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ABSTRACT 

Transformers are vital assets for the safe, reliable and cost-effective operation of nuclear power 
plants. The unexpected failure of a transformer can lead to different consequences ranging from a 
lack of export capability, with the corresponding economic penalties, to catastrophic failure, with 
the associated health, safety and economic effects. Condition monitoring techniques examine the 
health of the transformer periodically, with the aim to identify early indicators of anomalies. 
However, many transformer failures occur because diagnostic and monitoring models do not 
identify degraded conditions in time. Therefore, health monitoring is an essential component to 
transformer lifecycle management. Existing tools for transformer health monitoring use traditional 
dissolved gas analysis based diagnostics techniques. With the advance of prognostics and health 
management (PHM) applications, we can enhance traditional transformer health monitoring 
techniques using PHM analytics. The design of an appropriate data analytics system requires a 
multi-stage design process including: (i) specification of engineering requirements; (ii) 
characterization of existing data sources and analytics to identify complementary techniques; (iii) 
development of the functional specification of the  analytics suite to formalize its behavior, and 
finally (iv) deployment, validation, and verification of the functional requirements in the final 
platform. Accordingly, in this paper we propose a transformer analytics suite which incorporates 
anomaly detection, diagnostics, and prognostics modules in order to complement existing tools for 
transformer health monitoring. 

Key Words: Data analytics, prognostics and health management, transformer, condition 
monitoring, insulation. 

1  INTRODUCTION 

The main goal of nuclear power plants (NPP) is the safe and reliable generation of electricity to support 
industrial, residential and commercial loads. Part of the generated electricity is also used for internal 



operation purposes and therefore, the availability of electricity is a critical requirement in an NPP. 
Transformers are essential assets for the export and usage of electricity in an NPP. Accordingly, the correct 
and reliable operation of nuclear power plants is influenced by the performance of transformers. Although 
most transformers operate under the same principles [1], there are different types of transformers in an NPP. 
Focusing on CANDU NPP’s, there are three types of transformers (see also Figure 1): 

 Main output transformers (MOT) connect a generating station to the power network. 

 Unit service transformers (UST) feed a portion of the generated power back to the station 
during normal operation. 

 Station service transformers (SST) provide power from the grid to the station during shutdown 
and start-up. The SST will also operate as backup power supply to the UST during normal 
operation. 

We can see in Figure 1 that the correct operation of transformers is critical to both export of electricity 
from the NPP to the grid (MOT) and to feed back part of the generated electricity for internal operation 
purposes (UST, SST). The consequences of unexpected transformer failures can range from economical 
penalties to health and safety issues caused by power outages and catastrophic failure respectively. 

 
Figure 1.  Example unit configuration. 

Transformers are complex assets comprised of different subsystems such as bushings, core, tank, 
cooler, oil preservation system, load tap changer, winding, and protection system [1]. Each of these 
subsystems performs a specific function (e.g., the cooler controls the oil temperature; the tap-changer 
regulates the voltage) and collectively, they determine the performance and health of the transformer. These 
dependencies can be formally represented through a Fault Tree Analysis (FTA) model which represents the 
combination of subsystem failures that can cause transformer failure [2]. Figure 2 shows a simplified 
transformer FTA model, where transformer subsystems and contributing failure modes are identified [3]. 
For example, the winding assembly failure can be caused by the failure of the winding, connector, or the 
insulation system, and in turn, the winding failure can be caused by turn-turn, coil-coil, or coil-ground 
faults. 

The correct operation of the transformer depends on the correct operation of multiple related 
components over a variety of conditions. When monitoring the transformer’s health, the possible failure 
modes outlined in Figure 2 need to be examined. Traditional methods for transformer health assessment 
have been focused on the analysis of, e.g. gases dissolved in oil, temperature, or electrical parameters [1]. 
With the advance of prognostics and health management (PHM) applications, traditional transformer health 



monitoring techniques can be enhanced with PHM analytics including anomaly detection, diagnostics, or 
prognostics analysis modules [4].  

 

 
Figure 2. Simplified transformer Fault Tree model adapted from [3]. 

 
For industrial implementation purposes, the design of PHM analytics requires moving from ad-hoc 

algorithms towards the development of an analytic suite which takes into account industrial requirements. 
The main goal of this paper is thus the specification of appropriate analytics for lifecycle transformer health 
monitoring. These analytics will complement existing tools for transformer health monitoring and they will 
assist engineers in the asset management process within an NPP. The paper demonstrates the application 
of some of the analytics for transformer correlation and diagnosis analysis activities. 

The paper is organized as follows. Section 2 describes the proposed analytics framework. Section 3 
develops further some of these analytics. Finally, Section 4 draws conclusions and identifies future goals. 

2 TRANSFORMER HEALTH MONITORING DATA ANALYTICS SUITE 

The goal of the data analytics suite is to preemptively identify abnormal data patterns, determine the 
transformer’s current health, forecast the service life, and predefine acceptance and action levels based on 
maintenance guidelines, industry experience, equipment health, and service conditions. The outcome of the 
analytic suite will be semi-automated decision support for preventive and reactive maintenance planning 
and input into life cycle management plans based on changing operational conditions and equipment health. 

In order to address these goals and design an appropriate data analytics suite, we have followed a 
multi-stage design process including: (i) discussions with stakeholders to elicit engineering requirements; 
(ii) characterization of existing data sources and analytics to identify complementary techniques which will 
enhance the transformer health assessment; (iii) development of the analytics functional specification to 
formalize the behavior of the analytics suite, and finally (iv) deployment, validation, and verification of the 
functional requirements in the final platform. Figure 3 outlines the logical flow of the main analytic modules 
included in the transformer analytics suite. 



 
Figure 3. Health monitoring analytic modules. 

The analytics framework design process starts from the data audit step: listing available datasets and 
identifying new variables that can be monitored to improve the health assessment process (Subsection 2.1). 
Next we model the correlation and anomaly detection so as to identify abnormal data patterns (Subsection 
2.2). If an anomalous data trend is detected, then the diagnostics follows the process for the identification 
of failures (Subsection 2.3). The evidence combination aims to combine different diagnostics outcomes to 
generate an overall transformer diagnosis. Similarly, the health index generates an overall transformer 
health state indicator combining the information generated in all the previous activities (Subsection 2.4). 
After diagnosing the current health, we can estimate the remaining useful life through the application of 
future profiles (Subsection 2.5). The transformer reliability assessment can be performed through the FTA 
model in Figure 2 and it can be continuously updated through online PHM results generated from the data 
analytics [4]. 

Following the outlined PHM-oriented analytics design process, Figure 4 shows the proposed 
transformer data analytics suite. 

 
Figure 4. Transformer data analytics suite. 

2.1 Data Sources 
First we need to examine the critical parts of the transformer and if needed, install adequate sensing 

hardware components. If appropriate statistics are available [5], it is possible to analyze the criticality of 



different parts of the transformer and rank components through importance measures [4]. For example, the 
insulation and winding are known to be critical parts of the transformer [1]. 

The key performance characteristics to be monitored in a transformer include: (i) dissolved gases in 
the oil, (ii) insulation-related parameters (power factor, moisture, capacitance, oil condition); (iii) oil 
temperatures and hottest spot temperature; (iv) winding parameters (tap-turns ratio, resistance, Megger 
test), and (v) external variables such as load or ambient temperature. We can classify these variables into 
two groups from the high-level point of view: 

 Operational and environmental data that drive transformer behavior: load, ambient 
temperature, and water inlet temperature (in the case of water-cooled transformers). 

 Transformer condition-related data: oil temperature, hottest spot temperature, dissolved gases, 
power factor, moisture, oil condition, capacitance, frequency response analysis, taps-turns 
ratio, winding resistance, and Megger test. 

Transformer condition-related data can be further divided into off-line and on-line parameters, which 
may or may not require different analytics. Off-line parameter extraction requires the transformer to be de-
energized whereas on-line data is sampled on an ongoing basis. Another important factor for the data audit 
process is the data management tool support. Some data samples may require tests in a laboratory and 
therefore the data collection and maintenance of test records becomes crucial. 

2.2 Correlation and Anomaly Detection 
There are interdependencies among different parts of the transformer, for instance the transformer load 

current is dependent on the generated power [1]; and the oil temperature is dependent on the ambient 
temperature [1]. Although the FTA model in Figure 2 shows disjoint failure modes among subsystems, it is 
possible to refine this model by taking into account correlations among transformer subsystems. However, 
these correlations are non-evident and they need to be determined on a case-by-case basis through data 
analysis and expert knowledge. Depending on the nature of the data it is possible to apply different 
correlation methods. Possible correlation implementations range from classical Spearman’s correlations to 
more complex statistical methods such as copula analysis [6]. 

The sampling rate is crucial to correlating different variables. If variables are sampled with different 
schemes, it will be compulsory to apply signal processing methods to extract meaningful conclusions (e.g., 
downsampling, interpolating data samples). One specific example is the dissolved gas analysis (DGA) data. 
The sampling regime for DGA varies, but it is common to sample DGA annually, quarterly, or up to 6 times 
a year. If we are interested in correlating DGA samples with a more regularly sampled variable (e.g. hourly 
sampled load) an intermediate data processing module will be needed to avoid loss of information. 

Anomaly detection focuses on the identification of abnormal patterns in the data. Normality patterns 
can be defined through different models that can learn to express the normal behavior of the system or asset 
under study [7]. Some systems are influenced by external factors, but many anomaly detection modules 
define the expected normality pattern solely based on condition-related data.  

In this context one alternative is to implement a conditional anomaly detection (CAD) model [8] 
(Figure 5) which correlates transformer condition-related data and operational data. The goal is to 
distinguish situations where unusual operating conditions may be causing abnormal transformer behavior 
from situations where the transformer condition is unusual under normal operation. The latter case is more 
likely to represent a true deterioration of the transformer’s health. To achieve this, Gaussian Mixture Models 
are used to generate multivariate statistical models that embed condition-related data within a transformer 
model, P(Transf), and operating environment related data within an environment model, P(Env). Then a 
correlation algorithm (Expectation Maximization) is used to generate a conditional probability model that 
correlates the environment and transformer models (P(Transf | Env)) [7]. 



 
Figure 5. Conditional anomaly detection model. 

The CAD module can take multiple different input variables to the transformer and environment 
models. For example, as shown in Figure 5 gas parameters can generate the transformer model (e.g., CH4, 
C2H6) and temperature and load parameters the environment model. The CAD module will identify truly 
anomalous trends under normal operating conditions, and when combined with the diagnostics activity, it 
will reduce false alarms by triggering the diagnosis activity only if an anomaly has been identified. 

2.3 Diagnostics 
Diagnostics modeling depends on the specific subsystem under study. For instance, there are different 

types of cooling systems for transformers (e.g. Oil Natural Air Natural (ONAN) or Oil Directed Water 
Forced (ODWF)), and for each of these configurations, the cooling system is comprised of different 
components. A diagnostics model of paper insulation is introduced in Section 2.5, as a necessary step in 
developing a prognostics model of transformer paper’s health.  

Operational and fault events within the transformer generate gases which are dissolved in the insulating 
oil and DGA is a mature and industry-accepted method that focuses on the study of these gases. In order to 
aid in the rapid diagnosis of possible transformer faults, there have been proposed different ratio-based 
DGA techniques such as Doernenburg’s ratios, Rogers’ ratios, and Duval’s triangle [9]. However, the 
accuracy of ratio-based DGA techniques may be limited for transformer fault classification because: (i) 
they use crisp decision bounds, (ii) they do not include uncertainty criteria in the fault classification; and 
(iii) the fault classification frameworks of each technique are different.  

It is possible to improve the diagnosis accuracy of ratio-based DGA methods through the 
transformation of these techniques into a probabilistic diagnosis model through Bayesian networks [10]. To 
this end, first it is necessary to specify dependencies among the gases and failure modes in a directed acyclic 
graph. This information can be elicited from the ratio-based techniques that link gas ratios with failure 
modes (see Table I and Figure 6a, where R1=CH4/H2, R2=C2H2/C2H4, R3=C2H2/CH4, and 
R4=C2H6/C2H2). Then the data must be discretized according to the ratio intervals defined for each 
technique. Table II displays discretized Doernenburg’s ratios. 

Table I. Doernenburg’s classification ratios. 

Diagnosis R1 R2 R3 R4 
Thermal >1 <0.75 <0.3 >0.4 

PD <0.1 N/A <0.3 >0.4 
Arcing 0.1-1 >0.75 >0.3 <0.4 

 

Table II. Discretized ratios. 

Ratio R1 R2 R3 R4 
Code 0 1 2 0 1 0 1 0 1 
Range ≤1 0.1-1 >1 ≤0.75 >0.75 ≤0.3 >0.3 ≤0.4 >0.4 



The next step is to learn the conditional probabilities that link nodes with edges, and finally to 
implement inference algorithms to estimate the likelihood of failure modes given gas observations (see 
Figure 6b). This framework can be expected to effectively improve the diagnosis accuracy of ratio-based 
techniques by treating the classification criteria through conditional probability models and estimating the 
likelihood for the occurrence of each failure mode given the gas observations. 

 
Figure 6. Bayesian networks for DGA: (a) Doernenburg’s model (b) overall framework. 

2.4 Evidence Combination and Health Index 
When different PHM techniques examine the same failure mode (e.g. DGA based transformer 

diagnosis), their outcomes may be different because they use different algorithms. The evidence 
combination activity [11] handles inconsistencies among input modules and generates a consistent output. 

For instance, evidence combination may be used to combine different ratio-based DGA diagnostics 
outputs (Duval, Rogers, Doernenburg) to generate consistent diagnostics. Evidence combination techniques 
range from majority voting to other applications using artificial intelligence or sensor fusion concepts [11]. 
So as to obtain a more accurate overall classification, diversity among classifier models is a critical 
requirement. The same evidence combination process can also be applied to prognostics models. 

The health index (HI) integrates all the available transformer PHM analytic modules into an overall 
condition evaluation model. The HI aids in the maintenance decision-making process through mapping HI 
values with needed maintenance actions [12]. To this end, the health state of independent subsystems needs 
to be combined to generate a final overall HI which represents the transformer’s health. This combination 
can be done through weighted algorithms, expert knowledge, or evidential reasoning techniques, e.g. [12]. 

All the generated analytics may be connected with the HI module, however, an interpretation function 
will be needed to parse them and generate a unique HI. The output will be a numeric value which will 
quantify the transformer’s health. Let us denote for the failure mode i the remaining useful life, RULi, the 
health, Hi, and the conditional anomaly detection outcome, CADi. Then the HI can be defined as: 

  ! = ($%&',  ', )*+'), 1 < / < |12| (1) 

where |FM| denotes the total number of failure modes and  denotes the HI combination function. RULi 
and Hi may be specified as probability density functions and CADi can be expressed as an indicator signal 
(failure occurring or not occurring) with its corresponding probabilistic weight. 



2.5 Prognostics 
Prognostics techniques are used to predict the remaining useful life (RUL) of the asset under study 

[13]. These techniques can be classified into data-driven, model-based and hybrid approaches and 
depending on the available engineering resources (run-to-failure data, knowledge of physics-of-failure 
equations), the designer can decide which is the best suited algorithm [13]. Namely, when run-to-failure 
data or knowledge of the system’s physics-of-failure equation is available, data-driven or model-based 
approaches are selected, respectively. When both engineering resources are available, the selection of the 
high-level group incurs a trade-off decision between the availability of statistically significant run-to-failure 
data and complexity of the degradation equation. If the complexity is manageable and there is enough run-
to-failure data, hybrid prognostics techniques can be selected. 

Focusing on transformer insulation paper prognostics, it is possible to model a physics-of-failure based 
prognostics prediction model [14]. The life of the transformer insulation can be quantified by the degree of 
polymerization (DP) of the insulating paper. The rate of aging of the paper is primarily determined by 
temperature. Aging is most rapid at the transformer hottest spot and the paper here will have the lowest DP 
of the transformer [15]. New paper has a DP approximately in the range of 1000-1200, while end of life is 
generally considered to be 200 [15]. A model of paper aging is given in IEEE C57.91 [15]. This assumes a 
life of 150000 hours at a temperature of 110°C for a standard transformer to reach a DP of 200. The standard 
defines an aging accelerator factor FAA as follows, 

 133 = 456777898 	;	 56777<=8>?@ (2) 

where ΘH is the hottest spot temperature. Alternatively, if the hottest spot temperature is not directly 
available, it can be inferred from other variables: 

 AB = ACD + F80–JAKLM ,NO × QRS (3) 

where Θto to is the measured top oil temperature, Θ to/a,R is the difference in the temperature between top oil 
and ambient at rated current, K is the ratio of the measured load to rated load, and m is a constant related to 
the cooling model of the transformer. 

This model takes as input (i) hottest spot temperature, or (ii) load, top oil and ambient temperature, 
and generates the aging acceleration factor. This factor determines the consumed paper life and current 
health state. Future operation profiles (e.g. load) can be used to predict the RUL of the insulation paper. 

3 ANALYTIC SUITE APPLICATION EXAMPLES 

3.1 Conditional Anomaly Detection 
Development of the CAD model requires a training environment and transformer models and then 

generating a correlation model. In this case, as an illustrative example, we have used the generated power 
and ambient temperature in an environmental model, and methane (CH4) and hydrogen (H2) for the 
transformer model. We have trained both models based on normal data (20 samples), which is determined 
by a period of stable gas levels, and the rest of data is used for testing (20 samples). Figure 7a shows the 
trained environment model where the axes in the horizontal plane denote normalized training values of true 
power and temperature and the vertical axis identifies their joint probability density, e.g. when the true 
power is very high it is likely that the temperature will be low. Figure 7b shows the trained transformer 
model where horizontal plane axes denote methane and hydrogen, and the vertical axis denotes the 
probability density, e.g. it is very likely that when hydrogen is small methane is small too. These figures 
model the expected independent normal behavior of the transformer and environment. 



 
Figure 7. (a) Trained environment model (b) transformer model (c) train-test datasets (d) CAD results. 

After learning the environment and transformer models, we test the correlation model. Figure 7c shows 
the normalized test data and Figure 7d shows the CAD outcome, where the red horizontal line identifies the 
failure threshold and the vertical dashed line indicates the division between training and testing data. We 
can see in Figure 7d that almost all the test data is classified as anomalous, because the environment 
probability is high (triangles above the red line: normal environment) but the transformer model’s 
probability is low (squares below the red line), which indicates a true anomaly (circles below the red line). 
Note also that the last sample is classified as healthy (circle in the top right) because both transformer and 
environment models match with the trained models (Figures 7a and 7b). 

In this particular case, the gas levels from the test period were known to be significantly different from 
those during the training period. This resulted from a scheduled change in operation of the cooling of the 
transformer, and the gassing behavior was being carefully monitored. Therefore, this case shows the power 
of the CAD technique to recognize anomalous behavior. 

3.2 Diagnosis 
The implementation of the diagnosis model introduced in Subsection 2.3 requires a supervised learning 

approach with labeled gas samples identifying known failure modes. A well-known dataset is the IEC TC 
10 dataset [16], where a large collection of transformer gas samples are stored with the corresponding 
failure mode. If we focus on Doernenburg’s ratio method, first we need to discretize the dataset according 
to the ratios and intervals defined by the method (Tables I and II). 

The next step is to train the Bayesian network model shown in Figure 6b with the training dataset. We 
train the Bayesian network model using the maximum likelihood estimation algorithm. The learned 
conditional probabilities will include the likelihood for each node given its dependent nodes. After the 
learning phase, we can make inferences to test the accuracy of the classifier. For example, if we observe 
gas values which correspond to these ratios R1=0.14, R2=6.1, R3=5.3, R4=0.014, we discretize these values 
(R1=1, R2=1, R3=1, R4=0) and then make inferences with the Bayesian network for each of the failure 
modes: Pr(PD|R1, R2, R3, R4)=0.005; Pr(Arcing|R1, R2, R3, R4)=0.92; Pr(Thermal|R1, R2, R3, R4)=0.075; 
which lead us to the correct conclusion that the fault was caused by the arcing type of fault. 



3.3 Prognostics 
Equations (2) and (3) can be used to implement a prognostics model and predict the RUL of the 

transformer paper by applying likely future load scenarios [14]. The particle filtering method provides a 
suitable framework to implement this concept, which takes as input transformer load, ambient temperature, 
and top oil temperature; and estimates transformer paper RUL at time t, RULt [14]: 

 $%&C = $%&C;T–133UΘCD, ΘCD/X,N , Q,YZ + [C (4) 

where FAA is the aging acceleration factor (as defined Subsection 2.5), and µt is the process noise which 
models the variation in the lifetime reduction for a given hottest spot temperature. 

Figure 8a shows three hypothetical future load scenarios applied to the model in Equation (3). Figure 
8b shows the corresponding RUL density functions estimated through Particle filtering, where the x axis 
denotes the RUL in hours and the y axis denotes the probability density. For example, in case 1 the RUL 
with maximum likelihood is 149994 hours, whereas in case 3 the RUL is 149844 hours, i.e. the more load 
applied to the transformer, the more rapidly the transformer paper ages. 

 
Figure 8. (a) Transformer loads (b) RUL predictions for different loads [14]. 

4 CONCLUSIONS  

This paper presents a novel data analytics framework for transformer health monitoring based on 
prognostics and health management methods. The proposed analytics suite includes correlation, conditional 
anomaly detection, diagnostics, evidence combination, health index estimation and prognostics modules. 
Anomaly detection, diagnosis and prognostics prediction examples have been shown to illustrate the 
applicability of the proposed framework. As a consequence, the analytic suite can assist maintenance 
engineers in the transformer lifecycle management process through the identification of early malfunction 
indicators and estimation of the influence of future operational conditions on transformer health. 

Future goals will focus on implementing the proposed analytics framework through prototyping of 
different analytic modules and generating useful technical outcomes for maintenance scheduling. 
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