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Abstract 
 

The presence of chalcopyrite daughter crystals in natural quartz-hosted fluid inclusions that do 

not dissolve when heated to trapping conditions suggests that inclusions are subject to post-entrapment 

modifications that affect chalcopyrite solubility. Previous double capsule experiments conducted by 

Mavrogenes and Bodnar (1994) concluded that the post-entrapment outward diffusion of H2 is 

responsible for the presence of non-dissolvable chalcopyrite crystals in natural, quartz-hosted brine 

inclusions. However, recent studies have shown that quartz-hosted inclusions can also be modified by 

diffusional H
+
 loss and Cu

+
 gain. This means that multiple factors may influence chalcopyrite 

solubility in different fluid inclusion types. In this study, the experimental procedure of Mavrogenes 

and Bodnar (1994) was recreated in order to rehydrogenate quartz-hosted, chalcopyrite-bearing fluid 

inclusions from the El Teniente Cu-Mo porphyry deposit, Chile. These inclusions had a range of 

salinities and densities. Results show that the experimental technique is successful for fluid inclusions 

that contain relatively small chalcopyrite daughter crystals and have moderate salinities (>5 wt.% 

NaCleq). In contrast, chalcopyrite crystals do not dissolve in low density vapor inclusions even after 

rehydrogenation. The failure of chalcopyrite crystals to dissolve in these inclusions is attributed to 

their lower initial pH and higher sulfide concentrations, which led to greater post-entrapment H
+
 loss 

and Cu
+
 gain. This considered, Cu concentrations in moderate to high salinity inclusions are likely to 

reflect those present at trapping, suggesting that H2 loss is the primary control on the failed dissolution 

of chalcopyrite. By contrast, Cu concentrations in S-rich vapor inclusions can increase considerably 

via inward Cu
+
 diffusion in the presence of an external Cu-bearing fluid and a pH gradient between the 

inclusion and this fluid (Lerchbaumer and Audétat, 2012; Seo and Heinrich, 2013). In accordance with 

these studies, the post-entrapment modification of Cu concentrations in vapor inclusions may 

undermine the apparent importance of phase separated vapors as a key agent of Cu transport and 

deposition in porphyry systems.  
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1. Introduction 

Fluid inclusion analysis is a fundamental technique for determining the physical and chemical 

characteristics of fluids that were once present in geological environments. One of the 

assumptions of this approach is that the concentration of elements within a fluid inclusion 

remains unchanged following entrapment in a host mineral such as quartz. Despite this, it has 

been suggested that hydrogen diffusion (H2) through quartz can occur, resulting in significant 

changes in inclusion redox potentials (e.g. Roedder, 1984). This is supported by 

spectrophotometric diffusion tests in the temperature range 400-900°C, which showed that 

over time hydrogen can migrate through quartz via bulk diffusion (Kats et al., 1962). 

Changes in inclusion fH2 have subsequently been used to explain the presence of anomalous 

daughter phases, volatile species and isotopic ratios in natural quartz-hosted fluid inclusions 

(Hall, 1989; Hall and Bodnar, 1990; Hall et al., 1991; Morgan et al., 1993; Mavrogenes and 

Bodnar, 1994).  

 

The effect of hydrogen diffusion on metal-sulfide solubility, in particular the impact 

on sulfide daughter minerals, was studied previously using small, chalcopyrite-bearing, high 

salinity (~55 wt.% NaCleq) fluid inclusions from the Red Mountain porphyry Cu deposit, 

Arizona (Mavrogenes and Bodnar, 1994). Here, the occurrence of large numbers of coeval, 

chalcopyrite-bearing fluid inclusions with broadly uniform vapor fractions, number of phases 

and volumetric proportions provided strong evidence that the chalcopyrite crystals were 

daughter crystals and not accidentally incorporated grains. The high Cu concentrations of 

these inclusions were interpreted to be typical of the high solubility of Cu in saline magmatic-

hydrothermal fluids and were in accordance with solubility data obtained from synthetic fluid 

inclusion studies (Mavrogenes at al., 1992). However, these apparent daughter crystals did 

not dissolve, as they should do, when heated above the inferred trapping temperatures but did 

dissolve once the samples had been equilibrated in double-capsule experiments designed to 

diffuse hydrogen into the trapped fluids. These results are consistent with post-entrapment 

loss of hydrogen as H2 from the fluid inclusions by diffusion through quartz and imply that 

fH2 is a key control on the solubility of chalcopyrite in porphyry brines.  

 

Chalcopyrite daughter crystals have also been reported in a wide range of other fluid 

inclusion types from porphyry systems, including low salinity liquid, intermediate density and 

vapor inclusions (e.g. Vry, 2010). The high Cu concentrations in these inclusions are 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

3 

 

inconsistent with experimental data (e.g. Candela and Holland, 1984, 1986; Hemley et al., 

1992; Bai and Koster van Groos, 1999; Archibald et al. 2002; Hack and Mavrogenes, 2006; 

Simon et al., 2006) and it has recently been shown that these high concentrations may be due 

to a different post-entrapment modification involving diffusion through quartz of small, 

univalent ions such as H
+
, Cu

+
, Na

+
, Li

+
 and Ag

+
 in the presence of an external fluid (Li et al., 

2009; Zajacz et al., 2009; Lerchbaumer and Audétat, 2012).  

 

Reequilibration experiments of synthesized coexisting vapor and brine inclusions in 

quartz showed that Cu
+
 diffusion can significantly modify the Cu concentrations of fluid 

inclusions (Lerchbaumer and Audétat, 2012). Sulfur is interpreted to enhance the inward 

migration of Cu via the precipitation of Cu-sulfide crystals such as CuFeS2 by the reaction of 

incoming Cu
+ 

with trapped H2S and/or SO2. Substantial Cu-gain only occurred when the 

external fluids were less acidic than the inclusion fluid suggesting that outward diffusion of 

H
+
 was responsible for maintaining charge balance. This process was interpreted to continue 

until the system reached chemical equilibrium, explaining why S-rich vapor inclusions appear 

to be particularly prone to Cu gain (Lerchbaumer and Audétat, 2012) and why quartz-hosted 

inclusions commonly record 1:2 molar ratios of Cu and S (i.e. buffered to chalcopyrite 

stoichiometry by adding Cu until S content of the inclusion was exhausted; Seo et al., 2009). 

A study of coeval fluid inclusions hosted by topaz and quartz showed that the average Cu 

concentrations in S-rich vapor inclusions tended to be lower in topaz than in the same fluid 

populations hosted in the quartz (Seo and Heinrich, 2013). This was attributed to the smaller 

diffusion channels in topaz, which prevented Cu
+
 diffusion into the vapor inclusions. By 

contrast, Cu concentrations in coeval brine inclusions are similar in both host minerals, 

leading to the conclusion that brine inclusions are subject to much lower degrees of H
+ 

loss 

and Cu
+
 gain, presumably due to a lower reduced S content (Seo and Heinrich, 2013).  

 

Given these results, it is now unclear whether outward H2 diffusion affecting fO2, 

inward Cu diffusion, or changes in pH via H
+
 diffusion is the main control on the non-

dissolution of chalcopyrite daughter minerals in porphyry-related fluid inclusions. We might 

predict that chalcopyrite daughters in brine inclusions may dissolve on heating after 

rehydrogention if it is only diffusive H2 loss that has occurred. By contrast, low salinity 

inclusions may have undergone significant diffusive Cu gain meaning that rehydrogenation 

alone would not be expected to lead to chalcopyrite redissolution.  
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The present study uses the experimental technique of Mavrogenes and Bodnar (1994) 

to rehydrogenate quartz-hosted fluid inclusions with variable salinities from the El Teniente 

Cu-Mo porphyry deposit, Chile. This deposit was selected due to the abundance of 

chalcopyrite daughter crystals hosted in both intermediate density aqueous and low salinity 

vapor inclusions. In addition, fluid inclusion compositions from this deposit have been 

previously studied previously using LA-ICP-MS (Klemm et al., 2007; Vry, 2010) so that 

there is extensive knowledge of fluid inclusion compositions that was not available in the 

study of Mavrogenes and Bodnar (1994). This allows for a more quantitative assessment of 

the reactions that govern chalcopyrite solubility before and after rehydrogenation. Unlike in 

the study of Mavrogenes and Bodnar (1994), the same inclusions were measured before and 

after each experiment to confirm that chalcopyrite dissolution (if it occurred) was a function 

of increased fH2 and that the inclusions studied were not subject to leakage or volume 

changes during the experiments. In addition, this allowed inclusions at variable depths in the 

sample to be examined in order to test for any limits of H2 diffusion into the samples.  
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2. Samples 

The El Teniente supergiant Cu-Mo porphyry deposit is located on the western margin of the 

Andean Cordillera, within the confines of the central Chilean porphyry copper belt. The 

deposit is one of the world’s largest repositories of Cu with a current and mined resource total 

in excess of 94.4 Mt (Cannell et al., 2005).  Main mineralization type quartz ± anhydrite veins 

(type 6a, type 6b and type 8 veins; Vry et al., 2010) usually contain multiple generations of 

fluids trapped in inclusions with typical diameters of 5-40 µm. Previous microthermometric 

and LA-ICP-MS analyses revealed that they have highly variable densities (0.25-1.5 g/cm
3
), 

salinities (0.1-60 wt.% NaCleq) and Cu concentrations (100-25,000 ppm (Vry, 2010). 

Chalcopyrite daughter minerals are common in the more Cu-rich inclusions and pyrite and 

molybdenite have also been observed (Klemm et al., 2007; Vry, 2010).  

 

Fluid inclusion types at El Teniente are subdivided into salt-undersaturated (type A) 

inclusions and salt-oversaturated (type B) inclusions based on the presence or absence of a 

halite daughter crystal at room temperature (Vry, 2010). A total of nine fluid inclusion types 

have been recognized (Fig. 1), five of which contain opaque daughter phases. The most 

abundant of these are 1-3 µm, triangular, chalcopyrite daughter crystals, particularly in 

intermediate salinity AIDO and ALO inclusions and high salinity BHO brine inclusions. The 

presence of opaque-bearing inclusions in assemblages that have consistent 

microthermometric properties, compositions and number of phases supports the interpretation 

that these opaques are daughter phases and not accidentally trapped crystals. Chalcopyrite 

daughters are also reported in rare, multiphase BM inclusions and AVO inclusions (Vry, 2010).  

 

As with the inclusions from Red Mountain, Arizona (Mavrogenes and Bodnar, 1994), 

the chalcopyrite daughter crystals in all inclusion types from El Teniente failed to dissolve 

when heated. This contrasts with the successful dissolution of chalcopyrite daughter crystals 

in synthetic fluid inclusions (e.g. Sterner and Bodnar, 1984) that have similar compositions 

and microthermometric properties to those encountered in porphyry Cu systems. One 

possible explanation for this is that the opaque-bearing, quartz-hosted inclusions at El 

Teniente have been subject to post-entrapment modification.  
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Fig. 1: Table of fluid inclusion types observed at El Teniente (adapted from Vry, 2010). Type A inclusions 

= aqueous fluid inclusion types with variable vapor fractions and daughter phases. Type B inclusions = 

brine inclusions classified based on contained daughter phases. Vf = volumetric proportion of vapor at 

room temperature. L = liquid, LO = liquid +opaque, ID = intermediate density, IDO = intermediate 

density +opaque, V = vapor, VO = vapor +opaque, H = halite, HO = halite+opaque, M = multisolid. (A-D) 

= photomicrographs of different fluid inclusion types that contain chalcopyrite daughter crystals. (A) an 

ALO inclusion; (B) an AIDO inclusion (C) a BHO inclusion with a small chalcopyrite daughter crystal; (D) a 

BM inclusion with 3 opaque daughter crystals.  Scale bars = 10 µm.  

  

3. Methodology 

3.1 Fluid Inclusion Microthermometry  

Two quartz vein samples were selected for analysis (08-2452-577 and 07-2406-07) based on 

their coarse textures, lack of anhydrite and abundance of chalcopyrite-bearing fluid inclusions 

with a range of densities and salinities. Both samples were associated with deep zones of Cu-

Mo mineralization related to separate diorite finger porphyries on the eastern side of the 

deposit. These were prepared as double-polished sections with thicknesses of ~600 µm and 

broken into several pieces of 1-3 mm length and 2 mm width so that they could fit inside the 3 

mm internal diameter (ID) Pt capsules used in the rehydrogenation experiments. 

 

Microthermometry was carried out using a Linkam MDS600 heating-freezing stage 

with operating temperatures between -190°C and 600°C and heating/cooling rates of 0.1–

99°C/min. Quartz wafers were optically imaged using a motorized stage to produce a grid of 

high-resolution images. This allowed the position of each chalcopyrite-bearing inclusion to be 

Type Fluid inclusion characteristics 

AL Vf = 0-40% 

ALO Vf = 0-40% + opaque daughter 

AID Vf = 40-60% 

AIDO Vf  = 40-70% + opaque daughter 

AV Vf  = 60-90% 

AVO Vf = >70% + opaque daughter 

BH Vf = ~20% + halite daughter 

BHO Vf = ~20% + halite + opaque 

BM Vf = ~20% + multiple daughters 
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recorded so that they could be relocated after rehydrogenation experiments. Each inclusion 

was classified in accordance with Vry (2010; Fig. 1) and the inclusion dimensions and vapor 

fractions (Vf) were recorded. Rounded to sub-rounded fluid inclusions were studied in order 

to reduce the chance of decrepitation during microthermometry and rehydrogenation. All 

inclusions studied were located within 50 μm of the sample surface in order to be within the 

likely range of hydrogen diffusion during the rehydrogenation experiments (c.f. Kats et al., 

1962; Mavrogenes and Bodnar, 1994). 

 

Freezing tests were completed first by cooling samples to approximately -110°C and 

then heating at rates of 30°C to 0.1°C/min. All phase transition temperatures were recorded 

during heating cycles with heating rates of ≤1°C/min, which resulted in a precision of ±0.1°C. 

Accuracy, based on measurement of in-house synthetic fluid inclusion standards, is ±0.1°C 

from -100 to +30°C and ±0.4°C at higher temperatures. The temperature of final ice melting 

(Tmice) was recorded in order to determine the salinity of salt-undersaturated inclusions, 

reported as wt.% NaCleq (Bodnar, 1993; Bodnar and Vityk, 1994). Samples were heated to a 

maximum temperature of 590°C under constant observation to check whether chalcopyrite 

daughter crystals dissolved and, if so, at what temperature. Liquid-vapor homogenization (Th) 

and halite dissolution temperatures (TmHalite) were recorded as well as the mode of total 

homogenization: ThL+VL, ThL+VV, ThL+V+SL+VL or ThL+V+SL+SL. Where brine inclusions 

homogenized by vapor disappearance, fluid inclusion salinity, density and minimum trapping 

pressure were obtained by using existing experimental (Bodnar and Sterner, 1985; Sterner et 

al., 1988; Bodnar, 1992) and theoretical (Bischoff and Pitzer, 1989; Anderko and Pitzer, 

1993) data for the vapor-saturated halite solubility curve and liquid-vapor surfaces in the 

H2O-NaCl system (c.f. Becker et al., 2008). For brine inclusions that homogenized by halite 

dissolution, minimum trapping pressures and salinities were interpreted based on 

experimental data (Bodnar, 1994; Bodnar and Vityk, 1994; Becker et al., 2008) and the 

relationship between TmHalite and ThL-V for a solution of 40 wt.% NaCleq as derived by Becker 

et al. (2008). 

 

3.2 Rehydrogenation Experiments 

Eighty-seven fluid inclusions were analyzed by microthermometry. These displayed total 

homogenization temperatures between 350°C and >590°C and salinities of 1.4 to 57.2 wt.% 

NaCleq. Inclusions with maximum and minimum salinities and/or homogenization 
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temperatures were used to plot isochores for each inclusion wafer (e.g. Fig. 2) using the ideal 

geometric mixing model for the NaCl + H2O system (Brown and Lamb, 1989). The initial 

rehydrogenation experiments (A-C) were conducted at 600°C and pressures of 160-180 MPa 

so that the internal inclusion pressure and confining pressure would be approximately equal 

during the experiments, so as to minimize the possibility of inclusion decrepitation and/or 

leakage during the experiments. Additional experiments (D-I) were conducted at 190 MPa 

and 550°C in an attempt to limit thermal damage of the samples during rehydrogenation (see 

Appendix Table A.1). 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Representative isochores plotted for 

fluid inclusions in piece A of sample 07-2406-

07A based on measured phase transitions in the 

system H2O-NaCl and calculated using the 

equation-of-state of Brown and Lamb (1989). 

For these inclusions experimental P-T 

conditions were selected to lie just above the 

main grouping of isochores at a run 

temperature of 600°C and pressure of 180 MPa. 

 

 

 

The experimental technique and pressure-capsule design of Mavrogenes and Bodnar 

(1994) were essentially reproduced in this study. Each quartz wafer sample was sandwiched 

between two 1 mm thick wafers of pure quartz, which were used to help maintain the integrity 

of the inclusion wafer on collapse of the Pt capsule. These were placed in a 3 mm ID and ~20 

mm long Pt capsule containing water (Fig. 3). This was sealed with an arc welder and loaded 

into a 5 mm ID diameter, 25-30 mm long Au capsule containing water and chromium nitride 

(CrN) which was then also welded shut. All experiments were conducted in standard cold-seal 

pressure vessels (Tuttle, 1949), with water as the pressure medium. Pressure was measured by 

a Bourdon-tube gauge (uncertainty = ±4.0 Mpa) and temperature was measured by a chromel-

alumel thermocouple calibrated against the melting points of Zn and NaCl (uncertainty = 

±4.0°C).  

 

Runs D-I Runs A-C 
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Fig. 3: Double capsule design used for 

rehydrogenation based on the design of 

Mavrogenes and Bodnar (1994).  

 

 

 

 

 

On heating, CrN reacts with water to form chromium oxides, NH3, N2, and H2. 

Because Pt acts as a semi-permeable membrane with regards to H2 and Au is very 

impermeable, the reaction leads to an increase in fH2 in the outer chamber, leading to 

diffusion of H2 into the inner capsule and then into the quartz samples (Chou, 1987). Run 

times of 167 to 216 hours (Appendix Table A.1) were chosen to maximise the period in which 

H2 could diffuse into the inclusions before the CrN had fully reacted with the water. These run 

times allowed for >90% re-equilibration of H2 in fluid inclusions located within 20 µm of the 

sample surface at temperatures of ~600°C (Kats et al., 1962).  

  

At the end of each experiment, the sample was cooled and removed from the pressure 

vessel. Each double-capsule was dried and weighed to verify that there had been no leakage. 

The Au capsule was then opened carefully in order to remove the inner platinum capsule. A 

weak smell of ammonia was evident following the first experiment at 216 hours, but was 

strong following the other runs, indicating that the reaction between CrN and H2O had not 

gone to completion and therefore that high fH2 would have been maintained for the duration 

of the experiment. The Pt capsules were then opened carefully in order to remove each quartz 

sample with minimum damage. Samples were examined under plane-polarized light to 

relocate the previously measured chalcopyrite-bearing fluid inclusions. These were then 

reanalyzed by microthermometry to check that inclusion integrity had been maintained and to 

investigate any changes in the solubility of chalcopyrite daughter crystals.  
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4. Results 

4.1 Experimental Complications 

The procedure used to measure and rehydrogenate inclusions was subject to a number 

of problems that made it difficult to relocate the same inclusions before and after the 

experiments. This may explain why pre- and post-run analysis of the same inclusions was not 

presented by Mavrogenes and Bodnar (1994). 

 

The first problem was that the anhedral mosaic-textured quartz samples used in this 

study were susceptible to breaking due to dissolution at grain boundaries and sample crushing 

during the rehydrogenation experiments (Fig. 4). This led in some cases to complete sample 

disintegration. However, the majority of samples only broke into ~300-1000 µm pieces, 

within which the measured chalcopyrite-bearing fluid inclusions could be relocated. It was 

found that a wafer thickness of ~600 µm was optimal to minimize breakage and to ensure 

optical clarity of the samples for inclusion observations. The second problem was one of 

inclusion dimension: most of those that allowed confident identification of triangular 

chalcopyrite crystals were 10-20 µm in size, but these were prone to decrepitation during pre- 

or post-rehydrogenation heating experiments. Consequently, only the smaller inclusions that 

clearly contained chalcopyrite daughters could be used and only a small proportion of these 

could be successfully relocated after the rehydrogenation experiments (Table 1). 
 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4: (A) Before- and (B) after-run photomicrographs of region of interest 3, sample 07-2406-07B, which 

was affected by the α-β quartz transition during microthermometry to 590°C and was subject to 

disintegration and fracture annealing during the rehydrogenation experiments. Solid black boxes in A 

surround inclusions B4-B6, which could not be accurately measured following rehydrogenation.  

 

 
Strongly 
recrystallized 
texture 

50 µm 

Broken section of 
sample 

50 µm 

Partially 
annealed 
inclusions 

 
B4 BHO 

inclusion 

B5-6 AIDO + ALO 

B A B 
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The third problem was significant restructuring of quartz wafers due to heating of 

samples through the α-β transition of quartz during microthermometry (Fig. 5) and subsequent 

heating and cooling of the samples during the rehydrogenation experiments. In accordance 

with previous studies (Bodnar et al., 1989; Hall and Bodnar, 1989), heating through the α-β 

transition led to mass decrepitation of fluid inclusions and encouraged intergranular fracturing 

of the samples. The rehydrogenation experiments led to further sample disintegration and 

resulted in the partial annealing of cracks and further modifications to the shapes of inclusions 

(e.g. Fig. 4B). This made it extremely difficult to relocate inclusions and in a number of cases 

the lattice deformation of quartz was so severe that the inclusions could not be re-measured 

due to decreased transparency of the samples and the formation of apparent sub-parallel 

deformation features and cracks (e.g. sample 07-2406-07B: Fig. 4B). Because of these 

difficulties, only a third of the initially measured inclusions were relocated and only 7 out of 

87 were re-measured with confidence (Table 1). Unfortunately, no brine inclusions were 

successfully re-measured.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Simplified phase diagram for SiO2 polymorphs and liquid. The α-β quartz transition was crossed 

during microthermometry as samples were heated over 573°C at atmospheric pressure. Experimental 

conditions (black bar) were near the transition but fell just within the α-quartz stability field.  

  

 

Rehydrogenation 

Experiments 

Max. 

Microthermometry 
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Table 1: Microthermometric properties of fluid inclusions that were measured before and after rehydrogenation runs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Type 6a vein = quartz-anhydrite-molybdenite-bornite-pyrite vein with no alteration halo present (refer to Fig. 1). Salinities were calculated using the final 

ice melting temperature (TmIce) based on the NaCl-H2O system (Bodnar, 1993; Bodnar and Vityk, 1994). Abbreviations: FLINC = Fluid inclusion. Vf = Vapor 

fraction. Th(L+V→L or V) = Liquid-vapor homogenization temperature (to liquid or vapor phase). Hom mode = Homogenization mode, where L = homogenization 

to liquid and V = homogenization to vapor. Small changes in salinity and Th(L+V→L or V) are discussed in the following section. Measured depths are accurate to 

±1 µm, TmIce and and Th measurements recorded before rehydrogenation are accurate to ±0.1°C and ±0.4°C respectively. The measurements made after 

rehydrogenation are prone to larger degrees of uncertainty due to difficulty in observing phase changes.  

Before rehydrogenation experiments 

Sample 

Number 

Wafer FLINC FLINC 

type 

Depth 

(µm) 

Length 

(µm) 

Width 

(µm) 

Bubble 

Width 

(µm) 

Vf 

% 

TmIce 

(°C) 

Th(L+V→L 

or V) (°C) 

Hom 

Mode 

Salinity 

(wt.% 

NaCleq) 

Chalcopyrite 

Dissolution 

(°C) 

07-2406-07 B B1 ALO 25 12.2 7 2.2 25 -8.7 476.4 L 12.5 No 

07-2406-07 B B3 ALO 19 10.8 8.2 4.5 35 -12.9 503.1 L 16.8 No 

07-2406-07 D D3 AIDO 25 9.3 6.7 4.4 40 -6.3 461.3 L 9.6 No 

07-2406-07 F F1 AIDO 16 12.7 9.9 6.0 50 -14.6 518.2 L 18.3 No 

07-2406-07 F F8 AVO 19 10.2 8.9 8.9 70 -1.1 444.6 V 1.9 No 

07-2406-07 G G1 ALO 4 11.1 9.7 2.2 30 -3.4 403.0 L 5.6 No 

07-2406-07 G G2 ALO 7 9.8 9.2 2.2 35 -3.5 408.9 L 5.7 No 

After rehydrogenation experiments 

Sample 

Number 

Wafer FLINC FLINC 

type 

Depth Length 

(µm) 

Width 

(µm) 

Bubble 

Width 

(µm) 

Vf 

% 

TmIce 

(°C) 

Th(L+V→L 

or V) (°C) 

Hom 

Mode 

Salinity 

(wt.% 

NaCleq) 

Chalcopyrite 

dissolution 

(°C) 

07-2406-07 B B1 ALO 25 12.2 7.4 2.2 25 -8.6 476.3 L 12.4 Partial to 580 

07-2406-07 B B3 ALO 19 10.8 8.2 4.5 35 -11.9 502.3 L 15.9 560 

07-2406-07 D D3 AIDO 25 9.3 6.7 4.4 40 -6.3 459.1 L 9.6 Partial to 580 

07-2406-07 F F1 AIDO 16 12.7 9.9 6.0 50 -14.0 517.9 L 17.8 530 

07-2406-07 F F8 AVO 19 10.2 8.9 8.9 70 -1.1 437.2 V 1.9 No change 

07-2406-07 G G1 ALO 4 11.1 9.7 2.2 30 -3.4 403.0 L 5.6 Decrepitated 

07-2406-07 G G2 ALO 7 9.8 9.2 2.2 35 -3.4 405.8 L 5.6 Decrepitated 
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4.2 Fluid Inclusion Microthermometry 

Re-examined fluid inclusions were found to contain chalcopyrite daughter crystals that were 

commonly located in different parts of the inclusion after rehydrogenation, suggesting that 

they were fully dissolved during the experiments and were re-precipitated during the quench. 

In general, microthermometry yielded similar results to the pre-experiment data (Table 1). 

However, the two most saline inclusions appeared to have decreased in salinity (beyond 

analytical uncertainty) by up to 0.9 wt.% NaCleq and variations in liquid-vapor 

homogenization temperatures of up to 7.4°C were also recorded. Changes in the internal 

pressure of the inclusions at ambient temperature could theoretically affect ice melting phase 

equilibria. However, each inclusion contains a vapor bubble that almost certainly represents a 

vapor phase in equilibrium with an aqueous phase and therefore inclusion pressures are likely 

to be very low (~0.0001 MPa) at the ice melting temperature (e.g. Bodnar et al., 1985). This 

considered, minor variations in salinity and homogenization temperature may be explained by 

fluid inclusion leakage or minor morphological changes in inclusion shape, which can occur 

in rehydrogenation experiments conducted over several days (Doppler et al., 2013). 

Alternatively, the largest discrepancies could purely be the result of larger analytical 

uncertainties as a result of difficulty in observing phase transitions in the damaged samples 

(e.g. Fig. 4).     

 

4.3 Chalcopyrite Dissolution 

Of the seven relocated inclusions, four displayed clear reductions in the size of their 

chalcopyrite daughter crystals when heated above 460°C (Fig. 7), but full dissolution only 

occurred in the two most saline inclusions (B3 and F1). Of these, inclusion F1 had the largest 

volume (Table 2) and therefore provided the best photographic evidence (Fig. 6A). In this 

inclusion, the chalcopyrite daughter crystal appeared to be fully dissolved by 530°C although 

the slow dissolution of chalcopyrite made exact measurement of the temperature difficult. 

After cooling back to room temperature, the chalcopyrite daughter crystals gradually re-

precipitated and eventually appeared to be of a similar size to before heating (e.g. Fig. 6A).  

 

In two other inclusions (B1 and D3: Fig. 6B) the chalcopyrite daughter crystals failed 

to fully dissolve when heated to temperatures of 567 and 580°C, which are close to the 

heating stage limit. In both inclusions, a decrease in the size of the chalcopyrite daughter 

crystal was evident above ~460°C (Fig. 6B). By contrast, the chalcopyrite daughter crystal in 
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the low salinity AVO inclusion did not undergo any noticeable change in size when held at 

590°C for an hour (Fig. 6C). Both fluid inclusions in wafer G decrepitated during repeat 

heating tests, probably because of their lower homogenization temperatures (higher bulk 

densities) and therefore greater internal overpressures when heated above ThL-V.  

 

Even though only a few fluid inclusions were successfully studied following the 

rehydrogenation experiments, the samples contained a number of other shallow chalcopyrite-

bearing inclusions that showed consistent behavior (Table 2). Chalcopyrite daughter crystals 

failed to dissolve fully in the fluid inclusions with salinities lower than ~7.5 wt.% NaCleq 

(e.g. Fig. 6D) and depths of >20 µm (e.g. Fig. 6G). Due to the fact that heating inclusions 

through the alpha-beta quartz transition lead to mass decrepitation and surface restructuring 

(Bodnar et al., 1989), brine inclusions were extremely rare in wafers A-C (heated to 600°C). 

By contrast, a number of brine inclusions were observed in wafers H-I, which were 

rehydrogenated at 550°C and 190 MPa (Table 2). In accordance with Mavrogenes and 

Bodnar (1994), the chalcopyrite daughter crystals in three shallow brine inclusions (Fig. 6E-

F) readily dissolved as temperatures were raised and held at >500°C. A number of brine 

inclusions were observed at greater depths from the surface, however, the chalcopyrite 

crystals in these inclusions failed to dissolve when heated to 550°C (Fig. 6G). This suggests 

that the concentrations of H2 were only sufficient for chalcopyrite dissolution near the sample 

surface (Kats et al., 1962). 

 

 Due to the extremely small size (<1 µm) of most chalcopyrite daughter crystals and 

variations in crystal shapes (e.g. Fig. 6) it was difficult to assess the percentage dissolution of 

chalcopyrite in each fluid inclusion in order to estimate solubility. Furthermore, the extent to 

which chalcopyrite dissolves is also a function of inclusion composition and degree of 

rehydrogenation which varies with inclusion depth. Consequently, no attempt was made to 

define an approximate chalcopyrite solubility curve. 
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 Fig. 6: Photomicrographs showing behavior of chalcopyrite daughter crystals in inclusions with various 

salinities and depths following rehydrogenation experiments (A) Apparent redissolution of a chalcopyrite 

daughter crystal at ~530°C (inclusion F1, sample 07-2406-07; see Table 1).The exact temperature of 

chalcopyrite dissolution was difficult to observe due to a small indentation in the fluid inclusion. (B) 

Minor reduction in size of daughter crystal as the temperature was increased above 450°C (inclusion D3, 

sample 07-2406-07). (C) Failed dissolution in a 1.9 wt.% NaCleq AV inclusion at a depth of 19 µm 

(inclusion F8, sample 07-2406-07). (D) Failed dissolution in a 6.8 wt.% NaCleq AIDO inclusion at a depth of 

52 µm (inclusion FA1 – not measured before rehydrogenation). (E-F) Successful redissolution of 

chalcopyrite daughter crystals in dense brine inclusions (E = inclusions HA5 and HA6, F = inclusions IA1 

- not measured before rehydrogenation). (G) Failed redissolution of chalcopyrite in a deeper (47 µm) 

brine inclusion (inclusion IA2– not measured before rehydrogenation, see Table 2). Scale bars = 15 µm. 
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Table 2: Microthermometric properties of fluid inclusions that were only measured after 

rehydrogenation. 

Notes: Wafer B was equilibrated at 600°C and 160 MPa, whereas the other wafers were equilibrated at 

550°C and 190 MPa. Salinities were calculated using the final ice melting temperature (Tm Ice) based on 

the NaCl-H2O system (Bodnar, 1993; Bodnar and Vityk, 1994). Abbreviations: FLINC = Fluid inclusion. 

Vf = Vapor fraction. Th(L+V→L or V) = Liquid-vapor homogenization temperature (to liquid or vapor 

phase). Hom mode = Homogenization mode, where L = homogenization to liquid and V = homogenization 

to vapor. Measured depths are accurate to ±1 µm, all salinity measurements had an uncertainty of >0.5 

wt.% NaCleq and Th measurements had an uncertainty of ±0.4°C. 

 

 

 

Sample 

Number 
FLINC 

FLINC 

type 
Depth 

Vf 

(%) 

Th(total) 

(°C) 

Hom 

Mode 

Salinity 

(wt.% 

NaCleq) 

Chalcopyrite 

Dissolution 

(°C) 

07-2406-07 BA1 ALO 12 25 429.9 L 9.0 550.7 

07-2406-07 BA2 ALO 19 30 423.3 L 8.1 540.9 

07-2406-07 BA3 AVO 7 70 400.2 V 1.3 No Change 

07-2406-07 FA1 AIDO 14 45 455.4 L 6.8 No Change 

07-2406-07 FA2 AVO 20 70 399.0 V 0.9 No Change 

07-2406-07 FA3 ALO 11 30 408.8 L 4.2 No Change 

07-2406-07 FA4 AIDO 10 45 420.3 L 8.0 Partial >550 

07-2406-07 HA1 ALO 9 35 408.3 L 7.9 530.2 

07-2406-07 HA2 ALO 14 35 400.8 L 5.4 Partial 590 

07-2406-07 HA3 AVO 16 80 396.1 V 1.0 No Change 

07-2406-07 HA4 AIDO 13 60 430.4 L 5.5 Partial 590  

07-2406-07 HA5 BHO 20 20 386.2 L 33.0 510.5 

07-2406-07 HA6 BHO 24 20 388.5 L 33.2 Partial >515 

07-2406-07 IA1 BHO 12 25 450.5 L 37.2 525.1 

07-2406-07 IA2 BHO 47 20 390.5 L >54.0 No Change 

07-2406-07 HA3 AIDO 13 50 432.4 L 8.7 560.3  

07-2406-07 HA4 AIDO 21 50 432.4 L 6.4 Partial >580  
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5. Discussion 

The rehydrogenation experiments confirm that increasing fH2 in fluid inclusions via diffusion 

through quartz leads to the partial or total dissolution of chalcopyrite daughter minerals that 

were previously insoluble. However, the results from this and the previous study 

(Mavrogenes and Bodnar, 1994) have only documented this effect for moderate to high 

salinity inclusions (>~7.5 wt.% NaCleq). Here, we find that chalcopyrite crystals in 

rehydrogenated, low salinity AIDO and low density AVO inclusions show negligible changes in 

size when heated to temperatures considerably higher than their interpreted liquid-vapor 

homogenization temperatures (Fig. 6, Table 2). This suggests that factors other than H2 loss 

are important controls on chalcopyrite solubility in these inclusion types.  

 

Mavrogenes and Bodnar (1994) did not address the reactions responsible for the 

(renewed) dissolution of chalcopyrite, perhaps due to the absence of a technique that could 

ascertain accurately the compositions of the inclusions. In contrast, fluid inclusions in the 

vein types used in this study have been studied previously using PIXE (Cannell, 2004) and 

LA-ICP-MS analysis (Klemm et al., 2007; Vry, 2010). These studies showed that all fluid 

inclusion types are dominated by Na, Cl, K, Ca, Fe, Mn, Cu, Pb and As, all of which correlate 

positively with inclusion salinity. 

 

The highest Cu concentrations at El Teniente were recorded for high salinity brine 

inclusions. This is likely to be due to the preferential complexation of Cu as highly soluble 

CuCl
0
 and [CuCl2]

- 
species as proposed in a number of solubility (Candela and Holland, 

1984, 1986; Bai and Koster van Groos, 1999; Archibald et al. 2002; Simon et al., 2006) and 

speciation studies (Mavrogenes et al., 2002; Berry et al, 2006, 2009). Despite this, Cu 

concentrations were also commonly elevated in several low salinity (<2.0 wt.% NaCleq), 

liquid or vapor inclusions at El Teniente (Vry, 2010). This suggests that significant amounts 

of Cu may also be dissolved as [Cu(H2O)6]
2+

 in vapors with high fH2O (Mavrogenes et al., 

2002), or as HS
-
 complexes including [Cu(HS)2]

−
 in relatively reduced, sulfur-rich fluids 

(Heinrich et al. 1999; Mountain and Seward, 2003; Simon et al., 2006; Pokrovski et al., 

2008; Seo et al., 2009; Landtwing et al., 2010). As a result, the solubility of chalcopyrite 

daughter crystals in quartz-hosted inclusions may be controlled by several different 

equilibria, some of which may be influenced by fH2 and some of which may not.  
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The oxidation states of Cu and Fe in chalcopyrite are predominantly +1 and +3 

respectively (e.g. van der Laan et al., 1992; Rickard and Cowper, 1994; Pearce et al., 2006) 

and the predominant oxidation state of Fe in solution at elevated temperatures and a range of 

salinities is likely to be +2 (e.g. Seyfried and Ding, 1993; Liu et al., 2002). Given this, and 

assuming the proposed complexes of Cu in solution noted above, the likely equilibria that 

govern the solubility of chalcopyrite in fluid inclusions are: 

      

2Fe
2+

 + 2Cu
+
 + 4HS

-
 = 2CuFeS2 + H2 + 2H

+
 ............or    (1) 

2Fe
2+

 + 2Cu
+
 + 4H2S = 2CuFeS2 + H2 + 6H

+     
(2) 

 

According to these reactions, if H2 is produced by the crystallization of chalcopyrite 

and subsequently lost from fluid inclusions post-entrapment, then the back reaction and 

dissolution of chalcopyrite will be prevented when the inclusion is heated back to the 

trapping conditions. Obviously, the temperature-dependence of sulfide solubility (implicit in 

the precipitation of sulfide daughter crystals within inclusions) means that heating would 

always be required to redissolve a chalcopyrite crystal. Rehydrogenation and then heating of 

such inclusions, clearly, would allow chalcopyrite redissolution to take place according to 

either of these reactions. 

 

The successful dissolution of chalcopyrite daughter crystals in the most saline 

inclusions (Fig. 6; Tables 1-2) suggests that the experimental technique was successful in 

permitting the reversal of reaction 1 or 2 on heating. The incomplete dissolution of 

chalcopyrite in the two relocated moderate salinity inclusions is attributed to the fact that they 

were at greater depths (25 µm; Table 2) such that insufficient H2 was able to diffuse back into 

them during rehydrogenation. Based on previous experimental estimates (Kats et al., 1962; 

Mavrogenes and Bodnar, 1994) inclusions at these depths would require run times of at least 

330 hours to achieve 95% H2 reequilibration. 

 

The failure of the chalcopyrite daughter crystals to dissolve in the rehydrogenated 

vapor inclusions, despite their equivalent depths to the more saline liquid inclusions, requires 

explanation. If porphyry vapors are trapped at high temperature (>400°C), they will produce 

significant H
+
 via the dissociation of acids and the disproportionation of magmatic sulfur 

dioxide (e.g. Giggenbach, 1992; Rye, 1993; Heinrich et al., 2004), which both occur in 
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response to decreases in temperature and pressure (Meyer and Hemley, 1967; Reed and Rusk, 

2001; Reed et al., 2005; Rusk et al., 2008): 

 

 H2SO4 = H
+
 + HSO4

-
 = 2H

+ 
+ SO4

2-
       (3) 

 HCl = H
+
 + Cl

-  
       (4) 

4SO2 + 4H2O = H2S + 3HSO4
- 
+ 3H

+
      (5) 

 

In the presence of a gradient in chemical potential (e.g. pH difference), H
+
 can freely diffuse 

out of fluid inclusions as long as charge balance is maintained by the inward diffusion of 

univalent metal ions with ionic radii small enough to pass through the 1 Å diffusion channels 

in quartz (Mortley, 1969; White, 1970: Fig. 7). Recent experiments have demonstrated that several 

cations, including Li
+
, Na

+
, Cu

+ 
and Ag

+
 have the potential to rapidly diffuse through quartz 

(Li et al., 2009; Zajacz et al., 2009; Lerchbaumer and Audétat, 2012; Seo and Heinrich, 

2013) providing a mechanism for balancing H
+
. In particular, reequilibration experiments 

have indicated that Cu concentrations could be significantly modified in porphyry fluid 

inclusions by such a mechanism (Lerchbaumer and Audétat, 2012). Inward diffusing Cu
+
 

combines with dissolved S (as HS
-
 or H2S) and Fe

2+
 to form chalcopyrite. In accordance with 

reactions 1-2, this generates more H
+
 perpetuating further exchange of H

+
 for incoming Cu

+
 

(Seo and Heinrich, 2013).  

 

Inward Cu
+
 diffusion can continue as long as there is reduced sulfur in the inclusion 

to precipitate chalcopyrite. This explains why S-rich vapor inclusions commonly have Cu/S 

molar ratios that reflect the ~1:1 mass ratio of Cu and S in chalcopyrite (Seo et al., 2009). 

The strong partitioning of acid volatiles and sulfur species into the vapor phase (e.g. Burnham 

and Ohmoto, 1985; Heinrich et al., 1999) suggest that the opaque daughter crystals in these 

inclusions are likely to be the result of post-entrapment inward diffusion of Cu
+
 (Fig. 8C). By 

contrast, the non-dissolvable chalcopyrite daughter crystals in the partitioned brine 

inclusions, which dissolve after rehydrogenation, are explained by the favorable partitioning 

of Cu into the dense hypersaline fluids and subsequent H2 loss (Fig. 7).  

 

At El Teniente the vapor and brine inclusions are interpreted to have been produced 

by the phase separation of intermediate density fluids with salinities of ~7.0 wt.% NaCleq that 

boiled as temperatures dropped to ~390°C (Spencer et al., 2013). Preliminary LA-ICP-MS 

and microthermometric analyses reveal that the parental fluids had typical Cu concentration 
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of ~3000 ppm and produced brines with typical salinities of ~43.3 wt.% NaCleq and Cu 

concentrations of ~10000 ppm (Fig. 7A). In accordance with Dreisner (2007) a phase 

separated vapor in equilibrium with a brine at this temperature should have a salinity of ~ 

0.01 wt.% NaCleq. This equates to an inferred vapor/brine mass ratio of ~5.7 when 

considering an input fluid of ~7.0 wt.% NaCleq (Fig. 7B). The average Cu concentration of 

1760 ppm in the phase separated vapors suggests that DCu
vapor/brine 

values of ~0.176 are 

typical for the main mineralization fluids at El Teniente. This only slightly exceeds recent 

DCu
vapor/brine 

values of 0.11 to
 
0.15 calculated by Lerchbaumer and Audétat (2012) for 

unmodified porphyry ore fluids using similar vapor/brine mass ratios of 4–9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Schematic sketch showing the post-entrapment modification of H2, Cu
+
 and H

+
 concentrations in 

(A) high salinity brine inclusions, (B) moderate salinity, intermediate density inclusions and (C) low 

density, S-rich vapor inclusions hosted in quartz in equilibrium with an ore fluid. The intermediate 

density inclusions are interpreted to represent parental fluids for the partitioned vapor and brine 

assemblages (Spencer et al., 2013). Outward H
+
 diffusion relies on a gradient in fluid acidity and permits 

inward Cu
+
 diffusion to maintain a charge balance. Incoming Cu is precipitated as chalcopyrite leading to 

net Cu gain. Due to the high initial H2S concentrations of vapor inclusions they can acquire large 

quantities of Cu. Figure after Lerchbaumer and Audétat (2012). Fluid inclusion and external fluid 

salinities and compositions are based on previous fluid inclusion studies (Cannell, 2004; Klemm et al., 

2007; Vry, 2010) and unpublished LA-ICP-MS data for El Teniente. 
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Boiling assemblages are particularly abundant in quartz-chalcopyrite type 6b veins 

(Fig. 8a) and quartz-anhydrite-chalcopyrite type 8 veins (Fig. 8b) with sericitic halos. These 

veins were formed by the same fluids as they migrated outward and upward and cooled 

(Spencer et al., 2015). In the type 6b veins the vapor inclusions contain Cu concentrations of 

up to 8000 ppm (Fig. 8a), suggesting that they may be the product of post-entrapment Cu 

diffusion into vapors that contained approximately 0.8 wt.% S (Fig. 7C). These 

concentrations are similar to the S concentrations of up to 1 wt.% recorded in vapor 

inclusions associated with Cu mineralization of the Mole granite, Australia (Heinrich et al., 

1999). By contrast, vapor inclusions in the type 8 veins record a far lower average Cu 

concentration of ~200 ppm and the apparent boiling assemblages yield a lower DCu
vapor/brine 

value of ~0.11, similar to those reported by Lerchbaumer and Audétat (2012). This suggests 

that the vapor inclusions in these veins may have been less prone to post-entrapment Cu 

enrichment. The presence of intense sericitic alteration in the outboard type 8 veins indicates 

that they formed in the presence of acidic fluids produced by acid dissociation as 

temperatures dropped below 400°C. This, and the presence of abundant chalcopyrite in the 

type 8 veins implies that most vapor inclusions were trapped in the presence of relatively Cu-

poor and H
+
-rich ore fluids. Consequently, the average DCu

vapor/brine 
value of ~0.11 found for 

boiling assemblages in the type 8 veins may reflect the true partitioning behavior of Cu at El 

Teniente. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Individual fluid inclusion LA-ICP-MS data for different fluid inclusion types in (A) quartz-

chalcopyrite type 6b veins and (B) sericite altered quartz-chalcopyrite type 8 veins at El Teniente. Refer 

to Fig. 1 for inclusion nomenclature. Data were collected for veins from several mineralized intrusions. 

Dashed diagonal lines = Cu/Na concentration ratios of 1 and 0.1. 

 

 
 

 
 

 

B A 

 
 

Spent ore fluids 

Modified AV 
inclusions 

Parental AID 
inclusions 

Cu-rich BHO 
inclusions 

Parental AID 
inclusions 

Cu-rich BHO  
inclusions 

Unmodified Cu-
poor AV 
inclusions 

Cu (ppm) Cu (ppm) 

Spent brines? 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

22 

 

6. Conclusions 

This study finds that the experimental technique of Mavrogenes and Bodnar (1994) can be 

used to diffuse H2 back into fluid inclusions without modifying inclusion microthermometric 

properties. Rehydrogenation experiments increased chalcopyrite daughter crystal solubility in 

moderate salinity inclusions, highlighting the importance of H2 loss for preventing 

chalcopyrite daughter crystal dissolution. The technique was only successful for shallow 

inclusions due to the relationship between the depth of H2 diffusion through quartz and time. 

The failed redissolution of chalcopyrite in rehydrogenated, low salinity vapor inclusions is 

interpreted to be the result of post-entrapment Cu gain due to their high initial reduced S 

contents and the presence of acid-generating species, which led to the precipitation of 

―excess‖ chalcopyrite.  

 

In accordance with Lerchbaumer and Audétat (2012), the consequence of this is that 

Cu concentrations measured by LA-ICP-MS in quartz-hosted, S-rich vapor inclusions are 

often likely to be modified by post-entrapment, at least in porphyry deposits where high Cu 

pore fluids may be present throughout much of the life of the system. Preliminary LA-ICP-

MS data suggest that Cu concentrations in vapor inclusions at El Teniente from the main 

quartz-sulfide vein stage are likely to have been enhanced by around one order of magnitude 

by this process. Results from the sericite-stable vein stage suggest that diffusional Cu gain 

may be less pronounced in the later (phyllic-argillic alteration) stages of the evolution of 

porphyry systems where the ambient fluids are more acidic, thereby hindering outward H
+
 

diffusion. This also suggests that Cu diffusion principally occurs on the timescale of an active 

hydrothermal system (tens to hundreds of thousands of years) rather than requiring geological 

timescales. In fact, experimental data show that Cu diffusion into inclusions can occur over a 

matter of days so that, in natural systems, predisposed inclusions may effectively be modified 

as soon as they are trapped. Future analyses of rehydrogenated inclusions using Raman 

spectroscopy may provide insight into the H2 content of the vapor bubbles and H2 variability 

between inclusion types, while PIXE analyses may determine the distribution of Cu in 

different phases within each inclusion type.  

 

 The selective, post-entrapment modification of Cu concentrations in vapor inclusions 

undermines the importance of phase separated vapors as a key agent of Cu transport and 

deposition in porphyry and overlying epithermal systems (e.g. Roedder, 1971; Heinrich et al., 
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1999; Klemm et al., 2007; Rusk et al., 2004; Landtwing et al., 2010). Based on our 

observations we suggest that parental intermediate density fluids play the most important role 

in transporting Cu into the shallow crust, whereas phase-separated vapors and brines, which 

are subordinate in terms of total mass, may play relatively similar roles in transporting and 

depositing Cu in the porphyry environment. The upward transition of some porphyry systems 

into vapor-dominated epithermal systems (e.g. Hedenquist and Lowenstern, 1994; Sillitoe, 

2010; Lecumberri-Sanchez et al., 2013) implies a potential increase in the importance of 

vapors for transporting Cu in these shallower hydrothermal environments.  
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Appendix  

 Table A.1: Summary of rehydrogenation experimental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Notes: Wafer codes were given to successful runs in which fluid inclusions could be measured following 

rehydrogenation. L-fO2-15 disintegrated during the run. 

Sample Number Run Number Wafer Code T (°C) P (MPa) Duration (h) 

07-2406-07 L-fO2-1 A 600 180 216 

07-2406-07 L-fO2-2 B 600 160 168 

07-2406-07 L-fO2-3 C 600 160 167 

07-2406-07 L-fO2-4 D 550 190 192 

07-2406-07 L-fO2-5 E 550 190 192 

07-2406-07 L-fO2-6 F 550 190 192 

07-2406-07 L-fO2-7 G 550 190 192 

07-2406-07 L-fO2-15 Failed 550 190 191 

07-2406-07 L-fO2-16 H 550 190 191 

07-2406-07 L-fO2-17 I 550 190 191 
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Highlights 

The controls of post-entrapment diffusion on the 
solubility of chalcopyrite daughter crystals in 

natural quartz-hosted fluid inclusions 

Edward T. Spencer, Jamie J. Wilkinson, John Nolan, and Andrew 

J. Berry 

 

 

- Quartz-hosted fluid inclusions are open 

with respect to H2, H
+
 and Cu

+
 diffusion. 

- H2 and H
+

 loss and Cu
+
 gain reduce cpy 

solubility in natural fluid inclusions. 

- Rehydrogenation of moderate salinity 

inclusions enables successful cpy 

dissolution.  

- Cpy crystals in S-rich vapor inclusions fail 

to dissolve due to greater Cu
+ 

gain. 

- The role of phase-separated vapors in 

porphyry Cu-transport is undermined. 


