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Abstract. It is thought that the small-scale magnetic fields observed in accretion

discs, galaxies and galactic clusters are generated by a dynamo process in which

the turbulent plasma amplifies small initial magnetic fluctuations. Numerical

simulations of turbulence have revealed that turbulence consists of filament-

like vortex structures superimposed on an incoherent background, which carry

a considerable amount of the energy. The natural questions to ask are whether

these coherent structures can generate a magnetic field and, if so, if the generated

magnetic field is also filament-like. After setting up a turbulence model which

consists only of vortex filaments, we show in an unambiguous way that the

coherent structure can sustain kinematic dynamo action and that the magnetic

field thus generated consists of relatively thick ribbons (flattened tubes) located

in between vortices.
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1. Introduction

The origin of the fluctuating, or small-scale turbulent magnetic fields observed in the solar

photosphere, accretion discs, galaxies and galactic clusters is a fundamental problem of

astrophysics. It is thought that in these systems the magnetic field is generated by a dynamo

process [1, 2]. In this process, the three-dimensional turbulent velocity field of the constituent

plasma amplifies small initial magnetic fluctuations by stretching existing field lines and

overcoming ohmic dissipation until nonlinear saturation is achieved by the back-reaction of the

Lorentz force on the turbulent velocity field. The dynamo problem thus consists of two distinct

aspects [3]. The first is the kinematic dynamo, in which one asks if the magnetic field grows

or decays exponentially in the presence of a prescribed velocity field; the second refers to the

nonlinear saturation. This paper is concerned with the first aspect. Understanding the turbulent

dynamo, even only at kinematic level, requires a sufficiently good model of turbulent flows.

In recent years, numerical simulations have revealed that homogeneous isotropic turbulence is

dynamically dominated by metastable coherent vortex structures, a network of mini-tornadoes

called vortex tubes or filaments [4]–[7]. The coherent structures have a linear dimension

comparable to the system size, and are superimposed on an incoherent velocity background.

More careful analysis [8] has suggested that the coherent structures carry a considerable amount

of the energy and the enstrophy of the turbulence and correspond to the observed Kolmogorov

spectrum of the total (coherent plus incoherent) velocity field. It seems [9] that the apparently

chaotic behaviour of turbulent flow is due to the nonlinear interactions of coherent vorticity

structures, which also create a small-scale velocity field which is dissipated at the smallest

scales by viscous forces. As pointed out by Zeldovich et al [1], a fundamental question arises:

‘In a linear hydromagnetic problem, the behaviour of the magnetic field is considered against

the background of independently prescribed velocity field. The existence of velocity fields with

vortex filaments gives rise to interesting problems as regards to the behaviour of the magnetic

field in such flow. Will magnetic ropes arise from this velocity field? Will the ropes coincide with

the vortex lines?’Our aim is to answer this simple kinematic question, as well as to clarify related

issues such as the scaling of the magnetic energy spectrum and the nature of the stretching of

magnetic field lines by turbulent strain.

A straightforward method for answering such questions is to solve numerically the Navier–

Stokes equation in order to create the turbulence which drives a dynamo [10, 11]. At present

however, there are no pattern recognition methods powerful enough to define unambiguously

the coherent vorticity structures and follow their motion and interactions in time. In addition,

even if such methods were available, a significant part of the computational effort would still
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had to be devoted to the computation of the dynamics of incoherent vorticity and so there is a

limit on the Reynolds number that could be achieved in practice. Therefore studies of vortex

dynamos were based on suitable models. One approach [12] used an idealized two-and-a-half

dimensional turbulent velocity field mode and showed that most of the stretching of magnetic

field lines takes place between vortex patches. Another approach consisted of Herzenberg-type

rotors, used to numerically mimic vortex tubes [13]. In this paper, we introduce a different method

of investigation that allows the explicit representation of three-dimensional coherent vorticity

in homogeneous isotropic turbulence.

2. Model

Our model of turbulence is based solely on three-dimensional, reconnecting vortex filaments

with dynamic finite cores of uniform circulation which interact via inertial and viscous forces

[9, 14, 15]. In this way, the turbulent velocity field contains only the coherent vortex structure,

whose effect on the magnetic field generation we wish to investigate; the incoherent part of the

turbulence is neglected. Essentially, our investigation is not a direct numerical calculation of the

turbulent velocity field, but a calculation of the dynamics of vortex filaments in an incompressible

fluid, whose configuration at a particular instant allows the reconstruction of a homogeneous and

isotropic turbulent velocity field. The position r(s, t) of the centreline of each filament moves

according to dr/dt = V(r, t) where t is time, s is arc length measured along the filament, and

the velocity field V(r, t) is given by the Biot–Savart law [16]

V(r, t) = −
1

4π

∫

(r − r′) × ω(r′) dr′

|r − r′|3
, (1)

where the integral is performed along all vortex filaments. If the vorticity distribution ω(r, t)

were a delta-function concentrated in the core, this formula would state that a vortex filament

at a point simply moves in the binormal direction with speed inversely proportional to the local

radius of curvature at that point [17]. In our model ω(r, t) is proportional to the circulation Ŵ

and is a Gaussian function [9] which peaks along the centreline r. The radius of the vortex

tube, σ, is defined as the standard deviation of this Gaussian distribution; it decreases because of

vortex stretching and increases because of viscous diffusion. Numerically, each vortex filament

is discretized into a variable number of segments, N, which evolve in time under the action

of the Biot–Savart law and viscous forces. The length of the filaments, as well as the number

of segments N, increases due to vortex stretching. By construction, outside the vortex core

regions, the flow is thus effectively potential. The time stepping of equation (1) is based on a

low-storage, third-order Runge–Kutta scheme. The filaments are allowed to reconnect as in [18].

The reconnection procedure introduces an effective viscosity in our computation. In particular,

every reconnection locally stretches the filaments and introduces a cascade of energy to smaller

scales [19]. The reconnection algorithm [18] damps this cascade; our model is thus akin to a large

eddy simulation (LES) method but in vorticity space. However, the molecular viscosity ν remains

dynamically significant since it directly affects the tube-radius dynamics of most parts of the

vortex tangle that do not participate, at a particular instant of time, in a reconnection. Note also

that large-scale consequences of reconnections are taken into account [18] through the generation

and propagation of Kelvin waves (see figures 1, 4 and 7 of [18]). Computations performed with
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the coherent structures model compare well with properties of turbulence computed by directly

solving the Navier–Stokes equation, for example the Kolmogorov scaling of the energy spectrum

and the third-order longitudinal structure function [9]. The model also reproduces finer details of

Navier–Stokes turbulence like the qualitatively correct statistics of the relative directions of the

eigenvectors of the rate of strain matrix and both material line vector and vorticity vector [14].

The magnetic field B is determined by

∂B

∂t
= η∇2B + ∇ × (V × B), (2)

and ∇ · B = 0 where η is the magnetic diffusivity of the plasma. Following the usual kinematic

dynamo approach [3], we ask whether, given V, the magnetic field B grows or not, where the

initial condition for B is a uniform field with (dimensionless) magnetic energy of the order of

10−9. This approach is valid in the early stage of development of B when B is small and the

back-reaction of B on V (which is quadratic in B) can be neglected. The dimensionless driving

parameter of the dynamo is the magnetic Reynolds number Rem = Vb/η where V is the velocity

scale and b the length scale. Since in our kinematic dynamo approach we hold the turbulent

velocity field fixed, the hydrodynamic Reynolds number Re = Vb/ν is fixed, and we vary the

magnetic Reynolds number by changing the magnetic Prandtl number Prm = Rem/Re = ν/η.

Equation (2) is solved using a finite difference method on a 2563 grid. The discretization of

the derivatives is second-order in space. The time-stepping is a low storage third-order Runge–

Kutta scheme with operator factorization of the Laplacian, and the solenoidal condition is

enforced by projecting at each time step the magnetic field on to the space of divergence free

vector fields. The volume of fluid which we consider has cubic dimension b = 1 m; the fluid

has kinematic viscosity ν = 10−4 m2 s−1 and the vortices have circulation Ŵ = 1 m2 s−1. The

dynamical equations and the various physical quantities are made dimensionless using b as unit

of length and b2/Ŵ as unit of time. The employed boundary conditions for both vortices and

magnetic field are periodic.

3. Results

To produce the turbulence, we start with an arbitrary number of vortex loops set at random

locations and orientations. The loops evolve under the effect of their mutual interaction and

undergo a large number of reconnections, quickly forming a time-dependent turbulent tangle.

The time step is typically 0.0005 and is determined by the smallest ratio of the tube area over the

circulation. After a time of the order of the turnover time τl of the largest turbulence eddies in the

box (τl ≈ 0.25), the turbulent velocity field reaches a statistically isotropic and homogeneous

state. Figure 1 shows the vortex filaments (in red). At t = 0.05 the total length of the filaments

is L = 58.84, the number of discretization segments is N = 3793 and the average radius of the

vortex tubes is 〈σ〉 = 0.054. Moreover, 1127 vortex reconnections have occurred in the system.

The Reynolds number of the turbulent flow can be defined simply as Re = Ŵ/ν = 10 000.

This estimate is in order-of-magnitude agreement with the value obtained by computing the

root mean square value V =
√

〈V · V〉/3 of the turbulent fluctuating velocity V, which yields

Re = Vb/ν ≈ 20 000. Using the well known [20] relation for homogeneous isotropic turbulence

λ/b =
√

15Re−1/2, where λ is the Taylor microscale, one finds Reλ = 548.
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Figure 1. The red tubes represent the coherent vortex structures; for clarity only

a fraction (0.7) of the actual vortex tube radii is shown. The green structures are

isosurfaces of |B| at level equal to three times the root mean square value in the

box, and represent regions of intense magnetic energy. Note that the magnetic

structures are located between the vortex structures and are more ribbon-like

flattened tubes rather than rope-like. Time is t = 2.690 and Prm = 0.4.

Figure 2 shows the kinetic energy spectrum

EK =
1

V

∫

1

2
|V|2 d3r =

∫ ∞

0

EK(k) dk, (3)

where EK is the kinetic energy, V = b3 and k = |k| is the magnitude of the three-dimensional

wavevector; it is apparent from the figure that EK(k) obeys the Kolmogorov k−5/3 scaling (solid

line at the left), in agreement with [9]. Our turbulence model has no overall rotation or density

stratification, so the only helicity is due to small fluctuations; a single vortex filament has velocity

V which is perpendicular to the vorticity ω of the filament at that point, but the presence of a finite

number of other filaments induces perturbations of V which do not cancel each other out. The

resulting helicity is however small; its space-averaged value is 〈ω · V〉 = 5.426, whereas the root

mean square of the fluctuating velocity is V =
√

〈V · V〉/3 = 1.935 and that of the fluctuating

vorticity is ω =
√

〈ω · ω〉/3 = 31.654.

Once the turbulence is well developed, we hold V constant in time, thus freezing the turbulent

structures. There are two reasons for this. Firstly, lacking a continual forcing, the turbulence

would decay in time due to viscous effects, so we would attempt to create a dynamo driven

by a decaying velocity field which would not allow a precise definition of magnetic Reynolds

number. Secondly, freezing the turbulence is numerically convenient. The solution of equation (2)
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Figure 2. Kinetic energy spectrum EK(k) and magnetic energy spectrum EM(k)

at time t = 2.690 and Prm = 0.4 plotted versus wavenumber magnitude, k = |k|.
The solid lines are the power-laws k−5/3 (left) and k3/2 (right).

for B requires V at each point of the 2563 grid; each of these point then requires the evaluation of

Biot–Savart integrals taking into account all vortex segments in the system, and the computational

cost of this operation is proportional to N2.

Figure 3 shows the magnetic energy EM, versus time for different values of Prm.Although for

very small Prandtl numbers, Prm = 10−8, the seed magnetic energy decays, for Prm sufficiently

large, after an initial transient, there is exponential growth. This proves that the coherent turbulent

structures are capable of magnetic field generation. For example, at Prm = 0.003 the dynamo

is in a marginal state and at Prm = 0.01 we have definitively dynamo action (the corresponding

magnetic Reynolds number is Rem = RePrm = 100). Since the turbulent velocity field which we

use to drive the dynamo is frozen, regions favouring magnetic field growth remain so throughout

the calculation, which would not be the case if the filaments could change their positions with

time. Thus our estimate of the critical magnetic Reynolds number may be optimistic. On the

other hand, Ponty et al [21] get dynamos at Prm as low as 0.01, so it is not a big disagreement,

considering also that we have a different velocity field. Although a series of computations for

various magnetic Reynolds numbers were performed, the following discussion of magnetic field

structures and spectra, as well as strain–field interactions, refers to the case Prm = 0.4.

To understand the nature of the turbulent dynamo action we compute the magnetic energy

spectrum

EM =
1

V

∫

1

2
|B|2d3r =

∫ ∞

0

EM(k) dk, (4)

figure 2, which can be compared to the kinetic energy spectrum EK(k). It is apparent that the

energy of the magnetic field is concentrated at higher wavenumbers; the solid line at the right

shows that the magnetic spectrum follows the scaling EM(k) ∼ k3/2, in agreement with [10]

and the Kazantsev model [22]–[24]. The magnetic spectrum peaks at the right of the velocity

spectrum, despite the fact that Prm < 1. This is because due to the reconnection model, the
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Figure 3. Magnetic energy EM versus time t respectively for Prm = 0.003, 0.01,

0.1 and 0.4 (from bottom to top).

smallest scale of the velocity spectrum is not the viscous scale but a scale well inside the

inertial range. There is a second dissipation process in the system (induced by the reconnection

model) not accounted for by the molecular viscosity. One could make a heuristic estimate of

the effective (as opposed to molecular) Prm in the calculation by using the scaling relation

lη = lν′/
√

Pr′
m, where Pr′

m = ν′/η is the magnetic Prandtl number based on an effective viscosity

ν′, and lν′ , lη are the smallest resolved flow scale and resistive magnetic scale respectively.

We find Pr′
m ≈ (20/7)2 ≈ 8. Following [11], we also compute the eigenvalues 
1, 
2 and 
3

(defined such that 
1 > 
2 > 
3) and the corresponding eigenvectors �1, �2 and �3 of the

rate of strain matrix defined as Sij = (1/2)(∂Vi/∂xj + ∂Vj/∂xi) (i, j = 1, 2, 3) where vi and xi

are the Cartesian components of V and r. We find that 〈
1〉 = 23.284, 〈
2〉 = 0.482, whereas

〈
3〉 = −23.766. Note that 〈
1〉 + 〈
2〉 + 〈
3〉 = 0 due to the incompressibility of the flow.

These results agree qualitatively with fully resolved Navier–Stokes calculations since there also

the intermediate eigenvalue has a positive mean value [14, 25]. The angles between the generated

magnetic field B and each eigenvector �i are given by the magnitude of the directional cosines

gi = |(B · �i)/|B||�i|)| (i = 1, 2, 3). Histograms of gi show that the magnetic field tends to

align mostly (and consequently to be stretched predominantly by) the first eigenvector of the

strain matrix, and to be normal to the third (compressive) eigenvector. There was no distinctive

alignment tendency with respect to the intermediate eigenvector. This behaviour is similar to the

behaviour of material lines in turbulence [14, 25, 26]. According to these results, it is expected

that the magnetic field structures must be ribbon-like, since the magnetic field is stretched, on

average, along two directions but the stretching along the �1 direction is much stronger than

the stretching along the �2 direction. In addition, since the field does not prefer to align with

�3, the ribbon-like structures would not be predominantly flat but instead retain a certain degree

of thickness.
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Figure 4. Left: the region of intense magnetic field (in green) wraps around the

vortex filament (in red), and is flat and ribbon-like rather than rope-like. The time

and magnetic Prandtl numbers are as for figure 1. The magnetic isosurfaces are

plotted at the level equal to three times the root mean square value in the box, and

the tubes are plotted with a radius equal to 0.005 ≈ 0.1〈σ〉. Note that the twisted

magnetic sheet structure sits just outside the actual tube radius σ. The graph is a

small subsection of the unit box whose size is approximately 0.35 times the full

size of the computational domain. Right: example of small-scale magnetic field

reversals in a flux tube (t = 0.635). These are hinted by the observed peak of the

magnetic energy spectrum at high wavenumbers.

4. Discussion

Numerical solutions of the Navier–Stokes equation show that high Reynolds number flows are

characterized by metastable coherent vortex structures. Our new model of turbulence, which

satisfies the most important properties of the statistical phenomenology of the Navier–Stokes

equation, consists only of these coherent structures. This allows us to determine the effect of the

coherent vortex structures on the magnetic field generation in an unambiguous way: we show

that kinematic dynamo action is indeed possible. Figure 1 shows the magnetic field structures

(in green) created by the turbulent vortex filaments (in red). The regions of large magnetic energy

tend to be positioned between the vortex filaments. Contrary to the conjecture of Zeldovich

et al [1], we find no magnetic ropes, but rather relatively thick ribbon-like structures, which

occasionally spiral around the filaments, as shown in figure 4 (left), in agreement with what is

conjectured in [10]. Small-scale magnetic field reversals are also visible.

Having introduced a new model of turbulence (based on vortex tubes), it was sensible to

tackle the kinematic dynamo problem first. Further work will attempt to improve the model

and allow the study of the full, dynamically self-consistent dynamo, which includes the back-

reaction of the Lorentz force on the velocity field which has generated the magnetic field in the

first place. This back-reaction may change the geometry of the magnetic structures which we
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have discussed, of course. Further work with more computational power would also allow the

study of the time dependence and a wider separation of scales between the viscous scale and the

ohmic scale. In the current calculation the effective magnetic Prandtl number is Pr′
m ≈ 8; in this

magnetic Prandtl number regime, our results agree with the findings of [10], with the advantage

that we deal only and directly with the coherent structures of turbulence.
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