sensing image scene classification, where
quaternion representation was exploited to capture interrela-
tionships between intensity and color information [14]. Zhong
et al. proposed a semantic allocation level multifeature fusion
strategy based on probabilistic topic model to effectively
combine spectral and texture features for HSR remote sensing
scene classification [15]. Li et al. proposed a multilayer feature
learning approach to automatically learn simple edge features
and complex corners/junctions features for satellite image
scene classification [16]. Considering the importance of global
features in interpreting the semantics in HSR remote sensing
imagery, Zhu et al. improved the traditional BOVW model
by introducing the shape-based invariant texture index as the
global texture feature and then effectively combined the local
BOVW and global features for HSR imagery scene classifi-
cation [17]. In order to bridge the semantic gap between the
low-level features and the high-level semantic concepts in HSR
imagery scene classification, Zhao et al. proposed a Dirichlet-
derived multiple topic model (DMTM) and then an efficient
algorithm based on a variational expectation maximization
framework was developed to infer the DMTM and estimate
its parameters [1].
Although the aforementioned approaches have been shown

to yield promising results in scene classification of HSR
remote sensing images, they have two distinct drawbacks as
follows:

• Firstly, these approaches need a certain number of labeled
data for each scene class to train a good classifier
for scene classification of HSR remote sensing images.
However, some of scene classes are rare and collecting
sufficient labeled training data for them may not be
possible even if labeling cost is not a concern.

• Secondly, these approaches only utilize information from
HSR remote sensing images for scene classification.
Moreover, they cannot recognize the images from an
unseen scene class that is not included in training data.

To overcome these two drawbacks, we introduce a new idea,
termed zero-shot scene classification (ZSSC), to the remote
sensing scene classification field. ZSSC is well-established in
computer vision. However, to the best of our knowledge, it is
still an unfamiliar paradigm in remote sensing. For humans, it
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Fig. 1. Some class names and the corresponding examples from the Caltech-
UCSD Birds 2011 data set.

is an easy task to recognize a new scene class even if they have
not seen a single instance before. This is reasonable because
a lot of knowledge is preserved and conveyed to humans
via texts and nowadays online sources [18]–[21]. Therefore,
combining seen instances and some auxiliary information
(e.g. texts), humans can easily recognize new scene classes.
Inspired by this phenomenon, researchers have proposed a
new approach, zero-shot learning, which transfers knowledge
from labeled data (from seen classes) to unlabeled data (from
unseen classes) based upon some auxiliary information. Tra-
ditional zero-shot learning approaches are mainly developed
for the tasks of recognizing natural images, such as bird
image classification, human position estimation, and indoor
object recognition. In these tasks, the classes usually have
strong semantic correlations. For example, the Caltech-UCSD
Birds 2011 data set [22] contains over 11,000 images from
200 types of birds and provides over 300 annotations per
image. Fig. 1 provides some samples of class names and their
corresponding visual examples in the Caltech-UCSD Birds
2011 data set. It can be seen that these class names are
strongly semantically related, which is extremely important for
recognizing images from unseen classes. However, for remote
sensing scene classification, the names of typical scene classes
are not so semantically related as those of the object classes
in natural image recognition, which limits the use of the
traditional zero-shot learning approaches in remote sensing.
In this paper, to overcome these limitations, we propose

a novel zero-shot scene classification (ZSSC) approach for
HSR remote sensing images. Concretely, the word2vec model
[23], a well-known distributed word representation approach
in natural language process, is firstly used to map names
of scene classes (both seen and unseen) to semantic vec-

tors. A semantic-directed graph is then constructed over the
semantic vectors for describing the relationships between
unseen classes and seen classes. Given that typical remote
sensing scene classes have a limited amount of semantic
relationships among each other, we adopt an unsupervised
domain adaptation model [24] to provide an effective initial
label prediction on test images. Here, this domain adaptation
model can transfer knowledge from images in seen classes
to those in unseen classes and thus helps to overcome the
limitations of the traditional ZSSC approaches. Now with both
the knowledge from images in seen classes and that from
seen/unseen class semantic vectors residing on the same graph,
a label-propagation algorithm [25] is developed to measure the
distance between test images and each unseen class semantic
vector for recognition of the unseen scene classes.
Note that the test images in the same class should have

similar visual appearance. However, this is not directly con-
sidered in the above ZSSC approach, and thus there may exist
strong noise in the zero-shot classification results. Therefore,
we develop a label refinement approach based on sparse
learning to obtain better results. Specifically, inspired by the
successful use of L1-optimization for noise reduction [26]–
[29], we formulate the label refinement problem as noise
reduction over the labels of test images, where the L1-norm
Laplacian regularization term is mainly used to reduce the
noise in the labels. To solve the L1-norm optimization problem
efficiently, we limit the solution to the space spanned by the
eigenvectors of the Laplacian matrix based upon the manifold
structure of the data and solve this problem in a linear time
complexity with respect to the number of test images. The
framework of the proposed approach is illustrated in Fig. 2.
To verify the effectiveness of the proposed approach, we

first conduct experiments on the UC Merced data set by
randomly selecting a number of classes as seen classes and
the other as unseen classes. To make the proposed approach
more scalable in real-world applications, we also conduct
experiments on a large HSR satellite image. Note that this
HSR satellite image contains instances from seen/unseen scene
classes, which are fully unlabeled in our experimental setting.
In fact, since providing manual labels is expensive and time-
consuming, we only use labeled remote sensing images from
the RSSCN7 data set [12] for recognizing this satellite image,
where both the RSSCN7 data set and the large satellite image
are collected from Google Earth. Experimental results show
that the proposed approach significantly outperforms the state-
of-the-art zero-shot learning approaches [30]–[32].
The major contributions of this paper are as follows:
• This is the first work on scene classification of HSR
remote sensing images without seeing any visual example
in some scene classes (i.e. zero-shot scene classification).
Our novelty mainly lies in that the need of labeled remote
sensing images can be effectively reduced and the scal-
ability of the traditional scene classification approaches
can be improved for real-world applications.

• By leveraging the visual similarity among images from
the same scene class, the proposed label refinement
approach based on sparse learning can suppress the noise
in the zero-shot classification results.
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Fig. 2. The framework of the proposed approach to zero-shot scene classification.

• The proposed approach is shown to significantly outper-
form the state-of-the-art zero-shot learning approaches on
both the UC Merced data set and the large HSR satellite
image, which means that the proposed approach is more
scalable in real-world applications.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief review of related works on zero-shot
learning. Section III describes the details of the proposed
approach for zero-shot scene classification of HSR remote
sensing images. Section IV presents the experimental results
to evaluate the performance of the proposed approach. Finally,
the conclusions are drawn in Section V.

II. RELATED WORKS

Recently, many algorithms have been developed for zero-
shot learning [30]–[36]. An attribute-based zero-shot learning
approach was proposed by Lampert et al. to recognize different
kinds of animals’ images [34]. To describe the relationships
between seen classes and unseen classes, Mensink et al.
developed various metrics to leverage the co-occurrences of
visual concepts in images, and then a regression approach
was proposed to learn a weight for each related class [35].
Antol et al. proposed a visual-abstraction-based zero-shot
learning approach to explore concepts related to people and
their interactions with others, and achieved satisfactory results
on human pose recognition [33]. Zhang et al. viewed test
instances as arising from seen instances and attempted to
express test instances as a mixture of seen class propor-
tions [32]. To solve this problem, they proposed a semantic
similarity embedding (SSE) approach for zero-shot learning.
A general zero-shot learning framework which modeled the
relationships between features, attributes, and classes as a
two-linear-layers network was proposed by Paredes et al. to
recognize animals and natural scenes [31]. Considering the
manifold structure of semantic categories, Fu et al. provided a
novel zero-shot learning approach by formulating a semantic

manifold distance among test images and unseen classes [30].
Li et al. proposed a novel zero-shot learning approach that
automatically learned label embeddings from the input data
in a semi-supervised large-margin learning framework [36].
The above zero-shot learning approaches yielded promising
results in the task of recognizing natural images. However, the
semantic relationships among typical scene classes’ names in
remote sensing field are not so strong as those in natural image
field, and thus these approaches have limited use for zero-shot
scene classification of HSR remote sensing images.

III. METHODOLOGY
In this section, we provide the details of the proposed

approach for zero-shot scene classification of HSR remote
sensing images. Specifically, the proposed approach contains
two main steps: 1) A zero-shot learning approach based
on label propagation is developed for recognizing the HSR
remote sensing images in unseen classes; 2) A label refinement
approach based on sparse learning is used to suppress the noise
in the zero-shot classification results.

A. Zero-Shot Learning Based on Label Propagation

Let S = {s1, ..., sp} denote the set of seen classes and
U = {u1, ..., uq} denote the set of unseen classes, where p
and q are the total numbers of seen classes and unseen classes,
respectively. These two sets of classes are disjoint, i.e. S ∩
U = φ. We are given a set of labeled training images Ds =
{(xi, yi) : i = 1, ...,M}, where xi is the feature vector of
the i-th image in the training set, yi ∈ S is the corresponding
label, and M denotes the total number of labeled images. Let
Du = {(xj , yj) : j = 1, ..., N} denote a set of unlabeled test
images, where xj is the feature vector of the j-th image in the
test set, yj ∈ U is the corresponding unknown label, and N
denotes the total number of unlabeled images. The main goal
of zero-shot learning is to predict yj by learning a classifier
f : X → U , where X = {xj : j = 1, ..., N}.
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For zero-shot learning, we need first estimate the semantic
relationships between seen and unseen classes, which will be
used for predicting the labels of images in unseen classes.
In this paper, we adopt the word2vec model [23], which was
trained with over 4,000,000 text documents from Wikipedia,
to represent each class (∈ S ∪ U ) by a semantic vector
(empirically set as 400-dimensional). We further construct a
semantic-directed graph G = {V,E} over all the classes,
where V denotes the set of nodes (i.e. classes) in the graph
and E denotes the set of directed edges between classes. The
details of graph construction are given as follows:

• We first construct the edges among seen classes. For
each seen class, the k-nearest-neighbors (k-NN) method
is performed on the semantic vectors to find its k1
nearest neighbors among seen classes. A directed edge
is constructed between this class and each of its neigh-
bors (from seen classes), and its edge weight is defined
by applying Gaussian kernel (with the width=1) to the
Euclidean distance between them.

• We further adopt the same strategy to construct the edges
between seen classes and unseen classes. For each seen
class, the k-NN method is performed on the semantic
vectors to find its k2 nearest neighbors among unseen
classes. A directed edge is constructed between this class
and each of its neighbors (from unseen classes), and its
edge weight is defined by applying Gaussian kernel (with
the width=1) to the Euclidean distance between them.

• Finally, for each unseen class, it has only one edge
pointing to itself with a weight of 1.

By collecting the above edge weights up, we can denote the
weight matrix W of the semantic-directed graph G as:

W =

[
R1 R2

0 I

]
(1)

where R1 ∈ R
p×p collects the edge weights among seen

classes, R2 ∈ R
p×q collects the edge weights between seen

classes and unseen classes, and I ∈ R
q×q is an identity matrix.

We further define a Markov chain process over G by
constructing the transition matrix T = D−1W , where D is a
(p+q)×(p+q) diagonal matrix with its i-th diagonal element
being equal to the sum of the i-th row of W . To guarantee
that the Markov chain process has a unique stationary solution
[25], we normalize the transition matrix T as follows:

P =
η

p+ q − 1
(1p+q − Ip+q) + (1− η)T (2)

where η is a normalization parameter (which is empirically
set as η = 0.001), and 1p+q and Ip+q are the one matrix and
identity matrix of the size (p+ q)× (p+ q), respectively.
Based on the normalized transition matrix P = [puv] ∈

R
(p+q)×(p+q), we formulate zero-shot learning as a label
propagation problem to propagate the labels from each unseen
class semantic vector to a given test image and use the resultant
propagation cost/probability as the distance for recognition:

min
Fi.

∑
u,v

π(u)puv(
Fiu√
π(u)

−
Fiv√
π(v)

)2 + λ‖Fi. − Yi.‖
2
2 (3)

where F = [Fiu]N×(p+q) and Y = [Yiu]N×(p+q) collect the
optimal and initial probabilities of the test images belonging to

each category, respectively. Concretely, Fiu (or Yiu) denotes
the optimal (or initial) probability of the i-th test image
belonging to the u-th category. Moreover, Fi. (or Yi.) denotes
the i-th row of F (or Y ). In addition, π(u) is the sum of the
u-th row of the transition matrix P (i.e.

∑
v puv), and λ is a

positive regularization parameter.
The first term of the above objective function sums the

weighted variation of Fi. on each edge of the directed graph
G, which aims to ensure that Fi. does not change too much
between semantically similar classes for the i-th test image.
The second term denotes an L2-norm fitting constraint, which
means that Fi. should not change too much from Yi..
To solve the above label propagation problem, we adopt the

technique introduced in [25] and define the operator Θ:

Θ = (Π1/2PΠ−1/2 +Π−1/2PΠ1/2)/2 (4)

where Π is a (p+ q)× (p+ q) diagonal matrix with its u-th
diagonal element being equal to π(u). According to [25], the
optimal solution F ∗ of the problem in Equation (3) is:

F ∗ = Y (I − αΘ)−1 (5)

where I is an identity matrix of the size (p+ q)× (p+ q) and
α = 1/(1 + λ) ∈ (0, 1). This solution can be obtained at a
linear time cost with respect to N .
For zero-shot learning, we need to provide Y in advance.

Note that each row of Y consists of two parts: the proba-
bilities of a test image belonging to seen classes, and the
probabilities of a test image belonging to unseen classes.
Given no labeled data in unseen classes, we directly set the
probabilities belonging to unseen classes as 0. To compute
the initial probabilities belonging to seen classes, we adopt an
unsupervised domain adaptation model [24] which transfers
the knowledge from labeled images in the seen classes to
test images. This unsupervised domain adaptation model is
developed based on a deep convolutional neural network which
has three main components: a deep feature extractor, a label
classifier, and a domain classifier. In this paper, we fine-tune
a GoogLeNet model [37] to obtain the feature extractor and
the label classifier, and also train a gradient reversal layer
to connect the feature extractor and the domain classifier for
transfer learning. For test images, the outputs of the softmax
layer in the label classifier denote the initial probabilities
belonging to seen classes. By integrating the knowledge from
seen classes into the proposed ZSSC approach, we can better
strengthen the relationships between seen classes and unseen
classes, which makes the proposed ZSSC model more effective
in recognizing images from unseen classes.

B. Label Refinement Based on Sparse Learning

Due to the limitations of word2vec in describing semantic
relationships between seen and unseen scene classes, there
still exists strong noise in the zero-shot classification results.
Considering that images in the same scene class should have
similar visual appearance, we thus propose a label refinement
approach based on sparse learning to suppress the noise in the
zero-shot classification results.
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Before giving problem formulation, we model all test im-
ages X as a graph G = {X,W} with its vertex set X
and weight matrix W = [wij ]N×N , where wij denotes the
similarity between image feature vectors xi and xj . In this
paper, we use pre-trained GoogLeNet features (extracted from
the last layer of the GoogLeNet model [37] trained using
1.2M images from ImageNet [38]) as the feature vectors
of test images. Note that the weight matrix W is usually
assumed to be nonnegative and symmetrical. In this paper,
we define the weight matrix W by applying Gaussian kernel
(with the width=1) to the Euclidean distances between the
GoogLeNet pretrained feature vectors of any two test images.
The normalized Laplacian matrix L of the graph G can be
computed by

L = I −D−
1

2WD−
1

2 (6)

where I is an N × N identity matrix, and D is an N × N
diagonal matrix with its i-th diagonal element being equal
to the sum of the i-th row of W (i.e.

∑
j wij ). Based on

eigenvalue decomposition, the normalized Laplacian matrix L
can be decomposed into the following symmetrical form:

L = V ΣV T = (Σ
1

2V T )T (Σ
1

2 V T ) = BTB (7)

where V is an N ×N orthonormal matrix with each column
being an eigenvector of L, and Σ is an N×N diagonal matrix
with its diagonal element Σii being an eigenvalue of L (sorted
as 0 ≤ Σ11 ≤ ... ≤ ΣNN ).
We further use the new matrix B = Σ

1

2 V T to define an L1-
norm smooth measure and refine the zero-shot classification
results from the viewpoint of noise reduction over the labels
predicted by the proposed zero-shot learning approach

min
F̃

1

2
‖F̃ − F ∗‖2F + γ‖BF̃‖1 (8)

where F̃i. (the i-th row of F̃ ∈ R
N×q) denotes the optimal

probability of the i-th test image belonging to unseen classes,
F ∗

i. (the i-th row of F ∗ ∈ R
N×q) denotes the probabilities

of the i-th test image belonging to unseen classes given
by Equation (5), and γ denotes a positive regularization
parameter. The first term denotes an L2-norm fitting constraint,
which means that F̃ should not change too much from F ∗.
The second term denotes an L1-norm Laplacian regularization,
which means that F̃ should not change too much between
visual similar images. The good property of the second term
in noise reduction has been given and proven in [39].
Note that directly solving Equation (8) is computationally

intractable, considering that only the computation of B would
incur too large time cost. Fortunately, we can use the di-
mension reduction technique to efficiently solve this problem.
Concretely, we limit F̃ to the space spanned by a small set of
eigenvectors of the normalized Laplacian matrix L. To ensure
the consistence of F̃ , we choose m eigenvectors with the
smallest eigenvalues as the base vectors. That is, F̃ = VmA,
where Vm stores m eigenvectors with the smallest eigenvalues

Algorithm 1 The Proposed ZSSC Algorithm
Input: the set of labeled training images Ds

the set of test images in unseen classes X
Zero-Shot Learning Based on Label Propagation:
1) Compute the initial probabilities of test images belonging
to unseen classes Y with the domain adaptation model [24];
2) Construct the semantic-directed graph based on semantic
vectors extracted by the word2vec model [23];
3) Compute the normalized transition matrix P according
to Equations (1-2);
4) Find the solution F ∗ of the label propagation problem
in Equation (3) according to Equations (4-5);
Label Refinement Based on Sparse Learning:
5) Construct a k-NN graph with its weight matrix W being
defined over X ;
6) Compute the normalized Laplacian matrix L according
to Equation (6);
7) Find the m smallest eigenvectors of the normalized
Laplacian matrix L and store them in Vm;
8) Find the solution A∗ of the L1-minimization problem in
Equation (8) according to Equations (9-11);
9) Label each test image xi with scene class argmaxj F̃

∗

ij ,
where F̃ ∗ = VmA∗.
Output: the labels of test images in unseen classes.

and A denotes linear combination coefficients. Equation (8)
can now be reformulated as follows:

argmin
A

1

2
||VmA− F ∗||2F + γ||BVmA||1

= argmin
A

q∑
j=1

1

2
||VmA.j − F ∗

.j ||
2
2 + γ||Σ

1

2V TVmA.j ||1

= argmin
A

q∑
j=1

1

2
||VmA.j − F ∗

.j ||
2
2 + γ

m∑
i=1

Σ
1

2

ii|aij |

= argmin
A

q∑
j=1

m∑
i=1

1

2
a2ij − (V T

.i F
∗

.j)aij + γΣ
1

2

ii|aij | (9)

where F ∗

.j denotes the j-th column of F ∗, and V.i denotes the
i-th column of Vm.
It can be seen that the L1-minimization problem in Equation

(8) has been decomposed into q ∗ m independent quadratic
optimization subproblems:

a∗ij = argmin
aij

1

2
a2ij − (V T

.i F
∗

.j)aij + γΣ
1

2

ii|aij | (10)

which has the following explicit solution:

a∗ij =

⎧⎪⎪⎨
⎪⎪⎩
0, |V T

.i F
∗

.j | ≤ γΣ
1

2

ii

V T
.i F

∗

.j + γΣ
1

2

ii, V T
.i F

∗

.j < −γΣ
1

2

ii

V T
.i F

∗

.j − γΣ
1

2

ii, V T
.i F

∗

.j > γΣ
1

2

ii

(11)

In this way, Equation (8) can be solved efficiently at a linear
time cost with respect to N .
To sum up, by combining zero-shot learning and label

refinement together, the full algorithm for zero-shot scene
classification is outlined as Algorithm 1.
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Fig. 3. Example images from 21 aerial scenes in the UC Merced data set. (a) Agricultural. (b) Airplane. (c) Baseballdiamond. (d) Beach. (e) Buildings. (f)
Chaparral. (g) Denseresidential. (h) Forest. (i) Freeway. (j) Golfcourse. (k) Harbor. (l) Intersection. (m) Mediumresidential. (n) Mobilehomepark. (o) Overpass.
(p) Parkinglot. (q) River. (r) Runway. (s) Sparseresidential. (t) Storagetanks. (u) Tenniscourt.

Fig. 4. Example images from 7 scene classes in the RSSCN7 data set. (a) Grass. (b) River. (c) Industrial. (d) Field. (e) Forest. (f) Residential. (g) Parking.

C. Computation Complexity Analysis

Note that both the label propagation problem in Equation (3)
and the label refinement problem in Equation (8) can be solved
efficiently at a linear time cost with respect to the total number
of test images N . Hence, the proposed algorithm for zero-
shot scene classification has a linear overall computational
complexity, which is very important for the large scenes.

IV. EXPERIMENTAL RESULTS
In this section, we provide the performance evaluation of the

proposed ZSSC approach. We first describe the three datasets
used in the experiments. We further report the results of zero-
shot scene classification on the benchmark UC Merced data

set [40]. In addition, we also evaluate the proposed approach
in the task of recognizing a large HSR satellite image.

A. Description of the Data sets

The first data set used for performance evaluation is the
UC Merced data set [40], which is the most widely used
benchmark data set for remote sensing scene classification.
This data set consists of 2,100 remote sensing images from
21 scene classes: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium density residential,
mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Fig. 3 shows some



7

Fig. 5. The whole image and example subimages from 7 scene classes in the Sydney data set. (a) The whole image. (b) Airport. (c) Industrial. (d) Grass. (e)
Ocean. (f) Residential. (g) River. (h) Runway.

Fig. 6. Results of the label-propagation-based zero-shot learning method when
tuning parameters k1 and k2 at different values of α. (a) α=0.1; (b) α=0.3;
(c) α=0.5; (d) α=0.7.

example images from the 21 aerial scenes. The images in
this data set are manually extracted from large images from
the USGS National Map Urban Area Imagery collection for
various urban areas around the country. The pixel resolution
of this public domain imagery is 1 foot. For each scene class,
there are 100 images of the size 256× 256 pixels.
The second data set is the RSSCN7 data set [12], which

contains 2,800 remote sensing scene images collected from
Google Earth. The images in this data set come from seven
typical scene classes: grass, river, industrial, field, forest,
residential, and parking. For each scene class, there are 400
images of the size 400×400 pixels. Some sample images from
this data set are shown in Fig. 4.
The third data set is constructed from a large high-resolution

satellite image which is acquired from Google Earth, for the
city of Sydney, Australia. The spatial resolution of this large
image is about 1 m. The large satellite image for Sydney is
of 9, 000× 9, 000 pixels, as shown in Fig. 5 (a). There exist
seven scene classes within this large image: airport, industrial,
grass, ocean, residential, river, and runway. Figs. 5(b)-(h) show

Fig. 7. Results of the label refinement method when tuning parameters k and
m at different values of γ. (a) γ=0.3; (b) γ=0.5; (c) γ=0.7; (d) γ=0.9.

some sample subimages of these scene classes. Specifically,
the original large image is divided into 900 non-overlapping
subimages of 300 × 300 pixels, where each subimage is
supposed to only belong to a single scene class. In the
following, the set of 900 subimages from the large satellite
image is denoted as the Sydney data set.

B. Zero-Shot Scene Classification

1) Experimental Setup: To evaluate the effectiveness of
the proposed approach, we conduct a group of experiments
on the UC Merced data set by randomly selecting 16 of 21
classes as seen classes and the other 5 classes as unseen
classes. Furthermore, we also test another 3 unseen/seen
ratios to verify the effectiveness of the proposed approach in
much weaker settings. For each unseen/seen ratio, the final
classification results over unseen classes are averaged over
25 random seen/unseen splits. In this paper, we compare the
proposed approach with the state-of-the-art zero-shot learning
approaches [30]–[32].
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TABLE I
PER-CLASS AND OVERALL CLASSIFICATION RATES (%) FOR DIFFERENT
ZERO-SHOT LEARNING MODELS ON THE UC MERCED DATA SET. FOR
COMPACTNESS, WE ONLY PROVIDE STANDARD DEVIATIONS (OVER 25

RANDOM SEEN/UNSEEN SPLITS) FOR THE OVERALL RATES.

Models [30] [32] [31] ZSL-LP ZSSC
tenniscourt 31.6 15.3 46.0 43.0 60.0
storagetanks 4.1 51.4 13.1 36.4 42.7
runway 28.0 44.7 19.7 49.7 56.9
sparseresidential 11.5 19.0 6.5 23.7 26.8
parkinglot 41.0 70.0 7.0 46.4 55.4
river 5.8 37.5 16.7 24.0 25.3
overpass 97.9 7.6 9.3 99.6 99.6
mediumresidential 86.6 15.6 30.5 80.0 89.5
mobilehomepark 2.4 46.0 15.0 26.7 33.7
golfcourse 51.5 20.7 14.3 44.3 44.3
harbor 31.9 17.0 37.6 29.4 32.8
intersection 35.2 2.3 26.0 49.0 50.3
freeway 72.1 10.7 72.0 43.0 68.0
forest 12.0 28.3 18.0 24.3 21.3
buildings 44.8 18.0 7.4 47.0 79.0
chaparral 100.0 58.6 26.1 100.0 100.0
denseresidential 24.9 11.5 8.0 43.4 47.7
beach 54.8 1.2 44.9 42.7 44.3
baseballdiamond 77.0 50.2 45.5 67.5 72.8
airplane 43.0 16.0 5.1 72.0 76.3
agricultural 7.0 73.0 38.1 8.7 5.3
overall 47.2±1.7 32.5±1.1 25.4±0.7 53.9±1.3 58.7±0.9

2) Parameter Selection: The parameters of the proposed
approach are selected in the unseen/seen ratio of 5/16. Con-
cretely, we have randomly split the training set of the UC
Merced data set into two halves and thus tuned the parameters
in a two-fold cross-validation manner (i.e. images from 8
classes are used for training, and images from the other 8
classes are used for validation). For the label-propagation-
based zero-shot learning method, we tune the parameters k1
and k2 at different values of α and the results are given
in Fig. 6. We find that the label-propagation-based zero-shot
learning method achieves the best result when k1 = 2, k2 = 3,
and α = 0.1. Therefore, we choose k1 = 2, k2 = 3, and
α = 0.1 for the proposed zero-shot learning model in the
following experiments.
Moreover, for the label refinement method, we tune the

parameters k, m, and γ in the same way. That is, the
parameters k and m are tuned at different values of γ and the
results are given in Fig. 7. We observe that the label refinement
method achieves the best result when k = 200, m = 100, and
γ = 0.9. Therefore, we choose k = 200, m = 100, and
γ = 0.9 for the proposed label refinement method.

3) Comparison to the State-of-the-Art: Table I shows the
comparison of the proposed ZSSC approach to the state-of-
the-art zero-shot learning models [30]–[32] on the UC Merced
data set. In this table, ‘ZSL-LP’ denotes the zero-shot learning
method based on label propagation in Section III-A, while
‘ZSSC’ denotes the full ZSSC approach presented in Algo-
rithm 1 (including label refinement). It can be seen that the
proposed ZSSC approach not only significantly outperforms
the state-of-the-art zero-shot learning models in terms of the
overall rate, but also yields the best results over 10 scene
classes with respect to the per-class rates. This observation
can be explained as follows: 1) The models in [30]–[32] are
proposed to cope with the traditional zero-shot learning tasks,

TABLE II
COMPARISON TO THE STATE-OF-THE-ART ZERO-SHOT LEARNING MODELS
ON THE UC MERCED DATA SET WITH DIFFERENT UNSEEN/SEEN RATIOS.
THE AVERAGE ACCURACIES ARE FOLLOWED BY STANDARD DEVIATIONS

(OVER 25 RANDOM SEEN/UNSEEN SPLITS).

Models Unseen/seen ratios
5 / 16 8 / 13 11 / 10 14 / 7

[30] 47.2 ± 1.7 21.2 ± 1.2 14.4 ± 0.7 12.1 ± 0.6
[32] 32.5 ± 1.1 18.1 ± 0.7 11.1 ± 0.5 7.5 ± 0.3
[31] 25.4 ± 0.7 15.2 ± 0.7 10.1 ± 0.2 7.3 ± 0.1

ZSL-LP 53.9 ± 1.3 28.4 ± 1.2 16.1 ± 0.7 12.4 ± 0.4
ZSSC 58.7 ± 0.9 35.4 ± 1.0 19.6 ± 0.5 15.1 ± 0.2

where scene classes usually have strong semantic correlations.
However, this is not the case for remote sensing scene classifi-
cation. 2) The proposed ZSL-LP method not only exploits the
semantic relationship between seen and unseen classes (also
considered in the traditional zero-shot learning models [30]–
[32]), but also uses a domain adaptation model to describe
the relationships between the seen classes and images from
unseen classes. This can strengthen the relationship between
seen classes and unseen classes and thus effectively overcome
the limitations of the traditional zero-shot learning models in
remote sensing scene classification. 3) The label refinement
method based on sparse learning can help to suppress the
noise in the zero-shot learning results obtained by ZSL-LP
(see ZSL-LP vs. ZSSC).
To further verify the effectiveness of the proposed approach,

we also choose another three unseen/seen ratios (i.e. 8/13,
11/10 and 14/7) in the experiments. We randomly split the
21 scene classes in the UC Merced data set into seen and
unseen classes according to the corresponding unseen/seen
ratios. Table II provides the comparison of different zero-shot
learning models on the UC Merced data set with different un-
seen/seen ratios. The accuracies are averaged over 25 random
seen/unseen splits. It can be seen that performance of all the
zero-shot learning models drops when the unseen/seen ratio
increases, but our ZSSC approach outperforms the competing
models in all cases. Note that the semantic correlation between
unseen classes and seen classes becomes weaker with the
increase of unseen/seen ratio. Since the model in [30] and the
proposed ZSL-LP method both utilize the semantic correlation
to infer the labels of test images, less semantic correlation
between unseen classes and seen classes induces much more
noise to the labels of test images (leading to the performance
degradation). However, our label refinement method can utilize
sparse learning to denoise the noisy labels, thus leading to
significant improvement over the model in [30].

C. Large Satellite Image Recognition

1) Experimental Setup: To further evaluate the effective-
ness of the proposed approach in large HSR satellite image
recognition, we conduct another group of experiments as
follows. Given that the RSSCN7 and Sydney data sets are
both collected from Google Earth, we used the RSSCN7 data
set as the training set and the Sydney data set as the test
set. Under this setting, the set of seen scene classes contains:
grass, river, industrial, field, forest, residential, and parking,
while the set of unseen scene classes contains: ocean, runway,
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Fig. 8. Classification maps of the large satellite image with respect to seven scene classes, namely, airport, industrial, grass, ocean, residential, river, and
runway. (a) Classification map by the approach in [30]. (b) Classification map by the approach in [32]. (c) Classification map by the approach in [31]. (d)
Classification map by the proposed ZSL-LP approach. (e) Classification map by the proposed ZSSC approach.

TABLE III
PER-CLASS AND OVERALL CLASSIFICATION RATES (%) OF DIFFERENT
ZERO-SHOT LEARNING MODELS ON THE SYDNEY DATA SET. THE

OVERALL RATE IS COMPUTED OVER ALL THE IMAGES, AND NOT THE
AVERAGE OF PER-CLASS RATES.

Models [30] [32] [31] ZSL-LP ZSSC
airport (unseen) 7.4 12.8 0.0 3.7 3.7
industrial (seen) 88.6 88.6 88.6 88.6 88.6
grass (seen) 16.2 16.2 16.2 16.2 16.2
ocean (unseen) 51.8 58.1 0.0 71.2 93.7
residential (seen) 88.3 88.3 88.3 88.3 88.3
river (seen) 57.5 57.5 57.5 57.5 57.5
runway (unseen) 0.0 1.3 11.7 3.9 3.9
overall 61.3 63.0 51.1 65.7 70.4

TABLE IV
COMPARISON OF DIFFERENT ZERO-SHOT LEARNING MODELS IN TERMS OF

TIME COST ON THE SYDNEY DATA SET.

Models [30] [32] [31] ZSL-LP ZSSC
Time (sec.) 7.8 31.8 17.4 10.8 12.1

and airport. Note that the test images from the Sydney data set
not only come from unseen classes (i.e. ocean, runway, and
airport) but also from seen classes (i.e. grass, river, industrial,
and residential). We thus need make novelty detection to
determine whether a test image comes from a seen class
or not. Concretely, for each seen class, a one-class support
vector machine (SVM) classifier is trained with all the images
from this class in the RSSCN7 data set, where the pre-trained
GoogLeNet features are exacted for the training images. If
all the trained one-class SVMs decide that a test image does
not belong to any of the four seen classes (i.e. grass, river,
industrial, and residential), we regard this image as an image
from unseen classes and adopt the proposed ZSSC approach
to predict its label; otherwise, only the domain adaptation
approach [24] is used to predict its label. The parameters in
the one-class SVM for novelty detection are tuned up on the
images in the seen classes in the RSSCN7 data set.

2) Comparison to the State-of-the-Art: Note that there exist
two main steps in large HSR satellite image recognition, i.e.,
novelty detection and zero-shot learning. The experimental
results show that both of the two steps are effective on the
Sydney data set. Specifically, the novelty detection method
achieves an accuracy of 89.2% and the proposed ZSSC ap-
proach achieves an accuracy of 70.4%. Moreover, we made fair
comparison to the state-of-the-art zero-shot learning models
[30]–[32], by replacing the proposed ZSSC approach with

these models and keeping the other settings unchanged. The
per-class and overall classification rates of different zero-shot
learning models are reported in Table III. It can be seen that
the proposed approach not only significantly outperforms the
state-of-the-art models in terms of the overall performance,
but also yields the best results on the largest unseen class with
respect to the per-class rate. In addition, the classification maps
of all the models are also illustrated in Fig. 8. The proposed
approach is still shown to perform the best. These observations
demonstrate that the proposed approach is more scalable for
real-world applications in remote sensing.
We also make comparison to the state-of-the-art zero-shot

learning models on the Sydney data set in terms of time cost,
which is shown in Table IV. All the experiments are conducted
on a computer with 3.9 GHz CPU and 32GB RAM. From this
table, we can observe that the time consuming of our approach
on the large scenes is acceptable.

V. CONCLUSIONS

This paper proposes a novel scene classification approach
for HSR remote sensing images to recognize images from
unseen classes without any visual sample in the training set.
In this approach, we first use the word2vec model to map
names of scene classes to semantic vectors. A semantic-
directed graph is then constructed over the semantic vectors
for describing the relationships between unseen classes and
seen classes. With the semantic-directed graph and knowledge
transferred from images in the seen classes by an unsupervised
domain adaptation model, a label-propagation algorithm is
developed to measure the distance between test images and
each unseen class for recognition of the unseen scene classes.
To further suppress the noise in the zero-shot classification
results, a label refinement approach is developed based on
sparse learning. Experimental results show that the proposed
approach significantly outperforms the state-of-the-art zero-
shot learning models in scene classification for HSR remote
sensing image. This means that the proposed approach can
provide an effective way for remote sensing scene classifica-
tion in the shortage of labeled data. In the future work, we will
make further improvements in two aspects: 1) The word2vec
model is trained only with the documents on geoscience and
remote sensing to obtain better semantic relationships among
scene classes; 2) Deep learning is used to directly formulate
the zero-shot scene classification problem.
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