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This paper is concerned with rapid distortion theory on transversely sheared mean flows which (among 

other things) can be used to analyze the unsteady motion resulting from the interaction of a turbulent 

shear flow with a solid surface. It extends previous analyses of Goldstein, Afsar & Leib (2013 a, b) which 

showed that the unsteady motion is completely determined by specifying two arbitrary convected 

quantities. The present paper uses a pair of previously derived conservation laws to derive upstream 

boundary conditions that relate these quantities to experimentally measurable flow variables. The result 

is dependent on the imposition of causality on an intermediate variable that appears in the conservation 

laws. Goldstein et al (2013a) related the convected quantities to the physical flow variables at the 

location of the interaction, but the results were not generic and hard to reconcile with experiment.  That 

problem does not occur in the present formulation which leads to a much simpler and more natural 

result than the one given in Goldstein et al (2013a). We also show that the present formalism yields 

better predictions of the sound radiation produced by the interaction of a two-dimensional jet with the 

downstream edge of a flat plate than the Goldstein et al (2013a) result. The role of causality is also 

discussed.  

_____________________________________________________________________________________ 

 1. IntroductionEquation Section (Next) 

Rapid Distortion Theory (RDT) uses linear analysis to study the interaction of turbulence with solid 

surfaces. It applies whenever the turbulence intensity is small and the length (or time) scale over which 

the interaction takes place is short compared to the length (or time) scale over which the turbulent 

eddies evolve (Hunt, 1973; Goldstein, 1978a,1979a). When interpreted asymptotically, these 

assumptions imply, among other things, that it is possible to identify a distance that is very (infinitely) 

large on the scale of the interaction, but still small on the scale over which the turbulent eddies evolve. 

The assumptions also imply that the resulting flow is inviscid and non-heat conducting and is, therefore, 

governed by the Linearized Euler Equations, i.e., the Euler equations linearized about an arbitrary, 

usually steady, solution to the nonlinear  equationsね customarily referred to as the base flow.  

The simplest case occurs when the base flow is completely uniform. In his now classical paper, 

Kovasznay (1953) showed that the unsteady isentropic motion on this flow can be decomposed into the 

sum of a vortical disturbance that has no pressure fluctuations and an irrotational disturbance that 

carries the pressure fluctuations. The latter satisfies a second-order wave equation when the flow is 

compressible and should either decay or propagate relative to the base flow. It can, therefore be 

associated with the acoustic component of the motion on these flows. The former, which moves 

downstream at the mean flow velocity, i.e., it is a purely convected quantity, can be associated with the 
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remaining, hydrodynamic, component of the motion. Any convected velocity field will satisfy the 

linearized momentum equations for this flow, but continuity only allows two of its components to be 

arbitrary. These two quantities can then be independently specified as time stationary boundary 

conditions for unsteady surface interaction problems. This makes the Kovasznay decomposition 

particularly useful for analyzing problems that involve the interaction of turbulence (which corresponds 

to the hydrodynamic component of the motion) with surfaces embedded in uniform mean flows (Sears, 

1941), or in flows that become uniform in the upstream region (Hunt, 1973; Goldstein, 1978a, 1979a,). It 

is worth noting, however, that the Kovasznay decomposition is not unique because there are irrotational 

(homogeneous) solutions that carry no pressure fluctuations and can therefore be associated with 

either the vortical component or with the irrotational component.    

There have been a number of attempts to extend these ideas to non-uniform base flows, but the 

situation is considerably more complicated when the entire base flow is non-uniform. The simplest case 

occurs when the base flowU is incompressible and the mean shear is uniform, i.e.   

 2,U y   (1.1) 

where   is a constant and 1 2 3, ,y y y are Cartesian coordinates, with 1y being in the mean flow 

direction. Then the two-dimensional small-amplitude motion is determined by the linearized 

incompressible vorticity equation,  1 3/ / 0,U y        where  denotes the time and 
3
  the 

two-dimensional spanwise vorticity perturbation. Orr (1907, see also Drazin & Reid, 1981, pp. 147-151) 

pointed out that this equation or, equivalently, the two-dimensional Rayleigh equation 

                                     

2 2

3 22 2

1 1 1 1 2

0,U U v
y y y y y

                             


 
                                (1.2) 

which determines the unsteady cross-gradient velocity perturbation  2 2 ,v y   can be integrated to 

obtain 

                                                  

2 2

1
2 22 2

1 2 1 2

, ,c

y
v y

y y y y
 


               

                                                   (1.3) 

where the imposed spanwise vorticity perturbation 3 , which we denote by
c , can be an arbitrary 

function of its arguments. Orr (1907) obtained an analytic solution to an initial value problem associated 

with this equation and used it to study the development of the velocity and pressure fluctuations 

starting from some initial state. But the long-time solutions to at least some initial value problems are 

likely to develop internal shear layers that can no longer be considered inviscid and are susceptible to 

Kelvin-Helmholtz instabilities (Brinkman & Walker, 2001; Cowley, 2001; Cassel & Conlisk, 2014) and are 

therefore not necessarily relevant to the time-stationary turbulent flows being considered here. It does, 

however, seem reasonable to use the steady state (i.e., time-stationary) solutions of this equation to 

represent the turbulence in these flows. The solutions will then be of the form  

                                      1
2 0 2

1 2

,  , | , ,  ,

T

c

T

y
v t g t y d d

x y
   




       x x y y                                    (1.4) 

where  1 2,x xx ,  1 2,y yy  denote the two-dimensional Cartesian coordinates, T denotes a large 

time interval and 0g  is a  two-dimensional GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ that satisfies the Poisson equation  

Page 2 of 44



3 

 

                                                   
2 2

02 2

1 2

, | ,g t t
x x

   
  

      
x y y x                                            (1.5) 

 The vorticity 3
 , which is equal to the convected quantity   1 2 2/ ,c y U y y   , can now be specified 

as a boundary condition since(1.4) will satisfy (1.3) for any choice of this quantity. The inner integral in 

(1.4) will be over  a bounded or semi-bounded region of space, with デｴW GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ 
0g  chosen to 

satisfy appropriate transverse boundary conditions when solid surfaces are present in the flow and the 

integral will the integral will be over all space and 0g can therefore be taken to be 

   1 2
4 ln t

  x y   when they are not. The transverse velocity perturbation  2 ,v t x  would then 

be given by (see Gradshteyn & Ryzhik p.406 #3.723) 

                                        2 0 2 2 1 2 2, /cv t x y t x y dyG




  x                                                          (1.6)        

with   

                                          2 2 2

0 2 2 2

/
sgn sgn

2

x y yi
x y y eG

      (1.7) 

when the convected vorticity   1 2 2/ ,c y U y y   is  taken to be the generic time-harmonic function 

                                  

                                           
 

   1
2 2

2

1 2/
, :c c

i t y U yy
t y y

U y
e

 
  


   
 


                                                  (1.8) 

which can be summed over frequency to represent an arbitrary-time dependent flow. Some typical 

results for the transverse velocity perturbation resulting from (1.8) with  2 :c y  taken to be                

                       2

2 0

2 :
a y y

c y e
      (1.9) 

are plotted in figure 1, which shows that this quantity differs from its purely convected counterpart on a 

uniform mean flow in that it now decays as 1x  .  
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                                                                     (b) Imaginary part 

Figure 1 Transverse velocity fluctuations produced by the convected vorticity(1.8) for the indicated 

values of the parameters.  

Similar behavior is also expected to occur in surface interaction problems, which might, for example, 

involve placing a leading edge at 1 0y  (see figure 2). This implies that the upstream boundary 

conditions cannot be imposed by simply specifying 2v   at upstream infinity when constructing solutions 

to these types of problems. 
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                                                          Figure 2. Leading edge scattering                                                                                               

 

But equation(1.3) shows that the Laplacian of the transverse velocity 2v  is equal to the streamwise 

derivative of the convected quantity   1 2 2/ ,c y U y y   and, therefore does not decay, which 

means that  it can be specified infinitely far upstream on the length scale over which the interaction 

takes place, which, as noted above, can be still asymptotically small compared to the scale over which 

the turbulent eddies evolve. The important point is that the arbitrary convected quantity 

  1 2 2/ ,c y U y y    can be determined by specifying an appropriate experimentally measurable 

quantity in a region of the flow that is uninfluenced by the rapid distortion interaction. Not surprisingly, 

the situation is somewhat more complex for arbitrary transversely sheared mean flows which is further 

complicated by the need to consider causality. The focus of this paper is on extending these ideas to 

such flows and using the results to specify appropriate upstream boundary conditions for RDT problems 

on these more general mean flows.  

Equation(1.3) was extended to three-dimensional compressible motions on general transversely 

sheared mean flows by Goldstein (1978b), Goldstein (1979b) (hereafter referred to as G78 and G79, 

respectively) and Goldstein, Afsar and Leib, (2013a) (hereafter referred to as GAL)--who showed how 

their more general results can be used to formulate RDT problems that are relevant to aircraft noise 

prediction. Their results can be thought of as a natural generalization of the Kovasznay (1953) 

decomposition in that the general formalism developed in those references, which is summarized in 

Section 2 of the current paper, shows that the bounded solutions to the linearized Euler equations 

governing the small-amplitude motion on a transversely sheared mean flow involve two purely 

convected quantities that can be arbitrarily specified as input conditions. But these quantities must be 

related to physically measurable flow variables in order to obtain solutions that can be compared with 

experiment. GAL obtained the required relations by assuming that they would be the same as those that 

would exist at the location of the scattering inhomogeneity in a streamwise-homogeneous flow (that 

would exist in the absence of any scattering inhomogeneities in the streamwise direction). The result 

was quite complicated (and ultimately had to be approximated) and, more importantly, required that 

the physical variables be measured in a different flow from the one being analyzed. As noted above, a 

major purpose of the present paper is to relate the convected quantities to the physical variables in a 

way that does not exhibit any of these drawbacks by imposing appropriate upstream boundary 

2y

1y

  

Plate 
U
  

Eddy 
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conditions in the undisturbed region of the flow being analyzedねas was done in G78 and G79. The 

present paper generalizes and extends these results and shows by example that this leads to 

considerably improved agreement with experiment. 

There are a large number of papers (e.g.Taylor,1935; Batchelor and Proudman,1954; Xie, Karimi and 

Grimaji, 2017; Livescu and Mania, 2004;  Sagaut and Cambon, 2008 and references therein) that use 

locally homogeneous RDT (which is a kind of local high frequency approximation) first introduced by 

Moffatt (1967) to study the unsteady motion on planer sheared flows (see Moffatt, 1967) . But the local 

nature of this approximation obviates the need to consider the upstream boundary condition issue, 

which is arguably the main focus of this paper. More general global solutions can be obtained by using 

Non-homogeneous RDT, which usually provides a more realistic representation of the turbulence but 

requires the imposition of upstream boundary conditions. Hunt (1973) used non-homogeneous RDT to 

study the distortion of turbulence by an irrotational base flow.  

Early work on RDT was restricted to incompressible flows. Goldstein (1978a) and G79 introduced 

compressibility effects into the (more general non-homogenous) theory, which allowed the inclusion of 

an acoustic as well as a vortical component of the motion (as in the Kovasznay, 1953 decomposition) 

and not just a vortical component. But more importantly, the inclusion of compressibility enabled the 

application of RDT to the prediction of the radiated sound field produced by the flow. GAL used the 

compressible theory developed in G79 to predict the sound radiation produced by the interaction of a 

two-dimensional jet with the downstream edge of a flat plate. They employed low-frequency 

asymptotics to obtain a relatively simple explicit formula and used it to predict the radiated sound field. 

The results were in reasonable agreement with data but the high frequency roll off of the predicted 

spectrum tended to be much slower than the experimental results. The present paper shows that this 

deficiency can be corrected by considering the high frequency limit. We again obtain an explicit formula 

for the radiated sound field that reduces to the GAL result when one of its factors is set equal to unity. 

But this factor also approaches unity when the appropriately scaled frequency parameter approaches 

zero so that the result behaves like a uniformly valid composite solution that applies at all frequencies. 

The predictions based on this formula are found to be in much better agreement with the experiments 

than those given in GAL.  

While GAL and the present paper use the same application to illustrate the general formalism developed 

(i.e., the interaction of a two-dimensional jet with the downstream edge of a flat plate) the improved 

relations between the theoretical convected quantities and the measureable flow variables makes the 

present results  applicable to a wide range of flow-surface interaction problems. Examples include 

analysis of more complicated geometries, such as deformable plates inclined to the mean flow (Chinaud, 

et al, 2014), which could be of interest in optimisation studies for reducing edge-generated noise.  

Linear theories are also used to study the shock-turbulence interaction and are often refered to as 

Linear Interaction Approximations (LIA) in this context (see for example, Ribner, 1953; Moore, 1954:        

Woushuk et al. (2009) and (2012); Huete et al. (2011) and (2012) as well as extensive discussion of the 

subject by Saguat & Cambon (2008)). Compressible RDT and LIA share some common features (Haute 

Ruiz de Lira, 2010; Haute et al, 2011 Haute, 2012 and others). Both approaches decompose the flow into 
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acoustic and vortical components and both use Fourier and/or Laplace transforms to eliminate the time 

dependence.  

 The paper begins by briefly summarizing the results obtained in GAL for the formal solution to the 

complete inhomogeneous RDT problem. As in G78 & G79 the unsteady motion is determined by two 

convected quantities that can be arbitrarily specified as boundary (or initial) conditions. But, as noted 

above, it is necessary to link these quantities to physical (preferably measurable) flow variables in order 

to relate the solution to conditions that can be controlled by the experimentalist. Conservation laws that 

relate the convected quantities, physical variables and transverse particle displacement are summarized 

in section 3. Section 4 discusses the implications of imposing causality on the solution and shows that 

the transverse particle displacement defined in section 3 vanishes at upstream infinity when this 

condition is imposed. Section 5 shows that the result for the transverse particle displacement can be 

inserted into these conservation laws to obtain an appropriate set of upstream boundary conditions that 

link the arbitrary convected quantities to the physical flow variables.  Section 6 shows how the Fourier 

transforms of these boundary conditions can be used to relate the spectra of the convected quantities 

to the spectra of the physical variables that would actually be measured in an experiment. The results 

are then used to obtain a formula for the sound radiation produced by the interaction of a two-

dimensional jet with the trailing edge of a flat plate that extends the result derived in GAL. The formula 

is used to obtain numerical predictions that are compared with data taken at NASA Glenn Research 

Center (Zaman, Brown & Bridges, 2013; Bridges, Brown & Bozak, 2014 ; Brown, 2015) as part of a large 

experimental campaign to study jet-surface interaction noise (Brown, 2012 ; Bridges, 2014). The 

comparisons were carried out over a broader range of parameters than those in GAL and the agreement 

is now significantly improved relative to those results. The solution is also used to discuss the effects of 

imposing causality.  

2. Review of basic formalism and comparison with the Orr result 

Equation Section (Next) 

As in G78 , G79 and GAL the flow is assumed to be inviscid and non-heat conducting and the fluid is 

assumed to be  an ideal gas so that the entropy is proportional to  ln /p  and the squared sound 

speed is equal to /p  , where p denotes the   pressure,  the density and  the specific heat ratio. 

Then the pressure 0p p p   and mass flux               

                                                                          
i iu ,v                                                                         (2.1) 

perturbations (where iv denotes the velocity perturbation) on a transversely sheared mean flow with 

pressure 0p =constant, velocity  TU y  and mean sound speed squared  2

Tc y , are governed by the 

linearized Euler equations  

                                                         

                                                                                       0
1 0i
i j

j i

D u U
u p

D y y



    
 

                                                   (2.2) 

                                and 

                                                                     
20 0j

j

D p
c u

D y
 
 


,                                                       (2.3) 
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where  2 3,T y yy ,    1 2 3 1, , , Ty y y y y y  and 1/ / /o D yD U     denotes the convective 

derivative. 

G79 shows that the solution to these equations can be expressed in terms of the two arbitrary 

convected functions 1 ,c T

y

U

  
 

y   and   1 / , Ty U  y  and a potential function    that satisfies  

                                                              1 , ,a c T

y
L

U

   
 

y                                                            (2.4) 

where 

                                             

3
20 0

3

1

2 .a

i i i

D D U
L c

D y y D y y 
    

       
                                        (2.5) 

and the physical variables pand
 iu  are determined by  

                                                                  

3
0

3
,

D
p

D




                                                                                (2.6) 

and  

                        0 1
1 2

1
, ,i ij i j ijk T

j j k

D yU U
u

D y y y Uc

                      
y                                 (2.7) 

  with ij denoting the Kronecker delta, ijk  the alternating tensor and  

                                                        0

1

2j

j j

D U

y D y y

 


  
 
  

                                                            (2.8) 

denoting a kind of generalized particle displacement.  

It is well known that the mass flux perturbation, 
iu can be eliminated between (2.2) and (2.3) to    

show that the pressure fluctuation p  ゲ;デｷゲaｷWゲ ‘;┞ﾉWｷｪｴげゲ Wケ┌;デｷﾗﾐ  

                                                                            0,L p                                                                            (2.9) 

where  

                                         

2
2 2

2

1

2o o

i i j j

D D U
L c c

D y y D y y y

     
          

                                     (2.10) 

denotes the usual Rayleigh operator, which is easily shown to be adjoint to the operator 
aL   

For reasons given in the introduction our focus here is on the steady state (i.e. time stationary) solutions 

(which are assumed to exist) and we suppose that   is a stationary random variable (Weiner,1938) and 

therefore that initial conditions imposed in the distant past have all decayed out at the finite time t .  A 

formal steady state solution to (2.4) can then be written as  
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1,  , | , ,  

T

c T

T
T V

y
t g t d d

U
    



 
    

  x y x y y
y

 

                                          2 0
, | ,

ˆ , | ,  

T

j j

j
T S

dS d
g t D

n c g t
y D


  




 
  

    y
y x

y x               (2.11) 

where  , | ,g ty x denotes the Rayleigh operator Greens function which exhibits incoming wave 

behaviour as y and satisfies                         
 

                                                         , | , ,L g t t     y x y x                                            (2.12) 

 the first two arguments of  , | ,g ty x denote the dependent variables and the second two denote 

the source variables,T denotes a very large but finite time interval, V  is a region of space bounded by 

cylindrical (i.e., parallel to the mean flow) surface(s) S  that can be finite, semi-infinite or infinite in the 

streamwise direction and  ˆ ˆ
inn = is the unit outward-drawn normal to S .  The upper limit T  of the 

 integration can be replaced by t  since  , | , 0g t y x for t   . The lower limit  T  reflects the 

fact that the initial conditions must be imposed in デｴW Sｷゲデ;ﾐデ ヮ;ゲデ ｷﾐ ﾗヴSWヴ デﾗ ｷﾐゲ┌ヴW デｴ;デ デｴW┞ Sﾗﾐげデ 
contribute to the steady state solution.  

Equation (2.11)expresses the solution to equation(2.4) in terms of the volume source distribution 

  1 / ,c T Ty U   y y and the values of the potential  on some arbitrary cylindrical surfaces S  

(some or all of which may be at infinity). The analysis is somewhat unconventional in that the direct 

GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ g  ﾐﾗ┘ ヮﾉ;┞ゲ デｴW ヴﾗﾉW ﾗa ;ﾐ ;Sﾃﾗｷﾐデ GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ aﾗヴ デｴW ゲﾗﾉ┌デｷﾗﾐ .  

The surface integrals in (2.11) drop out when any of the surfaces S are at infinity (i.e. when 

V represents all of space) and they can  be eliminated when they are not by requiring デｴ;デ デｴW GヴWWﾐげゲ 
function g  satisfy certain boundary conditions on the bounding these surfaces (since g  is not uniquely 

determined by (2.12)). Equation (2.11) then becomes 

                                     
1,  , | , ,  

T

c T

T
T V

y
t g t d d

U



    

  x y x y y
y

                                         (2.13) 

Equations (2.6) and (2.13) show that the pressure perturbation p  is then given by                                            

                        
 

3

0 1

3

, | ,
,  ,  

T

c T

T
T V

D g t y
p t d d

Dt U


  



 
    

  
y x

x y y
y

                                 (2.14) 

while equations (2.7)and (2.8)show that the corresponding transverse velocity perturbation, 

                                                  

                                            /i

i

U
u t u t U

x



 


x, x,                                                                          (2.15) 
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is given by 

            
1/

 , | , ,  ,

T

i
i c T

T
T V

U x y
u g t d d

U U




 
          y x y y

y
                                  (2.16) 

where 

                                       0 0

1

, | , 2 , | , .i

i i

D D U
g t g t

Dt x Dt x x

   
       

y x y x                                   (2.17) 

Inserting equation (B.12) of Goldstein et al 2013b into this result, noting that the integral over the 

ゲWIﾗﾐS デWヴﾏ ┗;ﾐｷゲｴWゲ ;ﾐS デｴ;デ デｴW ヴWﾉW┗;ﾐデ Pﾗｷゲゲﾗﾐげゲ-Wケ┌;デｷﾗﾐ GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ ｷゲ ゲWﾉa-adjoint (i.e., 

   0 0, | , , | ,g t g t  y x x y ) shows that  it reduces to (1.4) for two dimensional incompressible flows 

with constant mean shear when the arbitrary convected quantity   1 / ,c T Ty U   y y is replaced by 

the renormalized convected quantity 

                                       2

1 1/ / , / ,c T T c T Ty U y U U c   y y y y                               (2.18) 

which has dimensions of vorticity (based on the rescaled velocity iu ). Equation(2.16) which, like(2.14), 

does not depend on the second arbitrary convected quantity  1 / , Ty U  y ) is, therefore, a 

generalization of the Orr result(1.4). The most significant difference is that the convected quantity
 c is 

no longer equal to the spanwise vorticity.   

GAL show that (2.14) will even apply even  when solid surfaces and accompanying downstream wakes 

are present in the flow if  , | ,g ty x and  1 / , Ty U  y  are required to satisfy appropriate 

boundary conditions on these surfaces and  , | ,g ty x is required to satisfy appropriate jump 

conditions across the downstream wakes. The formulas (2.14) and (2.16)for the physical variables pand 

u   can then be viewed as formal solutions to the complete non-homogeneous RDT problem (in the 

usual case where the solid surfaces are aligned with the constant velocity surfaces). They effectively 

ヴWS┌IW デｴW ‘DT ヮヴﾗHﾉWﾏ デﾗ デｴW ヮヴﾗHﾉWﾏ ﾗa aｷﾐSｷﾐｪ デｴW ‘;┞ﾉWｷｪｴげゲ Wケ┌;デｷﾗﾐ GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ デｴ;デ ゲ;デｷゲaｷWゲ 
the appropriate boundary conditions on the bounding surfaces S . The solution  ,p t x  will then be 

independent of the second convected quantity  1 / , Ty U  y  and the acoustic field will only depend 

on the single convected quantity   1 / ,c T Ty U   y y .  

In the absence of scattering surfaces and other external sources the unsteady flow (2.14)- (2.17)consists 

entirely of subsonically propagating disturbances when the mean flow is purely subsonic and, therefore, 

cannot radiate to the far field (Goldstein, 2005 & 2009). This can easily be verified in any particular case 

by working out the relevant far field expansion. It is therefore appropriate to identify it with the 

hydrodynamic component of the motion.  

3. Conservation laws for c , , transverse particle displacement and physical 

variables Equation Section (Next) 
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This section summarizes the conservation laws derived in in Goldstein et al (2013b) and G79 that relate 

the arbitrary convected quantities  1 / ,c Ty U y  and  1 / , Ty U y  and a quantity, which we 

refer to as the transverse particle displacement, to the physical variables. The next section shows that 

this transverse  particle displacement vanishes when 1y   and section 5 shows how these results 

can be used to obtain upstream boundary conditions that relate  1 / ,c Ty U y     and 

 1 / , Ty U y   to the physical (hopefully measurable) flow variables.  

The conservation laws, which are given by equations (3.1) and (3.2) of Goldstein et al (2013b), can be 

written as  

                                ,0 ,

1

    i k i
c k k k i

i i k

N N N
p N

y y y y


                  
                                  (3.1) 

                                                     , 1 0i ijk k j ij

j

N
y


 

      
                                              (3.2) 

where c is related to the rescaled vortical-like quantity c by(2.18) ,  

                                                                 

2

2
,i

i

c U
N

yU





                                                                        (3.3) 

          2 2 2 0
,0 ,

c c c

k k k k k

k k

D p
u u u u c

y y D

                 
 y u u  

                                                                                                        
   2

2

1c

k

c
y c

         
u u              (3.4) 

and  

                                                            

  , ,   for  1,2,3
c

k i k k

i

u u i
y


   


                                           (3.5)

 
are source functions and we have used (2.3)to obtain the last member of (3.4). 

   

                                                          
 

2

1c

knmk

n m

U
u

y yc

 
 

 
                                                                   (3.6)

 

is the velocity component  generated by the second convected quantity  , and  

                                       0

1

, / 2i i

j j j

U D U
t U x

y y D y y


    
             

x ,                               (3.7)         

is the transverse particle displacement  

Equation (2.7) shows that   is related to u  by  

                                                                 01 D
u

U D
  

 
                                                                         (3.8) 

which justifies referring to it as the transverse particle displacement.  
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 Equations (3.1) and (3.4)- (3.6)  relate the arbitrary convected quantities   1 / ,c T Ty U   y y and  

  1 / ,T Ty U   y y  to the pressure p , density weighted velocity u  and the transverse particle 

displacement  ,while equations (3.2) and (3.4)- (3.6)   relate the arbitrary convected quantity 

  1 / ,T Ty U   y y  to the pressure p  , density weighted velocity u  and the transverse particle 

displacement  .  

The tensor  / /k i i kN y N y    is equal to zero  and 
 c

ku  drops out of the  first  term on the right 

side of (3.4)for planar base flows, where 
2c  and U  depend on a single Cartesian coordinate (say

2y ) 

and equation (3.1) then becomes   

             

                       2 2 22 0
2 2

1 2 2

c

dN D p
p N c c u c

y dy y D

 


                   
 


           (3.9)                                                       

                                     

which is  independent of 
 c

iu and, therefore of the second convected quantity . But the divergence 

/i iN y  is equal to zero for the constant shear-constant
2c parallel mean flow(1.1), since iN                                 

is a  constant in that case and it follows from (2.18) that equation (3.9) then reduces to Mohring's   

(1976) result    

                                  2 2 2 0
22

1 2

c

p D p
c c u c

y c y D

                    
                              (3.10) 

;ﾐS デﾗ Oヴヴげゲ Wケ┌;デｷﾗﾐ (1.3) when the flow is incompressible and two dimensional.   

The particle displacement  which appears in equations (3.1) and (3.2) is not actually a physical 

variable in the usual sense and requires further clarification, which is provided in the next section. 

However our interest here is in obtaining a set of upstream boundary conditions that relate 
 c

i and 

 to the physically measurable variables at upstream infinity, which can be obtained by taking the limit 

as 1y of these equations. This greatly simplifies the formulas and, as will be shown below, even 

allows us to obtain an explicit formula for
 c

i .    

4. Particle displacement and causality 
Equation Section (Next) 
As indicated in the paragraphs above and below equations (2.11) and (2.12)our interest is in time 

stationary solutions which are assumed to exist for the physical variables p  and u .  It is therefore 

appropriate to work with the temporal Fourier transforms  

                            1 1
: lim , ,     : lim ,  ,  

2 2

T T

T T
T T

i t i tp p t dt u u t dte e  
 

   x x x x
  

 
  (4.1) 
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where the limits are only formal and the integrals are to be interpreted in a stochastic sense (Weiner,  

1938). (Laplace transforms would not be appropriate here.) However the formula (2.13) for the potential 

  is still only formal in that the integrand on the right hand side has a non-integrable singularity at y x . 

But the corresponding integrands in equations(2.14) and(2.16) for the physical variables p  and u  

remain finite and these quantities are therefore (stochastically) well defined. In fact, GAL, G78 and G79 

show that they are given by 

    

                                   2

0

/1: 2 | : , / :  ,

T

T T T c T T

T

A

Ui x
p G U de   y

x y x y y y


                  (4.2) 

and  

                       2 /11
: 2 | : , / :  ,

T

i T T T c T T

i

T

A

Ui xU
u G U d

x U
e


  

   y
x y x y y y


        (4.3) 

respectively, where Ty is defined below(2.3), TA  denotes the cross sectional area such that 

1

T

T

A V

d dy d





  y y  ,  :c x  is  defined as the limit T   of   

                                                    1
: , , ,

2

T

c T c T

T

i zT z dze


  y y
 


                                                      (4.4)   

   
 

 
1

0 0 1
/

| : , / lim | : ,
T

T T T
k U

G U G k 


y
y x y y x


     (4.5) 

   where                                         

         
 

         1 1 1

3

1

0 1 1 12
| : ,

2

i k y x tTikU i
G k e g t d y x d t

 
    

 
 

     
x

y x y, x,
 

  


       (4.6) 

 

ゲ;デｷゲaｷWゲ デｴW ヴWS┌IWS ｷﾐｴﾗﾏﾗｪWﾐWﾗ┌ゲ ‘;┞ﾉWｷｪｴげゲ Wケ┌;デｷﾗﾐ 

                                                    
 

 0 2

1
,

2
R T TL G  x y


                                                                     (4.7)   

with RL being the  reduced Rayleigh operator    

                                          

   

2 2 2

1

2 2

1 1

1T
R T

T T

c c k
L

U k U k

      
         y y 

                                    (4.8) 

written in terms of the Laplacian T  with respect to the transverse coordinate Ty .  Appendix A shows 

that   0 | : , /T T TG Uy x y    remains finite and is continuous at T Ty x  for two dimensional mean 
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flows and a similar analysis would show that this is true in general, but the notation becomes very 

tedious in that case. Appendix A also shows that  

 

                              1 0 1

1

1
| : , | : , ,  1,2,3i T T T T

iT

G k G k i
xikU i


 

  
y x y x

x
 


                (4.9) 

remains finite and continuous at T Ty x  for two dimensional mean flows. It therefore follows from 

(4.3), the first line of (B.4), (B.6) and inversion of  the Fourier transform (4.1) that  

                                  
 

 
2

12

1

/1

: , ,   as T

U xi x

u x
x

e
  x x


 U                                              (4.10) 

and 

                                     1 2 12

1

1
, / ,  as Tu t t x U x x

x
   x ,xU                                          (4.11) 

where the purely  convected quantity   1 2/ Tt x U x  , xU  is a function of the indicated arguments 

and  ,T x U  is the Fourier transform of that quantity. The comment below (4.8) suggests that these 

results, which generalize the behavior discussed in the introduction, are expected to apply to much 

more general transversely sheared mean flows (such as those described below )  even though they were 

derived for two dimensional base flows. 

  The Fourier transform  

                                                    1
, lim ,

2

T

T
T

i t t dte 


 x x
  


                                                          (4.12) 

of the transverse particle displacement (3.7), which formally satisfies 

        
        

     2

1

/1
| : , /,

2 :  ,

T

i T T T

c T T

i T T

T

A

Ui x G UU
d

x x U U
e 

  
   y y x yx

y y
x y

   
              (4.13) 

will become unbounded at y x  since, as shown in Appendix A for the two dimensional case,  

  | : , /i T TG U y x y will usually not vanish when T Ty x . It can be made finite in a number of 

ways. But there is only one possibility if causality is also imposed. This amounts to assuming that the 

time stationary solutions will exist even if  ,t x is assumed to be identically zero in the distant past.  

This can be accomplished by using the Briggs (1964)-Bers (1975) procedure which amounts to letting   

have a small positive imaginary part, say  and taking the limit as 0 of the resulting formula. It is 

not possible to do this directly in the present case, but (4.13) can represented as the limit of a sequence 

and this procedure can be used to impose causality on each term of that sequence.  It could, however, 

be argued that   need not be causal because it is not actually a physical variable, but the conservation 

laws (3.1) -(3.2)and, more importantly, the upstream boundary conditions would then also be non-
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causal. Our primary interest is in the upstream behaviour of  , which will be used to derive the 

upstream boundary conditions referred to in the introduction. The analysis in Appendix C shows that  

                                                               

                                                              
 

1

1

,
0,  as   x

x


 


x 

                                               (4.14) 

when causality is imposed, which implies that  

                                                                  
 

1

1

,
0,  as   

t
x

x


 


x

                                               (4.15) 

in this case. Different results would be possible if causality were not imposed. 

5. Upstream boundary conditions and relation of c ,   to the physical variables 

Equation Section (Next) 
It is useful, although  not essential, to first split the dependent variables into a hydrodynamic 

component, which does not directly produce any sound at subsonic Mach numbers, and a non-

hydrodynamic component, which accounts for the remainingねincluding the acousticねcomponents of 

the motion, before attempting to derive the relevant boundary conditions. We can then think of the 

former component as being an upstream 'input' that generates a downstream 'response' when it 

interacts with streamwise changes in the boundary conditions.  

 As is well known, it is impossible to unambiguously decompose the unsteady motion on a transversely 

sheared mean flow into acoustic and hydrodynamic components. We can however require that the 

hydrodynamic component not radiate any sound at subsonic Mach numbers, with all the acoustic 

radiation being accounted for by the remaining non-hydrodynamic component. Then, in order to 

identify the input disturbance with the hydrodynamic component of the motion we divide the Rayleigh 

Wケ┌;デｷﾗﾐ GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ  , | ,g ty x  that appears in  the time dependent solution  (2.13)-(2.16) into 

two components, say 

                                                        , | , , | , , | , ,
H s

g t g t g t    y x y x y x                                       (5.1) 

where 
   , | ,
H

g ty x denotes a particular solution of (2.12) which is defined on all space when the 

bounding surfaces S are all at infinity or, more generally, satisfies appropriate boundary conditions (given 

in Goldstein et al, 2013) on a constant mean velocity surface that extends from minus to plus infinity in 

the streamwise direction. The corresponding solution, which is given by(2.14) and (2.16) with 

 , | ,g ty x  replaced by
   , | ,
H

g ty x , does not produce any acoustic radiation and can, therefore, 

be identified with the hydrodynamic component of the unsteady motion. The corresponding けscattered 

solutionげ    , | ,
s

g ty x , satisfies the ｴﾗﾏﾗｪWﾐWﾗ┌ゲ ‘;┞ﾉWｷｪｴげゲ Wケ┌;デｷﾗﾐ along with appropriate 

inhomogeneous boundary and jump conditions on the streamwise discontinuous surfaces S and, 

therefore, accounts for all of the acoustic components of the motion.  

We now obtain the relevant upstream boundary conditions for the convected quantities c and   by 

taking the upstream limit of (3.1) and (3.2), but with  , | ,g ty x  replaced by 
   , | ,
H

g ty x .  This is 

most easily done by using the frequency representation discussed in section 3. The reduced Rayleigh 
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Wケ┌;デｷﾗﾐ GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ  1| : ,TG ky x  that appears in the frequency domain solutions(4.2),(4.3) 

and (4.13) then has the decomposition 

                                        1 1 1| : , | : , | : , ,
H s

T T TG k G k G k y x y x y x                               (5.2) 

where 
   1| : ,
H

TG ky x  is  either defined on all space when the bounding surfaces S are all at  

infinity or it satisfies                                               

                                        

                           

 
   12

1

ˆ
| : , 0,   for  

Hj

T T T

jT

n
G k C

ykU


 

  
y x y

y



                                  (5.3) 

 (where 
TC  denotes the bounding curve/curves that generate the doubly infinite surface/surfaces S ) 

when they are not. The streamwise homogeneous GヴWWﾐげゲ a┌ﾐIデｷﾗﾐゲ 
   , | ,
H

g ty x and  

   1| : ,
H

TG ky x    will then depend on 1y and 1x only in the combination 1 1x y and we, therefore, 

write 

                                                
       1 1| : , | : , .
H H

T T TG k G ky x y x                                           (5.4) 

The convected quantity c  is determined by equations(3.1) and (3.2)whose Fourier transforms are 

given by 

     
   

1 1

/1
:

: :

H

Ti
c T

i

TUi y dN
p

y dy y
e         

y y
y y

  
   

                                              
     ,0 ,

/1 : :k i
k k k i

i k

TUi y N N
N

y y
e

   
        

y

y y


                   (5.5)    

and  

                                                      

 

, 1 0

H

i ijk k j ij

j

N
y


 

      
                                                          (5.6) 

where 
   :
H

T y  is given by (4.13) with  1| : ,i TG ky x  replaced by
   1| : ,
H

i TG ky x                                                       

                                                          : lim : ,c T c T
T

T


  y y                                                     (5.7) 

and      , ,: lim : ,k i k i
T

T


   y y  for 0,1,2,3k   with                                                

                                               1 /

, ,

1
: ,

2
, Ty U

k i k i

T
i

T

dT e
  



  


   y
y y                                       (5.8) 

where , ,   for  0,1,2,3,k i i  are defined by  (3.4) and(3.5).                                           
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 Then since we have shown that Fourier transform 
   :
H

T y  of  the transverse particle displacement 

 H

  vanishes  as 1y  and an argument similar that use to obtain (B.6) shows that 

 :p y  should vanish like 
2

1y
 as 1y   equations (5.5) and (5.6) imply that 

              ,0 , 1

1
: , : ,   as yk i

c T T k k k i

i k

N N
T U N

i y y

    
           

y y y 


             (5.9) 

and 

                                                                        , 0i ijk k jN                                                                     (5.10) 

  where  

                                                
1

, ,: lim : ., ,k i k i
y

T T


   y y                                                       (5.11)    

These results provide the desired relation between the convected quantities 

     1 1/ , , / ,c T T T Ty U y U y y y y    and the upstream limit  , : ,  for 0,1,2,3k i i y  of 

the physically measurable variables that enter through  , ,k i y  in an arbitrary transversely sheared 

mean flow.  

But the focus in the remainder of the paper will be on the two-dimensional mean flows for which 

/ / 0k i i kN y N y      and equation (5.9)  becomes  

                                                            2 3 2 2

1ˆ ˆ: , ,c y k T U y N
i


                                                       (5.12) 

where  

    
 

 3 3 3 3

2 3 3 32

1 1ˆ ; , , : , ,
2 2

T T T

iy k iy k

c c T c T

T T T

i
y k T e T dy e d dye 

  

     y y
    

 
         (5.13) 

 is the double Fourier transform  of the convected quantity  ,c Ty  and  

    
 

    13 3 3 3

1

/

2 3 3 322,0 2,0

1 1ˆ ; , , : , lim ,
2 2

Ty Uiy k iy k

T
y

T

i

T

y k T e T dy e d dye
 

 



 





       y
y y

   
 

(5.14) 

is the upstream limit of the Fourier transform of the physically measureable vorticity derivative 2,0  

given by(3.4).  

But equations(3.4) and (3.6) imply that 

                   2 2 2 2 0
2,0 2 2

2 2

,
D p

u c c u c
y y D

                   
 y u                                 (5.15) 

for two-dimensional mean flows and, therefore that  2,0 , y and consequently,  2 3
ˆ ; , ,y k T  only 

depend on the physical variables 2u  and p  for two-dimensional mean flows.  Equation (5.12) therefore 
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provides the desired upstream boundary condition that relates the Fourier transform of the unknown 

convected quantity    1 / ,c T Ty U y y   to the physically measurable quantity (5.15) in this case. 

But we can go even further than this since an argument similar to that given at the end of Appendix B 

can be used to show that p  should vanish like
2

11/ y   as 
1y   and 

1
2,0lim

y 
 is, therefore, given 

by  2 2

2c c u    . Inserting (4.11)into this result, noting that    2, ,u t u t x x in this case shows 

that  

       
 

  
2

2 2
2 2 2 22

2 2 1 2 12 22
2 2

/
/ ,  T

U y yu
c c u y U y y

y U y


               

, y


U           (5.16) 

Inserting this into  (5.8) and (5.11), and  integrating the result by parts  shows that   

                              1 /

2,0 2,0

1

2
: : , ,, T

T
i y U

T

T

T e dT
 


       




    y
y y y                               (5.17) 

where 

      
 

     
2

2
2 2

1 122

2

/
, U T T T T

U y y
y U y U

U y
  

  

   
      

  
y / y , y / y , y            (5.18) 

6. Relation between the c  spectra and measurable turbulence correlations  

Equation Section (Next) 
But only statistical quantities, such as  

                                    1ˆ ˆ ˆ ˆ, lim ,
2

T

T
T

d
T



   
      y, y y, y                                    (6.1) 

where ˆ
  is defined by(5.15) and(5.14), are of interest for the time stationary turbulent flows that are 

the main focus of RDT. For simplicity, we only consider mean flows that are uniform in the  3y  - 

direction and suppose that the turbulence is statistically homogeneous in the spanwise direction. Then 

the space-time average 

   1 2 3 3, , , ,y y y    y      

         1 2 2 3 3 1 2 3

1
lim / , , /

2

T

T

T
T

y U y y y y U y d dy
T



 

 
        y ,                 

  

                     2 3 3 1 2 1 2 3

1
lim , , / /

2

T

T

T
T

y y y U y y U y d dy
T



 

 
          y ,            (6.2) 
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 will exist and be independent of 
3, y   and it follows from the convolution theorem that 

 
     1 1 2 3 32

1
exp / /

2
i y U y y U y k

 

 

          


 

         
   2 3 2 32

1 2 3 3 3

ˆ ˆ; , , ; , ,
, , , 2 lim

2T

y k T y k T
y y y d d

T



 

  

        y,
 

         (6.3)            

where  2 3
ˆ ; , ,y k T  is given by (5.14) and the asterisk denotes the complex conjugate.      

It, therefore, follows from (5.12)and(6.3) that  

            3 2 3 2 3
2 2 3

ˆ ˆ: , ; : , ;
, : , 2 lim

2

c c

T

y k T y k T
S y y k

T





   
    

 

 

         
3 3 2 2 2 2

2 3 3 3 2

1
, , ,

2 2

i k

c T c

U y U y N N
e t t y y d d

 
 

 

         
   y  

 

                  
         1 2 1 2 3 3/ /

1 2 3 3 3, ,y ,
i y U y y U y k

e t y y t d d

          
 



         y,     (6.4) 

where  2 3
ˆ : , ,c y k T    is given by (5.13). 

6.1 Source Model  

Since the problem is linear, it follows from(4.3) and (5.13) that the complete solution to any problem 

where the surface extends continuously from 3x   , say for the Fourier transformed transverse 

velocity fluctuation  1 2 3, ; ,u x x k  , must be of the form  

                             1 2 3 2 1 2 3 2 3 2
ˆ, ; , , ; , : , ,

lT

u x x k y x x k y k dy      R                                          (6.5) 

which means that knowledge of  2 3
ˆ : ,y k  is all that is actually needed for the two dimensional 

mean flow solutions being considered here. A similar formula would, of course, also hold for Fourier 

transformed pressure fluctuation  1 2
ˆˆ , ; ,p x x k  . 

The spectrum,  2 2 3, : ,S y y k   of the convected quantity c , which is related to the cross correlation 

   1 2 3 3, ,y ,t y y t     y, of the upstream vorticity fluctuation by(6.4) needs to be specified  

before formulas for the acoustic spectrum such as the one  derived in GAL can actually be used. While 

(5.18)and(5.16)  show that 
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1

2 2

2, lim
y

c c u
 

      y                                     (6.6)       

and therefore    1 2 3 3, ,y ,t y y t     y,  corresponds to a physically measureable correlation, 

we are unaware of any measurements of this quantity that have actually been carried out . But the 

transverse velocity correlation    2 2 ,v t v t  , y y , which has been extensively measured, can be well 

represented by the exponential form       2 2 2 2 1, 1A y y y y a     

             
22 22

1 2 1 2 2 2 1 2 1 2 0 3 3/ / exp / / /y U y y U y f l y U y y U y l
                   

 

  where the derivative term accounts for the negative tail of the correlation and the amplitude 

 2 2,A y y is expected to vanish as 2 2, 0,y y   . We therefore initially suppose that 

     1 2 1 2 2 3/ / ,Tt y U y t y U y y y     , y ,U U    

   
1

4

1 1 1lim , , , ,T T
y

y u y t u y t 
y y     

1

4

1 1 1lim , , , ,T T
y

y v y t v y t 
  y y   can be modelled 

by 

     1 2 1 2 2 3 3/ / ,Tt y U y t y U y y y     , y ,U U  

                     4

2 2 2 2 2 1 1 2 1 2, 1 / / ...A y y l y y a y U y y U y
           

 

                           
22 22

2 2 1 2 1 2 0 3 3   exp / / /f l y U y y U y l                                   (6.7) 

which  as shown (5.18) is related to    1 2 3 3, ,y ,t y y t     y,   by   

      
      

  

2
4

2 2

1 2 3 3 1 22 2 4

2 2

1 2 2 3

/ /
, , , U /

                                                                                          U / ,

T

dU dy dU dy
t y y y t t y U y

U y U y

t y U y y y

 


 

  



  
        

   

y, , y

,

(6.8) 

Equation (40) of Leib & Goldstein (2011) can be used to show that the spectrum (6.3) of this quantity is 

given by the following Hankel transform  

        1 2 1 2 3 3/ / 4
1 2 3 3 3 0 3 2, , , 2

i y U y y U y k
e t y y y t d d l l

 
        

 


          y,  
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22 2
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, 1 1 ...

U y U y
A y y y y a

U y U y

                    
 

                                                                                2 2
2 2 2 2

0 3 30

0

f l r
r k lJ e rdr


                (6.9) 

 

And it follows from equations (A.14) and (A.18) of Afsar, Sescu and Leib (2016) that  
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 where  

                                                              2 2
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and equation(6.4)  then shows that      
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                            (6.12)   

since 
2c  is constant in transversely sheared flows.  

7. Application to a large aspect ratio rectangular jet Equation Section (Next) 

The problem of a two-dimensional jet interacting with the trailing edge of a flat plate is currently of 

considerable interest because of its relevance to understanding noise production in future aircraft 

configurations such as that shown in figure 3 in which the engine exhaust is of a very wide aspect ratio 

on an almost rectangular jet.  
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                                                           Figure 3 Proposed aircraft configuration 

GAL analyzed  the model problem shown in figure 4 in order to represent the interaction between a jet 

emanating from a large-aspect ratio rectangular nozzle with the trailing edge of a flat plate and 

compared the results with recent experiments on this configuration that were performed at NASA Glenn 

Research Center (Zaman, Brown and Bridges 2013; Brown, 2015). 

 

                                                                           

  

 

               

 

             Plate                                                                                                           vortex sheet    

                                                                                                                                   

                                                                                                                          

                                  Figure 4 Computational model of the Jet/surface interaction problem 

They considered the general case where the mean flow is non-zero at the surface of the plate and 

therefore leaves the trailing edge with different velocities above and below the interface. But, as shown 

below, the surface velocity is relatively small compared to the maximum velocity and will therefore be 

set to zero in the present computation: In which case their analysis, which minimizes the trailing edge 

singularity (i.e. imposes a Kutta  condition) and uses the Wiener- Hﾗヮa ﾏWデｴﾗS デﾗ I;ﾉI┌ﾉ;デW デｴW GヴWWﾐげゲ 
function, shows that the acoustic spectrum                    

                                                            1
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                                          (7.1) 

where  denotes the time average, is given by  
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for 2 0x  where
  2 2 3, : ,
s

S y y k  is defined by (6.4), 

    /k c     (7.3) 
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 1 3, ,k k  denote bounded analytic functions in the upper/lower half planes that satisfy the 

factorization condition 
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  (7.8) 

 2 1 3: , ,P y k k denote homogeneous solutions to (A.3) that have outgoing wave behavior 

as 2y    ,  denotes the polar angle measured from the downstream 1x  axis and   denotes the 

azimuthal angle measured from the plane of the plate.  

GAL considered the low frequency limit  3 , 1k O k k  and obtained the result given by equation 

(6.33) of their paper, which has the advantage of being much more explicit than the exact  1O result 

but does not adequately describe the high frequency sound field produced by the trailing edge 

interaction. It does, however, adequately describe the experimentally observed low-frequency spectrum 

when the negative tail in transverse velocity correlation is included (Afsar et al 2017). 

The high frequency spectrum can be described by using the WKBJ method to obtain the high frequency 

outgoing wave homogeneous solution  
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 to (A.3)(Goldstein, 1979a) where  

                                                                       ˆ / ,   1,3n nk k k n                                                             (7.10) 

and  

                                                              
2

2 2

1 3 1 1 3
ˆ ˆ ˆ ˆ ˆ, 1q y k k k M y k k                                              (7.11) 

 and inserting the result into equations (7.4)-(7.7) to obtain the following  
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It, therefore, follows that follows that 
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where 

                                                         2 21/ ,sin cosq y y q y M y                                                   (7.17) 

and equation  (7.2) then becomes  
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for 2 0x   where 
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                                                            1/2
2 21 sin cos ,                                                                    (7.20) 

   2 2 /M y U y c denotes the local acoustic Mach number at the position 2y , 0  is a positive 

constant and we have inserted the exponential damping factor 0k
e 

 into (7.19), which leaves  the 
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asymptotic expansion unchanged to the order of approximation considered here. In other words, it is 

asymptotically equivalent to the straight forward result. It reduces to the low frequency result (6.33) of 

GAL when  2 , 1Q y   .But  2 ,Q y    also 1  as 0k   and equation(7.18), therefore, 

behaves like (but is not identical to) a uniformly valid composite solution that applies at all frequencies.  

It is, of course necessary to insert a formula for the source function S  into (7.18) before using these 

results to calculate the acoustic field. GAL used a rather complicated approximate procedure to relate 

this quantity to an experimentally measurable turbulence correlation. The present analysis allows us to 

use the much simpler and more general exact relation(6.4) and model the turbulence correlation to 

obtain the explicit formula (6.12) for S . 

As indicated above, the model problem considered in this section can be used to represent the 

interaction between a jet emanating from a large-aspect ratio rectangular nozzle with the trailing edge 

of a flat plate. The analysis is basically inviscidbut  accounts for viscous effects by imposing a Kutta 

condition at the trailing edge (GAL). Brown and Daniels (1975) use high Reynolds number asymptotic 

analysis to show that this condition is consistent with the viscous boundary layer flow at the trailing 

edge. The importance of impsoing a Kutta condition in inviscid analyses involving an edge has been 

reviewed and discussed by Crighton (1985) and Ayton, Gill and Peake (2016).  

Recent experiments on this configuration were performed at NASA Glenn Research Center (Zaman, 

Brown and Bridges 2013; Brown, 2015). The relevant geometric parameters are shown in figure 5. 

                                                            

    Figure 5 Nozzle/plate configuration. Figure courtesy Dr. James E. Bridges, NASA Glenn. 

We assume that the mean density  is constant and the mean velocity profile  2U y  can be 

represented by the twice differentiable function  
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    (7.21) 

with compact support 2 / 2d dy y t  , where dy  is the distance from the plate to the nozzle 

centerline (see Fig. 5), dt  is the thickness of the jet and    controls the profile decay.  
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Since the factor  2 2,A y y  in (6.7) must vanish at the jet boundaries and is determined by strength of 

the turbulence at the source location, we expect  2 2,A y y  to be proportional to the turbulence 

intensity at 2y which is roughly proportional to the mean velocity gradient at that point. We therefore 

set              

             2 2 0 2 2 2 2 2 2 0 2 2, / /A y y A dU y dy dU y dy y y B U y U y                       (7.22)                   

where 0B and 0A  are constants and the factor  

                         
       

   

3
2 2 2 2

2 2

2
2 2

2

/ 2 ,  for  < / 2  

    0,                                for  / 2  

d d d d

d d

t y y y y t
y

y y t

      
  

                           (7.23) 

 

is inserted to insure that the turbulence correlation (6.8)vanishes at the jet boundaries.  

Measurements of the noise generated by the interaction of rectangular jets in the vicinity of a flat-plate 

trailing edge have been carried out at NASA Glenn Research Center (Bridges, Brown and Bozak, 2014, 

Brown, 2015) in a facility validated for jet noise (Bridges and Brown, 2005; Brown and Bridges, 2006). 

Flow measurements for essentially the same geometries, but at a lower jet exit Mach number ( aM  = 

0.22), were carried out by Zaman et al (2013). We chose the configuration where the plate was located 

at 1.2 equivalent diameters from the jet centerline and 5.7 equivalent diameters downstream of the exit 

of an 8:1 rectangular nozzle, for jet exit acoustic Mach numbers 0.5,0.7,0.9aM   as test cases for the 

theory. The arbitrary length scale D   was taken to be an equivalent nozzle diameter defined 

by  2
/ 2D  =nozzle width nozzle height with nozzle width=8 nozzle height and was approximately 

equal to ヲくヱヲざinches ｷﾐ デｴW W┝ヮWヴｷﾏWﾐデゲく Aﾐ┞ ╄ゲIヴ┌HHｷﾐｪ ﾐﾗｷゲWげ デｴ;デ ﾏ;┞ ｴ;┗W ヴWゲ┌ﾉデWS aヴﾗﾏ デｴW aﾉﾗ┘ 
along the plate was deemed to be negligible for this configuration (Khavaran, Bozak and Brown, 2016). 

Recall that the source location is assumed to be at a large distance from edge and independent of its 

location on scale of the interaction, but not on the longer scale over which the turbulence and mean 

flow evolve. So the mean flow and turbulence properties must be recalibrated when changes in edge 

location occur on the latter scale.   

Figure 6a shows a comparison of the normalized (by the jet exit velocity, JU  ) mean velocity profile from 

the model (7.21) with velocity measurements at a very small distance downstream of the plate trailing 

edge carried out by Zaman et al (2013). Reynolds-averaged Navier-Stokes solutions for the test cases 

considered in this paper (Afsar et al 2017) show that the normalized mean velocity profiles 

for 0.5,0.7,0.9aM   are similar to each other and to that measured by Zaman et al (2013) at aM  = 

0.22.  (There is a very slight miss-match in the transverse distance of the plate to the nozzle centerline 

between the Zaman et al (2013) experiment and the one where the acoustic data was taken, which 

accounts for the slightly higher velocity at 2 / 0Jy D  .)  We therefore use the same normalized mean 

flow model for all jet exit velocities with the mean flow parameters for a best fit to the data. The data 
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shows that the mean velocity is small but not equal to zero at the interface. This can, in part, be 

attributed the turbulent mixing that that occurs upstream of the measuring station which, as noted 

above, was located down-stream of the trailing edge. But as pointed out by one of the referees, it could 

also be due to weakly non-linear velocity fluctuations, which causes the mean velocity to leave the 

trailing edge at different speeds above and below the plate. Hunt et al (2016) have recently shown that 

the mean speeds above and below the trailing edge can differ if the plate is at a small angle to the mean 

flow and similar effects could occur in the present case where it is aligned with the flow. However, the 

interface velocity is relatively small and is deemed to be insignificant relative to other uncertainties in 

the data comparisons.   

Figure 6b compares the turbulent kinetic energy measurements from the same experiment to the 

amplitude  2 2,A y y defined by (7.22)and(7.23) with the parameters 0A and 0B set equal to 0.011 and 

0.022  respectively. The normalized turbulent kinetic energy profiles are also relatively independent of 

jet exit velocity and the models appear to be in reasonable agreement with the flow data. They are   

therefore used in the following noise predictions.  

              

 

 

                                              

 

(a).   

    (b).  

Figure 6 Comparison of (a) theoretical mean velocity profile and (b) mean flow shear calculated from 

equations (7.21) and (7.22) against experiments reported in Zaman et al. (2015).    , 0.98,1.85d dy t   

, 0.2   and  0 0, (0.011,0.022)A B    

Numerical results for the noise generated by jet-edge interaction are obtained by evaluating the formula 

(7.18) for the acoustic spectrum, with the double integrals being comヮ┌デWS ┌ゲｷﾐｪ ; ゲデ;ﾐS;ヴS “ｷﾏヮゲﾗﾐげゲ 
method. The integrand in (7.18) vanishes outside of the support of the mean flow function (7.21) and 

the range of integration in this equation is therefore limited to the region where  2 0U y   . 

Figures 8 through 10 show quantitative comparisons of measurements of the far-field pressure 

aﾉ┌Iデ┌;デｷﾗﾐゲげ ヮﾗ┘Wヴ ゲヮWIデヴ;ﾉ SWﾐゲｷデ┞ ヮWヴ ┌ﾐｷデ “デヴﾗ┌ｴ;ﾉ ﾐ┌ﾏHWヴ / JfD U  , in dB 

scale
210log(4 / )J refPSD I U Dp     (referenced to 20refp pa  ) taken by Brown (2015) with 

predictions obtained by inserting  the spectrum (6.12) with  2 2 2 2 2/ /f l y y l    into the composite RDT 

solution (7.18).  Results are shown at observer locations directly below the plate  90     and 
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several observer polar angles, , measured from the downstream jet axis. The experimental trailing-

edge noise was educed by subtracting the noise measured in the corresponding free jet (i.e., in the 

absence of a plate) from the total measured noise. The parameters used in the predictions shown in 

figures 8-10 are 0 2.5  and    2 3 0, 0.67,0.25 , 1l l    .  Setting the coefficient 1a equal to 

0.75produces a turbulence correlation 

     1 2 1 2 2 2/ , / , ,TU t y U y U t y U y y y    y shown in figure 7 which exhibits the 

experimentally observed cusp behavior at zero spatial and temporal separations and the small but 

definite negative region at larger time delays.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                                (b) 

Figure 7 Transverse turbulence correlation (6.7) at 3 0   with parameters 0 2.5  ,   

   1 2, 0.67,0.25l l   and 1 0.75a   (a) fixed 2   (b) 2 0   

 

 

 

 

 

 

 

 

 

 

 

(a) --                                                                                  (b).  
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(c).                                  (d).  

Figure 8 Power Spectral Density (PSD) of the far-field pressure fluctuations at 100 equivalent diameters 

from nozzle exit (lossless in dB scale referenced to 20 Pa  ) as a function of Strouhal number, 

for 0.9aM  .  Predicted (solid line): Measured data below the plate at
090   . (Total noise: Red; 

difference between the total noise and noise measured in the free jet: Green.) Plate trailing edge at 

   , / 5.7,0.98d dx y D   (a).
090   ; (b) 

075   (c) 
060   (d) 

045   

 

 

 

 

 

 

 

 

 

 

 

    

 

            (a).                                                                                      (b)    

 

Page 29 of 44



30 

 

                                               

 

 

 

 

 

 

 

       (c).                                              (d).  

Figure 9 Power Spectral Density (PSD) of the far-field pressure fluctuations at 100 equivalent diameters 

from nozzle exit (lossless in dB scale referenced to 20 Pa  ) as a function of Strouhal number, 

for 0.7aM  .  Predicted (solid line): Measured data below the plate at
090   . (Total noise: Red; 

difference between the total noise and noise measured in the free jet: Green.) . Plate trailing edge at 

   , / 5.7,0.98d dx y D   (a).
090   ; (b) 

075   (c) 
060   (d) 

045   

 

 

 

 

 

 

 

 

 

 

        (a)                                                                                                          (b) 

.  
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           (c).           (d).  

Figure 10 Power Spectral Density (PSD) of the far-field pressure fluctuations at 100 equivalent diameters  

from nozzle exit (lossless in dB scale referenced to 20 Pa  ) as a function of Strouhal number, 

for 0.5aM  .  Predicted (solid line): Measured data below the plate at
090   . (Total noise: Red; 

difference between the total noise and noise measured in the free jet: Green). Plate trailing edge at 

   , / 5.7,0.98d dx y D   (a).
090   ; (b) 

075   (c) 
060   (d) 

045   

The results for the downstream polar angles show that the RDT-based edge-noise predictions are now in 

much better agreement with the data than those given in Goldstein et al (2013) and Afsar et al. (2017). 

The agreement is now very good over the entire frequency range where the total measured noise (red 

symbols) is dominated by that generated by the jet-surface interaction alone (green symbols) for all jet 

exit Mach numbers at the downstream polar angles shown. The results of GAL were limited to St < 0.4 

and Ma >= 0.7. The predictions shown in Figure 11 for upstream polar angles are also in very good 

agreement over the entire Mach number range.  

 

 

 

 

 

  

             (a)                                                                                    (b) 

   

   (a)                                                                                       (b) 
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        (c).                                        (d) 

   

 

 

 

                            

                                     

 

 

 

    (e)                                                                                                  (f) 

Figure 11. Power Spectral Density (PSD) of the far-field pressure fluctuations at 100 equivalent 

diameters from nozzle exit (lossless in dB scale referenced to 20 Pa  ) as a function of Strouhal number.  

Predicted (solid line): Measured data below the plate at
090   . (Total noise: Red; difference 

between the total noise and noise measured in the free jet: Green.)  For plate trailing edge at 

   , / 5.7,0.98d dx y D   (a).
00.9, 95aM     ; (b) 

00.9, 105aM     (c) 
00.7, 95aM     (d) 

00.7, 105aM     (e) 
00.5, 95aM     ; (f) 

00.5, 105aM     

Figure 12 is a comparison of the acoustic predictions obtained by inserting the present source function 

model (6.12) into the low frequency solution used in the GAL & Afsar et al 2017 for the parameter 

values used in figures 8-10. As expected , the present approach converges to the low frequency result at 
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very low frequencies and, therefore, represents a much more robust  mathematical model of trailing 

edge noise than either of the two previous studies since  (for reasons indicated below (7.20)) it is now 

applicable to O(1) frequencies. And our numerical tests show that low frequency roll-off is now much 

less sensitive to the magnitude of the negative loop in the correlation function 

     1 2 1 2 2 2/ , / , ,TU t y U y U t y U y y y    y than the Afsar et al 2017 model-although 

it is necessary to include this feature in the model in order for the transverse turbulence correlation to 

be physically realizable. In the present model the negative (anti-correlation) region enables the correct 

prediction of the absolute level of the very low frequency sound (i.e. for 0.1St   ) rather than the roll-

off per se. 

The improved predictions of the present result (relative to that obtained in GAL) is largely due to the 

 
2

2

0

exp

y

ik q y y dy


 

 
  factor in equation (7.19), which damps out the high frequencies and , 

therefore, increases the high frequency roll off, since the exponent  
2

2

0

y

ik q y y dy  is always 

negative. It accounts for the bending of the sound waves away from the downstream axis and, 

therefore, represents a kind of けzone of silenceげ.  

The present calculations are based on equation(6.4) which is obtained by using causality to interpret the 

singular integral (4.13) for the transverse particle displacement  , y . But the causality condition 

results from an initial condition imposed in the distant past and, as argued in the introduction, the long-

time solutions to the initial value problem are not necessarily relevant to the time-stationary turbulent 

flows being considered here. (Similar arguments can be found in Dowling, Ffowcs Williams and 

Goldstein; 1978 and Mani; 1976.) However, the singular integral in (4.13)will also be well defined if it is 

interpreted as a Cauchy principle value. The resulting formulas turn out to be more complicated than 

the present results and our computations (not shown here) indicate that the acoustic predictions based 

on these formulas do not differ significantly from the present results-at least in the low frequency limit 

where comparisons were carried out.  Data comparisons, such as those given in this section, therefore, 

cannot be used to distinguish between the two.     
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Figure 12. Convergence to the GAL solution. Same legend as Figs. 8-11.  (a).
00.9, 90aM    ; 

(b)
00.5, 45aM     

Figures 8-10 show that that the predictions are better for larger polar angles (near ninety degrees) and 

higher Mach numbers as they were in GAL and Afsar et al 2017. The former is due to reduction in edge 

noise relative to the jet noise for shallow polar observation angles and the latter (the deterioration in 

prediction for  0.5aM   near 0.1St )    may be a particular feature of the experimental data (Bridges 

2014) or may be associated with a change in the interference between the non-convecting jet noise and 

edge noise (Afsar et al 2017, p.202) at lower Mach numbers. There are four free parameters: 

 2 3 0 1, , ,l l a  that determine the source function S  in  the present model with all other parameters 

determined by  matching to the turbulence or mean flow data, which  makes the predictions much less 

empirical than those of GAL and Afsar et al 2017.  No empirical coefficients would be required if there 

were experimental database for the transverse velocity 

correlation      1 2 1 2 2 2/ , / , ,TU t y U y U t y U y y y    y . It could also be obtained 

computationally using LES which would be much less expensive than a jet noise simulation. The 

parameters could, in principle also be obtained by optimizing the agreement with the measured spectra.  

 

8. Concluding remarks

 This paper is based on the formal solutions (2.14)-(2.16) to the linearized Euler equations for 

transversely sheared mean flows which, like the  Kovasznay results for the unsteady motion on uniform 

flows, involve two arbitrary convected quantities  1 ,/ Ty U  y and  1 ,/c Ty U  y that can be 

associated with the hydrodynamic  component of the flow and  can, therefore, be used to specify  

upstream  boundary (i.e., initial) conditions for  RDT problems that involve the interaction of turbulence 

with solid surfaces.  This paper derives a new relation between these quantities and the physically 

measurable variables that is much simpler and more general than the one given in Goldstein et al 

(2013).  

This relation was used to relate the source term S  that appears in in a formula (7.2) for the noise 

generated by the interaction of a two-dimensional jet with a semi-infinite flat plate derived in Goldstein 

et al (2013) to the physically measurable second order velocity correlations in the jet. The result was 

combined with a modified high frequency solution to obtain a specific formula for the acoustic spectrum 

that applies over a broad range of frequencies. This result was then compared with experimental 

measurements carried out at Glenn Research Centre and excellent agreement was obtained. The 

general results can of course, be applied to many other RDT problems involving the interaction of 

turbulence with surfaces embedded in transversely sheared base flows or, more generally, in vortical 

base flows that asymptote to transversely sheared mean flows in the upstream region.   
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Appendix A. GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ aﾗヴ ヲ-D base flow  Equation Chapter (Next) Section 1 

Since  1| : ,T TG ky x  can only depend on 3x  and 3y  in the combination 3 3x y , for the planer mean 

flow 

                                                    2 2,   U U y c c y                                                                            (A.1) 

 tｴW ヴWS┌IWS GヴWWﾐげゲ a┌ﾐIデｷﾗﾐ  
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  y x                        (A.2) 

    only depends on the indicated arguments and satisfies the reduced Rayleigh equation 
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  whose solution is given by  
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                                     (A.4)  

where    2 2
ˆ ˆ,P y P y  are the homogeneous solutions of (A.3) that exhibit appropriate boundary 
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                            (A.5) 

depends on the normalization of    2 2
ˆ ˆ,P y P y   but is independent of 2y , which means that the 
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                               (A.6) 

where  2 1| : ,T TG ky x  is defined by (4.9), only depends on the indicated argument and is given by 
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So the limit 
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                                                                    (A.8) 

is expected to exist and be non-zero except at perhaps at a finite number of points, say 2y   

   2 ,  for  1,2,...
n

y n  for any value of 3,k  . This also shows that   2 2 2 2 3
ˆ : , /G y x U y k  and, 

therefore,   2 2: , /T TG U yy x   must be continuous at 2 2x y . Moreover it follows from the 

method of Frobenius that  (A.3) possess two linearly independent solutions, say    1 2 2 2
ˆ ˆ,P y P y , that 

behave like    

                                        33 0

1 2 1 2 2 2
ˆ ,P y O kU y O y y                                                    (A.9)     

                    32 0

2 2 1 2 1 2 1 2 2 2
ˆ ˆ ln ,P y a b kU y cP y kU y O y y                           (A.10) 

as
 0

2 2y y , where 
 0

2y is a point where 
  0

2 1/U y k  and , ,a b c are constants. So  
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                       (A.11) 

is also expected to exist and be non-zero since    2 2
ˆ ˆ,P y P y  must be linear combinations of 

   1 2 2 2
ˆ ˆ,P y P y   . It, therefore, follows from (A.2)and (A.4) that the limits  
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and  
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     (A.13) 

also exists and are non-zero everywhere except at the finite number of points where  1 2, ,k k  is 

equal to zero.  

 

Appendix B. Behavior of transverse velocity at upstream infinity  
Equation Section (Next) 
 

When the mean flow is two dimensional the integral  
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on the right hand side of (4.3)can be written as  
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                (B.2) 

 

where 0y can be set to   if the cross sectional TA  is all of space and can be set to zero if the flow is 

bounded by an inner surface that extends from 1y    to 1y   . Now suppose that  

                                                                   3

2 3 2, :c y y O U y                                                       (B.3)  

whenever   2 0U y  . (We shall verify that  2 3, :c y y   actually exhibits this behavior after the 

fact.)  Then since   2 2 3 2 3 2, | , : , /G y y x x U y   is continuous at 2 2y x and    2

2 2/U y U y  

times the integrand and    2

2 2/U y U y times the derivative of this quantity are  expected to vanish 

at the end points 0 ,y  , (B.2)can be integrated by parts twice from 0y  to 2x  and from 2x to , to show 

that  
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where the jump  
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will, in general, be non にzero But this implies that 
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  (B.6) 

as 
1x  since the method of stationary phase (Carrier, Krook and Pearson, 1966, p.274) (or 

continued integration by parts if there is no stationary phase point) can be used to show  that that the 

last term(B.4) is  5/2

11/O x  in this limit. 

Appendix C. Upstream behavior of transverse particle displacement 

Equation Section (Next) 

We assume, for simplicity that there is a one-to-one mapping     ,T T T  y y y of the rectangular 

coordinate system Ty  into an orthogonal coordinate system  ,   such that  U U  and  introduce 

this  into the integral in (4.13)to obtain  
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 (C.1) 

where    2 3, / ,y y    denotes the Jacobian of the transform  ,T   y ,we have represented the 

delta function by a delta sequence (see Lighthill, 1964 p.17) and  have written     TU U  y , 

  , |: , , /i TG U    x     , |: , , /i T TG U     y x etc. Then since  1/ TkU i   x   is 

the only term that becomes infinite on the real k -axis when 0  , the limit can be made explicit 

everywhere else in the nth  member of the sequence by setting 0  there  to obtain   
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The delta sequence limit can then be re-taken to show that the singular integral in (4.13) can be 

interpreted in the following sense  
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where we have put  / TU   x  and 
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                  (C.3) 

But, as indicated in the introduction, our interest here is in the upstream behavior of the solutions as   

1x  . To this end we suppose, for definiteness, that the mean velocity profile has a single 

maximum, at say max  , that 0U   at the end points 0 ,   and that 

                                          2

2 3 2 2, :   when 0c y y O U y U y                                               (C.4) 

 (We shall verify that  2 3, :c y y   actually exhibits this behavior after the fact.) Adding and 

subtracting terms to the particle displacement integral (C.1) then shows that 
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      (C.5)   

where  max1/a U  , and  j for   1,2j   are the roots of    j TU U  x with  1 0U    . 

But dividing the range of integration into two parts, changing integration variables and noting that the 

final contour integral must be closed in the lower half plane for 1 0x  shows that  
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where     1

0T Tb U a


    x x . And since the integrands of the inner integrals in the first term on 

the right hand side of (C.5) are now finite at T Ty x , the first of these  can be integrated by parts  

from 0  to 1  and from 1 to max to obtain 
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where   2
1

, |: , , / /TG U
 

     


    x denotes the jump in   2 , |: , , / /TG U      x  

at 1   while  the second  of these can be integrated by parts from max  to
2

  and from 2 to , to 

obtain a similar result and thereby show that this term is  11/O x  as 1x  , and, therefore, that 

  satisfies (4.14). 
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