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Abstract. We show how to measure the order-two Renyi entropy of many-body

states of spinful fermionic atoms in an optical lattice in equilibrium and non-

equilibrium situations. The proposed scheme relies on the possibility to produce

and couple two copies of the state under investigation, and to measure the

occupation number in a site- and spin-resolved manner, e.g. with a quantum gas

microscope. Such a protocol opens the possibility to measure entanglement and

test a number of theoretical predictions, such as area laws and their corrections.

As an illustration we discuss the interplay between thermal and entanglement

entropy for a one dimensional Fermi–Hubbard model at finite temperature, and

its possible measurement in an experiment using the present scheme.
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1. Introduction

Quantum degenerate gases, and ultracold atoms in optical lattices in particular, provide a unique

framework to study quantum many-body physics [1–4]. This refers first of all to the possibility

of controlling many-body dynamics via external fields, thus allowing one to effectively engineer

a wide class of interesting many-particle Hamiltonians, including those for strongly correlated

systems [5–8]. Furthermore, a plethora of new measurement tools are available in atomic setups

based on probing atoms with laser light, providing access to physical observables of many-

body dynamics, in a way which is unparalleled in a condensed matter context. An outstanding

example is the recent development of a ‘quantum gas microscope’ for atoms in optical lattices,

which allows single-atom detection and imaging with resolution of the lattice spacing in single-

shot measurements [9, 10]. Given these unique and novel tools the challenge is now to identify

new atomic measurement protocols that allow access to new many-particle observables of

interest. Below we describe such a protocol, which allows the direct measurement of the Renyi

entropies, quantifying uncertainty due to thermal fluctuations and due to entanglement, of

(spinful) fermionic atoms in optical lattices for both equilibrium and non-equilibrium situations.

The protocol consists of preparing two identical copies of the many-body systems in one-

dimensional (1D) or two-dimensional (2D) optical lattices, performing simple single particle

operations that are readily implemented in optical lattices, followed by a read out with the

quantum gas microscope. While in recent work [11] we have discussed such a protocol for

bosonic atoms, the fermionic case requires rather different arguments resulting in a different

translation table to interpret the measurement results, although—quite remarkably—the basic

procedure parallels the case of bosons.

Direct measurement of thermal and entanglement entropy in atomic gases brings

fundamental concepts, which so far have been discussed exclusively in a theoretical context,

to the laboratory. Examples include the area law scaling that lies at the heart of the success

of matrix product states methods [12] and logarithmic corrections in critical systems that
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allow us access to properties of the underlying conformal field theory (CFT) [13, 14]. Also,

the ability to explore higher dimensions is invaluable as the theoretical understanding of

the corrections to the area law is less advanced and has sparked a lot of recent interest

in the theory community [15–22]. Other exciting applications include the possibility to

detect topological order [23, 24] or to monitor the dynamic generation of entanglement in

quantum quenches [25–28]—which are also relevant to questions concerning thermalization

in closed quantum systems [29–31]—as already implemented in cold-atom experiments [32].

An important question in this context will be to ask which amount of the entropy is due

to entanglement and what contribution is thermal entropy. This leads into the question as to

whether it is possible to access the quantum entangled regime in current experimental setups, at

least for small systems.

To address the latter questions, we use quantum Monte Carlo (QMC) calculations to

directly access the finite-temperature Renyi entropies for spinful fermions, described by a

Hubbard model in one dimension. By comparing the finite-T results to ground state density

matrix renormalization group (DMRG) calculations, we study the crossover between regimes

dominated by quantum entanglement and regimes dominated by thermal entropy for realistic

system parameters [33]. These simulation results allow us to give a critical assessment of when

such a measurement could realistically be implemented by addressing the question of limitations

of the measurement protocol. In particular, the exponential scaling of the number of single

measurements with the entropy in the system sets the boundary in term of temperatures and

system sizes, for what will be accessible under realistic circumstances.

2. Measurement protocol for Renyi entropies of fermionic atoms

We consider a many-body system represented by fermionic atoms in an optical lattice. The state

of the system at a given time t is described by a density operator ρ. In the following discussion

we leave the specific form of the state open. It can represent a pure state, ρ = |ψ〉〈ψ |, such

as the ground state of a Hamiltonian, a thermal state, or any other (mixed) non-equilibrium

state of the fermionic atoms. Our goal is to develop a protocol to measure Renyi entropies

both for the total system and for subsystems. For the total system the Renyi entropy of

order two is defined by S2(ρ)= −log Tr{ρ2}, and thus is given in terms of the purity of the

density operator P2(ρ)= Tr{ρ2}. For a subsystem R we define a reduced density operator

ρR = Tr6=R{ρ}, and a corresponding Renyi entropy as S2(ρR)= − log Tr {ρ2
R
}. The knowledge

of both S2(ρ) and S2(ρR), allows one to quantify the entanglement of the subsystem R

with the rest [34, 35]. While, as emphasized above, the following discussion is valid

for any quantum state, specific scenarios of experimental interest include monitoring state

purity and entanglement entropies in quench dynamics as a function of time, or thermal

versus entanglement entropy in thermodynamic equilibrium situations.

The Renyi entropy and the purity are nonlinear functionals of the quantum state and thus

not directly observable. However, the purity can be directly obtained by measuring several

copies of the same state [36]. It can be expressed as the expectation value of the swap

operator V2 on a system that is prepared in two identical copies in the same quantum state

ρ, that is, Tr{ρ2} =Tr{V2ρ⊗ ρ} ≡ 〈V2〉, where the swap operator is defined as V2|ψ1〉 ⊗ |ψ2〉 =
|ψ2〉 ⊗ |ψ1〉. Similarly, the purity of the reduced density operator of a subsystem R is given by

the expectation value of the operator VR2 that swaps the quantum states just in the part R, that

is Tr{ρ2
R
} = Tr{VR2 ρ⊗ ρ} ≡ 〈VR2 〉. A measurement of the Renyi entropies S2(ρ) and S2(ρR)

New Journal of Physics 15 (2013) 063003 (http://www.njp.org/)
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Figure 1. The three steps in the measurement protocol of second Renyi entropy

for spinful fermions in a 2D optical lattice. (a) First, two copies of the many-

body state are produced. (b) Then the barrier between the copies is lowered

such that atoms can tunnel from each mode to its copy to realize a beam splitter

operation between the copies (see equation (2)). (c) Finally, the fermion number

is measured site- and spin-resolved in both copies with a quantum microscope.

Here we show a typical outcome of a single measurement run, where on each site

one finds either no atom, an atom with spin up, an atom with spin down or both

spins on one site. In this example, according to table 1 the measurement outcome

for the swap operator on the whole system is +1, while the result for the reduced

set of modes that are enclosed by the dashed line is −1. Simultaneously one also

obtains measurement results for all other subsets. For example the outcome for

the swap operator on the spin up modes is −1.

of fermionic atoms in optical lattices thus reduces to (i) the ability to prepare two identical

copies of the atomic system, and (ii) the development of a protocol to measure 〈V2〉 and 〈VR2 〉
by simple operations and read out in an optical lattice on the two copies, in a way that can

be readily implemented with high fidelity in present experiments. While the first aspect is

primarily an experimental question, we will focus in the following on the protocol to realize the

measurement of the swap operation (ii) and interpretation of measurement results of a quantum

gas microscope to determine 〈V2〉 and 〈VR2 〉. We comment on the assumption of identical copies

(i) at the end of this section.

To be more specific, we consider spin-1/2 fermions in an optical lattice, in a setup

illustrated for two 2D lattices representing the two copies in figure 1. We define a basis of

New Journal of Physics 15 (2013) 063003 (http://www.njp.org/)
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Fock states for the two copies of the system

|n,m〉 ≡
∏

(i,σ )

(a
†
i,σ )

ni,σ
∏

( j,σ )

(b
†
j,σ )

m j,σ |vac〉, (1)

where a
†
i,σ and b

†
i,σ denote the creation operations for fermionic atoms on lattice site i

and spin σ = ±1/2 in the first and second system (copy), respectively, and where the n =
{n1,↑, n1,↓, n2,↑, . . .} and m = {m1,↑,m1,↓,m2,↑, . . .} are the occupation numbers of the two

systems. The swap operator V2 acts on these states as V2|n,m〉 = |m,n〉, which interchanges the

configurations n and m. For bosons this swap operation amounts to the interchange a
†
i,σ ↔ b

†
i,σ .

Daley et al [11] have shown that a measurement of this is readily implemented in an optical

lattice by turning on tunneling between corresponding lattice sites of the two copies, and reading

out lattice occupation of the first copy (modulo 2) with the quantum gas microscope. However,

for fermions applying V2 is not equivalent to exchanging a
†
i,σ ↔ b

†
i,σ , since there is an ordering

problem, i.e. one must keep track of the fermionic signs. In the following we will present this

protocol for fermions. We will present our results first in the form of an experimental recipe in

section 2.1, and give the formal proof in section 2.2 and appendix A. In section 2.3 will analyze

limitations and scaling of errors in these measurements.

2.1. Experimental protocol to measure Tr{ρ2
R
} = Tr{VR2 ρ⊗ ρ}

The expectation value of VR2 is obtained by averaging over a series of single measurements,

where each single measurement proceeds in three steps as illustrated in figure 1.

(i) Initially two identical copies of the same (non-) equilibrium state are prepared [37]. With

optical lattices this can be performed in two parallel 1D tubes or two neighboring 2D planes

that are completely decoupled (cf figure 1(a)).

(ii) At a given time t the lattice depth within each copy is suddenly ramped up to freeze

the atomic configuration by suppressing tunneling (atomic limit). Simultaneously, all

interactions (e.g. between different spins) are turned off, e.g. by using magnetic or optical

Feshbach resonances [38, 39]. Alternatively the protocol can be executed on a timescale

where the effects of interactions are negligible. Note that during this step the entanglement

and the overall entropy does not change.

We then lower the barrier between the two copies to allow tunneling between each site

and its copy with an amplitude Jab for a fixed time τab = π/(4Jab) (cf figure 1(b)). This

can be accomplished with the use of an optical superlattice [40]. With this operation we

implement the beam splitter U2 that maps

U2 : ai,σ →
1

√
2
(ai,σ + bi,σ ); bi,σ →

1
√

2
(bi,σ − ai,σ ), (2)

where ai,σ denotes the annihilation operator at site i with spin σ and bi,σ denotes the

annihilation operator in the corresponding mode in the second copy of the system5.

5 To strictly realize (2) one needs additional phase shifts. They can be obtained by shifting the energies of the two

copies relative to each other in an additional step, e.g. using a superlattice. However, due to the particle number

superselection rule (see appendix A) these phase shifts do not affect the final measurement result, and are not

necessary for the present protocol.
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Table 1. Rules determining the measurement outcome for fermions. For a

derivation see section 2.2.

NRtot NRtot/2 NR1 Result for VR2

Even Even Even 1

Even Even Odd −1

Even Odd Even −1

Even Odd Odd 1

Odd – – 0

(iii) Finally we measure site- and spin-resolved the occupation numbers using a quantum gas

microscope [9, 10]. We denote the measurement results in copy one by n
(1)
i,σ and in copy two

by n
(2)
i,σ . In the case of fermions this number is either zero or one due to the Pauli principle,

but also for bosons it suffices to determine the parity of the occupation number.

The difference between bosons and fermions consists of how the measured occupation

numbers relate to the measured value of the operators VR2 .

Bosons. If one finds an even (odd) number of bosons on the modes belonging to R of copy

one, then the measurement outcome for VR2 is plus (minus) one [11].

Fermions. For fermions the measurement outcome of the operator VR2 depends on the total

number of fermions in both copies of the modes belonging to R, which we denote by NRtot =
∑

(i,σ )∈R n
(1)
i,σ + n

(2)
i,σ , and on the number of atoms on copy one of the modes belonging to R,

denoted by NR1 =
∑

(i,σ )∈R n
(1)
i,σ . The corresponding measurement result for VR2 can be read off

from table 1.

To determine the expectation value of VR2 , and thus the purity of the corresponding reduced

density operator, one has to repeat the whole measurement procedure and average over the

outcomes. Since all the swap operators for different subsets R commute ([VR2 , VR
′

2 ] = 0), it is

in principle possible to measure all of them at once. In fact in each single run one obtains a

measurement result for all possible subsets.

2.2. Justification of the measurement protocol

Here we show that the above protocol implements a measurement of the swap operator and thus

the Renyi entropy. We give the proof for V2 and at the end comment on VR2 .

As we noted above, the swap operator V2 acts on the Fock states according to V2|n,m〉 =
|m,n〉. In the bosonic case it is simply given by the operator which interchanges a

†
i ↔ b

†
i , since

the order of the creation operators does not matter for bosons. However for fermions applying

V2 is not equivalent to exchanging a
†
i ↔ b

†
i , since such an operation performs the mapping

|n,m〉 → (−1)
∑

i, j ni mj |m,n〉.
From the Fock-basis one can easily construct the eigenbasis of V2. The eigenspace with

eigenvalue +1 is spanned by vectors |ψ+
n,m〉 which are of the form |ψ+

n,n〉 = |n,n〉, and |ψ+
n,m〉 =

1√
2
(|n,m〉 + |m,n〉) for n 6= m. The eigenspace with eigenvalue −1 is spanned by the vectors

New Journal of Physics 15 (2013) 063003 (http://www.njp.org/)
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|ψ−
n,m〉 = 1√

2
(|n,m〉 − |m,n〉). Under the beam-splitter operation equation (2) the eigenstates of

V2 transform into a superposition of states in the occupation number basis according to

U2|ψ±
n,m〉 =

∑

k

c±
k;n,m|k,n + m − k〉. (3)

The coefficients c±
k;n,m depend on whether we are considering bosons or fermions. We discuss

the two cases separately.

Bosons. The coefficients in equation (3) are given by

c±
k;n,m =

(

1 ± (−1)
∑

j k j
)

dk;n,m, (4)

where dk;n,m is a numerical factor which is irrelevant for the following discussion. From

equations (3) and (4) we see that the beam splitter operation transforms the symmetric states

|ψ+
n,m〉, that is the eigenspace with eigenvalue +1 into the space with an even number of atoms

in the first copy, since all coefficients for states with an odd number of atoms in copy one,
∑

i ki ,

vanish after the application of the beam splitter. Similarly the eigenspace with eigenvalue −1 is

transformed into the space with an odd number of atoms in the first copy.

Fermions. We find for fermions

c±
k;n,m =

(

1 ± (−1)
∑

j k j +
∑

i, j ni mj
)

ek;n,m, (5)

where ek;n,m, as for bosons, is a numerical factor which is irrelevant for our purpose. The main

difference to the bosonic case is the dependence on the parity of the term
∑

i, j ni m j in the

exponent. If this term is even, the situation is the same as for bosons, and the symmetric states

are mapped onto states with an even number of particles in copy one, while antisymmetric states

are mapped onto states where this number is odd. However if
∑

i, j ni m j is odd, the situation is

reversed. Unfortunately, there is no way of determining the parity of
∑

i, j ni m j after the beam

splitter operation has been applied. One only has access to the values of ki and ni + mi , that is

the number of particles in the modes of copy one after the beam splitter, and the total number

of atoms in both copies of each mode (which is the same before and after the beam splitter

operation). However, we will show in the following that this is sufficient information to proceed.

The basic idea is the following.

(i) Firstly, consider only the eigenstates |ψ±
n,m〉 with

∑

i ni =
∑

i mi ≡ N , that is with an equal

number of atoms in the two systems (before the beam splitter operation is applied). For

these eigenstates the parity of
∑

i, j ni m j = N 2 can be determined from the knowledge of

the total number of atoms Ntot = 2N , which can be accessed from the occupation number

measurement in the final step of our protocol. If N is even, then N 2 is even as well, and as

in the bosonic case, the (anti-) symmetric states are mapped onto the space with (odd) even

number of particles in copy one. On the other hand, if N is odd, then also N 2 is odd, and

the situation is reversed, the (anti-) symmetric states are mapped onto the space with (even)

odd number of particles in copy one. This is reflected in the rules presented in table 1.

(ii) Secondly, consider only the eigenstates |ψ±
n,m〉 with

∑

i ni 6=
∑

i mi . Then the total number

of fermions Ntot is not enough to determine the parity of
∑

i, j ni m j . Thus, when assigning

a measurement outcome according to table 1, there are some pairs (n,m) where one

incorrectly assigns a measurement result of +1 to the state |ψ−
n,m〉 and a value of −1 to the

corresponding state |ψ+
n,m〉. However, for product states constrained by a particle number

superselection rule [41] it is readily shown (see appendix A) that the probability of finding

the system in the symmetric state |ψ+
n,m〉 is the same as the probability of finding it in
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the corresponding antisymmetric state |ψ−
n,m〉, if

∑

i ni 6=
∑

i mi . Therefore these instances

average to zero and the error is irrelevant for the average value. Furthermore, if the total

number of atoms Ntot is odd, then one can be sure that
∑

i ni 6=
∑

i mi , and assign a

measurement value of zero right away, as suggested in table 1. A more formal and detailed

proof of these points can be found in appendix A. In contrast to the bosonic case [11],

the above arguments cannot be generalized in a straightforward way to higher order Renyi

entropies for fermions.

If one is interested in the purity of the reduced density operator of a subset of modes R,

that is in the measurement of VR2 , the discussion is completely analogous. Note that, since the

beam splitter is unitary and the beam splitting operations for different modes commute, it is

irrelevant whether or not one performs the beam splitter operation also on modes not belonging

to R. Thus in practice one can perform always the full beam splitter U2 on each pair of modes,

and determine the number of atoms and the corresponding measurement result for VR2 in each

subdivision R simultaneously.

2.3. Limitations and effect of errors

The main limitation of the proposed measurement scheme is that the number of single

measurements necessary to determine the entropy with a certain statistical accuracy can become

large. This number can be estimated as follows. Each single measurement gives, according

to table 1 either ±1 or 0. Their mean value determines 〈VR2 〉 = Tr{ρ2
R
}. The variance of the

measurement outcomes can be expressed as (1VR2 )
2 = 〈Peven〉 − 〈VR2 〉2, where Peven is the

projector on the sector with even total number of particles in the two copies. It is easily shown

for product states of two copies, both constrained by a particle number superselection rule,

that 1/26 〈Peven〉6 1. To determine the expectation value of VR2 and thus the purity with

a certain statistical accuracy σV , one needs a number of measurements #V that is given by

#Vσ
2
V = 〈Peven〉/〈VR2 〉2 − 1. For highly mixed states this number diverges as #Vσ

2
V ∼ 1/Tr{ρ2}.

This results in an exponential scaling of the required number of measurements with the Renyi

entropy. To determine the entropy with a relative statistical uncertainty of σS one needs #S

measurements with #Sσ
2
S = 1

S2
2

(〈Peven〉e2S2 − 1)∼ e2S2−2 log S2 . We note that all known schemes to

measure entropy based on multiple copies [11, 36, 42] suffer from this limitation.

Since the (parity of the) number of atoms on each site enters crucially in the measurement

result, errors in the measurement of this numbers are a major error source in an experiment.

Their effect is most easily outlined in the measurement scheme for bosons, but the discussion

can be carried out analogously for fermions. In an ideal experimental implementation the

system state determines the probability p± of finding an eigenvalue plus or minus one, such

that 〈V2〉 = p+ − p−. Suppose that with a probability ǫ the quantum gas microscope incorrectly

measures an even (odd) number of particles on a certain site, when there is actually an odd

(even) number of atoms. Assuming that such errors occur in an uncorrelated fashion and with the

same probability on the M sites that are measured, the experimentally determined expectation

value 〈V2〉ǫ is reduced compared to the actual one by 〈V2〉ǫ = 〈V2〉(1 − 2ǫ)M . Thus the measured

entropy S2,ǫ(ρ) is just the sum of the actual entropy of the system S2(ρ) and a contribution

from the quantum gas microscope Smicroscope = −M log(1 − 2ǫ), where the contribution of the

quantum gas microscope is extensive in the size of the measured (sub)system. Thus, the

measured purity (entropy) is always smaller (larger) than the actual one.
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A general assumption [43] underlying the protocol is the preparation of two perfect copies

ρ⊗ ρ. Even though our protocol does not provide a direct means to check this assumption,

it can strengthen it a posteriori, e.g. if the two copies are close to a pure state. Then the

measured expectation value is one if the state in both copies is the same. Also, one can relax

the assumption of having completely uncorrelated copies and allow for classical correlations

between them, such that the total density operator is of the form ρtot =
∑

i piρi ⊗ ρi , and still

obtain useful information from the described measurement protocol as outlined in appendix B.

On the other hand, one might be interested in the overlap of two states that are different

from the outset. By preparing the two states in the form ρ1 ⊗ ρ2, this protocol gives access

to Tr{ρ1ρ2} = Tr{V2ρ1 ⊗ ρ2}.

3. Renyi entropies of a fermionic Hubbard chain

The protocol to measure Renyi entropies for fermionic systems described in the previous section

provides a novel tool to access in experiments fundamental properties of many-body systems

related to entanglement and thermal entropy. One of the important results quantum information

theory has brought to the field of quantum many-body systems is the finding that ground states

of local Hamiltonians typically exhibit an entropic area law S ∼ α∂A, where ∂A denotes the

perimeter of the boundary delimiting the two complementary subregions A and B [44]. In the

particular case of 1D critical systems admitting a CFT description, the area-law picks up an

(additive) logarithmic correction, whose prefactor solely depends on the central charge c of the

CFT. These are very important theoretical results underlying the success of matrix- and tensor

network based numerical and conceptional methods, and have furthermore deep connections to

quantum field theory, string theory and black hole physics. It is therefore highly desirable to test

these theoretical predictions in actual experiments, enabled through the experimental protocols

introduced in previous [11, 36, 42] and the present work.

In this section we illustrate this for the example of the Fermi–Hubbard model in one

dimension, as it is the simplest model of interacting fermions that can be realized with cold

fermionic atoms in an optical lattice. In terms of creation (a
†
i,σ ), annihilation (ai,σ ) and counting

operators (ni,σ = a
†
i,σai,σ ) the Fermi–Hubbard Hamiltonian for a 1D lattice with L sites is

given by

H = −tF

∑

σ=↑,↓

L−1
∑

i=1

(a
†
i,σai+1,σ + h.c.)+ U

L
∑

i=1

ni,↑ni,↓, (6)

where tF denotes the hopping amplitude between neighboring sites and U the onsite interaction

energy. The model is exactly solvable via the Bethe ansatz [45, 46] and the phase diagram

exhibits a metallic two-channel Luttinger liquid ground state at generic fillings for all

interactions U > 0 [46, 47]. At half filling and U > 0 the charge degrees of freedom are gapped

and a Mott insulator appears.

Here, we use a generalized directed loop algorithm within the stochastic series expansion

framework [48–50] to access the thermal Renyi entropies following a measurement scheme

based on the dynamic update of the world line topologies presented in [21]. Large blocks are

built up consecutively using the increment trick [51] that allows for an efficient update in replica

space.
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Figure 2. The upper left (right) panel shows the second Renyi entropy S2 for

the half-filled (quarter-filled) Hubbard model as a function of the chord distance

l ′
A for L = 48 and U/tF = 8 obtained using DMRG. The lower panel displays

the same entropy data as a function of log l ′
A, where l ′

A is the chord length of

block A. Here, we show DMRG data for systems up to L = 96. The slope of S2

is given by c/8 (see equation (7)) and the blue and green lines are guides to the

eye corresponding to c = 1 and 2 respectively.

In the following we quantify the ground-state entanglement as well as the thermal Renyi

entropy that one would obtain with the proposed protocol for realistic experimental system

sizes. We show to what extent quantum entanglement can be accessed through a measurement

of S2 for system sizes and temperatures available in an experiment. A systematic study of the

crossover between entanglement and thermal entropy is presented in [33].

3.1. Zero temperature

Let us start by looking at the Hubbard chain at zero temperature. Figure 2 shows the n = 2 Renyi

profiles for bipartitions A ∪ B with block sizes lA obtained using DMRG for chains with L = 48

sites, both for half (n↑ = n↓ = 1/2) and quarter filling (n↑ = n↓ = 1/4). A prominent feature of

the Renyi profiles for finite system sizes is that they exhibit characteristic oscillation associated

with the Fermi-momentum kF, giving rise to two (four) branches at half (quarter) filling.

Further, one clearly identifies the envelope carrying the logarithmic corrections to the area

law.

New Journal of Physics 15 (2013) 063003 (http://www.njp.org/)

http://www.njp.org/


11

Figure 3. Renyi profile for a Hubbard chain in the presence of a trapping

potential with V (i)= (i − L/2)2/20 − 6 and U/tF = 6. The green crosses

correspond the ground-state of the system obtained from DMRG with 18

particles whereas the finite-temperature results are obtained from QMC using

grand-canonical simulations with an average particle number coinciding to the

T = 0 DMRG calculations. A density profile for different temperatures is shown

in the inset.

These features are well understood via the underlying CFT [52–55], from which the Renyi

profiles are obtained to be

Sn(A)=
c

12

(

1 +
1

n

)

log 2 l ′
A + Scorr

n (l ′
A)+ const., (7)

where l ′
A = L/πsin(πlA/L) is the chord distance. The first term is the leading contribution and

describes the logarithmic increase of the entropy with block size. It is directly proportional to

the central charge c and distinguishes between the metal (c = 2) and the Mott insulating state

(c = 1) having two respectively one gapless channels. By measuring the Renyi profiles with

the previously introduced protocol it is in principle possible to determine this pre-factor and

to extract the central charge c in an experiment. This is conveniently done by plotting S2 as a

function of log(2l ′
A), as shown in figure 2. This way, S2 approaches a straight line with slope

c/12(1 + 1/n) for large block and system sizes. One can see from figure 2 that the data for

the half filled Hubbard Model at U/tF = 8 is consistent with a central charge of c = 1, as the

two branches of the Renyi entropy approach the corresponding asymptotic line from above and

below whereas the quarter filled chain exhibits c = 2.

3.2. Finite temperature and trap

A measurement of the Renyi Profile as proposed in section 2 will necessarily be performed at

finite temperature. Then, the Renyi entropy will not only pick up quantum entanglement but

also thermal contributions to the entropy. Since the thermal entropy is an extensive quantity,

one expects a crossover from the area-law to a volume law. This is shown in figure 3,
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where we plot finite-temperature QMC results for U/tF = 6. To make a closer connection to

the experimental situation, we include a harmonic trapping potential, Htrap =
∑

i Vi ni , with

V (i)= (i − L/2)2/20 − 6. Filling the trap with 18 particles, at zero temperature a Mott insulator

extends over about eight lattices sites and the density drops to zero in the wings quite rapidly

(see the density profile in the inset of figure 3). In the center of the trap at T = 0, where the

Mott phase proliferates, the Renyi profile shows the characteristic 2kF oscillations. The metallic

wings that appear due to the presence of the harmonic trap, are also clearly visible in the Renyi

profile in figure 3.

When the temperature is increased above the finite size gap, the entropy S2 picks up a linear

contribution (see figure 3). Thus, the S2 profile is no longer symmetric with respect to the center

of the system and the purity of the whole system decreases as S2(L) increases. In addition the

amplitude of the parity induced oscillations is suppressed as the temperature is increased. One

can see that for temperature T/tF & 0.1, the entropy is already dominated by a linear increase

of the thermal entropy and S2 loses its parity effects.

The ability to measure Renyi profiles also allows access to other quantities that provide

further insight into the entanglement and correlation properties of the system. For instance, the

mutual information between two (possibly disjoint) blocks A and B and is given in terms of the

Renyi entropies as

I2(A|B)= S2(A)+ S2(B)− S2(A ∪ B). (8)

This measure is particularly useful when dealing with mixed states as it does not pick up an

extensive contribution from the thermal entropy—it obeys an area law [14, 56, 57] even at

finite-T —but is sensitive toward correlations between the two subblocks [58]. For a detailed

discussion of the mutual information in the Hubbard chain we refer to [33].

3.3. Limitations

As pointed out in section 2.3, the ability to determine these entropy profiles using the protocol

proposed in this work is fundamentally limited by an exponential growth with entropy of the

number of single measurements required to obtain a certain statistical accuracy σS (see figure 4).

To give numbers, for example 105 single measurements are needed to determine Renyi entropies

up to S2 ∼ 5 with a relative statistical error of σS ∼ 0.1. For 1D systems, at temperatures below

the finite size gap this is not a severe restriction as the entropy obeys a area law with at

most logarithmic corrections. For example in the previous subsection we showed that in the

1D Hubbard model, at temperatures below the finite size gap the entropies are typically of

the order one. This values can be resolved with just ∼10/σ 2
S single measurements. Above the

finite size gap however the number of measurements sets the limit in terms of temperatures

and system sizes, as the entropy becomes extensive in the system size and increases with

temperature.

To quantify this, figure 4 shows the Renyi entropy S2(L) of a full (homogeneous) Hubbard

chain at quarter filling and U/tF = 4 as a function of system size L (open boundary conditions)

and temperature T , as well as the number of measurements, #S, required to resolve a certain

value of S2 with a statistical relative error, σS, using the above proposed protocol. This clearly

shows that experimentally relevant situations, e.g. T/tF ∼ 0.2, L ∼ 30 can be explored with a

moderate number #Sσ
2
S . 103 of single measurements.
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Figure 4. (left) Renyi entropy of the whole chain, S2(L) at quarter filling and

U/tF = 4, for different system sizes L at different temperatures T . The contour

lines denote constant temperature T/tF = 0.1, 0.15, . . . , 0.5. (right) Number of

measurements, #S, required for a measurement of S2 with a statistical relative

error σS, using our protocol.

4. Discussion

To summarize, we have presented a method to determine the order two Renyi entropy for

bosons and fermions in an optical lattice. The scheme is based on the possibility of preparing

two identical copies of a quantum state in an optical lattice, coupling the two copies via

a superlattice, and site-(and spin-)resolved measurement of the occupation number (modulo

two). The combination of these tools, which are available in current experiments, allows

one to directly determine the entropy of a many-body quantum state, and may be seen as a

thermometer for states near the absolute ground state. On the other hand, for pure states this

opens the possibility to study entanglement as quantified by the entropy of a subsystem. Possible

applications include test area laws for the scaling of entanglement entropy in ground states, and

monitoring entanglement in time-dependent systems. Using QMC-techniques we analyzed the

possibility to test area laws and their corrections in a finite size system at finite temperatures

typically present in current experiments.
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Appendix A. Details on the proof of the measurement protocol

Here we elaborate more formally on some points of the proof presented in section 2.2 for

fermions. First, note that a pure state (in one copy) with N fermions (constrained by the particle

number superselection rule) always has the form

|ψ〉 =
∑

n
∑

i ni = N

ψn|n〉, (A.1)

where N is the total number of atoms. A general state is a mixture of such states (with possibly

different total number of fermions)

ρ =
∑

N

∑

n,n′
∑

i ni = N
∑

i n′
i
= N

ρ
(N )

n,n′|n〉〈n′|. (A.2)

Thus, a general product state in the two systems has the form

ρ⊗ ρ̃ =
∑

N ,M

∑

n,n′
∑

i ni = N
∑

i n′
i
= N

∑

m,m′
∑

i mi = M
∑

i m′
i
= M

ρ
(N )

n,n′ ρ̃
(M)

m,m′|n,m〉〈n′,m′|. (A.3)

They have the crucial property that for
∑

i ni 6=
∑

i mi one has

〈ψ+
n,m|ρ⊗ ρ̃|ψ+

n,m〉 = 〈ψ−
n,m|ρ⊗ ρ̃|ψ−

n,m〉, (A.4)

as one can easily show using the definition of the eigenstates (see section 2.2) and

equation (A.3). This property is used to allow for errors in the assignments of the measured

eigenvalue, that do not alter the average value. An alternative way of thinking about this is the

following. We want to determine the purity of ρ via the expectation value Tr{ρ2} = Tr{V2ρ⊗ ρ}.
However V2 is not the only operator whose expectation value in the state ρ⊗ ρ is equal to

Tr{ρ2}. Below we will introduce a whole family of operators V
( f )

2 (depending on some function

f ), which share this property. We define

P±(n,m)= 1
2
(|n,m〉 ± |m,n〉)(〈n,m| ± 〈m,n|), (A.5)

and further Q(n,m)= 1
2
(P+(n,m)− P−(n,m)), such that we can write V2 =

∑

n,m Q(n,m).

The factor 1/2 in the definition of Q is to correct for double-counting. We can divide the

eigenstates of V2 in two classes, those with
∑

i ni =
∑

i mi and the others, leading to the

representation

V2 =
∑

n,m
∑

i ni =
∑

i mi

Q(n,m)+
∑

n,m
∑

i ni 6=
∑

i mi

Q(n,m). (A.6)

Note that due to equation (A.4), the expectation value of each term in the second sum is

identically zero for states of the form equation (A.3). Therefore, the expectation value of the

operator V2 is the same as the one of V
( f )

2 defined as

V
( f )

2 =
∑

n,m
∑

i ni =
∑

i mi

Q(n,m)+
∑

n,m
∑

i ni 6=
∑

i mi

f (n,m)Q(n,m), (A.7)
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where f (n,m) is an arbitrary (real-valued) function. In particular we can choose

f (n,m)=











0, s(n + m)= 1,

1, s(n)= s(m)= s((n + m)/2),

−1, s(n)= s(m) 6= s((n + m)/2),

(A.8)

where we use the notation s(x)=
∑

i xi mod 2. The eigenstates of V
( f )

2 are the same as those of

V2, but they have different eigenvalues. The advantage of choosing f in the above form is that

the eigenvalue of V
( f )

2 can be determined from the total number of atoms and the number of

atoms in copy one after the beam splitter, as presented in table 1. This can easily be checked by

explicitly looking at the transformation of all the different classes of eigenstates of V
( f )

2 under

the beamsplitter.

Appendix B. Mixtures of copies

As pointed out in [36] the expectation value of the operator V2 in the state ρtot = ρ⊗ ρ is

given by Tr{ρ2}. The assumption of having two completely uncorrelated copies of the form

ρtot = ρ⊗ ρ, although being difficult to validate [43] experimentally, is a natural one for such

systems in optical lattices, where the two copies can be decoupled by a high potential barrier.

However, correlated errors, such as for example global fluctuations in the intensities of the

laser beam that generates the lattice [59], affect the two copies in the same way and lead

to correlations between the copies. Such identical, but correlated errors in general lead to a

state which is a mixture of different products of the same state, that is ρtot =
∑

i piρi ⊗ ρi with
∑

i pi = 1 and pi > 0. In the following we show that even in this situation the measurement

of the operator V2 provides useful information about the entropy in the sense that it provides

bounds on the purity of the reduced system of one of the two ‘copies’, that is of the state

ρ ≡ Trcopy2{ρtot} =
∑

i piρi . To this end we show that

1
2
Tr{V2ρtot}6 Tr{ρ2}6 Tr{V2ρtot}. (B.1)

We first show the upper bound. Consider the function

F({pi})≡ Tr{ρ2} − Tr{V2ρtot} =
∑

i, j

pi p j Tr{ρiρ j} −
∑

i

pi Tr{ρ2
i }, (B.2)

defined in the polytope spanned by the pi with
∑

i pi = 1 and pi > 0. Note that this function

is zero at the corners of this polytope given by pi = δi, j . Further, the Hessian matrix of

F is constant and given by Hi, j ≡ d2 F

dpi dp j
= 2 Tr{ρiρ j}. This is a Gramian matrix and thus

positive semidefinite. Thus the function F is convex everywhere and its value on the (convex)

polytope defined by
∑

i pi = 1 and pi > 0 is smaller than its value at the corners. This

proves the upper bound. To prove the lower bound we calculate the (unique) global minimum

of F . It is assumed at the position that satisfies dF/dpi ≡
∑

j 2p j Tr{ρiρ j} − Tr{ρ2
i } = 0. That

is, at the minimum we find
∑

j p j Tr{ρiρ j} = 1
2
Tr{ρ2

i }. Using this in equation (B.2) we find

that F >−1
2

∑

i pi Tr{ρ2
i } = − 1

2
Tr{V2ρtot}, and thus 1

2
Tr{V2ρtot}6 Tr{ρ2}. These inequalities

trivially hold also for purities of subsystems of one of the two copies (with the corresponding

swap-operators).

The inequalities equation (B.1) give bounds in terms of the expectation value of V2 on

arbitrary mixtures of copies. In the typical experiment situation one expects to be very close to
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a simple product of two states with a small admixture of other copies, such that p0 = 1 − ǫ with

ǫ =
∑

i 6=0 pi ≪ 1. Because the function F({pi}) is convex we can bound

F({pi})> F({δi,0})+
∑

i

(pi − δi,0)
dF({pi})

dpi

∣

∣

∣

pi =δi,0

(B.3)

= −
∑

i 6=0

pi Tr{(ρi − ρ0)
2} ≥ −2

∑

i 6=0

pi ≡ −2ǫ, (B.4)

and thus one has Tr{V2ρtot} − 2ǫ 6 Tr{ρ2}6 Tr{V2ρtot}.
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