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Abstract

The guessing number of a directed graph (digraph), equivédethe entropy of that digraph, was
introduced as a direct criterion on the solvability of a nativcoding instance. This paper makes
two contributions on the guessing number. First, we intogdan undirected graph on all possible
configurations of the digraph, referred to as the guessimgphgrwhich encapsulates the essence of
dependence amongst configurations. We prove that the ggessmber of a digraph is equal to the
logarithm of the independence number of its guessing gréipécefore, network coding solvability is no
more a problem on the operations made by each node, but isifeahpto a problem on the messages that
can transit through the network. By studying the guessiaglgiof a given digraph, and how to combine
digraphs or alphabets, we are thus able to derive boundseogutisssing number of digraphs. Second, we
construct specific digraphs with high guessing numberdgliyig network coding instances where a large
amount of information can transit. We first propose a cowrtion of digraphs with finite parameters
based on cyclic codes, with guessing number equal to theedeagfrthe generator polynomial. We then

construct an infinite class of digraphs with arbitrary giidh which the ratio between the linear guessing
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number and the number of vertices tends to one, despite tigsgphs being arbitrarily sparse. These
constructions vyield solvable network coding instanceshwaitrelatively small number of intermediate
nodes for which the node operations are known and linedmadth these instances are sparse and the

sources are arbitrarily far from their corresponding sinks

The authors are with the School of Electronic Engineerirgj@mputer Science, Queen Mary, University of London, Lando

E1 4NS, UK (e-mail:{mgadouleau, smrijs@eecs.gmul.ac.uk).

April 19, 2011 DRAFT


https://core.ac.uk/display/82919888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1010.2619v2

. INTRODUCTION

Network coding [[1] is a protocol which outperforms routingr fmulticast networks by letting the
intermediate nodes manipulate the packets they receiymrticular, linear network codin@l[2] is optimal
in the case of one source; however, it is not the case for phellSources| [3],[[4]. Although for large
dynamic networks, good heuristics such as random lineavarktcoding [5], [6] can be used, for a given
static network maximizing the amount of information thahdae transmitted is fundamental. Solving
this problem by brute force, i.e. considering all possibperations at all nodes, is computationally
prohibitive. In this paper, we reduce this problem to findingnaximum independent set in an undirected
graph determined by the network coding instance.

Network coding also opens many new questions about netwesigd (seel[7],[[8] for examples of
networks with interesting properties). Clearly, densepbgawith a large number of edges between the
nodes can transmit a large amount of information; similaslysmall diameter is a good property for
information transfer; finally, a large number of intermadimodes between the sources and the sinks
is preferable. However, in this paper, we introduce clasdasetworks that are arbitrarily sparse, with
arbitrarily high diameters, and with a relatively small rugn of intermediate nodes, yet on which all
the requested information can be transmitted. Furtherpforethese graphs, the demands of the sinks
can be satisfied over any alphabet, and linear combinatiansdficient. Therefore, our work provides
different guidelines on the design of networks which takgaatiage of network coding. The results in
this paper are based on the study of the guessing number raiptig, reviewed below.

The guessing number of digraphs is a concept introduced],imféich connects graph theory, network
coding, and circuit complexity theory. Inl[9] it was proveuht an instance of network coding with
sources ana sinks on an acyclic network (referred to as a multiple urtica$work) is solvable over a
given alphabet if and only if the guessing number of a reldigcaph is equal ta.. Moreover, it is proved
in [9], [10] that any network coding instance can be reduoéa & multiple unicast network. Therefore, the
guessing number is a direct criterion on the solvability efwork coding. Similarly, the linear guessing
number evaluates the solvability of a network coding instaby using linear combinations only. By
determining these two quantities, the performance of limegwork coding can then be compared to that
of general network coding. In_[11], the guessing number $® aised to disprove a long-standing open
conjecture on circuit complexity. In_[12], the guessing h@nand linear guessing number of digraphs
were studied, and bounds on the guessing number of someypartdigraphs were derived.

The guessing number is equal to the entropy of the same didddjj, thus tying this quantity with



fundamental problems of information theory. For instarimerelying heavily on|[[13],[14] and [15], it
was shown that the entropy of a digraph might not be deteminbethe use of Shannon inequalities
alone [16]. Similarly, the information defect is relatedttee so-called public entropy [16]. We would
like to emphasize that the graph entropy for digraphs cemsitlin this paper is fundamentally different
to the graph entropy for undirected graph introduced byn€diin [17] (seel[18] for a review of that
guantity).

Let us give a brief description of the guessing game withlayers, viewed as vertices on a digraph
and an alphabet of size All the players are assigned an element of the alphabde@tokly referred to
as a configuration), and each player knows the values asktgral the players in its in-neighborhood.
It does not, however, know its own value, and the goal of themayds to guess it correctly. Clearly,
the values cannot all be guessed correctly every time. lfpthgers do not collaborate, the probability
that all guesses are correct is exactly*. However, the players may elaborate a collaborative gfyate
(referred to as a protocol) which increases the probabiftysuccess. For instance, suppose we play
the game on the cliqué’,,, where each player knows the values assigned to all the wdréces. A
common strategy could be the following: each player guetiseopposite of the sum (moduk) of
all the values it sees. Any configuration whose sum moduile zero will be correctly guessed, hence
raising the success probability o' = s(*~1)=" (this is, in fact, optimal). The guessing number is then
defined as the maximum over all protocols of the gain from th&at guessing strategy. For instance,
the guessing number of the clique envertices isn — 1.

Suppose now the players have a helper, whose aim is to makéagérs guess correctly every time.
This helper is limited: he or she can only send the same irdtian to all the players. The information
defect is defined to be the minimum amount of information tlegpér must send, and it is strongly
connected to the guessing number. For instancé,jnthe players will be able to infer their own value
if the helper sends them the sum of all values modul®nly one symbol of information is required,
therefore the information defect of the clique anvertices is equal td. While the guessing humber
g(D, s) represents the amount of information that can be guesselebglayers, the information defect
b(D, s) is the amount of common information the players need to goessctly. The information defect
is shown in [8] to be equal to the length of a minimal index cow®iced on the grap® (see [19] for
more on index coding and its relation to network coding).

This paper has two main contributions. First, we introduagaph on all the possible configurations

of a digraph, referred to as thguessing graphwhich encapsulates the dependencies amongst fixed



configurations of the same protocol. We then show that thessing number of a digraph is equal to
the logarithm of the independence number of its guessinghgréhe study of the guessing graph then

yields the following results.

« Solvability of network coding is ho more a problem of detaring the appropriate operations at
each intermediate node. It is now turned into a problem onpibgsible messages that could be
transmitted through the network by using network coding] Hre operations which transmit these
messages can then be easily determined. This simplificaigmficantly reduces the search space,
which only depends on the number of nodes in the graph andealgihabet size.

« The problem of solvability of network coding is reduced toegxidion problem on the independence
number of undirected graphs. Although the guessing graplahaxponential number of vertices, it
has a large automorphism group, which could be taken adyaitfa We show that finding maximum
independent sets on this graph is actually a problem clastdyed to the design of error-correcting
codes. This parallels the results in [20], where it was shtdvat some classes of network coding
instances are solvable if and only if codes with certain petars exist.

« Using graph theoretic results, we are then able to providénshof bounds on the guessing number
of a digraph based on the properties of its guessing graphinStance, we obtain that for large
enough alphabets, the guessing number is at least equad tmitimum in-degree of a vertex in
the digraph, and the fixed configurations attaining this loiomm an MDS code.

« The relationship between the guessing game and publicnivaion (or equivalently, between public
and private entropy) unveiled in_[11] is clarified, as we shibwat the information defect is equal
to the chromatic number of the guessing graph. This enaldds prove that these problems are
asymptotically equivalent.

« The guessing graph is extremely well-behaved when digraphsombined. We exhibit some types
of digraph union which do not increase the ratio between thesging number and the number of
vertices in the digraph. Also, the guessing graph illusséahe relationships between the guessing
numbers of the same digraph over different alphabets. Weeptttat playing the guessing game on
a digraph over an extension field is equivalent to playingghessing game on several copies of

the same digraph linked to one another over the base field.

We would like to emphasize the fundamental difference betweur work and the literature where
conflicts in networks were represented as adjacent verticggaphs [[21]-H[28]. In the literature, the

vertices of the different graphs and hypergraphs prewopsiposed are routes or links amongst nodes
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or coding functions instead of messages or configuratioheréfore, these do not convert the network
coding problem into a problem on messages. Indeed, thecesrtf the so-called “link graph” in_[21]
are the routes from the inputs to the outputs, and two roweflict if they intersect. Also, the vertices
correspond to the cumulative coding functions at each nod23], and the conflicts amongst functions
are represented via a hypergraph. Moreover, the vertickgeafo-called “conflict graph” in_[23] represent
a node in the network along with part of its out-neighbors.

The second contribution is the construction of specific ajus with high linear guessing numbers,

thus yielding solvable network coding instances.

« For a finite numbenr of source-sink pairs, we introduce a construction of digsabased on cyclic
codes, thus tying another link between network coding arat-eorrecting codes. All the information
about the digraph, and especially its guessing number,\aitble from the generator polynomial
of the code. In particular, the class of digraphs generatethb simplex codes produce network
coding instances with bottlenecks on the ordetogfn only.

« For unbounded parameters, we determine a way of combiniagltgraphs, referred to as the strong
product, which takes full advantage of the structure of the original digraphs in order to yield
a high guessing number. Using this technique, we constretwark coding instances as sparse
as possible in terms of edges provided the number of edges teninfinity, where the shortest
path between a source and the corresponding sink is ailyittang, and where the number of
intermediate nodes is small compared to the number of ssuiideese instances are solvable over
any alphabet and linearly solvable over any field.

The rest of the paper is organized as follows. Sedfibn llesggisome necessary background on graph
theory, guessing games, and error-correcting codes.od@fiintroduces and investigates the properties
of the guessing graph. In Sectibnl IV, we introduce a classigraghs based on cyclic codes for which
we determine the binary linear guessing number. Seéfionudiess the maximum guessing number of
digraphs and introduces families of graphs with asympadifidighest guessing numbers. Finally, Section

VIlprovides some comments and presents some open problems.

[l. PRELIMINARIES
A. Graphs and digraphs

An independent set in a graph is a set of vertices where anyvertices are non-adjacent. The

independence number(G) of an undirected grapty is the maximum cardinality of an independent set.
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We also denote the maximum degree and the clique, chronaatitfractional chromatic numbers of an
undirected graplG as A(G), w(G), x(G), and x*(G), respectively (see _[24] for definitions of these
parameters). For a connected vertex-transitive graphhwikioeither an odd cycle nor a complete graph,

we have [[24, Corollary 7.5.2]

<X(6) = gy <X £ AQ)

Also, it was shown in[[25] that for a non-completeconnected graph on vertices which is regular

with degreed, the independence number is lower bounded by

O‘(G)E@{l_ 1_2(df1)2}2di1' @)

The chromatic number and the independence number of a vieatesitive graph are related by [26]

(using the no-homomorphism lemma [n [27])

[V (H)|

. V(&)
Hinduced a(H)

= (1+loga(G))m. 2)

We now review four types of products of graphs; all produdtsm@ graphsG; andGs haveV (Gy) x

X(G) < (1 +loga(G))

V(G2) as vertex set. We denote tow adjacent verticend v in a graph as: ~ v.
« First, in theco-normal productG; @ Go, we have(ui,us) ~ (v1,v9) if and only if uy ~ vy or
ug ~ v9. We have

a(Gy @ G2) = a(G1)a(Ge). (3)

« Second, in thdexicographic productalso called composition; - G2, we have(uy, us) ~ (v1,v2)
if and only if eitheru; = v; anduy ~ wvq, Or u; ~ v1. Although this product is not commutative,
we have
a(Gy - G2) = a(Gr)a(Ga).

« Third, in thestrong productG; X G2, we have(uy,us) ~ (v1,v2) if and only if eitheru; = v; and
Uy ~ V2, O ug = Vg andu1 ~ U1, OFr uyp ~ v1 andug ~ V9.
« Fourth, in thecartesian productG;0G2, we have(u;,us) ~ (v1,v2) if and only if eitheru; = v;

andug ~ vg, OF ug = v9 anduy ~ v1. We have
x(G10G2) = max{x(G1),x(G2)},
a(GlﬂGg) § min{a(Gl)]V(Gg)], OZ(GQ)’V(Gl)’}

Throughout this paper, we shall only considémpledigraphs, which have no loops and no repeated

edges. However, we do allow edges in both directions betwwervertices, referred to dsidirectional
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edgeqwe shall abuse notations and identify a bidirectional edlje a corresponding undirected edge). In
other words, the digraphs considered here are of the form (V, E), whereE C V2\{(v,v) : v € V}.

We shall denote the number of vertices of the digrapm asiless otherwise specified. The adjacency
matrix Ap of a digraphD on n vertices is then x n binary matrix such that; ; = 1 if and only if
(vi,v5) € E(D). For any vertex; of D, its in-neighborhood, denoted &5_(v;), is the set of all vertices
vj such that(v;,v;) € E(D), and its in-degree is the size of its in-neighborhood. Wetkay a digraph

is strongif there is a path from any vertex to any other vertex of therajip. Anindependent sebf
vertices in a digraph is a set such that no vertex is in thesighborhood of another.

The girth of a digraph is the minimum length of a directed cycle (we a#sa bidirectional edge
as a cycle of lengtl2). A digraph isacyclicif it has no directed cycles. In this case, there is an order
of the verticesvy, v1, ..., v,—1, referred to as théopological ordey for which (v;,v;) € E(D) only if
1 < j (in particular,vy has in-degre@). The cardinality of a maximum induced acyclic subgraphhef t
digraphD is denoted asnas(D). It can be easily shown thatas(D) > x', whereA is the maximum
in-degree of a vertex iD.

B. Guessing game and guessing nhumber

We denote the ringZ(s) = {0,1,...,s — 1} or the field GF(s) if s is the power of a prime as).
A configurationon a digraphD is a map from its vertex sét (D) to [s], which we shall identify with
its imagex = (x¢, z1,...,2,—1). A protocol P on D is a mapping between its configurations such that
P(z) is locally defined, i.eP(z), = fu(Tvy, Tuys-- - To,_,), Wherek = |N_(v)| andv; € N_(v) for
all i. For anyJ C {0,1,...,n — 1}, we refer to the wordz;,, z;,,...,x;,_,) Where thej;s are sorted
in increasing order and are all ih asz;. Using this notation, we havB(z), = f,(zy_(»))- The fixed
configurations ofP are all the configurations € [s]” such thatP(x) = z. The guessing numbeof D

is then defined as the logarithm of the maximum number of cardiipns fixed by a protocol ab:
9(D, s) = max {log, [Fix(P)|} .

This definition actually depends on and we can also consider the general guessing nug(dey =
sup g(D, s).

A protocol is said to be linear if the local functions are anef,(ry_(,)) = yv - Tn_(v) for some
y, € GF(s)V-()I, The fixed configurations of a linear protocol form a lineabspace ofGF (s)". The

linear guessing numbeof D is the maximum dimension of the set of fixed configurations dihear



protocol of D: gjinear (D, $) = maxp jinear {dim Fix(P)}. It is shown in [12, Theorem 4.3] that the linear

guessing number is given by

inear D, =n—- i kIn A ) 4
Giinear (D, 8) = n AeGF(sr)glg}l’ASAD{r( +A)} (4)

where A < B if and only if a; ; # 0 implies b; ; # 0. Clearly, we havejjinea: (D, s) < g(D,s) for all
digraphsD.

A set of public message®! is a is a partition of the set of configurations iritgieces of the form
Fix(P;), i.e.Ug<;<p_1 Fix(P;) = [s]". Theinformation defecof the digraphD is defined as the logarithm
of the minimum cardinality of a set of public messages, andeisoted a$(D, s) = mina{log, | M]|}.

It was shown in[[11] that for any digrapP® on n vertices and any, b(D, s) + g(D,s) > n. We also

consider the general information defé¢i) = inf, b(D, s).

C. Relation between guessing games and network coding

We now review how to convert a multiple unicast problem inwark coding to a guessing game.
Note that any network coding instance can be converted intouliiple unicast without any loss of
generality [10],[11]. LetV be an acyclic network withh sourcesn sinks, and some intermediate nodes.
We suppose that each sink requests an element from an atghhfrem a corresponding source. This
network coding instance isolvableover [s] if all the demands of the sinks can be satisfied at the same
time. We assume the network instance is given irtitsuit representationwhere each vertex represents
a distinct coding function and hence the same message flasvg edge coming out of the same vertex.
This circuit representation hassource nodes; sink nodes, andh intermediate nodes. By merging each
source with its corresponding sink node into one vertex, evenfthe digraphDy onm + n vertices. In
general, we have(Dy,s) < n for all s and the original network coding instance is solvable dsér
if and only if g(Dy,s) = n [11]. Similarly, we haveb(Dy, s) > m and the instance is solvable if and
only if b(Dy,s) =m [11].

Therefore, while network coding considers how the infoioratflows from sources to sinks, the
guessing game captures the intuitive notion of how muchrinéion circulates through the digraph. A
protocol for the guessing game is equivalent to the networking operations in the original instance.
Since all network coding instances can be turned into a gugggame, the guessing game is a fundamental
problem in information transit in networks. ConverselyaitligraphD on m + n vertices has an acyclic
induced subgrapli/ of size m, then then vertices outsidel/ can be split in two to form the circuit

representation of a network coding instance witlsourcesy sinks, andm intermediate nodes.
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(a) Circuit representation (b) Guessing game

Fig. 1. The butterfly network as a guessing game.

We illustrate the conversion of a network coding instance guessing game for the famous butterfly
network in Figure Il below. We shall show the vertices comesiing to the source-sink pairs in bold
with thick contours henceforth. It is well-known that thetteufly network is solvable over all alphabets
(by adding the two incoming messages modulo z), and conversely it was shown that the clighig
has guessing numbeér over any alphabet (and the protocol is simple: all nodes gjugisaus the sum

modulo s of their incoming elements).

D. Error-correcting codes

The weight of a worde in [s]™ is the number of nonzero symbols ofand is denoted as(z). A
code of lengthn over [s] with minimum Hamming distancé is a set of words ins]™ such that any
two words differ in at least positions. We denote the maximum cardinality of such a cadéén, d).
The Singleton bound asserts théf(n, d) < s"~4+1 and this bound is achieved by Maximum Distance
Separable (MDS) codes. MDS codes are known to existifer {1,2,n} or whens is the power of
prime and satisfies either>n —1 ors =2",n=2"+42,d € {4,n— 2} [28, Chapter 11, Section 7].

A binary (n, k) linear codeC' is a linear subspace @F(2)™ with dimensionk. If C' is the row span
of a matrixG € GF(2)k*", we say thalG is agenerator matrixof C'. Moreover, ifC' is the row space of
a matrix G’ € GF(2)"*" of rank k, we say thatG’ is an extended generator matrix ©f Alternatively,
if C is the dual space of the row space of a maklixc GF(2)("~*)*" (resp.,H’ € GF(2)"*™ with rank
n—k) , we say thaiH is a parity-check matriXresp., extended parity-check matrix) ©f By definition,
we havecH'” = 0 for all c € C.

A (binary) cyclic codeis a linear binary code where all the cyclic shifts of a codelhare also code-

n—1

words. To any vector = (cg,c1,...,c,—1) € GF(2)", we associate the polynomialz) = Y"1 c;z".



A cyclic code can then be viewed as an ideal in the ring of patyials modulaz™ + 1, wheren is the
length of the code. Therefore, a cyclic code is composedl|dahalmultiples of agenerator polynomial
g(x) of degreen — k, wherek is the dimension of the code. A generator matrix for the cadbence
given by k shifts of g(z). Remark that a polynomial generates a cyclic code of lemgihand only if
it divides 2™ + 1.

A constant-weight codés a binary code consisting of codewords with the same Hammiaight.
They have attracted a large interest; a thorough surveyoisged in [29], and various upper bounds are
derived or reviewed in_[30]. The maximum cardinality of a stamt-weight code of length, weightw,

and minimum distanced (as it is always even) is upper bounded Qy " ;)/(,,_.1) [B1l.

[Il. THE GUESSING GRAPH OF A DIGRAPH
A. Guessing graph, guessing number, and information defect

In this section, we introduce an undirected graph on all ipts€onfigurations of a digraph, where
an independent set corresponds to a set of fixed configusatiba protocol. As a result, the guessing
number of the digraph is equivalent to the logarithm of theefpendence number of the associated graph.

Definition 1 (Guessing graph of a digraphfor any digraphD on n vertices and any integer> 2,
the s-guessing graph ab, denoted a&:(D, s), has[s|" as vertex set and two configurations are adjacent
if and only if there is no protocol foD which fixes them both.

Propositiori ]l below enumerates some properties of the imgegsaph. In particular, Property provides
a concrete and elementary description of the edge set whiddesradjacency between two configurations
easily decidable.

Proposition 1: The guessing graplis(D, s) of a digraphD on n vertices satisfies the following
properties:

1) It hass™ vertices.

2) lts edge set i = | J], Ei(s), whereE;(s) = {{z,y} : Tn (o) = YN_(u0)> Ti # Vi}-

3) It is regular with degree

dGD,s) = 3 (=)t — oIVl

Iindependent

where N_(I) is the union of all the in-neighborhoods of vertices/in
4) lItis vertex-transitive. More particularly, for any adgnt configurations = (zg, z1,...,2n—1),y =

(y07y17 s 7yn—1) € [3]n1 we have
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e z+e~y+eforanyec [s];
o m(x) ~7(y) for anyw € Aut(D);
« if s is the power of a prime(\ozo, \ix1, ..., Ap—1Zn—1) ~ (AoYo, MY1s-- - An—1Yn—1) fOr
any family of nonzero scalars; € GF(s).
Proof: Property[1 follows Definitiori]1. Let us prove Propelly 2. kety € E;(s) for some: and
let a protocol with local functiong., fix z. Thenf,, (yn_(v,)) = fo.(Tn_(v,)) = Ti # i, henceP does
not fix y. Conversely, ifx,y ¢ E then any protocol satistying,, (zn_(v,)) = z; and fo, (Yn_(v,)) = ¥i
for all ¢ fixes bothz andy.
Property 4 follows this observation:~ y if and only if (x —y)ny_(,,) = 0 and(z —y); # 0 for some
1. Since the guessing graph is vertex-transitive it is ragatted hence we determine the number of edges

adjacent to the all-zero configuration By the inclusion-exclusion principle, we have

d(G(D,s)) = |EN{0}] = = > (=1 ER N {0},

RCV

n—1
U E;(s) N {0}
=0

whereEr = (), cr Fi, and hence we only have to determjig;N{0}| for all R C V. The configurations
y adjacent to0 satisfy w(yg) = |R| andyy_(g) = 0, while yy_n_(g)—g is arbitrary. If R is not
independentR N N_(R) # 0 and the two conditions are contradictory; otherwidel N_(R) = () and
there are(s — 1)Els»—IN-(BI-IEl choices fory. |

The guessing graph of some particular digraphs can be dearsd.

Example 1: The following guessing graphs are easy to determine.

« The guessing graph of an acyclic digraph is the completehgrap

« The guessing graph of the cliqué, is given by the Hamming grapH (s, n), where two configu-

rations are adjacent if and only if they are at Hamming distan

« In the guessing graph of the directed cyclg, two configurations are adjacent if and only if they

are at Hamming distance at most- 1.

Proof: If D is acyclic, let us sort the vertices in topological ordentst N_ (v;) C {vg,v1,...,vi—1}.
Consider two distinct configurationg y € [s]", and letl = min{i : z; # yi}, thenzy () = Yn_(v)
and{z,y} € E(s).

We now determine the guessing graph of the clidge We havel;(s) = {{z,y} : z; # i, vy _{iy =
yv—{;}} and hencer andy are adjacent if and only if they differ in exactly one cooati
We now consider the cycl€,,, whose edge set is given BYv;, v;11 mod »n) : 0 < i < n—1}. Suppose

x andy are distinct and non-adjacent, then there existsich thatr; # y;. Since{x,y} ¢ E;(s), we
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havex; 1 # y;_1. Applying this recursively, we obtain that all coordinat#fse: andy must be distinct.
Conversely, ifx; # y; for all 4, then it is clear that: andy are not adjacent. ]
Clearly, a set of fixed configurations of some protocol formsralependent set in the guessing graph.
Theoreni L below asserts the converse: any independentrsbedaed by some protocol and hence can
be viewed as a set of possible transmitted messages on tirabmetwork.
Theorem 1:A set of configurations irjs]™ are fixed configurations of some protocol orif and only

if they correspond to an independent set in the gr@P, s), and hence
9(D, s) =log, a(G(D, s)).

Moreover, a set of configurations [g]" are a set of public messages if and only if it forms a coloring

of the guessing grapti(D, s), and hence
b(D, s) = log, x(G(D, s)).

Proof: By definition, any set of fixed configurations of some protofmim an independent set
in the guessing graph. Conversely,{%“}’;;é is an independent set of the guessing graph, we shall
construct a protocoP which fixes all z* configurations. Fol0 < ¢ < n — 1, we define the local
functions P(x),, = fu,(Tn_(v,)) @S foIIows:fUi(;nﬁvi(vi)) = z? and f,,(y) = 0 if there is noa such
thaty = ‘f?v,(vi)- Note that this is a non-ambiguous assignment, as eitlj{gr(vi) # x?\k(vi) (and
the assignments are independent)mqyi(vi) = wlzjv,(vi) and z¢ = 2% (the same assignment) for all
a,be {0,1,....k—1}.

Finally, since a set of public messages is a partitions§if into sets of fixed configurations, it is
equivalent to a coloring of the guessing graph. |

The guessing numbers of the digraphs mentioned in Exahmiplerg aiready determined i [11] or
[12]. However, the proof becomes straightforward usingoram[1.

Example 2:I1f D is acyclic, theng(D,s) = 0 and b(D,s) = n for all s. This can be intuitively
explained as follows: since the digraph has no cycle, norinétion can circulate around it. Also, the
clique satisfieg)(K,,,s) = n — 1, b(K,,s) = 1, which means that the — 1 symbols of information
received by any vertex can circulate around the digraptallyirfor the directed cycle we havgC,,, s) =
1, b(Cy, s) = n — 1, since one symbol of information naturally circulates a@ldhe cycle.

In order to illustrate the relevance of this result to netwooding, we return to the butterfly network
example given in Figurg]l1. We already showed that it was edgmt to a guessing game on the clique

K3. Its binary guessing graph, given by the cuh€, 3), is illustrated in Figuré€]2. Throughout this paper,
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010 110

011 111
000 100
001 101
(a) Circuit representation (b) Guessing game oA’s (c) Maximum independent set in the

guessing grapliz(Ks, 2) = H(2,3)

Fig. 2. The butterfly network as a maximum independent seileno.

we shall represent the configurations in rectangular vestand shall highlight a maximum independent

set in bold with thick contours.

B. Results based on the guessing graph

We now investigate the properties of the guessing graph huod tlerive bounds on the guessing
number and on the information defect of digraphs. We firstxsimoPropositio 2 below that the general
guessing number and the general information defect of aapligare equivalent. From a guessing game
perspective, this shows that the minimum amount of infoilomatequired to guess everything correctly
(b(D)) is exactly equal to the amount of information that is noeméd by the playersa(— g(D)).

Proposition 2: For any digraphD, we haveb(D) + g(D) = n.

Proof: The bounds on the chromatic number and the independenceenwhla vertex transitive
graph in [2) yieldb(D, s) + g(D,s) > n and fors > 3
b(D,s) < n—g(D,s)+log,(1+g(D,s)logs)
< n—g(D,s)+log,n+ log,logs,
which asymptotically yield$(D) = n — g(D). [ |

Remark that the equality(D, s) + g(D, s) = n may not hold for all digraphs and evesy(e.g., the
undirected pentagon over alphabets witinon-square [11]). However, it does hold for everyor the
digraphs considered in Examplgs 1 and 2.

The following proposition gives a lower bound on the guegsinmber based on the degree of the

guessing graph, which shall be refined for large alphabeBrapositior(b.
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Proposition 3: For any non-acyclic digrap® with minimum in-degree and anys,

3 4
D.s)>n+log. 2 +1 1—,/1— >§—1 .
g(D,s) >n+ 0gs 5 + ogs{ \/ 3(d(G(D7S))+1)}_5 0gs N

Proof: Since the guessing graph is vertex-transitive, its conwviscis at Ieast@ by [32]. By

applying the first inequality in({1), we easily obtain the ffilswer bound above. Call this terr; the
second inequality i {1) yields > n—log (d(G(D,s))+1). We haved(G(D, s)) = | |J; Ein{0}
|E; N {0} = (s — 1)s"~%~1 as seen in the proof of Propositibh 1, and hed@@(D, s)) < ns" % — 1.

, where

The second lower bound then follows. [ |
If H is a spanning subgraph dp, then it is easy to verify thaG(H,s) 2 G(D,s), and hence
g(H,s) < g(D,s). Intuitively, H is obtained fromD by removing edges, hence less information can
circulate. On the other hand, the guessing graph of any edisabgraph can be viewed as a subgraph
of the guessing graph ab. For any induced subgrapH of D and anye € [s]*~I¥l, we denote the
subgraph ofG(D, s) induced by all configurations satisfying g = e asG(D, s)g + e.
Lemma 1:For any induced subgrapt of D and anye € [s]"~#|, we haveG(D, s)i +e = G(H, s).
Proof: Two configurationse, y are adjacent inG(D, s)y + e if and only if there exists; € H
such thatr; # yi, Tn_(v,) = YN_(v,)- SiNC€ZV_g = yy—g = e, this is equivalent tar; # y;,
TN_(v)nH = YN_(v)nH» @and hencery andyy are adjacent irG(H, s). [ |
Corollary 1: We havelog, w(G(D, s)) > mas(D), wheremas(D) denotes the maximum size of an
acyclic induced subgraph adb.
Proof: Let H be a maximum induced acyclic subgraphlofthenG(D, s)g + e = G(H, s), which
by Example[lL is a clique orl”/ vertices. ]
The proof of Corollan1L actually indicates that the familgi(D, s)y + e} for all e € [s]*~™as(D)
forms a partition of the vertex set ¢(D, s) into cliques of sizes™*s(P),
Propositior # below combines the results derived above thighgraph-theoretic results reviewed in
SectionI[-A.

Proposition 4: For any non-acyclic digrap® and anys > 2,

AZ - < mas(D) < log,w(G(D,s))
< log, X*(G(D, 5)) = n — log, a(G(D, s)) = n — (D, s)
< log, x(G(D,s)) = b(D, s)

<log,d(G(D,s)) <n—4§+log,n.
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A code with Hamming distancé can be viewed as an independent set of the graph where twsword
are adjacent if and only if they differ by at mogt— 1 coordinates. Therefore, finding a maximum
code with a prescribed minimum distance can be viewed asnfintlie maximum independent set of
this graph. On the other hand, as seen in Propodifion 1, whétfo configurations are adjacent in the
guessing graph is completely determined by the coordirintesich they differ. Therefore, determining
the guessing number of a digraph is a similar problem to tligtnding error-correcting codes with
maximum cardinality. In particular, Examplé 1 indicatesittithe guessing number of the cliqu€,

(the directed cycle”,,, respectively) is equivalent to the maximum cardinalitysotode of lengthn
with minimum distance (minimum distance:, respectively). Propositidd 5 generalizes this propeyty b
viewing a set of fixed configurations as a code, and by bounitsngninimum distance.

Proposition 5: If D is a digraph with minimum in-degregand girth~, then
logs As(n,n — 6 +1) < g(D, s) <logg As(n, 7).

In particular,g(D, s) > ¢ for s the power of a prime and either>n — 1 or s = 2™, n = 2™ + 2, and
J € {4,2™} for somem.

Proof: First, for any two configurations,y € [s]™ adjacent in the guessing graph bf we have
(* — y)N_(v,) = 0 for somei, and hencely(z,y) < n —d; < n — 4. Therefore, in any code with
minimum distance: — § + 1, the codewords are not adjacent in the guessing graph, arue lileey form
a set of fixed configurations.

Conversely, letr,y be two distinct configurations which are not adjacent in thesging graph, and
denotel = {v; : z; # y;} so thatz,y € G(D, s)r +xy_1. Suppose is acyclic, thenG(I, s) is a clique
by Example 1, and by Lemnid G(D, s); + xy_; is also a clique, and heneceandy are adjacent in
G(D, s). This is a contradiction, thus contains a cycle and its cardinality is no less than the gifth
D. Therefore, the set of fixed configurations of any protoca@ ode with minimum distance at leagt

Since any code with minimum Hamming distance- 6 + 1 forms a set of fixed configurations, using
an MDS code yields the lower bourdD, s) > § for the mentioned parameter values. [ |

Propositior b implies that for large enough alphabets, thallest amount of information received

by any vertex can circulate through the network.

C. Combining two graphs

We now investigate how to combine two digrapHs and Hy with disjoint vertex sets. We consider

three different types of digraph union, each leading to gedht graph product of their guessing graphs.

15



® [ 01—t

(b) 00 10 @ 00 10

@ (b) G(K2,2) = © Ps (d) G(Ps,2) = Kq
K> H(2,2)

Fig. 3. The digraphd<, and P, and their guessing graphs.

We shall illustrate these unions by the following examig: = K, and H, = P, illustrated in Figure
3.

First, thedisjoint unionof H; and H,, denoted agf; U Hs, hasV (H;) U V(H2) as vertex set and
E(H,)U E(H,) as edge set. Its adjacency matrix is hence given by

A | 0
ApuH, = .
0 |An,

In other words, the digraphs are simply placed next to ealcbrpwithout adding any edges. For aby
with vertex setV' (D) = V(H;) UV (Hz), we haveD D H; U Hy and hence the guessing number of the
disjoint union of H; and H, is a lower bound for the guessing numberdf In [12, Lemma 3.2], it

is shown that the (linear) guessing number of the disjoinbuf two digraphs is equal to the sum of
their (linear) guessing numbers. We give an alternate poetdw for the nonlinear case by considering
the guessing graphs.

Proposition 6: For all digraphsHy, H» with disjoint vertex sets and any> 2,
G(H1 U Hy,s) 2 G(Hy,s) @ G(Ha,s), (5)

where@ denotes the co-normal product, and heptH, U Hy, s) = g(Hi, s) + g(Ha, s).

Proof: Let 2 andy be two configurations off; U H, and denote:;;, = x!, y, = »' (and similarly
for Hy). They are adjacent it:(H; U Ho, s) if and only if there exists; in Hy or in Hy such that
T # y; andzy_(,,) = YN_(v,)- SiNCE the neighborhood of entirely lies inH; if v; € Hy (and similarly
for H,), this is equivalent tac} # y}, x}V,(vi) = yzlv,(vi) or z? # y?, x?\ﬁ(vi) = y?v,(ui)- Therefore, this

is equivalent toz! ~ y' in G(Hy,s) or 2 ~ y? in G(Hay, s), which yields [5). Finally,[(8) gives the

guessing number of the disjoint union. [ |
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o) (@ pF4 8 [©

(@) Ko U P (b) G(K2 U P2,2) = H(2,2) ® K4

Fig. 4. The disjoint union of; and P, and its guessing graph.

Example 3:The guessing graph of the disjoint union A% and P, is illustrated in Figurél4 below
(we represent the configurations in hexadecimal form). Beeat is a very dense graph, we only show
which configurations are adjacent to the all-zero configomait is clear thatu(G(K2 U ),2) = 2 and
henceg(Ky U %,2) = 1.

As a corollary of Propositiohl6, we now give lower bounds oa guessing number of a digraph by
considering the sum of guessing numbers of its induced spbgt We refer to alique partitionas a
partition of the vertex set of a digraph intosubsets such that the graph induced by each subset forms a
clique. Theclique partition numbenof a digraphD, denoted ag(D), is the minimum number of subsets
in any clique partition ofD. Then it is easily shown thaji,e.. (D, s) > n— c¢(D), which actually refines
the lower bound in[[12, Theorem 3.3] for graphs with bidii@cal edges.

We strengthen the result on the guessing number of the wfisjgiion below by considering the
unidirectional unionof H; and H,, denoted agi;UH,, and defined to béV (D), E(D)) with V(D) =
V(H,)UV(Hy) andE(D) = E(H,) UE(H) U{(i,7) :i € V(Hy),j € V(H2)}. Its adjacency matrix

A | 1
AHlL_ng = ( 0 A ) °
H,

In other words, we make all the possible connections, but 5iom H, to Ho.

is given by
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Proposition 7: For all Hy, H, with disjoint vertex sets and any> 2,
G(HleHQ, S) = G(Hl, S) . G(Hg, S),

where - is the lexicographic product and hengéHUHs,s) = g(Hy,s) + g(Ha,s). Also, we have
glinear(HIOH% 3) = glinear(Hla 3) + glinear(H2a 3)-
Proof: The proof for the guessing number is similar to that of Primos[6, and is hence omitted.

We hence prove the result for the linear guessing numberafpA < A, 5, we have

Im + A4 ‘ Aj

IL,+A= )
0 ‘ ]:n2 + Ay
whereA; < Ay, and Ay < Ap,. Therefore,
rk(I, + A) > rk(I,, +A;p) +rk(I,, + Ag) (6)

> in rk(I,, + A in rk(I,, + A
> A}gng]r(nlJr 1)+A§2g1H2r(n2+ 2);

and hencejjinear (H1UHz, 5) < Giinear(H1, 8) + Glinear (H2,s) by (). Furthermore, ifA3 = 0, we have
equality in [6) and hence we can easily prove the reversaualitg [ |

Example 4: The guessing graph of the unidirectional unionff and P, is illustrated in Figuré 5
below. Because it is a very dense graph, we only show whicffigimations are adjacent to the all-zero
configuration. Although it is distinct to the guessing grajflthe disjoint union, they both have the same
independence number.

Proposition ¥ indicates that the edges frdf to H, do not increase the guessing number and can
hence be omitted. Intuitively, the edges only going in omedtion, they do not create any more cycles,
and hence no more information can circulate through the svdaraph. If we apply this simplification
recursively, we obtain that the guessing number of a digiagfompletely determined by the guessing
numbers of its strong components.

Corollary 2: For any digraphD with strong components’; for 1 < i < r, we haveg(D,s) =
> i_19(Ciys) and giinear (D, 8) = i1 Glinear (Ci, s). Thereforeg(D,s) <n —r.

Proof: The proof goes by induction on the numbeof strong components. The case where 1
is straightforward. Let us assume the result is true for @jtapphs with at most — 1 components and
considerD with » components. It is well-known that if each component is ated to a single vertex,
the resulting digraph, referred to as the condensatial,aé acyclic. In this condensation, there exists a

vertex with in-degre® (without loss, corresponding to the componéh) such thatD = C;UH, where
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@ KQUPQ (b) G(K20P27 2) = .l:_[(27 2) - Ky

Fig. 5. The unidirectional union oK, and P, and its guessing graph.

H is the subgraph induced by (D) — V(C1). We then havey(D, s) = g(Cy,s) + g(H, s); however,
sinceH hasr — 1 components’s, ..., C,, we obtaing(D, s) = g(C1,s)+g(Ca,s)+...+9(Cy, s). The
proof is similar for the linear case. Finally, singéC;, s) < |C;| — 1 for all 4, we haveg(D,s) <n —r.
[
Finally, the bidirectional unionof two digraphs, denoted ad,UH,, is obtained by connecting all
vertices ofH; to those ofH,, and vice versa. We havg(H,UH2) = E(H1)UE(H2)U{(i1,32), (i2,71) :
i1 € V(Hy),i2 € V(H3)}. Its adjacency matrix is given by

Ap, | 1
A‘HlOHg = *
1 |Apg,

Clearly, for any digraphD and any two induced subgrapli§ and H, of D with disjoint vertex sets,
we haveD C H,UH>; therefore, the guessing number of the bidirectional ungoan upper bound on
the guessing number of any union Bf and H,.

Proposition 8: For any H1, H» with disjoint vertex sets and any> 2,
G(H1UH3, s) =2 G(Hy, s)OG(Ha, s),
where[d denotes the cartesian product. Therefore,
b(H1UHs,s) = max{b(Hy,s),b(Has,s)}, @)
g(H1UHy,s) < min{g(Hi,s) + nz2,g(Ha, s) +ni}.
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(a) KQDPQ (b) G(KQL_JPQ, 2) = H(2, 2)|:|K4

Fig. 6. The bidirectional union o> and P. and its guessing graph.

In the linear case, we haVgincar (H1UH2, s) = min{giincar (H1,5) + n2, Glincar (Hz2, $) + n1 }-
Proof: The proof for the general case is similar to that of Propmsii and hence omitted. We now

prove the linear case. L&Y < Ay, oy, such thatk(I, + A) = n — glinear (H1UH2, s). Since

Im + A4 ‘ Ag
Ar | L+ A

I,+A=

for someA; < Ay, and Ay < Apy,, we haverk(I, + A) > max{rk(I, + A1), rk(I, + A2)} >
max{n1 — Giincar(H1, 5); N2 — Glincar (H2,5)}.

Conversely, without loss suppoke- 111 — giinear (H1, ) > 12— Glinear (H2, s) @nd letA; and A, satisfy
tk(A;) = n; — Giinear (H;) for i = 1,2. We can expresa\; asA; = BY'C;, whereB;, C; € GF(s)*™.
Then the matrixA = (B, B5)?(Cy, Cz) has ranki. ]

Example 5: The guessing graph of the bidirectional unionf6f and P, is depicted in Figurgl6é below.
In this case, we havg(K,UP,,2) = g(F»,2) + 2 because the optimal protocols are linear.

Example 6:Consider the following network coding instance, wheresources want to transmit a
message each via a common bottleneckro& n nodes (depicted in Figuid 7 for = 3, m = 2). The
network coding is solvable if and only if the complete bigtargraph K, ,, has guessing number.
Since this digraph can be viewed as the bidirectional unioth® empty graphs om andm vertices,

its guessing number is upper boundedrhyby Propositior B. Conversely, since it containsdisjoint
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(a) Network coding (circuit represen- (b) Guessing game

tation)

Fig. 7. The bottleneck witm = 3, m = 2.

cliguesKs, its guessing number is lower boundedrhy Therefore, the network coding instance in Figure

[7 is solvable if and only ifn = n, i.e., there is no bottleneck and routing is sufficient.

D. Combining alphabets

A network coding instance solvable oviet is clearly solvable ovefs*] for any k& > 2. However, it is
shown in [33] that certain network coding instances can lheabte over an alphabet but not over some
larger alphabet. In this section, we discover interestingperties of the guessing graphs of the same
digraph over different alphabets, which yield bounds on @adtions amongst the guessing numbers of
a digraph over different alphabets. First, a set of fixed goméitions of a protocol oD over [s] can

also be viewed as fixed configurations of a protocol over tpaaett], for any¢ > s which yields
g(D>t) ZQ(D,S)IOgtS. (8)

We refine this bound below by showing that the guessing graplthe cartesian product of two
alphabets is closely related to the guessing graphs on thénitial alphabets.

Proposition 9: For any digraphD and anys,¢ > 2 we have
G(D,s)OG(D,t) € G(D, st) C G(D,s) & G(D, 1), ©)

and hence

g(D,s)log s+ g(D,t)logt
log s +logt

< g(D, st) < min {g(D’S) log s + nlogt g(D,t)logt +nlogs} .

log s + log t ’ log s + log t
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Proof: Since the sett] and[s] x [t] are isomorphic, we consider two configuratigns, t), (y*,4!) €

([s]x [t])"™. Suppose they are adjacentGii D, st); therefore there existssuch thatz$, z!) # (v, y!) and
(TN () TN @) = WX (o) Yn_ )+ THiS is equivalent tacy, o =y () andaly =Yy (.
and @ # ys or a! # y!). It is easy to check that they are adjacentGfD, s) ® G(D, ). Moreover, we
can similarly prove the other inclusion. |

As a corollary, we obtain that the guessing number over aplgaddet can serve as a lower bound for
the guessing numbers over larger alphabets.

Corollary 3: For anyt > s with m = [log, t|, we have

m g(D,s) +mn
D <gD,t) < ¥—=———.
9( ’8)1ogst <g(D,t) < log. f
Proof: By applying Propositio ]9 recursively, we obtajiD, s™*!) < %, and the upper

bound follows from [(B). Also, applyind19) recursively yislg(D, s') > g(D, s) for all I > 1, which
combined with [(8) yields the lower bound. |

The result in[(®) can be interpreted using digraph unionsalRg digraphD and anyk > 1, we denote
the digraphk @ D, whose vertex set is given by (k @& D) = {v = (v,i) : v € V(D),i € [k]} and
whose edge set i&(k & D) = {(u,v) : (u,v) € E(D)}. In other words, we také copies of D and
make connections between the copies corresponding to tiesead D. Therefore, the in-neighborhood
of a vertex(v,7) in k@ D consists of thek copies of the in-neighborhood ef In terms of network
coding, the digraplt & D can be viewed as expanding the instance according té genbols in[s] of
an element ofs*].

Proposition 10: For any D, k, and s, we haveG(k @ D,s) = G(D, s*) and hencey(k © D, s) =
kg(D, s*).

The proof is similar to that of Propositian 6 and is hence taditNote that fok = 2 and D & Dy =
D, we haveD, U Dy C 2@ D C D1UDs; hencel[(P) can be viewed as an extension of Propogitibn 10 to
mixed alphabets. Proposition]10 means that playing thesjuggame over extension fields is equivalent
to playing the guessing game over the base field, but on des@pées of the digraph.

The result in Propositioh 10 also implies thats D is the union of two copies of) which, like
the unidirectional union of Propositidd 7, does not imprawe the general guessing number of the
disjoint union. As seen before, the unidirectional uniod dot add any cycles to the digraph, hence the
information could not circulate between the two copies efdigraph. On the other hand, the unibs D

does create new cycles, yet the information received by anex is redundant as the in-neighborhood
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Fig. 8. The digrapl2 & Cs with guessing numbe2.

of any vertex in2& D is simply two copies of its in-neighborhood . For instance, the digragh® Cs

illustrated in Figuré 18 has guessing numBeover any alphabet.

IV. A CONSTRUCTION OF DIGRAPHS BASED ON CYCLIC CODES

In this section, for the sake of simplicity we only considee binary guessing number (i.es, = 2).

However, the concepts introduced below can be easily egtbta any field.

A. Digraphs generated by cyclic codes

We first define a simple linear protocol which takes advantdgsdl the information incoming at every
node.

Definition 2: Theparity-check protocol has the function${(z), defined forany € V asf,(zn_(v)) =
125 (), OF equivalentlyf,(zy_(,)) = Zu,-ezv,(v) Ty, -

By definition, the parity-check protocol is linear, hence fixed configurations form a linear binary
code. It is easily shown that it has an extended parity-cmeakix given byH' = I,, + AL. Clearly,
the rows ofH' may be linearly dependent, as seen in Exariple 7 below. Tdrerebur aim is to use
extended parity check matrices with low rank.

Example 7:Let C5 be the directed cycle on three edges with adjacency matrix

010
Ap=10 0 1
100
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The resulting matrixt’ is given by
1 0 1

H=|110]|.
0 1 1
which has rank. Therefore, the fixed configurations of the parity-checktqgrol form a(3,1) binary

code (the repetition code) whose generator matrix is given b

G:<1 1 1)-

Any linear protocol on a digrapl® can be viewed as the parity-check protocol on a subgraph.of
Therefore, the linear guessing numberi®fis given by the logarithm of the maximum number of fixed
configurations of the parity-check protocol over all sulpipsof D. In other words, we do not lose any
generality by considering the parity-check protocol onigtead of any linear protocol. The maximum
linear guessing number over all digraphs with no bidirewloedges is hence given by the logarithm
of the maximum number of fixed configurations of the parityah protocol of all digraphs with no
bidirectional edges.

We now reverse the problem, and construct digraphs baseidear Icodes. Clearly, any collection of
vectorscy, 1, - . ., cn—1 € GF(2)™ where thei-th coordinate of; is equal tol would produce a matrix
of the typel + Ap for some digraphD, and the code would simply be the dual of the span of these
vectors. Since the properties of the obtained digraph areasy to determine in general, we focus on
the class of cyclic codes.

Definition 3: Let C' be an(n, k) binary cyclic code generated by the polynomiét). Then the digraph
generated byC' has adjacency matrik, + H'”, where the rows oH’ are then cyclic shifts of g(x).
Equivalently, denotingy(z) = Zf‘z‘ol giz', there is an edge from, ; modq » t0 v, if and only if g; = 1
for all « ands.

Example 8: Three trivial polynomials generate the following digraphs

« The polynomialg(z) = 1 generates the empty graph;

e g(x) =z + 1 generates the directed cydlg, (in particular,Cs given in Examplé 7 is generated by

the (3, 2) single parity-check code);

o glo) =2 =am~t 4272+ . 41 generates the cliqué,,.
The generation of the clique can be generalized when st is a composite number. Then we have

2+ 1 = (28 + 1)z D5 4 225 1 4 2% + 1), hence the rightmost polynomial generates an
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(st,s(t — 1)) cyclic code, which generates the disjoint unionsofliques of sizet each. According to
our previous results, this digraph has in-degree and ogriegeequal ta¢ — 1, while its linear guessing
number iss(t — 1). This digraph is not connected; however, by adding a cytlehat connects all the
vertices, we make the digraph strong, while increasing thdeigree byl. We thus obtain a class of
strong regular digraphs am vertices and in-degreé satisfyinggiinca: (D, s) > n — % for all values ofd.
The properties of digraphs generated by cyclic codes aeli; Theorend]2 below.
Theorem 2:The digraphD onn vertices generated ly with generator polynomia}(z) = Z?:_()l gix!

(henceg(x) dividesz™ + 1) has the following properties.

1) D is regular with in-degree and out-degregg) — 1, wherew(g) is the number of non-zero

coefficients ofg(x).

2) D has no bidirectional edges if and only gfg,—; = 0 for all 1 < i < L%J In particular, if

deg(g) < 5, thenD has no bidirectional edges.

3) D is atournament if and only if; + g, ;=1forall 1 <i<n—1.

4) If gig; =1 for somei, j € {1,2,...,n} relatively prime, thenD is strong.

5) The firstn — deg(g) vertices induce a maximum acyclic subgraph.

6) The binary (linear) guessing number Bf satisfieSgiinear (D, 2) = g(D, 2) = deg(g).

Proof: The matrix obtained by shifting(z) n times has the following properties. Firg{,z) divides
2™ +1 hencegy = 1 and that matrix has ones all over the diagonal, which engbegst is the adjacency
matrix of some digraphD. Second, every row and every column has exaetly) ones, which yields
Property(1). Properti€s 2) ahd 3) are easy to prove.

Third, if g;g; = 1 for somes, j relatively prime, then we have: + bj = 1 for somea,b € Z, and
henced’i +'j =1 mod n for 0 <, < n. Therefore, there is a path of lengih+ &’ from the node
ve 10 the nodevei1 mod » for all 0 < e < n — 1. By iteration, there is a path betweepandv, for all
0<e,f<n-—1andD is strong.

Finally, we prove the last two properties simultaneoudlys leasy to check that the firat— deg(g)
induce a maximum acyclic subgraph in reverse topologiadioiThe dimension of a cyclic code is equal
to n—deg(g), and hence the dimension of its dual is equald@(g) andg(D, 2) > giinear(D, 2) > deg(g).
On the other handy(D,2) < n — mas(D) < deg(g) by Propositio ¥, implying equalities everywhere.

[

Propertie$ 5) and 6) naturally imply constructions of sbleanetwork coding instances based on cyclic

codes, where the first — deg(g) vertices of the digraph generated by are the intermediate nodes,
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Fig. 9. DigraphP; on 7 vertices generated by* + 2> 4+ x + 1 with binary linear guessing number

while the remainingdeg(g) vertices are split into sources and sinks. These instarmeescdvable over
GF(2) using the parity-check protocol, and are hence solvable awg alphabet with cardinality equal
to a power of2.

Theoreni ® indicates that a good choice §0¢) has high degree but low weight. We give an example
of such a polynomial below.

Example 9:Letn = 7 and consider the digraph; generated by(z) = 2*+2?+2z+1 and illustrated
in Figure[9. By Theorem]2, this is a strong and regular toueramsometimes referred to as a Paley
tournament. Its binary linear guessing numbeddg(g) = 4, and the fixed configurations form tt&, 4)
Hamming code.

This construction illustrates the elegance of the guesgarge approach to network coding. Indeed,
the source—intermediate node—sink hierarchy in the nétwoding instance vanishes and all nodes are
on the same level, hence yielding more symmetry in the lieguttigraph.

More generally, the generator polynomial of ti& — 1,1) simplex code generates a digraph on
n; = 2! —1 vertices, regular with in-degreg = 21 — 1, maximum induced subgraph of size = [, and
binary linear guessing number = 2! — — 1. Although these digraphs may have bidirectional edges, the
corresponding network coding instances do not. Therefeeepbtain solvable network coding instances
where the in-degree is around half the number of verticed,fan which the number of intermediate

nodes grows as the logarithm of the number of source-sinis.pai
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B. Digraphs with no bidirectional edges generated by cyctbdes

So far, we allowed digraphs to have bidirectional edgeschvhiade the search for digraphs with high
linear guessing numbers quite easy. We are now interestdigriaphs with no bidirectional edges. Based
on Theoreni 2, this is equivalent to searching for polynosmjét) dividing =™ + 1 such thatg;g,—; =0
forall 1 <i<|[%].

We first give a simple example of such a polynomial. ket= 3¢ be a multiple of3 with ¢ > 3,
ged(t,3) = 1, thenz®4-1 andx! +1 divide 2™+ 1. In particular, their gcd, given bt +1) (22 +2+1) =
22 ottt 4ot 422 + 2+ 1, is a valid polynomial with degree+ 2 and weights. Therefore, according
to Theoreni R, the digraph generated by this polynomial hategree and out-degréeand its linear
guessing number i§ +2. Moreover, Theorer]2 ensures that this digraph has no btatirel edges and
is strong.

This example is interesting because it designs a class cdghig with no bidirectional edges for which
we know the linear guessing number is strictly greater thai©n the other hand, the lower bound in
[12, Theorem 3.3] is given by the cycle packing index of thgraiph, which can be easily shown to be
upper bounded by; therefore, that bound is not tight for these digraphs.

If n = 2p is even, thenw?~! + 2P=2 4 ... + 1 is a valid polynomial, which generates a strong
unidirectional digraph with in-degree— 1 and whose linear guessing number equap te 1.

Let g(z) be a factor oft! ! + 272+ ... +1= xm—;l with degreed and weightw. Then for alll > 1,
22t 4+ 1 = (28 + 1)% hash(z) = (z + 1)¢* () as factor. The degree 6f(z) is clearly 2'd + 1, while
the weight ofh(x) is 2w, and we haveh; = 1. Therefore, this constructs an infinite class of strong
unidirectional digraphs witf2!t vertices, in-degre@w — 1, and binary guessing numbgid + 1.

Our approach was restricted to polynomia(s) which generate a cyclic code, or equivalently, which
divide = + 1. However, any polynomiak(z) wherehg = 1, hjh,—; = 0 for all 4, andh, = 1 for p
relatively prime ton generates a regular strong digraph with no bidirectiongeedThe polynomiak(z)
belongs to the code generated by the greatest common dofigdr:) andx" + 1, therefore the guessing
number of the digraph generated bfx:) has guessing number lower boundeddey(gcd(h(z), 2™ +1)).

Example 10:Letn = 14 andh(z) = 2'2 + 21 + 210 + 2% + 25 4z + 1, then

ged(h(z), 2" +1) = 27 + 2%+ 2° + 2° + 2" + 2% + 1.
In this case, the polynomial has a lower weight than its god, l&ence sparser digraphs can be generated

by considering all polynomials instead of the generatoypoinials of cyclic codes only. Nonetheless,
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considering such general digraphs is not suitable for cocttg network coding instances, as the size
of a maximum induced subgraph in the digraph generatekl(by is not easily computable: it is at least
n — deg(h) = 2; however, it is actually equal t8. Note that Theorerhl2 does not apply i(x), as it

does not divider™ + 1, and the guessing number is strictly less than the degréga0f

V. ON THE MAXIMUM GUESSING NUMBER OF DIGRAPHS

As seen above, constructing digraphs with high guessingbeusnis relatively easy when we allow
bidirectional edges. The main purpose of this section isviduate the maximum guessing humber one
obtains when considering strong digraphs with no bidicewl edges. We are particularly interested in
the binary linear guessing number of sparse digraphs, whitthsurprisingly turn out to be sufficient.
However, for the sake of completeness, we shall state oultsess generally as possible, as some ideas

extend to digraphs with bidirectional edges as well.

A. Upper bounds on the guessing number

We begin this section by deriving upper bounds on the (llngaessing number of digraphs based on
their parameters, such as the minimum or maximum in-de@wesfirst remark in LemmaAl2 that the gap
between the guessing number of digraphs and the number iofviirdices must grow arbitrarily large.
This implies that the probability of success in the guesgjaghe on a digraph with no bidirectional
edges tends to zero when the number of players tends to ynfiriis also indicates that in any family
of solvable network coding instances without any two-hofh fetween a source and its according sink,
the number of intermediate nodes must tend to infinity.

Lemma 2:For any digraphD with no bidirectional edges and any> 2, we haveg(D,s) < n —
log,((s — 1)n+1).

Proof: SinceD has no bidirectional edges, its girth is at leasBy Propositio. 5, we haveg(D, s) <

n

log, As(n,v) < log, As(n,3). Applying the sphere-packing bountk(n,3) < W

1, we obtain the

desired bound og(D, s). [ |
Propositior_1ll below refines this statement for the lineasging number of sparse digraphs without
bidirectional edges.
Proposition 11: For any digraphD on n vertices with no bidirectional edges and with minimum
and maximum in-degreé and A, we haveginear (D, s) < n —log,(n — ¢) — 1 and gjinear(D, s) <

n —log,(n — A —e) — 2, wheree = max {d : EAAET% > n}
A—d+2
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Proof: We first prove the bound based on the minimum in-degree.A.ef Ap such thatl =
rk(I, +A) = n— ginear (D, s), and denotd = I,,+ A. SinceD has no bidirectional edges, all the rows
of B are distinct. We consider thé vectors in the row space @. Since the fixed configurations of the
protocol corresponding t form a code with minimum distance at leasby the proof of Proposition
B, s'—! vectors have a zero in coordinatéor anyi. However, letj be a column oB with at mosty + 1
of ones, i.e. there are at least- § — 1 distinct rows ofB with a zero in coordinatg, and accounting
for the all-zero vector, we obtaigf—! > n — 4.

We now prove the bound based on the maximum in-degree. The with extended parity-check
matrix B has minimum distance at lea3t therefore its dual code (with dimensiér= rk(B)) has the
following property: for any pair of coordinates < i < j < n — 1, s'~2 vectors haveg0,0) in these
coordinates. Let us give a lower bound on the maximum nuntlken over all pairdi, j} of columns,
of rows of B which have(0,0) in columnsi andj. First, note that ifC < B, then the rows with0, 0)
in B also have(0,0) in C. Therefore, without loss, we can assume all the columnB dfave weight
A + 1. The supports of these columns then form a constant-weih of lengthn, weight A + 1, and
cardinality n. As seen in Section II-D, its minimum distan@d satisfiesn < (A—Z+2)/(AA——5—IM) and
therefored < e. Let ¢ andj be two columns ofB at distance2d, then the union of their support has
cardinality A+1+d and there are — A —1—d rows of B with (0, 0) in coordinates andj. Accounting
for the all-zero vector, there are at least A —d such vectors, and henee2 >n—A—d>n—A—e.

B. Combining digraphs to increase the guessing number

In Sectior 1V, we showed how to construct digraphs with higlegsing numbers for finite parameters.
In this section, we investigate how to combine digraphs theotto generate infinite families of digraphs
with high guessing numbers.

Definition 4: The strong producif two digraphsH; and H,, denoted ag1; X H» is defined similarly
to its counterpart for undirected graphs. Its vertex seliésdartesian produdt (H;) x V (Hsz), and there
is an edge from(uy, uz) to (vy,vs) if and only if eitheru; = vy and(ug,ve) € E(Hs), Of ug = v9 and
(u1,v1) € E(Hy), or (u1,v1) € E(Hy) and(ug,v2) € E(H2). Equivalently, the adjacency matrix of the

strong product is given by
AH1|X’H2 = (Inl + A‘Hl) ® (Inz + AHz) - In1n27

where® denotes the Kronecker product of matrices.
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The properties of the strong product are listed in Propmsifiz below.
Proposition 12: Let H; and H, be two digraphs om; andn, vertices, respectively. Then their strong

product H; X Hy has the following properties:

o It hasn = niny vertices.

« If Hy and H, are both strong and without any bidirectional edges, theis 36, X Ho.

o If H; and Hy have regular in-degrees and out-degrees, it is regular iwittegree and out-degree

d(Hy X Hy) = (d(Hy) + 1)(d(Ha) + 1) — 1.

« lts linear guessing number satisfi@gc.. (H1 X Ha, s) > n—(n1 — Giinear (H1, $)) (12 — Glinear (H2, 5))

for all s.

Proof: The first three properties are easy to verify. We hence progddwer bound on the linear
guessing number. LeA; < Apg, such thatrk(I,, + A;) = ni — Giinear(Hi, ) for i = 1,2. Then
(In, +A1)®(In, +A2) < (In, +Ap, )@ (Ln, + Ap,) = L+ Ap,mp,, Which yieldsgyinea, (H1 X Hy, s) >
n—rk{(I,, + A1) ® (I,, + A2)} =n — (N1 — Glinear(H1, $)) (N2 — Glinear(Ha2, $)). [ |

Example 11:For anyk > 1 and! > 3, denote the unidirectional cyclé; raised to the power ok
according to the strong producté%C (for instance? is illustrated in Figuré_10). The@f is a strongly
regular digraph om;; = I* vertices with in-degree and out-degrég, = 2¢ — 1 and linear guessing
numberg; ;. = ¥ — (I —1)*. The lower bound on the guessing number follows Propos@&nThe upper
bound followsg(CF,s) < n —mas(CF) in Propositior #, wherenas(CF) = (I — 1) since the vertices
in {0,1,...,1 —2}* induce an acyclic subgraph.

This yields the following construction of network codingstance. The vertices if0,1,...,1 — 2}*
induce an acyclic subgraph, therefore we use them as intiateenodes. The source and sink nodes
come from the split of the othéf — (I —1)* vertices ofC¥. Since the linear guessing number is equal to
the number of sources, this network coding instance is b@vaver any alphabet by linear operations.

The sequenceé?l’C for a fixed! have the following property: the ratio between the guessingber
over the number of vertices, given W =1- (l‘Tl)lC tends tol ask tends to infinity. We remark
that the convergence could be sped up by considering powdte aigraphP; depicted in Figuré]9,
thus obtaining a ratio of — (%)l‘C for alphabets of cardinality equal to a powerdfbut not necessarily
for other alphabets.

A consequence of Propositian 4 is that for any family of dgdrs with ratio between the guessing
number and the number of vertices tendingltdhe maximum in-degree must tend to infinity. On the

other hand, the digraphs} become more and more sparse @asdk increase, ag) ; + 1 = n}°§l2, and
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Fig. 10. The digraphC3, with linear guessing numbé.

hence we can easily construct sequences of strong digrapihgegular in-degree on the order of
for any e > 0. In Theoren B below, we strengthen this result by consimgcsitrong digraphs with the
ratio of the guessing number over the number of verticesingnb 1 and in-degree tending to infinity
as slow as possible.
Theorem 3:For anyl > 3 and any functionf(n) of n > 1 tending to infinity, there exists an infinite
family of strong digraphsD;, on n; vertices (nondecreasing, sequence) with girth and regular in-
Dy,s)

degree and out-degres, such thatd, < f(ny) for all k > 1 and limy,_,,, Lzl

Nk

= 1 for any
s> 2.

Proof: For all k, let n;, be the smallest multiple of such thatf(n) > 2k for all n > ny. Then
selectm, = 7+ copies of()l’C and join them by tying a directed cycle around all the vesicEhe
cycle goes across the different copies as follows. Sort #réces ofCF in lexicographic order, so that
(vi,vi+1) is an edge for alb < i < [* — 1 and denote the vertices of the obtained digraphfsvhere
0 < a < my, — 1. The cycle is then formed by edgés), v}),. .., (v} 2,45 ~1) and an edgév’ !, v?),
and so on.

The obtained digrapt®;,, hasn,, vertices and in-degreé, = 2*, and hencef (n;) > di. Furthermore,

it can be easily shown that this digraph has girthnd satisfieé““ea;(Dk’s) > 91‘“ea}(kclk’s) >1- (l‘Tl)l‘C
k
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by Example1ll, which tends tb [
Theoreni B implies that there exist network coding instamdésa relatively small number of interme-

diate nodes, a relatively small number of edges coming inubreach node, and an arbitrarily long path

between each source and its corresponding sink. Thesedestare linearly solvable over any alphabet,

and the operation at each node is known.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper, we proved that the problem of deciding wheéheetwork coding instance was solvable
reduced to a problem on the independence number of a relaigideated graph, referred to as the
guessing graph. Although we have derived bounds on thispenttence number, how to efficiently
compute it remains an open problem. A brute force approaaidvMoe computationally infeasible, as
the maximum independent set problem is NP-hard. Also, dhgos for the maximum independent set
problem on general graphs are inappropriate, for the sizkeofuessing graph grows exponentially with
the number of nodes in the original network coding instatt@wever, the guessing graph has many
symmetries (its structure is fixed by the original instanbence specific algorithms could be devised to
bound or compute its independence number. The relatiosdigpveen this problem and coding theory
is of peculiar interest. In particular, we exhibited clas®é network coding instances for which the
maximum independent set of the guessing graph is given bljcayades.

The second contribution of our paper is the design of a faofilgigraphs for which the ratio between
the guessing number and the number of vertices tends to theugh they have a large girth and are
sparse. This family of digraphs yields a family of solvabtwork coding instances, for which binary
linear operations are sufficient. Although we gave necgssad sufficient conditions on the sparsity of
the graph in terms of edges, the maximum speed of convergenaee of the ratio remains unknown.
Similarly, the relation between the guessing number andginh seems an interesting problem for

network design.
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