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Abstract

In this study we develop a general framework for describing reaction-diffusion

processes in a multi-component electrolyte in which multiple reactions of

different types may occur. Our motivation for this is the need to understand

how the interactions between species and processes occurring in a complex

electrochemical system. We use the framework to develop a modified Poisson-

Nernst-Planck model which accounts for the excluded volume interaction

(EVI) and incorporates both electrochemical and chemical reactions. Using

this model, we investigate how the EVI influences the reactions and how

the reactions influence each other in the contexts of the equilibrium state
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of a system and of a simple electrochemical device under load. Complex

behaviour quickly emerges even in relatively simple systems, and deviations

from the predictions of ideal solution theory, together with how they may

influence the behaviour of more complex system, are discussed.

1 Introduction

Electrochemical energy storage devices play a crucial role in the modern

world, having enabled the development of a wide range of portable and mo-

bile devices in a vast range of applications. They also have significant future

potential in facilitating a shift away from environmentally damaging fossil

fuels as our primary source of energy, through the electrification of transport

and as load balancing for the variability suffered by most forms of renew-

able energy. However, modelling these systems can be challenging because

the overall behaviour is typically the emergent result of a large number of

processes and interactions at the microscopic scale, making linking the micro-

scopic behaviour to the macroscopic performance complicated. Furthermore,

individual processes may themselves be complex, so simplifications have to

be made if we wish to understand the device behaviour at macroscopic length

and time-scales.

By way of example, the particular system in which we are interested in

is that of a lithium-sulfur (LiS) cell, a promising post-lithium-ion technology

with both an expected practical energy density of 500–600Whkg−1 and a
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lower raw materials cost [1, 2]. The overall discharge process of a LiS cell

involves the reduction of solid phase S8 to solid phase Li2S, according to the

reaction

S8 + 16Li ⇌ Li2S (1)

While the overall process is bound by the dissolution of S8 and the pre-

cipitation of Li2S, the intermediate steps occur between species in the sol-

vent/electrolyte phase, involving the electrodissolution of lithium from the

anode and a range of electrochemical and chemical reactions involving a num-

ber of ionic sulfur species at the cathode. While these types of process are

not uncommon in traditional (i.e. non-intercalation) battery chemistries, the

sheer number of species and intermediate elementary reaction steps involved,

together with the integral role played by chemical reaction processes, make

understanding the LiS mechanism complex [3].

The common approach to modelling LiS cells is similar to that taken

for many electrochemical devices, with the reduction of the cell structure to

a one-dimensional model in which the porous structures are homogenised,

ideal solution theory is applied and electroneutrality of the electrolyte is

assumed [4, 5, 6, 7, 8, 9]. This approach has significantly improved our

understanding of LiS behaviour, but the underlying simplifications to some

extent limit our ability to look at the system below the homogenised level.

As a consequence, it is difficult to probe how species interactions affect re-
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action processes, how the processes themselves interact or to develop an

understanding of how the geometrical structure might affect them.

In particular, homogenised models do not explicitly account for the elec-

tric double layer (EDL), formed by the attraction of counter-ions to a charged

surface and the repulsion of co-ions from it. This surface charge might be the

result of an externally applied voltage, such as in a capacitor, or be generated

internally, as in a battery, but it is almost always present in an electrochemi-

cal device, and therefore so is the EDL. The EDL therefore forms the interface

between the electrode and the electrolyte, being where all surface interactions

between the two (e.g., electrochemical reactions) occur.

At all but the lowest concentrations and voltages, the structure of the

EDL differs significantly from that of the bulk electrolyte. These changes,

driven by forces causing species migration and diffusion and complicated by

species interactions, have measureable effects on the macroscopic properties

of both equilibrium and dynamic systems without reactions, despite the fact

it exists on a nanometre length-scale, which can be orders of magnitude

smaller than the overall system [10, 11, 12]. Following on from this, it is

likely that accounting for species interactions will impact the behaviour of

systems in which reactions occur, such as the LiS cell, wherein there are a

large number of different species interacting in a poorly understood manner.

In order to describe this, a framework for building the model is required.

An array of methods exist for describing a reaction-diffusion system, rang-

ing from continuum ideal solution theory through to molecular dynamics, but
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to describe an electrochemical device the need to describe macroscopic length

scales and long time-scales places a constraint on the complexity that can be

accounted for. For example, molecular dynamics may provide highly detailed

information on the structure of an electrolyte, but it is limited to describing

very short time-spans and a limited number of molecules.

In this present work, we outline an approach to building general reaction-

diffusion models in which species interactions are incorporated, the EDL is

described, and macroscopic transient behaviour (e.g., voltage curves) can be

estimated. This has been developed in the context of understanding the

mechanism driving a LiS cell, but the framework itself is of general form.

As such, it is adaptable to a range of electrochemical devices which may

benefit from an understanding of how interactions between species or be-

tween reaction processes may affect the system behaviour. This includes the

double layer structure of supercapacitors or the behaviour of pseudocapaci-

tors, certain types of fuel cell (for example, the direct methanol fuel cell has

a relatively complex reaction mechanism), the electrolyte component of in-

tercalation batteries such as lithium-ion, and other electrochemical systems

in which homogenisation may oversimplify the electrolyte-surface interaction,

such as the lithium-air battery. Given the generality of the framework, herein

we only discuss its application in general terms, albeit tied to examples drawn

from our experience with LiS.

The derivation stems from the free energy of the system and how it links

to the structure, dynamics and reactions in the system, although to manage
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the complexities introduced by describing the EDL, we ultimately apply rel-

atively simple models for the components of the system. This should provide

a clear basis around which improvements can be made, since alterations to

the free energy expression feed through to the rest of the model.

In our present version, the equations resulting from the theory take the

form of a modified Poisson-Nernst-Planck (mPNP) model, in which species

transport is described by a modified Nernst-Planck equation and the electric

field is solved for using the Poisson equation. Surface electrochemical reac-

tions are accounted for, as are chemical reactions in the bulk electrolyte or at

the surfaces, where the latter may be coupled to a precipitation model. For

the purposes of the reaction processes, we homogenise the surface in the cur-

rent treatment, meaning that the formation of precipitate is implicit, rather

than being explicitly described in the modelling domain.

2 Theory

We consider a general electrolyte system in which ions of type i are treated

as charged hard spheres with valence zi and diameter di that are immersed

in a continuum solvent with relative permittivity ǫr. The ions are allowed

to react and undergo chemical transformations. To develop an approximate

dynamical model for this system, we assume that its evolution can be derived

from an underlying equilibrium free energy functional, which is dependent

on the concentration distribution of species throughout the system. The
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dynamics of the species concentrations are taken to be related to gradients

of the free energy functional, subject to local conservation constraints, so

that the free energy monotonically approaches a minimum with time.

The resulting model is composed of four main components: an equilibrium

free energy functional, a species transport model, a reaction model and a

precipitation model. While forms of each part of the model have appeared

separately in the literature, we present them here together within a coherent

formalism in order to present a consistent theory and to understand directions

in which each aspect of the model can be improved and how this might be

achieved.

In the next section, we develop an approximate free energy functional to

describe the equilibrium electrolyte system. This accounts for their relative

formation free energies, in addition to their mutual interactions, and we

demonstrate how this functional can be used to describe chemical reaction

equilibria. Next, we present a phenomenological approach to extending this

equilibrium theory to describe the transient behaviour on non-equilibrium

systems, including species transport and reactions. In the final part of the

section we outline the precipitation model that we couple to the system.

2.1 Approximate free energy functional

We first develop an approximate expression for the free energy functional for

the electrolyte system. The total Helmholtz free energy F of the system is
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written as the sum of two contributions

F [{c}, φ] = F ref [{c}] + F el[{c}, φ] (2)

The first is the free energy of a reference system F ref , which describes the

contributions from entropy and non-electrostatic interactions, and the sec-

ond is the contribution due to electrostatic interactions F el. In principle,

these two contributions are closely coupled together, however, we make the

approximation that their individual effects can be linearly added together.

A number of approaches have been developed to describe the reference

system, ranging from as simple ideal gas description through to more sophis-

ticated density functional theories [13, 14]. In order to manage the overall

model complexity, herein we choose to use a simple model for the electrolyte

structure by working within the local density approximation (LDA). Within

this scheme, F ref is a function only of the local concentrations ci(r) of each

species in the system:

F ref [{c}] =

∫

dr f ref({ci(r)}) (3)

where f ref is the Helmholtz free energy density of a uniform reference fluid.

While the use of the LDA is known to cause errors in the prediction of the

detail of the EDL structure [15] and also to break down at high electrode

potentials [16], the resulting model structure is much more amenable to de-

scribing the long time-scale transient behaviour of a system. It is also worth
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noting that ideal solution theory, which leads to the Poisson-Boltzmann the-

ory and underpins most electrochemical modelling to date, is of the LDA

form, so nothing has been lost by making this choice, however, it does rep-

resent an opportunity for future model development.

The free energy density f ref is typically separated into an ideal (or en-

tropic) component and a residual component, which describes the non-electrostatic

interactions within the system. We account here for the excluded volume in-

teraction (EVI) of the species using a form of the van der Waals equation of

state for mixed hard spheres [11, 17], in which f ref has the form

f ref({c}) =
∑

i

ciµ
⊖

i + kBT
∑

i

ci

(

ln
ci
c⊖

− 1
)

+ kBT
∑

i

ci ln
1

1−
∑

i′ ci′ v̄i′i

(4)

where µ⊖

i is the standard state chemical potential of particle i (defined as

an ideal solution of non-interacting species ci at a concentration of 1M at

temperature 298K and pressure 1 bar), kB is the Boltzmann constant, and

T is the temperature. The first term is the formation free energy of each

component in the system. The second term represents the ideal entropic

contribution to the free energy. The final term in equation (4) is the residual

contribution to the free energy due to the EVI, in which v̄ii′ is defined as

v̄ii′ =
2viivii′

vii + vi′i′
(5)
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where vii′ is the excluded volume per particle between particles i and i′.

This is itself defined in terms of the solvated diameters di of the particles in

question:

vii′ =
1

8
(di + di′)

3 (6)

This includes an empirical modification of 3

√

3
2π

≈ 0.78, which is used as to

adjust the free energy density in this model to more closely resemble that of

the lattice model used by Bikerman [18]. The lattice model is inapplicable

for particles of different sizes, but does not suffer as badly from the afore-

mentioned breakdown of the LDA as the more accurate Boublik-Mansoori-

Carnahan-Starling-Leyland model [19, 20], which is known to overestimate

the influence of the EVI at high electrode potentials within the LDA [16].

The energy of the electrostatic interactions is given by

F el = −
1

2

∫

dr ǫ0ǫr∇φ(r) · ∇φ(r) +

∫

dr [Σ(r) +Q(r)]φ(r) (7)

where φ(r) is the electrostatic potential, Σ(r) is the fixed charge density

(e.g., the electrode surface charge) and Q(r) =
∑

i zie0ci(r) is the mobile

(ionic) charge density, in which e0 is the elementary charge and zi the valence

of species i. In general, the addition of electrostatic interactions will alter

the manner in which the particles in the system organize themselves, and,

consequently, it will alter the manner in which non-electrostatic interactions

contribute to the free energy. However, in this work, we neglect this coupling.
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The complete form of the Helmholtz free energy functional which we use

is the combination of Eqs. (3), (4) and (7):

F [{c}, φ] =

∫

dr kBT
∑

i

ci(r)

(

µ⊖

i + ln
ci(r)

c⊖
− 1

)

+

∫

dr kBT
∑

i

ci(r) ln
1

1−
∑

i′ ci′(r)v̄i′i

−
1

2

∫

dr ǫ0ǫw∇φ(r) · ∇φ(r) +

∫

dr [Σ(r) +Q(r)]φ(r). (8)

From knowledge of the free energy functional, it is possible to determine

all equilibrium thermodynamic and structural properties of the system. The

two quantities in which we are interested are the electrostatic and electro-

chemical potentials, as these together dictate the electrolyte structure. The

electrochemical potential of a species is equal to the change in the free energy

with respect to its concentration:

µi(r) =
δF [{c}, φ]

δci(r)

= µ⊖

i + kBT ln

[

ci(r)Λ
3
i

1−
∑

i′ ci′(r)v̄i′i

]

+ kBT
∑

i′

ci′(r)v̄ii′

1−
∑

i′′ ci′′(r)v̄i′′i′
+ zie0φ(r)

(9)

If the species volumes are all zero, the electrochemical potential of an ideal

solution is recovered. Specifically accounting for the contributions of addi-

tional interaction energies in the Helmholtz free energy will lead to additional

terms in the electrochemical potentials, from where they will follow through
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to the rest of the model.

2.1.1 Chemical reaction equilibria

We now consider the situation where species interconversion can take place.

This can occur either chemically, electrochemically or even physically (e.g.,

precipitation, which converts a dissolved component in solution to a solid),

shown pictorially in figure 2. These reactions can be written in the general

form:
∑

k

bkjBk ⇋

∑

l

bljBl. (10)

where the subscripts k and l represent reactant and product species, respec-

tively: bkj is the number of moles of reactant species Bk consumed by reaction

j, and blj is the number of moles of product species Bl produced by the re-

action. The stoichiometric coefficient νkj of a reactant species k in reaction j

is equal to −bkj, while the stoichiometric coefficient νlj of a product species

l in reaction j is equal to blj.

One example is an electron transfer reaction

Ox + nee
−
⇌ Re (11)

where Ox and Re represent a redox couple, and ne is the number of electrons

e− transferred to Ox during the reduction process. Another example is the
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precipitation of a species A from solution:

A(d) ⇌ A(s) (12)

where A(d) is the component in solution, and A(s) is the same component in

the solid phase.

The overall amount that reaction j proceeds in a forward or reverse di-

rection is quantified by its extent of reaction Ξj. If the system is initially

charged with n0
i molecules of type i, then the number of molecules ni in the

system when the reaction has moved forward by Ξj is

ni = n0
i +

∑

j

νijΞj. (13)

2.1.2 Conditions for equilibrium

The equilibrium structure and thermodynamic properties of the system can

be determined by minimizing the free energy functional, while maintaining

any physical constraints on the system. We consider a closed system, i.e. one

in which no mass enters or exits the system. In this case, the only manner

in which the initial number of molecules of type i can change is through

chemical reaction. Consequently, ni, the total number of particles of type i

in the system, is directly related to the extents of all possible reactions in
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the system:

ni −
∑

j

νijΞj = n0
i = constant (14)

For non-uniform systems, these relations impose constraints on the species

concentration profiles:

∫

dr

[

ci(r)−
∑

j

νijξj(r)

]

−

∮

∂V

dr
∑

j

νij ξ̄j(r) = n0
i = constant (15)

where ξj(r) is a local extent density of reaction j at position r in the bulk,

and ξ̄j(r) is a local extent density of reaction j at position r on the surface

of the system.

Minimising the free energy in equation (8) subject to these constraints

leads to the conditions required for the system to be at equilibrium. Using the

method of Lagrange multipliers, where we introduce the Lagrange multipliers

λi to maintain the constraints and find the minimum of the functional

F [{c}, φ]−
∑

i

λi

{

∫

dr

[

ci(r)−
∑

j

νijξ(r)

]

−

∮

∂V

dr
∑

j

νij ξ̄(r)

}

, (16)
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we find the relations

δF

δci(r)
− λi = 0, (17)

δF

δφ(r)
= 0, (18)

δF

δξj(r)
+
∑

i

λiνij = 0, (19)

δF

δξ̄j(r)
+
∑

i

λiνij = 0. (20)

At equilibrium, the system must satisfy equations (17)–(20).

Equation (17), combined with equation (9), shows that the Lagrangian

multipliers can be identified with the electrochemical potentials of each species

λi = µi(r). (21)

This indicates that the electrochemical potential of every species must be

uniform throughout the system (even if the concentration profiles are not)

at equilibrium.

From equation (18), we find that the shape of the electric field can be

determined from the principle that it always adjusts itself to minimise the

free energy. This leads directly to the Poisson equation:

−∇ · [ǫ0ǫr∇φ(r)] =
∑

i

zie0ci(r) + Σ(r). (22)

Equation (19) gives the condition for chemical reaction equilibria. If we
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define a local affinity Aj(r) of reaction j

Aj(r) = −
∑

i

νijµi(r), (23)

then this condition for reaction equilibria is given by

Aj(r) = 0. (24)

From this relation, we see that the affinity characterizes the deviation of a

reaction from equilibrium.

2.2 The dynamical model

To describe the transient behaviour of a system that is out of equilibrium,

we assume that it evolves in a manner that tries to decrease its free en-

ergy, subject to physical constraints (e.g., conservation of mass, etc.). We

expect that the rate of change of the system will be related to the gradi-

ents of the free energy. In our description of the equilibrium system, the

species concentration distributions are considered independent variables and

the electrostatic potential is assumed to react instantaneously to changes in

the species concentrations such that it always minimizes the free energy. It

is therefore quasi-time-independent and described by the Poisson equation.
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Consequently, the rate of change of F with time is given by

dF

dt
=

∫

dr
∑

i

δF

δci(r, t)

∂ci(r, t)

∂t
. (25)

The rate of change of the concentration profiles is restricted by the physi-

cal constraint of the local conservation of species, which for species i is given

by

∂ci(r, t)

∂t
= −∇ · Ji(r, t) +

∑

j

νijRj(r, t) (26)

where Ji(r, t) is the local molecular flux of species i and Rj is the rate of

reaction j. In addition, for a closed system, this partial differential equation

is subject to the boundary condition

n̂ · Ji(r, t) = −
∑

j

νijR̄j(r, t) (27)

where n̂ is a unit vector pointing in an outward normal direction from the

system surface, and R̄j(r, t) is the rate of reaction j at position r on the

surface of the system. Models for Ji(r, t), Rj(r, t) and R̄j(r, t) are required

to complete the theory.

Substituting equation (26) for the time derivative of the species concen-
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trations, equation (25) becomes

dF

dt
=

∫

dr
∑

i

δF

δci(r, t)

[

−∇ · Ji +
∑

j

νijRj

]

(28)

Applying the divergence theorem and substituting equation (23) into the

result yields

dF

dt
= −

∮

∂V

dr
∑

i

δF

δci(r, t)
n̂ · Ji

+

∫

dr

[

∑

i

Ji · ∇
δF

δci(r, t)
−

∑

j

Aj(r, t)Rj

]

= −

∮

∂V

dr
∑

j

Aj(r, t)R̄j(r, t)

+

∫

dr

[

∑

i

Ji · ∇
δF

δci(r, t)
−

∑

j

Aj(r, t)Rj

]

(29)

In the following, we will develop phenomenological expressions for the species

flux and reaction rates to guarantee the decrease of the free energy with time.

2.2.1 Species flux

Motivated by the standard expression for the flux Ji of species i as given by

Maxwell-Stefan diffusion, we write:

Ji(r, t) = −Dici(r, t)∇β
δF [{c}, φ]

δci(r, t)
(30)

= −Dici(r, t)∇βµi(r, t) (31)
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This form guarantees that the free energy will always decrease or remain

constant with time.

We note that this phenomenological expression for the flux can also be

motivated from more fundamental statistical mechanical arguments. The

one-body density (and hence the free energy) is a unique function of a time-

dependent external field [21], and under the assumption that two-particle

correlations are identical in equilibrium and non-equilibrium fluids, the dy-

namics of a species i in the system can be approximated by [22]

∂2ci(r, t)

∂t2
+ ωc

i

∂ci(r, t)

∂t
=

1

mi

∇ ·

[

ci(r, t)∇
δF [{c}, φ]

δci(r, t)

]

(32)

where ωc
i = kBT/(miDi) is the collision frequency of particle i, mi is its mass

and Di its self-diffusion coefficient. The high collision frequency of particles

in the electrolyte means that the second order time-derivative is negligible.

Combining Eqs. (9), (26) and (30), we arrive at a modified Nernst-Planck

(mNP) equation describing the species transport in the cell:

∂ci(r, t)

∂t
= Di∇

2ci(r, t) +Dici(r, t)β∇µres
i (r, t) + zie0βDi∇ · [ci(r, t)∇φ(r)]

(33)

In the case of an ideal solution µres
i , the residual component of the electro-

chemical potential which accounts for all non-electrostatic non-ideality, is

zero and so we recover the standard Nernst-Planck equation.
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2.3 Reaction kinetics

From physical considerations, the affinity and the reaction rate always have

the same sign, which implies that the reaction terms in equation (29) are

also always negative or zero. From this result, we can see that the free

energy of the model system spontaneously decreases to its minimum value

(the equilibrium state) with time.

The local affinity quantifies how far a particular reaction is from equi-

librium at a point in space as well as the direction the system must move

to reach equilibrium, under which condition its value is zero. The affinity is

related to the ratio of the forward and reverse elementary rates, Rf
j and Rr

j

respectively, by the relationship [23, 24, 25]

Rf
j (r)

Rb
j(r)

= exp(βAj(r)), (34)

and, furthermore, the two elementary reaction rates are related to the overall

reaction rate:

Rj(r) = Rf
j (r)−Rr

j(r) =
dξj(r)

dt
(35)

where the connection between the extent of the reaction and its rate is also

indicated. Combining the previous equations we can write the overall rate
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in terms of the affinity and one of the elementary rates:

R(r) = Rf
j (r)[1− exp(−βAj(r))] (36)

The same set of relations applies to the surface reaction rates R̄j(r), and we

henceforth mean the use of the variable R to imply both the surface and bulk

reaction rates.

2.3.1 The reaction expressions

In order to apply equation (36) we require an explicit expression for the affin-

ity, for which expressions for the electrochemical potentials of the reactants

are needed. For species in the solvent phase these are given by equation (9),

but in the case of an electrochemical reaction we must also specify the elec-

trochemical potential of an electron in the electrode phase. This is related

to the Fermi energy Ef of the surface:

µe− = Ef − e0φel (37)

where φel is the electrostatic potential of the electrode relative to its un-

charged state. Since the electrode exists in the same system as an electrolyte,

its electrostatic potential in the uncharged state must be equal to the electro-

static potential of the bulk electrolyte, which is also in an uncharged state.

For this reason the potential of the electrode can also be read as the poten-

tial difference between the electrode surface and the bulk electrolyte, which
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is effectively any point in the electrolyte outside the EDL, where the electric

field is zero.

For the general reaction scheme of equation (10), the affinity is given by

the combination of equations (9), (23) and (37):

Aj = −∆G⊖

RXN,j − kBT ln
∏

k

[ ck
c⊖

exp(βµres
k )

]νkj

− ne,je0(φel − φ)) (38)

where the spatial dependence of the affinity, concentration, residual chemical

potential and electrostatic potential have been removed for clarity, and the

term ∆G⊖

RXN,j =
∑

i νijµ
⊖

i − ne,jEf is the standard Gibbs free energy of re-

action j. Substituting this expression into equation (36), the rate expression

becomes

Rj = Rf
j

[

1− exp(β∆G⊖

RXN,j)
∏

k

[ ck
c⊖

exp(βµres
k )

]νkj

(39)

× exp(ne,je0β(φel − φ))

]

The exponential involving the Gibbs free energy is related to the standard

state equilibrium constant of the reaction K⊖

j , which is the ratio of the

forward and reverse rate constants, k⊖

f,j and k⊖

r,j:

exp(−β∆G⊖

RXN) = K⊖

j =
k⊖

f,j

k⊖

r,j

(40)
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Despite substituting in this expression, the forward rate is still unknown and

so the rate cannot yet be determined. Making the assumption that the for-

ward rate is a function only of the reactant species properties, together with

a proportion of the term involving the electrostatic potential, the forward

rate can be approximated as

Rf,j = k⊖

f,j

∏

k

[ ck
c⊖

exp(−βµres
k )

]−νk,j

exp(−γjne,je0β(φel − φ)) (41)

where γ is the transfer coefficient commonly found in the Butler-Volmer

equation. This gives the final expression for the general reaction rate:

Rj = k⊖

f,j

∏

k

[ ck
c⊖

exp(βµres
k )

]−νkj

exp [−γjne,je0β(φel − φ)]

− k⊖

r,j

∏

l

[ cl
c⊖

exp(βµres
l )

]νlj

exp [(1− γj)ne,je0β(φel − φ)] (42)

This very general expression simplifies for each of the reaction types con-

sidered in the model, each of which is described briefly below.

2.3.2 Electrochemical reactions

We assume that electrochemical reactions occur as n-electron single-step

transfer processes in which a molecule of species Ox is reduced to a molecule

Re or as the corresponding oxidation process, as stated in equation (11).

Since this reaction type requires a source of electrons, it is only able to oc-

cur at an electrode surface, meaning that the reactant species must be close
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enough to the surface for electron transfer to occur. Under the assumption

that the edge of the reactant molecule (more specifically for this model, the

edge of the molecule’s solvation shell) must be in contact with the surface

for this process to take place, only molecules whose centres are at the Stern

layer are able to react (see figure 1). For simplicity, we assume that the Stern

layer is identical for all species in the system, the consequence of which is

that the spatial dependence of the variables ci, µ
res
i and φ reduce simply to

their values at the Stern layer. This mirrors its use as a fitting parameter in

equilibrium continuum double layer modelling.

For the electrostatic potential, the terms corresponding to the potential

difference between the surface and the Stern layer are replaced with the Stern

layer potential difference ∆φS = φel − φ(s). Under these assumptions, the

rate expression reduces to

Rj = k⊖

f,j

[cOx

c⊖
exp(βµres

Ox)
]−νkj

exp
[

−γjne,je0β∆φS
]

− k⊖

r,j

[cRe

c⊖
exp(βµres

Re)
]νlj

exp
[

(1− γj)ne,je0β∆φS
]

(43)

which is of the form of the generalised Frumkin-Butler-Volmer kinetics model[26],

but includes the effect on the rate of the residual chemical potential.

Within the theory, the specific values of the forward and reverse rate con-

stants are determined from the equilibrium rate constant. The standard state

Gibbs free energy of the reaction is linked to the standard state reduction
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potential according to the relationship

∆G⊖

j,RXN = −ne,je0∆φ⊖

j (44)

Substituting this into equation (40), we get

exp(ne,je0∆φ⊖

j ) =
k⊖

f,j

k⊖

r,j

(45)

We assume that the rate constants can be split under the same assumptions

by which we split the reaction rate expression, while noting that kf,j must

be larger than kr,j when the reduction potential is positive, to write their

individual forms as

kf,j = exp(γne,je0∆φ⊖

j ) (46)

kr,j = exp(−(1− γ)ne,je0∆φ⊖

j ) (47)

(48)

2.3.3 Chemical reactions

No electron transfer occurs in a purely chemical reaction, so ne,j = 0 and the

rate equation reduces to the following expression:

Rj = k⊖

f,j

∏

k

[ ck
c⊖

exp(βµres
k )

]−νkj

− k⊖

r,j

∏

l

[ cl
c⊖

exp(βµres
l )

]νlj

(49)
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Within the model, the activity ai of a species i is defined as

ai(r) = ci(r) exp(βµ
res
i (r)), (50)

so the rate expression can be seen to reduce to the standard equation for the

rate of a chemical reaction.

In terms of the properties of the chemical reactions we are clear here that

for the sake of simplicity, we assume that the system is isothermal and the

heat of reaction is not accounted for. Including this would be a significant

improvement to the model, particularly for LiS cells which exhibit interesting

thermal behaviour on cycling [27].

2.4 The precipitation model

To model the formation of precipitates, we assume a simple hemispherical

growth model with a fixed seed point density per unit surface area ρi. Rather

than explicitly model the precipitate species, we also homogenise the surface,

ultimately using the precipitate coverage to modify the various surface re-

action rates. A unit precipitate of species i, having radius ri, is depicted in

figure 3.

From geometric considerations, we can determine the electrode area cov-

ered by the precipitate and the surface area of precipitate i, both per unit
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area of the electrode surface, θS and θPi respectively:

θS = 1−
∑

i

πr2i ρi (51)

θPi = 2πr3i ρ (52)

In these equations, the radius of the precipitate is not a constant, because the

precipitation reaction alters the volume of the precipitate. Assuming that

precipitation occurs evenly over the entire surface of the hemisphere and is

dependent on the species concentrations at the electrode surface reaction

plane, the following relationship defines the rate of change of the radius with

time:

dri
dt

= miνijR
θi
j (53)

where mi is the molar volume of precipitate species i, and Rθ
j = θPi Rj is the

homogenised (effective) surface precipitation reaction rate.

The rate of the reaction is calculated by equation (49). However, since

the precipitate is a solid phase, its activity has unit value by definition.

The homogenisation of the precipitate on the electrode surface introduces

a limitation in terms of the maximum amount of solid phase which can be

held per unit area of surface before the overlap of hemispheres causes the

available surface area to become unphysically negative. The limit depends

on the specifics of the molar volume of the solid phase species and the seed
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point density, but is of the order 7 gm−2. This is comparable to, but smaller

than, the amount found in a real LiS cell, which is of the order of 20 gm−2

or more, depending on the method of cathode production. The two situa-

tions are not directly comparable, however, because in a real cell the sulfur

is in a 3D porous network while here we only have a flat surface. This will

lead to differences in the electrochemical performance of the model cell com-

pared to a real cell, because the highest solid phase loadings in the model

correspond to there being very little electrochemically active surface area,

inevitably altering the electrochemical reaction rates. This is less of an issue

for a real cell, where the porous structure provides a very high active surface

area. While there would be some advantage in building a 3D model for the

description of precipitation, such a model would likely be prohibitively com-

plex to solve with current techniques and so we make the assumption that

lower dimensional models are capable of providing sufficient insight into the

system performance.

2.5 Boundary conditions

The modelling domain extends as far as the Stern layer/reaction plane at the

surfaces of the model system. As mentioned, for simplicity we assume a single

value for the Stern layer width for all species throughout the domain. For

the mNP equations, the boundary condition is defined by the normal surface
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fluxes of the species, which are defined in terms of the effective reaction rates

n · Ji = −
∑

j

νijR
θi
j (54)

where Rθi
j depends on the reaction type:

Rθi
j =















θSRj for electrochemical reactions

θPi Rj for precipitation reactions

(55)

In order to solve the Poisson equation, a reference potential is required

in the system, which we take to be the anode surface, defined as zero volts.

However, the since the modelling domain extends only as far as the Stern

layer, we require the potential at this point to use as the boundary potential.

To determine this, we note that its value is related to the potential gradient

perpendicular to the surface and the potential of the electrode φel:

φS = φel + s∇φ · n̂ (56)

where φS is the electrostatic potential at the Stern layer, located a distance s

from the surface. The electric potential gradient is defined by the structure

of the electrolyte, allowing the above equation to be used as an implicit

boundary condition for the system.

For all other surfaces in the system, the potential gradient is defined in
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terms of the surface charge density on the surface:

Σ(r) = −ǫ0ǫr∇φ · n̂ (57)

The actual value of Σ(r) is not directly calculable, but its rate of change is

a function of the current density I flowing in the electrode and the charge

generated by the electrochemical reactions

dΣ(r)

dt
= ǫ0ǫr

∑

j

ne,jθ
SRj(r)− I(r) (58)

What this equation implies is that the surface charge density, and therefore

also the electric field in the electrolyte, and therefore also the voltage, is a

function of the reaction rate and the current drawn, two facts which we know

from real cells.

2.6 Initial conditions

Finally in terms of model development, the initial state of the system must

be defined. One of the benefits of this type of model is that the initial state is

simple to define: the electrolyte is initially homogeneous, there is no potential

difference between the electrodes and there is a set amount of precipitate on

the electrode surfaces, specified by the volume of the unit precipitate, from

which both the unit precipitate radius and the total quantity of precipitate

per unit area of electrode can be calculated. The conditions are summarised
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in table 1.

Physically, these initial conditions are similar to those in a real cell, if

it were possible to instantaneously fill a cell with electrolyte, or otherwise

to prevent any reactions occurring until the cell was filled. A real cell has

no initial voltage until electrochemical reactions spontaneously charge the

electrodes or an external current is applied, meaning that there is an initial

charging process before the cells can be discharged. The charging process is

driven by the fact that the system is not initially in equilibrium, so sponta-

neous reaction-diffusion processes occur until equilibrium is reached. For this

type of model, the fact that the electric potential can initially be assumed as

zero decouples the mPNP equations, making defining the initial state sim-

ple. This is where homogenised cell models differ: for these, the initial state

is defined after the initial charging of the electrodes, so the PNP equations

are coupled and all species concentrations have to be such that the reaction

Nernst potentials are all equal [4].

3 Results

At this stage, we wish to try and understand how the components of the

system interact, rather than how the geometry affects the behaviour. For

this reason we reduce the geometrical complexity by considering only a simple

slit-pore structure. In doing this, we know from the symmetry of system that

its properties are invariant in the plane parallel to the surfaces, meaning we
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only have to solve for the variations in the perpendicular (z) direction. The

description of the system is therefore reduced to a simpler one-dimensional

problem.

The modelling domain extends between the Stern layers located at the

two boundaries, positioned at z = 0 and z = L, as shown in figure 4. The

actual pore surfaces are located at z = −s and z = L+ s, although because

s ≪ L the surface separation is henceforth referred to as L.

We draw the example systems from two processes which play an impor-

tant role in the behaviour of a LiS cell: the precipitation/dissolution of a

species into the solvent and an electrochemical reaction. The first of these

represents both the first and last step of the charge and discharge processes,

and is potentially responsible for a number of features in the voltage profile,

including the dip in the voltage between the two plateaus in the discharge

curve [4] and the shape of the flat second plateau. The second process is

fundamental to current flow in a LiS cell or any other electrochemical device.

Although we are motivated by the processes occurring in a LiS cell, we

are interested in a more general sense in how the behaviour of the processes

alters when species interactions are introduced or when multiple processes

occur simultaneously. For this reason we do not phrase the test cases in the

context of the species present in a LiS cell specifically, but will make reference

to how they may impact this particular system. By using a general system,

we are able to consider the trends in behaviour with the variation in what

would otherwise be reaction- or species-specific properties, for example. It
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also allows us to bypass a common problem with complex electrochemical

systems, which is that many parameters are unknown and unmeasureable,

because their values cannot be measured within the system of interest.

We assume the temperature to be 298K and the relative permittivity to

be 78, the value for water. Unless otherwise stated, the electrode separation

is 40µm, which is in the range of the typical separation of the electrodes

in a LiS or Li-ion cell. In terms of the species properties, we assume that

the diffusion coefficients of all species are 10−9m2 s−1, a typical order of

magnitude estimate for dissolved species, and we fix the transfer coefficient

in all electrochemical reactions to 0.5.

The model was solved numerically using the COMSOL Multiphysics soft-

ware package version 5.2a, which uses the finite element method.

3.1 Precipitation/dissolution

The simplest process which the model describes is a dissolution reaction,

whereby a solid phase dissolves into a solvent. In the example of a LiS cell,

this process occurs as both the first and last steps of the reaction mechanism,

and is implicated in causing some of the features of the discharge curves.

Although it is conceptually straightforward, the inclusion of the EVI alters

some of the dissolution behaviour relative to the ideal solution case, and this

may lead to changes in a more complex system.

We assume that a general precipitate species A(s) is located on the model

boundary at z = 0 in the slit-pore structure and that it participates in the
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following reaction:

A(d) ⇌ A(s) (59)

We define a baseline case in which the domain length is 40µm, the initial

solute concentration 0.5M, and the hard-sphere radius of the solvated solute

particle 0.32 nm. The properties of the precipitate are listed in table 2,

together with the reaction details.

The only process which can occur in this system is for the precipitate

to either dissolve in to the solvent or for the solute to precipitate onto the

surface. As illustrated in figure 5, it is the former which occurs: with time,

the radius of the unit precipitate decreases and the average concentration of

the solute increases. Eventually, both equilibrate at new values, the specific

values of which are defined by the rate constants and the EVI.

Since the solid phase always has unit activity, the ratio of the forward

and backwards rate constants determines the equilibrium solute activity, i.e.

they determine the solubility of the solute in the solvent. In this case, the

ratio is 1, and so the equilibrium activity must have unit value.

Figure 5 shows the activity at z = 0 and z = L, with both converging

to unity as expected. The lag between the two arises because the species

entering the solvent at z = 0 need to diffuse to across the domain before

they affect the activity at the z = L boundary, but the fact that they ulti-

mately attain the same activity indicates that there are no net concentration
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(activity) gradients at equilibrium.

The extent to which a solvent is able to dissolve a fixed amount of precip-

itate depends on the number of free solvent molecules in the system, which

is affected by both the the domain length and the concentration of solute, as

shown in figures 6 and 7.

Increasing the domain length provides more free molecules of solvent per

molecule of dissolved solid, so the activity of the solute phase increases less

rapidly as the solid phase dissolves. A solvent in a longer domain can there-

fore dissolve more precipitate before becoming saturated. In the model sys-

tem, for domain lengths L > 65µm all of the precipitate can be accommo-

dated in the solvent, and the precipitate dissolves completely. The equilib-

rium activity also drops at this point because the amount of dissolved solute

remains constant while the number of free solvent molecules grows, making

the final solution more dilute.

Increasing the initial concentration of the solute means reducing the initial

number of free solvent molecules, which reduces the capacity of the solvent to

dissolve the solid. Effectively, the solute already in the solvent has a higher

activity, and, therefore, the system is closer to its saturated state. When the

concentration is low enough, all of the precipitate is able to dissolve into the

solvent, as can be seen from the final radius of the precipitate being zero for

c0A < 0.4M in figure 7. One difference when the initial concentration of the

solute is varied is that the initial solvent may be supersaturated, in which

case it precipitates out onto the surface. The point at which this occurs is
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marked, and increases to the concentration above this point lead to the radius

of the unit precipitate at equilibrium being larger than its initial value.

While the behaviour of the preceding cases is identical to what would be

predicted by a model based on ideal solution theory, in such a model the pre-

cipitation reaction would not show any dependence upon the concentrations

of other species in the system. To examine this effect, we now consider the

addition of a completely dissociating salt BC to the solvent; the solution will

then contain a mixture of species A(d) as well as the monovalent ions B− and

C+. All species have a radius of 0.32 nm.

In figure 8, we show how the presence of the ionic species changes the

equilibrium of the precipitation reaction for a system with an initial A(d)

concentration of 0.5M and a domain length of 40µm. Adding ions to the

system increases the activity of the solute molecules, meaning that the dis-

solution process ends sooner, so the solute concentration is lower and the

precipitate radius larger at equilibrium. As with increasing the initial con-

centration of solute, there is a threshold in the ion concentration above which

the activity of the solute becomes greater than one, at which point the ionic

species cause the solute to precipitate out of the solution, as marked in the

figure. Regardless of the ion concentration, however, the solute activity at

equilibrium always has unit value, as it must, unless all of the precipitate

dissolves while the system is still able to hold more solute.

The example system we have considered so far is simple, but in a more

complex reaction mechanism, this effect could begin to play a role in the
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overall system behaviour. In a model which treats the solution as ideal, a

given reaction is only indirectly affected any species not directly involved

in the reaction, and only then if they are actually connected as part of a

reaction chain. By accounting for species interactions, however, all species

in a system will affect all reactions, whether or not they directly participate

in them.

The addition of ions to the system alters the equilibrium state, but the in-

teraction between the dissolving solute molecules and the ions can also lead

to a diffusiophoresis-like process [28] occurring in the system, causing the

development of a transient voltage during the dissolution process. The dis-

solution of the solute creates an activity gradient in in the solute species. As

well as driving the diffusion of the solute across the domain, this also induces

an activity gradient in the ionic species because of the EVI. This causes the

ions to become temporarily displaced from the surface (or to move towards

it if the precipitation occurs). As the precipitation process equilibrates and

diffusion drives the solute activity to become spatially constant, the force

causing the displacement of the ions is removed and they too return to a

homogeneous configuration. If the ions have different sizes, the larger ions

are displaced more than the smaller ones, causing a local charge density to

develop in the electrolyte and a voltage to develop across the system. This

effect is illustrated in figure 9.

The figure shows results for two cases of three different systems. The

difference between the cases is the concentration: cases A have an ion (salt)
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concentration of 1M, while in cases B it is 0.1M. Thus we can see from

figure 8 that precipitation occurs in cases A and dissolution in cases B. The

case numbers relate to the changes in the domain length and cation size, as

summarised in table 3. In all cases the neutral species radius is 0.32 nm and

that of the anion is 0.3 nm.

The direction of the precipitation reaction alters the sign of the potential:

if dissolution occurs, the potential is negative, while for precipitation it is

positive. As the cation is larger than the anion, the negative activity gradient

created during dissolution causes the cation to be displaced more than the

anion, making the region near z = 0 negatively charged and the region further

away positively charged. Conversely, the positive activity gradient caused by

the precipitation process means that the cations drift closer to the surface

than the anions, and so positive charge develops there.

Since the relative sizes of the species determines how strongly they re-

spond to the activity gradient, the charge separation increases with the dif-

ference in ion size. Additionally, the length of the domain affects the quantity

of species which has to precipitate or dissolve before equilibrium is reached,

which affects the duration of the transient voltage. Finally, the inset shows

a sharp change in the gradient of the transient in the low concentration/long

domain case, which is associated with the loss of all precipitate from the sur-

face. The sudden change occurs because the loss of precipitate means that

the solute near the surface stops being replenished as it diffuses away. Be-

cause of this, the solute concentration drops rapidly, decreasing the activity
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gradient and allowing the ionic species to drift closer together, decreasing

the local charge density and thereby the potential. Regardless of the system,

the voltage is only temporary, because the activity gradient in the solute will

always disappear as the reaction reaches equilibrium.

By building a dynamical model for a charged electrolyte system which

accounts for excluded volume interactions and coupling this to a simple de-

scription of precipitation, we are able to probe how these components in-

teract. While the results are not necessarily unexpected, they do begin to

indicate the limitations of applying ideal solution theory to electrochemical

systems, especially as they become more complex.

In the case of a LiS cell, the formation of precipitate plays an important

role in the system behaviour: the dissolution of a solid phase is required

at the start of the discharge process and the precipitation of a solid occurs

at the end. As will be discussed shortly, these processes can impact the

electrochemical behaviour of a model cell, but the state of the cell, in terms

of the concentration of the electrolyte, can be seen to affect the precipitation

process itself.

One particular problem in LiS cells is the formation of Li2S, which on the

one hand is thought to be responsible for the transition dip between the two

parts of the discharge curve and to contribute to the flatness of the second

plateau, but on the other hand passivates the cathode surface, leading to

problems with recharging the cell. By better understanding how the elec-

trolyte environment affects the precipitation process, it may be possible to
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modify the behaviour of the precipitation to mitigate some of these problems.

3.2 One electrochemical reaction

The second simplest case described by the model is that of an electrochem-

ical reaction occurring at the surface. This is a fundamental process for all

electrochemical systems, and many of the elementary reaction steps which

take place as part of the LiS mechanism are of this type. To develop an un-

derstanding of how this process behaves within the model, and how species

interactions influence its behaviour, we assume that a single electrochemical

reaction is able to take place on the surface at z = 0.

We define a mixed electrolyte formed by the addition to a solvent of the

completely dissociating salts AC and BC, to give a mixture of ions A−, B−

and C+. Furthermore, we assume the presence of a neutral species A to also

be dissolved in the solvent. The species A and A− are those which participate

in the following electrochemical reaction:

A + e− ⇌ A− ∆φ⊖ = 0.5V K⊖ = 10−7 (60)

In all examples studied in this section, the initial concentrations of A and

A− (the active species) are equal, and we require c0C+ = c0A− + c0B− to ensure

overall electroneutrality in the initial state. Unless otherwise stated, the

species radii are all 0.3 nm.

In the first study, shown in figure 10, we examine how the cell potential
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evolves towards equilibrium at four different initial concentrations of A, each

with 1M of supporting electrolyte. Initially, the reaction is out of equilibrium,

and A is reduced to A−, causing the electrode to gain a positive charge. This

occurs at a faster rate at higher concentrations, both because there are more

molecules at the surface able to react and because a larger concentration of

active species A can support a larger activity gradient, facilitating quicker

mass transport.

Although modelled as a single value, the electrochemical potential of a

particular species is a distribution around an average value. The consump-

tion of the reactant lowers the average electrochemical potential of the par-

ticles, while the formation of product increases its average electrochemical

potential. At the same time, the change in the electrode charge alters the

energy required by the molecular species to react. As the reaction proceeds,

the shrinking product energy and growing electron energy tend to make the

forward reaction slow while the reverse process speeds up, because the elec-

trochemical potential of the product species increases. The reaction therefore

reaches a dynamic equilibrium when both rates become equal.

Because the system is closed, if the concentration of active species is

lower, there are a smaller number of particles with enough electrochemical

potential to react, so their consumption has a larger effect on the average elec-

trochemical potential of the species. Similarly, the formation of the product

has a larger effect on increasing its average electrochemical potential when

the product concentration is low. As a result, the reaction reaches equilib-
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rium with a smaller number of reacted molecules having reacted, causing

the charge on the electrode, and therefore its potential, to be lower when

equilibrium is reached.

When the reaction equilibrates, the difference in the electrochemical po-

tentials of the reactant and product must equal the electrochemical potential

of the electrons in the electrode. Combined with the knowledge that the elec-

trochemical potentials of the species must be spatially constant at equilib-

rium, this means that the difference in the average electrochemical potential

of reactant and product species far from the surface (which is simply their

activity) must also equal the electrochemical potential of the electrons in the

electrode. This is the essence of the Nernst equation, linking the species

activities far from the electrode to the deviation from the standard state

reduction potential of the reaction.

For a closed system, however, the Nernst potential is not a constant: in

the initial state, the activities of the reactant and product are equal (their

concentrations and ion sizes are the same) and so the Nernst potential equals

the standard state reduction potential. However, as the reaction proceeds,

the Nernst potential decreases because of the relative changes in the species

activities. By using the species activities at the z = L boundary, we ap-

proximate the instantaneous Nernst potential, shown also in figure 10. In all

cases, the Nernst potential decreases as the reaction proceeds, although the

decrease only really becomes significant at sub-millimolar concentrations, as

shown more clearly in figure 11.
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As well as illustrating how the Nernst potential changes with the initial

species concentration, it also indicates that the Nernst potential varies with

the supporting electrolyte concentration, tending to be lower as this increases.

Since the Nernst potential depends upon the active species activities, which

depend on the species interactions, this is unsurprising, but does indicate a

further deviation from ideal solution theory which may become important in

concentrated reaction systems.

The effect of the supporting electrolyte concentration and the EVI is

explored further in figure 12. Regardless of the relative sizes of the active

species, the supporting electrolyte acts to suppress the equilibrium potential

even at low concentrations, causing an initially rapid decrease followed by a

roughly linear region if the ions have the same size. This type of behaviour

has been observed in the reduction of ferrocine in a supporting ionic liquid [29]

and has previously been attributed to ion-pair formation in the electrolyte

as well as to changes in the solvation energy of the reactive species [30].

The change in reduction potential arises from the change in the species ac-

tivities. Although this change is the same for all species (assuming the species

all have the same size), a growth in the EVI amplifies differences in the active

species chemical potentials caused by changes in their concentrations due to

the reaction (see equation (50)). Because of this, the reaction ends sooner

than it would in an ideal system. Figure 13 shows how the activity of the re-

actant species decreases for low supporting electrolyte concentrations, while

the activity of the product increases. However, as the overall supporting elec-
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trolyte concentration increases, the reactant species equilibrium activity does

not continue to decrease. As the variation in the potential enters the linear

region, the equilibrium activity begins to grow, driven by the increased EVI

contribution that results from the high supporting electrolyte concentration.

Where the model begins to deviate from the previous studies is when

there is an asymmetry in the active species radii. For both of the active

species concentrations, a second curve in figure 12 indicates the predicted

behaviour if the anion radius is increased to 0.34 nm. This causes its elec-

trochemical potential to grow more quickly with the increased supporting

electrolyte concentration, limiting how far the reaction can proceed before

the reactant and product activities become equal. This limits the amount

of charge transferred to the electrode causing the equilibrium potential to

reduce.

One interesting feature of this model is the prediction that asymmetries

in the sizes of the ions should lead to non-linear behaviour at very high

supporting ion concentrations. For these conditions, the EVI makes the

activity of the larger anionic species (in this case) much larger than that of

the neutral species, so the reaction does not proceed as far before it reaches

equilibrium, meaning that less charge is transferred to the electrode and the

resulting potential is lower. Since the growth of the EVI energy is highly non-

linear with the concentration, the extent of its effect on electrode charging

grows rapidly at high concentrations. This effect does not contradict the

Nernst potential, because the differing responses of the two species to the
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EVI alters the species activities, in turn altering the Nernst potential.

We finally consider the effect of the domain length on the reaction equi-

librium. Shown in figure 14 is the variation of the equilibrium potential

with L at a selection of initial active species and supporting electrolyte con-

centrations, under the assumption that all species are equally sized. The

general trend is for the equilibrium potential to be severely limited at short

domain lengths but to converge on the standard state Nernst potential as

the domain length increases. The reason for this is similar to that for effect

of the domain length on the precipitation reaction: the reaction requires a

finite amount of reactant to be consumed to generate the requisite electrode

potential to put the reaction in equilibrium. As the domain length grows,

the reaction removes an ever-decreasing fraction of the reactant from the

electrolyte and increases the product concentration by an ever-decreasing

fraction of its initial value. The equilibrium potential therefore converges on

the Nernst potential for the initial state.

It was seen in figure 11 that the initial active species concentrations alter

the Nernst potential, but the extent to which this is true depends on the size

of the domain, or the actual number of molecules of the active species. Essen-

tially, increasing the domain length lessens the impact of a low active species

concentration. This is only true when the active species are symmetric, how-

ever, as shown in figure 15. By assuming that the anionic reaction product

is larger than the neutral reactant, the equilibrium potential is shown to be

suppressed at all domain lengths. Furthermore, the trend for the equilibrium
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potential to grow with the initial active species concentration is broken in

longer domains at larger supporting electrolyte concentrations.

At lower domain lengths, the changes to the quantities of the species in

the system seem to dominate the equilibrium potential, leading to larger de-

creases in its value with the initial concentration. At longer domain lengths,

when the changes to the concentration are relatively much smaller, the EVI

energy begins to dominate, causing the potential to be lower even though the

initial solute concentration is higher, contrary to what was seen in figure 11.

The extent of the reduction still depends on the concentration of the sup-

porting electrolyte, however, being smaller for all domain lengths at lower

concentrations, in agreement with the data shown in figure 12.

3.3 Coupled precipitation-electrochemical reactions

The previous sections show that the species interactions and properties of the

system interact to alter the equilibrium state and how the system reaches that

state, marked by deviations from the expected behaviour of an ideal system.

To continue this theme, we now briefly discuss the effect on the equilibrium

state of coupling reaction types within the model.

To do this, we define a system in which a precipitation reaction is cou-

pled to an electrochemical step via the neutral species A according to reac-

tions (61) and (62). The precipitate properties are as listed in table 2 and
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the equilibrium rate constant for the electrochemical reaction is K⊖ = 10−8.

A(d) ⇌ A(s) (61)

A(d) + e− ⇌ A− ∆φ = 0.5V (62)

To define the initial state, we again assume the dissolution of the salts

AC and BC to form an electrolyte with 0.1M A+ ions, 0.5M B− ions and

0.6M C+ ions, and that the 0.1M the solute phase A(d) is also present. The

domain length is set to 40µm and all species have a radius of 0.32 nm.

In figure 16 we show the time-evolution of the potential from the system’s

initial state until equilibrium is reached, together with the instantaneous

Nernst potential and the radius of the precipitate species. The case with

kf = kr = 0 is almost identical to the system shown in figure 14, except

that the presence of the precipitate on the surface slows the electrochemical

reaction rate. By comparison, enabling the chemical reaction can be observed

to alter both the equilibrium potential and the reaction rate, depending on

the solubility of the solute.

When the ratio kf/kb is low (blue lines), the solubility of the solute species

A is lower than its current activity, causing it to precipitate at the surface.

This consumption lowers the species’ surface activity, lowering the rate of

the electrochemical reaction and thereby causing the electrode potential to

rise more slowly. Moving onto the equilibrium state, we know that the elec-

trochemical potentials of all species must be spatially invariant and that the
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reactions must be in equilibrium. Because the chemical process defines the

activity of the neutral species, which in turn affects the Nernst potential of

the electrochemical reaction, the dissolution reaction also affects the equilib-

rium potential of the cell. In this case, because the equilibrium activity of

the solute is reduced compared to the case with no chemical reaction, the

equilibrium potential is reduced.

Increasing the solubility of the solute (green lines) has the reverse effect:

the dissolution of the precipitate increases the activity of A in the vicinity

of the electrode, causing the electrochemical reaction to run faster and the

electrode to charge quicker. Similarly, the cell moves to equilibrate at a

larger potential than when there is no chemical reaction, because the solute

activity is higher than it otherwise would be, pushing equilibrium towards

to the formation of the A− anion and a larger electrode charge. There is a

limit to the dissolution of the precipitate, however, and as it all is consumed

from the surface there is a sharp drop in the electrode potential, followed by

a more gradual decrease. As the precipitate runs out, the solute molecules

diffusing out from the EDL are no longer replaced and so they are displaced

by counter-ions being attracted to the surface. The sudden change in the

surface activity reverses the electrochemical reaction, with electrons being

added to the surface and the potential decreasing slightly. This continues

until the electrochemical reaction reaches equilibrium, which now lies further

towards the formation of the ionic species because of the increased quantity

of the neutral reactant in the bulk.
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By describing the evolution of the system from a well defined initial state,

the model is able to estimate the equilibrium potential of an electrochem-

ical system driven by spontaneous chemical and electrochemical processes

while accounting for species interactions. The approach incorporates the in-

fluence of the electrical double layer and electrochemical reactions on each

other [31, 32, 33]. This aspect of the model makes it increasingly useful when

trying to describe complex electrochemical systems wherein the interplay of

species interactions causes deviations from the standard state Nernst poten-

tial. This is reflected, for example, in the instability of homogenised LiS

models, wherein small changes to the initial conditions can stop the model

from functioning [7]. This is not to say that this model does not have its nu-

merical complications. For example, the model predicts large changes in the

gradients of the dependent variables in the EDL, which is a source of numer-

ical error in the solution [34]. Because the surface flux boundary conditions

are intimately linked to the solution at the surface, this error interacts with

the boundary conditions contributing to instability in the model. However,

these numerical difficulties can be managed through suitable choice of the

mesh and solver, as opposed to requiring a brute force approach to deter-

mine a suitable initial state.
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3.4 Cycling a cell with a coupled precipitation-electrochemical

reaction

The ultimate goal of the model is to be able to understand how complex

electrochemical systems behave under transient conditions. While we have

so far seen that interactions between processes alter the way that the system

develops its initial equilibrium potential, we now take a short look at how

they can also lead to significant changes in, for example, a voltage charge-

discharge profile of a model electrochemical cell.

To do this, we complete the model cell by placing a second electrode at

the z = L boundary and allowing an electrochemical reaction to occur at its

surface. In common with a LiS cell, this takes the form of an electrodisso-

lution reaction, whereby an ionic species C+ is released or absorbed at the

electrode surface, releasing or consuming an electron in the process. Since

the solid phase at this electrode is assumed to be electrically conducting, its

formation does not affect the electrode’s active surface area. Furthermore, as

with the precipitation reaction, the addition or removal of the ionic species is

assumed not to alter the separation between the electrodes. The reactions at

the z = 0 boundary are the same as in the previous example. All reactions

used in this section are summarised together with their properties in table 4.

The addition of the second electrode means that a galvanostatic current

can also be applied according to the boundary condition in equation (58).

A discharge current neutralises the charge on each electrode, reducing the
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electrochemical potential of the electrons therein. This allows the electro-

chemical reaction to recommence, the rate of which depends on the activities

of the active species and their transport properties.

The loss of charge from the electrode due to the current causes the elec-

trolyte to shift from its equilibrium state, causing the reaction-diffusion pro-

cesses to recommence in such a way as to replenish the electrode charge.

Because the current continually acts to decrease the charge, if the reactions

do not occur quickly enough to replenish it then electrode potential will drop,

placing the system further from equilibrium. However, increasing the devi-

ation from equilibrium also causes the reaction rates to increase, until the

electrode charge is replenished at the same rate as it is consumed. For a given

external current, therefore, there will always be a loss in the cell potential,

but this ensures that the internal current matches the external current, en-

suring the law of conservation of current is observed. The extent to which

the system has to move from its equilibrium position in order to maintain

the current depends on the properties of the reaction-diffusion process, but

is the essence of the overpotential or polarisation of a discharge curve

Since the parameter space for discussing this hypothetical system is quite

large for this system, we limit this section to two data sets which give an

indication of how strongly the processes are able to affect the discharge profile

of this model cell. In both data sets, the system comprises four types of

mobile particles: A, A−, B− and C+, each with a radius of 0.32 nm and

involved in the same reaction processes. The initial concentrations, reaction
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properties and cycling conditions for the two data sets are listed in table 5.

For the first set we compare the effect of the quantity of precipitate which

is able to dissolve on the discharge profile. Three cases are considered, with

differences in the initial quantity of precipitate. The differences between

cases 2 and 3 are listed in table 5; case 1 is the same as case 2 but with

the precipitation reaction disabled, meaning that the effect of the precipitate

on the electrochemically active surface area is accounted for, but that the

dissolution itself is disabled.

In all cases the discharge/charge curves are monotonic, with the second

and subsequent (not shown) profiles featuring an initial rapid change in the

voltage, a more gradual middle section and another rapid change at the end.

The first discharge looks like the second half of a full discharge, which it

essentially is: because some of the reactants are consumed to give the cell

its initial equilibrium voltage, the amount of active material available for

the first discharge is smaller than in subsequent discharges. There is also a

symmetry between the charge and discharge profiles.

This shape of voltage curve is characteristic of when the discharge process

is limited by the electrochemical step. The finite quantity of neutral species A

decreases as the cell discharges, and the corresponding decrease of the activity

in the domain and at the surface causes the diffusion and reaction processes

to slow. To counter the loss of the active species, the system moves further

from equilibrium in order to maintain the internal current, corresponding

to a continual reduction in the cell potential. It should be noted that the
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conversion of electrochemical reactant to product on discharge also causes

the Nernst potential of the reaction to decrease with time. Because of this,

not all of the voltage change observed is due to the increased deviation from

an equilibrium state — some is attributable to the equilibrium state itself

decreasing.

The effect of the precipitation reaction on the system is most clearly

visible in the duration of the discharges which, because the current is con-

stant, translates to the capacity of the model cell. The cell capacity is the

measure of how much charge can be passed from the electrodes into the elec-

trolyte, which depends upon the availability of species to carry the charge.

By providing a source of the active neutral species through the precipitation

reaction, the amount of charge that the electrolyte can hold is increased,

thereby increasing the cell capacity.

The lower plot of figure 17 shows the fraction of the electrode surface

available for electrochemical reactions, which is a function of the quantity

of precipitate on the surface — if θS = 1, there is no precipitate on the

surface. The plot thus shows that cycling the cell cycles the amount of

precipitate, even though the chemical reaction is not directly affected by the

current. Furthermore, similar to the features seen in figure 16, and for the

same reasons, the termination or onset of the precipitation reaction alters

the voltage profile, as shown for the final discharge of case 3 in the inset of

figure 17.

For the second set of data in this section, we show that complex behaviour

53



can emerge from this relatively simple model, depending on the rates of the

processes. The initial conditions are indicated in table 5, where the difference

between the two cases is the rest period between consecutive charge and

discharge phases. While the initial conditions are similar to those of the

first data set, in this case the solubility of the neutral species is larger but

the rate of the precipitation reaction is significantly lower. We also apply a

larger current and compare the case in which there no rest between charge

and discharge phases to that where there is a 30 s rest.

Changing the chemical rate constants but removing the rest period has

the effect of flattening the middle part of the discharge profile and breaking

the symmetry between the charge and discharge. The chemical reaction in-

troduces a bottleneck to the formation of species A, which then limits the

rate of the electrochemical reaction. Because this is slowed, the electrochem-

ical reaction consumes as much of species A as is required for the chemical

reaction rate to increase until it replaces species A at a similar rate to that

at which it is electrochemically consumed. In this way the voltage profile

stabilises, but at a lower voltage.

The effect on the model cell of resting it is to allow the system to fully

equilibrate after each charge and discharge phase. This allows for some recov-

ery in the voltage as the electrochemical reactions are no longer competing

with the current to charge the electrodes, so they replenish the charge up to

the limit of the reaction equilibrium. In terms of the chemical reaction, all of

the precipitate has been lost during discharge, meaning that resting the cell
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at this point has little effect on the state of the cell, and so the charges are

similar regardless of the rest period. On charge, the solute continues to pre-

cipitate onto the surface during the rest, which changes the composition of

the electrolyte and the coverage of the electrochemically active surface area,

leading to differences between the discharge profiles of the rested and un-

rested cases. In particular, following a rest, the voltage profile can be seen to

be non-monotonic, with a sharp initial decrease in the voltage being followed

by a humped voltage profile. This ties into the notion that precipitation is

required in order to explain the shape of a LiS discharge curve.

4 Conclusions

Starting from a description of the Helmholtz free energy of a system, we

have outlined a framework for describing a general reaction-diffusion system.

The species fluxes and the rates of the reactions are defined by gradients or

differences in the species’ electrochemical potentials, which follows from the

form of the chosen form of the free energy functional, and we have shown

that the model satisfies the constraint that the free energy is minimised with

time by the processes occurring within it.

Working within the mean-field and local density approximations, we have

developed this framework into a model describing the transient behaviour of

a system in which chemical and electrochemical processes are able to occur.

We demonstrated this in a structurally simple slit-pore model, with which
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we explore the behaviour of some example cases drawn from the reaction

mechanism driving a LiS cell. While this particular system provides our mo-

tivation, the structure of the model can be applied to any reaction-diffusion

system in which it might be desirable to understand the behaviour of the

system in more detail than can be provided by a homogenised electroneutral

model.

We first applied this model to the dissolution of a surface precipitate into

a solvent or electrolyte, showing how the inclusion of the species interaction

term alters the precipitation/dissolution behaviour for a given reaction. The

reason for this is that the interactions alter the activities of the solute species,

effectively altering their solubility. Because the LiS reaction mechanism is

bounded by two such chemical processes, each occurring into a concentrated

solution, the solute phases will inevitably be affected by these interactions

ultimately having an impact on the behaviour of the cell. We also showed how

the model predicts a small transient voltage during the dissolution process if

the solvent also holds asymmetrically-sized ions.

Next, we used the model to describe the case of a single electrochem-

ical reaction occurring at one of the domain boundaries. By considering

changes in the initial active species concentration and domain length we ob-

serve deviations in the equilibrium potential of the reaction. These expected

differences are caused by changes in the relative species activities caused

by the consumption of reactant and formation of product in a closed sys-

tem. The deviation of the equilibrium potential fits exactly with the change
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in the Nernst potential as the reaction progresses. Further deviations in

the equilibrium potential are observed as a function of the supporting elec-

trolyte concentration and the relative sizes of the electrochemically active

species, becoming significant at high supporting electrolyte concentrations,

even when the initial active species concentration is high. In the context of

a LiS cell or many other electrochemical devices, wherein the electrolyte is

highly concentrated, this variation indicates that the Nernst potential used

in a homogenised cell model may be significantly inaccurate.

In the final two sections we considered how the equilibrium state and

the dynamics of the system are affected by coupling a precipitation step to

an electrochemical step. In terms of the equilibrium, the existence of the

precipitation reaction was shown to both alter the rate at which the system

equilibrates and the cell potential once equilibrium is reached. Furthermore,

the shape of the voltage profile during the equilibration stage was observed

to be strongly affected by the complete dissolution of the solid phase from

the surface. Regardless of these effects, however, the electrochemical reaction

still satisfies the Nernst potential at equilibrium, provided the influence of the

solute phase on the species activities is accounted for. This result complicates

the understanding of LiS behaviour,

Upon applying a current to the model cell, the presence of the solid phase

precipitate was shown to increase the duration of the discharge, indicating

an increase in the capacity of the model cell. The loss of the solid phase

from the surface or the onset of precipitation gave rise to small features
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in the charge and discharge profiles. Additionally, severely restricting the

rate of the chemical reaction while increasing the current led to a complete

shift in the shape of the voltage profile. The existence of a chemical reaction

bottleneck in the LiS reaction mechanism is thought to be responsible for the

transition between the two plateaus seen in a LiS discharge profile [4]. That

the emergent behaviour of even a very small number of processes exhibits a

reasonable degree of complexity suggests that gaining a true understanding

of the mechanism may be a challenge, but the model provides a starting

point for doing this.

In addition to allowing for the inclusion of species interactions, the formu-

lation of the model provides a basic structure for studying the behaviour of

higher-dimensional systems, potentially providing the means to understand

how reaction-diffusion processes may occur in confined geometries. As men-

tioned previously, it is known that the species interactions can lead to the

exclusion of larger particles from the EDL which can be related to ion se-

lectivity in porous structures. By also including the reaction processes, this

model makes it possible to begin exploring how pore size and shape can alter

a reaction mechanism.

A number of avenues are available for the general future improvement

of the model within the framework. These may include the incorporation

of additional species interactions or improved expressions for the reaction

rates, but also extend to more fundamental developments. Examples are

the inclusion of the heat of reaction for the chemical processes, entailing the
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coupling of a thermal model to the system, or a better description of the

precipitation reaction. In the latter case this might include either a more

realistic nucleation and growth model or, in the case of a two- or three-

dimensional model, a physical description of the precipitate in the model

domain.

The precipitation model in particular places a physical limit on the maxi-

mum amount of solid phase which can be present before the electrochemically

active surface becomes blocked. This limits the one-dimensional model’s ca-

pability to describe a porous electrode structure of a LiS or similar cell in

which the areal precipitate loading may be larger than the model can de-

scribe.

Finally, while we are motivated by the desire to understand the LiS re-

action mechanism, the model is generally applicable to a range of chemical

and electrochemical systems, and may find use in helping to understand ex-

perimental data from a range of tests. One particular example may be elec-

trochemical impedance spectroscopy data in weakly supported electrolytes,

for which the equivalent circuit models used to fit the data may break down

because of changes in the electrolyte resistance with concentration.
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Figures

Co-ion

Counter-ion Neutral species

Electron

Stern layer/

reaction planeElectrode

Figure 1: Schematic of the electric double layer. Counter-ions are attracted
to the surface charge, co-ions are repelled and neutral species are displaced.
The surface charge can be externally applied or arise naturally from internal
processes.
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Figure 2: Reactions are broken into three main types: surface electro-
chemical redox (left), bulk phase chemical (middle) and surface precipita-
tion/dissolution (right)

Figure 3: Structure of the unit precipitate on the electrode surface.

Cathode AnodeDomain

z=0 z=L

Figure 4: 1D model layout.
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Figure 5: Radius of the unit precipitate, average A(d) concentration and the
activity of A at z = 0 and z = L during the dissolution process
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Figure 6: Effect of the domain length on the equilibrium state of the precip-
itation reaction.
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Figure 7: Effect of the initial solute concentration on the equilibrium state
of the precipitation reaction.
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Figure 8: Effect on the final state of the solute and precipitate species when
an increasing quantity of inactive ions B− and C+ are added to the solvent.
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Figure 9: The transient voltage during dissolution of a precipitate into an
electrolyte containing asymmetrically sized ions. In cases A, the solute con-
centration is 1M and precipitation occurs, while in cases B it is 0.1M and
dissolution occurs. Differences between case numbers are listed in table 3
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Figure 10: Time-evolution of the potential difference across the modelling
domain (solid lines) and the instantaneous Nernst potential (dotted lines)
when one electrochemical reaction, with ∆φ⊖ = 0.5V, occurs at z = 0. The
effect of changing the initial active species concentration is shown with a
supporting electrolyte concentration of 1M
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Figure 11: Change in the equilibrium voltage of the reaction in equation (60)
as a function of the initial active species concentrations for three different
supporting electrolyte concentrations
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Figure 12: Equilibrium potential as a function of the supporting electrolyte
concentration. A base case, in which all species have equal radii of 0.3 nm,
is shown for two initial active species concentrations (1mM and 0.1mM),
together with the change that occurs when the active anion has an increased
radius of 0.34 nm
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Figure 13: Variation of the equilibrium activity with supporting electrolyte
concentration for the case of figure 12 in which all species sizes are the same
and the initial active species concentration is 0.1mM. Species A and A− are
the active species, species B− and C+ form the supporting electrolyte.
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Figure 14: Variation of the equilibrium voltage with domain length for the re-
action in equation (60) under the assumption that all species radii are 0.3 nm.
Four combinations of initial active species concentration and supporting elec-
trolyte concentration are shown, labelled in the form “active species concen-

tration / support species concentration”
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Figure 15: As figure 14, but with an asymmetry in the redox couple size.
The neutral and supporting electrolyte species radii are 0.3 nm while that of
the active anion is 0.34 nm. This asymmetry has the effect of suppressing
the equilibrium potential.

0

0.2

0.4

0.6

P
o
te

n
ti
a
l 
(V

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Time (s)

0

0.1

0.2

0.3

0.4

0.5

r A
(s

) (
m

)

Figure 16: Effect of changing the precipitate solubility, represented by the
ratio kf/kr, on the evolution of the cell potential (upper plot, solid lines),
Nernst potential (upper plot, dashed lines) and unit precipitate radius (lower
plot) for the coupled reactions defined in equations (61) and (62).
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Figure 18: Restricting the rate of the precipitation reaction while increasing
the current significantly alters the shape of the discharge curve (see table 5
for system details). Furthermore, resting the cell between cycles, shown by
cases 1 (no rest) and 2 (30 s rest) has an impact on the subsequent discharge)
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Tables

Table 1: Summary of the initial conditions for the model.

Condition Explanation
ci(r, t) = c0i Homogeneous initial concentrations
φ(r, 0) = 0 No local variation in charge density
Σ(r, 0) = 0 No initial surface charge density

vPi (0) = vP,0i Defined initial volume of the unit precipitate

Table 2: List of parameter values for the precipitation study.

Parameter name Parameter symbol Value Unit
Molar volume mA(s) 1.239× 10−4 m3mol−1

Density of seed points1 ρA(s) 1010 m−2

Initial seed point volume2 vP,0A(s)
2× 10−16 m3

Forward rate constant1 kf 10−1 ms−1

Reverse rate constant1 kr 10−1 ms−1

1Order of magnitude estimate.
2 See discussion in section 2.4.
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Table 3: Details of case numbers for figure 9

Case number L (µm) rC+ (nm)
1 40 0.36
2 40 0.34
3 80 0.34

Table 4: Reaction processes for the cell cycling case study.

Reaction Position ∆φ⊖ (V) Rate constant
A(d) ⇌ A(s) z = 0 See table 5

A(d) + e− ⇌ A− z = 0 0.5V K⊖ = 10−8

C+ + e− ⇌ C(s) z = L -0.5V K⊖ = 10−8

Table 5: Initial conditions, reaction rate constants and current cycling prop-
erties for the cell cycling case study.

Symbol Set 1 Set 2
Concentrations (M) c0A(d) 0.3 0.4

c0A− 0.4 0.3
c0B− , 1 0.9
c0C+ 0.5 0.6

Chemical rate constants (m s−1) rf 1 2× 10−6

rb 1 10−6

Precipitate volume (m3) vP,0
A(s) 10−16/2× 10−16 10−16

Applied current density (Am−2) I 10 50
Rest period (s) tp 3 0/30
Max. voltage (V) V max 1.3 1.3
Min. voltage (V) V min 0.7 0.7
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