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Tunable, CW Laser Emission at 225 nm via

Intracavity Frequency Tripling in a
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Julio M. Rodrı́guez-Garcı́a, David Pabœuf, and Jennifer E. Hastie, Senior Member, IEEE

Abstract—Numerous applications would benefit from a compact
laser source with tunable, continuous-wave emission in the deep ul-
traviolet (wavelengths <250 nm); however, very few laser sources
have been demonstrated with direct emission in this spectral re-
gion and options are generally limited to pulsed, fixed wavelength
sources or complex and impractical setups for nonlinear frequency
mixing of the emission of several infrared lasers in various ex-
ternal enhancement cavities. Here, we propose an all-solid-state,
continuous-wave, tunable laser with emission between 224 and 226
nm via intracavity frequency tripling in an AlGaInP-based semi-
conductor disk laser (SDL). Output power up to 78 µW is achieved
in continuous wave operation, with a tuning range over 350 cm−1.
AlGaInP-based SDLs may be designed to emit anywhere between
∼640–690 nm such that wavelengths between 213 and 230 nm
may be targeted for specific applications using a similar set-up. An
in-depth study of the nonlinear conversion has been carried out
to understand the limitations of the set-up, namely large walk-off
angles for phase-matching in the nonlinear crystals, and the poten-
tial for increasing the output power to several milli-Watts. This is,
to the authors’ knowledge, the first implementation of intracavity
frequency tripling in a visible SDL and the shortest wavelength
emitted from an SDL system.

Index Terms—Semiconductor lasers, surface emitting lasers, ul-
traviolet sources, continuous wave, tunable, frequency conversion,
harmonic generation, nonlinear optics.

I. INTRODUCTION

I
NDUCING electronic transitions in small molecules, such

as some organic compounds and reactive species containing

nitrogen and oxygen, requires high energy photons, with energy

>4.5 eV (deep ultraviolet light; UVC: 100 nm–280 nm) [1]–[4].

As a result, lasers in this spectral region are of considerable inter-

est for spectroscopy; however, such lasers tend to operate in the
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pulsed regime (with the disadvantage of systematic frequency

shifts [5]) and at fixed wavelengths. For example, direct emis-

sion at such short wavelengths can be achieved with excimer or

gas lasers; in particular, HeAg lasers emit at 224.3 nm [6].

Nonlinear frequency conversion can be an efficient means

to reach the UV region from more convenient and practical

solid-state sources, although access to wavelengths <250 nm is

limited by phase-matching requirements, absorption and walk-

off effects on the material side, and of course by the funda-

mental spectral range of the laser source. Current technology

for continuous wave (CW), UV generation is mostly based on

frequency up-conversion in external resonators, since the high

power stored in the resonator allows for efficient frequency con-

version within the nonlinear crystal. While this method makes

use of enhanced optical fields, it leads to rather complex and

bulky setups, with further complexity if active stabilization is

required. These set-ups can be simplified by removing the ex-

ternal resonator, although this reduces the conversion efficiency,

and so several passes through the same nonlinear stage are often

used [7]. While it is possible to obtain high conversion effi-

ciency with a single nonlinear crystal, a multi-crystal scheme

has advantages in terms of reduced walk-off with improved

beam quality. In any case, with frequency up-conversion there

is typically a compromise between continuous wave operation,

tunability and high power.

Dye lasers are one of the few tunable ultraviolet laser sources,

albeit with the inherent difficulties and drawbacks of working

with non-solid-state gain media (e.g., cumbersome architecture,

toxicity and high cost). Ti:Sapphire lasers are the most common

all-solid state alternative for broad tuning, having shown emis-

sion throughout a wide range of wavelengths [8]–[10]; however,

the lower limit of their fundamental spectral range means that

higher harmonics are required to reach the deep UV and such

systems are usually pulsed.

Previously reported CW, UVC laser systems include single

frequency operation at 213 nm via sum frequency mixing (in

an external enhancement cavity) of the outputs of an amplified

1064 nm Nd:YAG laser and an externally-quadrupled Nd:YVO4

laser to reach the fifth harmonic [11], and the generation of over

2 mW at 194 nm via sum-frequency mixing of the amplified

output of a 792 nm diode laser with the second harmonic of

a 514 nm argon ion laser (frequency-doubled in an external

enhancement cavity) [12]. Of particular note is the recent result

by Ruhnke et al. of 16 µW CW at 222.5 nm via frequency

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Schematic diagram of the frequency-tripled SDL. BRF: birefringent
filter; M2–M5: high reflectivity mirrors. The heatspreader is a 0.5mm-thick
uncoated diamond window.

doubling of a high power, single frequency GaN external cavity

diode laser [13].

In summary, there are two main issues to be addressed for

many applications that require a deep UV laser source: com-

plexity and the wavelengths that can be achieved with a CW

system. In this paper we propose to use semiconductor disk

laser technology to address both.

Semiconductor disk lasers (SDLs), also known as VECSELs

[14], provide high power in continuous wave operation with

good beam quality, narrow linewidth and tunable wavelength.

One of the main advantages is that the gain medium can be

wavelength-engineered whilst retaining the ability to operate

with high spatial brightness: while the first SDLs worked at

wavelengths around 1 µm, fundamental operation has since been

demonstrated at a wide variety of wavelengths, from 640 nm

to beyond 5 µm [15], [16], with pioneering demonstrations at

wavelengths as short as 400 nm [17]. Single frequency UVC

emission has previously been demonstrated by Kaneda et al. by

obtaining multi-Watt operation from an infrared SDL and then

achieving efficient second and fourth harmonic generation in

successive external enhancement cavities [18], [19]. However,

the external cavity of SDLs, and low optimum output coupling,

typically on the order of a few percent, mean that the emit-

ting wavelength range is often efficiently extended by means

of intracavity nonlinear frequency conversion, i.e., without the

requirement for additional external resonators [15], [20].

Here we report an AlGaInP-based SDL, frequency tripled

via intracavity sum-frequency mixing of the fundamental wave-

length with its second harmonic, with the resulting emission in

the UVC region. This approach takes advantage of the aforemen-

tioned qualities of the SDLs, transferring them to the deep UV

region, where laser options are very limited, while aiming for

compactness and simplicity of the setup. Intracavity frequency

tripling has been previously studied and tested for conversion

from the infrared, mostly in pulsed Nd: lasers [21]–[24]. There

is one demonstration of a tripled infrared SDL [25]; however,

the wavelength achieved is in the near UV (355 nm) and a

full analysis of the optimisation of the nonlinear conversion is

not reported. For the experiment reported here the fundamental

wavelength is in the visible, 674 nm, the second harmonic is

at 337 nm and the third harmonic at 224.5 nm. The resulting

emission is tunable over 350 cm−1, with an output power of

78 µW. To our knowledge, this is the first implementation of

intracavity frequency tripling in a visible SDL and the shortest

wavelength emitted from an SDL to date.

We begin by presenting the experimental setup in

Section II-A, including the cavity configuration and se-

lection of nonlinear crystals. Results for the intracavity tripled

SDL (power outputs, tuning range) are discussed in Section

II-B. Section III-A focusses on understanding the limitations

caused by non-collinear propagation of the intracavity beams

and the overlap mismatch. Finally, the efficiency of the process

is compared with predictions from the theory of nonlinear

frequency conversion in Section III-B.

II. EXPERIMENT

A. Experimental Setup

Red-emitting SDLs are capable of Watt-level output power,

typically using three mirror cavities with 2–3% output coupling

(see e.g., [26], [27]). The intracavity power of such high finesse

SDL cavities is on the order of several 10s of Watts. The SDL

employed for this work has been shown to be capable of reaching

100 W intracavity power in a three mirror cavity configuration,

while this power drops to 63 W and 25 W in SHG and SFG

configurations respectively, due to the intracavity losses caused

by the inclusion of the different optical elements, as described

below.

The SDL gain structure is similar to the one described in

[28], where further details can be found. Briefly, the gain re-

gion consists of ten pairs of 6-nm thick GaInP quantum wells

separated by AlGaInP barriers and positioned for resonant pe-

riodic gain (one pair per field anti-node). This gain medium

is grown over a distributed Bragg reflector (DBR), composed

of 40 AlAs/AlGaAs λ/4 layers. The whole structure is grown

on a GaAs substrate. The device is optically-pumped with a

commercial, diode-pumped solid-state laser at 532 nm.

A 500-µm-thick diamond heatspreader is bonded onto the

intracavity surface of the SDL for thermal management, and

the whole structure is clamped in a water-cooled brass mount

and pumped with up to 5.5 W at 532 nm. The heatsink

temperature was maintained at 2 °C. The diamond is not

anti-reflection (AR) coated, resulting in pump reflection loss

of ∼18%. The pump beam is focused into the SDL to a

spot of ∼43 µm radius, mode matched with the fundamen-

tal laser beam. The fundamental emission occurs at ∼674 nm

so that deep UV emission at ∼224.5 nm can be achieved

via tripling. The third harmonic generation (THG) process

is divided in two nonlinear stages: Intracavity second har-

monic generation (SHG) is used to produce a beam at ∼337

nm (UVA), which propagates nearly collinearly with the fun-

damental beam. The fundamental and the SHG beams are

re-focused in a second nonlinear crystal for sum-frequency
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TABLE I
CRYSTAL PROPERTIES

Crystal Phase-matching de f f (pm/V) Walk-off (mrad)

SHG LBO Type-I 0.61 18.93

BBO Type-I 1.95 76.86

SFG BBO Type-I 1.55 82.60

Comparison of crystal properties for the SHG process (674 → 337) and

the SFG process (674 + 337 → 224.5). Data extracted from SNLO

(SNLO nonlinear optics code available from A. V. Smith, AS-Photonics,

Albuquerque, NM).

generation (SFG), producing the third harmonic, as shown

in Fig. 1.

Among the most common crystals suitable for SHG at 674 nm

are β-barium borate (BBO) and lithium triborate (LBO). Both

have high transmission in the visible and near UV, and while

BBO benefits from a higher nonlinear coefficient, LBO offers

a smaller walk-off angle (see Table I). A lower walk-off an-

gle gives better collinearity between the fundamental and SHG

beams, which means better overlap in the SFG crystal, and thus

higher efficiency, as long as the nonlinear coefficient is still

reasonable. For this reason we use LBO as the SHG crystal.

Periodically-poled crystals could potentially provide a perfectly

collinear second harmonic beam; however, at these short wave-

lengths, the current technology is limited to 3rd order quasi-

phase-matching with short crystal lengths [29].

In this work, SHG is achieved in a 7mm-long LBO crystal;

the length was chosen as a compromise between nonlinear con-

version efficiency and walk-off effects (see Sections III-A and

III-B). It is cut for type-I phase-matching of conversion of 674

nm to 337 nm (θ = 90°, ϕ = 47.3°). The second harmonic beam

is produced with extraordinary polarization (perpendicular to

the fundamental polarization) and is nearly collinear with the

fundamental beam: the separation at the exit of the crystal is

calculated to be ∼40 µm (see Section III-A). Both faces of the

crystal are anti-reflection coated for the fundamental and second

harmonic wavelengths (R < 0.1%).

The choice of SFG crystal is very limited due to absorption

and difficulty of phase-matching at these wavelengths. BBO

stands apart as the only widely available option. It has a fairly

large nonlinear coefficient (deff = 1.55 pm/V); however, it suf-

fers from a large walk-off angle (82.60 mrad) and from some

absorption at 224.5 nm (α = 0.12 cm−1). SFG is achieved in a

5mm-long BBO crystal cut for type-I phase-matching for con-

version of 674 nm and 337 nm to 224.5 nm (θ = 58.1◦). The

fundamental and SHG beams are focused and overlapped in this

crystal, achieving the conditions to produce third harmonic by

SFG.

Since both of the nonlinear crystals are cut for type-I phase-

matching, the polarization of the second harmonic, which

emerges from the SHG crystal perpendicular to the fundamen-

tal, must be rotated before entering the SFG crystal. This is

achieved via a dual waveplate placed between the crystals, act-

ing as a full waveplate for the fundamental beam (leaving it un-

affected) and as a half waveplate for the second harmonic beam

(90° rotation). This intracavity element is antireflection coated

for both the fundamental and the second harmonic wavelengths

(R < 0.4% at 674 nm; R < 1.5% at 337 nm).

The 5-mirror cavity has been designed by means of the

ABCD-matrix formalism to provide three beam waists, max-

imizing the efficiency of both frequency conversion steps

(Fig. 1). The fundamental beam waist radii are calculated to

be 43 µm at the SDL, 14 µm at the SHG crystal and 39 µm at

the SFG crystal. All mirrors have high reflectivity at the funda-

mental wavelength (R > 99.9%). Mirrors M3 and M5 have high

transmission at 337 nm (T > 98%), while M4 is highly reflec-

tive at this wavelength (R > 99%). The laser wavelength can be

tuned by rotating a 4mm-thick quartz birefringent filter (BRF)

positioned at Brewster’s angle inside the cavity. The BRF also

narrows the linewidth and forces the fundamental polarization

to be horizontal.

To avoid UVC absorption in M5 , the 224.5 nm beam gener-

ated in the SFG crystal is reflected out of the cavity by a dichroic

mirror, coated for high reflectivity at the third harmonic wave-

length (R > 99.9%). Its placement at Brewster’s angle ensures

high transmission for the fundamental beam, removing the need

for AR coating at this wavelength.

B. Laser Characterization

We have carried out a preliminary characterization of the 5-

mirror cavity for SHG, i.e., without the dual waveplate, the BBO

crystal and the dichroic mirror (hereafter referred to as ‘SHG

setup’) in order to provide a baseline for assessment of the third

harmonic generation step. The only intracavity elements present

in this case are the BRF and the 7 mm-long SHG crystal (LBO).

The intracavity fundamental power reaches 63 W and the to-

tal second harmonic power produced is >120 mW (>60 mW

per beam) as shown in Fig. 2, SHG setup, resulting in a nonlin-

ear conversion efficiency of 0.2% from intracavity fundamental

power to the second harmonic. A nonlinear conversion effi-

ciency of >0.5% in an AlGaInP-based VECSEL has previously

been achieved using intracavity BBO [30], [31]; however, as

explained at the beginning of this section, higher conversion

by means of using BBO instead of LBO is not desirable in

this particular experiment due to higher walk-off reducing the

collinearity of the SHG beam with the fundamental. The mea-

surement of the power transfer to the second harmonic for the

SFG setup, also shown in Fig. 2, shows the effect of adding the

intracavity elements needed for SFG (i.e., dual waveplate, BBO

crystal and dichroic mirror) causing losses to the intracavity

fundamental power, and therefore a drop in the generated SH.

We estimate the total additional insertion losses at the funda-

mental wavelength to be ∼3%. The intracavity fundamental to

SHG conversion efficiency remains just under 0.2%. The output

SHG power measured for both beams did not differ by more

than 1%.

With all elements included in the cavity, we are able to demon-

strate third harmonic emission. Fig. 3 shows the ultraviolet

emission spectrum of the laser for 4 W input power, measured

using an Avantes CCD spectrometer with resolution 0.4 nm.

Two peaks can be observed: the peak on the left, at 224.5 nm,
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Fig. 2. (a) Intracavity power at the fundamental wavelength of 674 nm as a
function of the input power. This intracavity power is deduced by measuring
the leak through mirror M4, with measured transmission of 0.014% at 674 nm.
(b) Total second harmonic power as a function of the input power. The two
curves compare the performance of SHG between the cavity setup for SHG
(black squares) and the cavity setup for SFG (red diamonds).

Fig. 3. UV region of the laser emission spectrum showing the second and
third harmonics. The resolution of the spectrometer is 0.4 nm.

corresponds to the third harmonic of our fundamental wave-

length; the peak on the right corresponds to the second harmonic

beam, at 337 nm. The linewidth of the third harmonic peak is

∼1 nm.

By rotating the BRF and reorienting both nonlinear crystals

to optimise phase-matching, the output wavelength of this laser

can be tuned between 223.8 nm and 225.6 nm, as shown in

Fig. 4 (inset). This corresponds to the fundamental wavelength

tuning over 5.4 nm, which is less than the >10 nm tuning that

may be achieved from this laser without nonlinear conversion.

Fig. 4. Main: Third harmonic beam output power as a function of the pump
power. Almost 78 µW of power is obtained at 224.5 nm. Inset: Normalised
UVC output power of the laser as the wavelength is tuned by rotation of the
birefringent filter. The tuning range is 350 cm−1 .

Nevertheless, 1.8 nm tuning in the UVC corresponds to a tuning

range of 350 cm−1, comparable with typical tuning ranges of

SDLs at other wavelengths [30], [32]–[35].

With 4.5 W of input power, 78 µW output power is produced

at the third harmonic, as shown in Fig. 4. The intracavity power

of the fundamental is estimated to be around 26 W, while the

power of the second harmonic is estimated to be around 30 mW

per beam; in the current configuration only one of the generated

second harmonic beams contributes to the SFG process (see

Fig. 1). The threshold for the fundamental is around 1.1 W

of pump power, but no THG can be detected below 1.6 W of

pump. The efficiency of the second harmonic to third harmonic

conversion is calculated to be 0.4%. This conversion efficiency is

limited mainly by the divergence of the beams and by the walk-

off induced by the nonlinear materials. We refer the reader to

Sections III-A and III-B for detailed analysis.

In the following sections we will study the factors that limit

the THG power in the current set-up, particularly the walk-

off: Section III-A will deal with in-cavity beam propagation,

and Section III-B will focus on the theoretical limits for SFG

conversion.

III. THEORETICAL STUDY

A. Beam Propagation

Type-I critically phase-matched SHG produces a second har-

monic beam with extraordinary polarization within the nonlin-

ear crystal, and the Poynting vector of this beam is at an angle

to the optical axis (walk-off). As a result, the SHG beam is

separated from the fundamental beam at the exit of the crys-

tal, with the separation determined by the length of the crystal.

This separation is maintained, if not increased, as the beams

propagate through the cavity and the reduced overlap between

the fundamental and second harmonic beams will limit the effi-

ciency of SFG. We therefore begin our analysis by calculating

the distribution of both beams inside the SFG crystal.
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Fig. 5. (a) Beam profiles at the exit of SHG crystal. (b) Beam profiles inside
the SFG crystal. A Gaussian profile has been fitted to the SHG beam, in order
to define the beam size. The beam profiles correspond to the vertical section,
which is the direction of effect of the walk-off. The zero corresponds to the
optical axis of the cavity, on which the fundamental beam is centred.

The geometry of the fundamental beam is determined by

the geometry of the laser cavity. As described in Section II-A,

the fundamental beam has a waist of 14 µm radius at the SHG

crystal and 39 µm radius at the SFG crystal. The beam parame-

ters of the second harmonic generated in the SHG crystal can be

obtained using Kleinman’s equation for the SHG electric field

at the exit of the nonlinear crystal (see equation 4.20 in [36]).

This equation allows us to calculate the corresponding SHG pro-

file for a given profile of the fundamental. The resulting beam

profiles are plotted in Fig. 5(a). The maximum intensity of the

SHG beam is located 40 µm away from the optical axis of the

cavity, where the fundamental beam is centred. The effect of

the walk-off on the beam shape is visible on the left side of this

profile, which is wider and exhibits additional features. As seen

in Fig. 5(a), at the exit of the crystal the fundamental beam size

is 35 µm radius, while the beam size of a Gaussian fit of the

SHG is 50 µm radius.

The two beams, fundamental and second harmonic, then

travel through the cavity towards the second non-linear crys-

tal, in which SFG is achieved. Propagation of both beams is

modelled using the Fresnel diffraction formalism [37]. The first

step consists of propagating the beams from the LBO crystal

to the folding mirror M4 ; done by computing the fast Fourier

transform of each beam and using the propagator:

H(z, σ, λ) = exp

(

i
2π

λ
z
√

1 − λ2σ2

)

(1)

where z is the propagation distance and σ the spatial frequency in

the Fourier domain. The wavelength is defined as λ = λ0/n to

take into account the optical index of the medium. The focussing

effect of the curved mirror is taken into account by applying a

spherical phase:

T (x, λ) = exp

(

iπx2

λR/2

)

(2)

where R is the radius of the mirror (mirror M4 in our case).

The final step consists of re-applying (1) in the Fourier domain

to propagate the beams to (and through) the second non-linear

crystal.

The resulting beam profiles at the centre of the SFG crystal

are plotted in Fig. 5(b). It can be seen that the distance between

the intensity peaks has increased from 40 µm to 95 µm. The fun-

damental beam waist is 35 µm radius, in agreement with the val-

ues obtained by the ABCD-matrix formalism. The SHG beam

profile becomes further stretched with propagation through the

cavity; however, a Gaussian fit shows that the side overlapping

the fundamental remains close to a Gaussian profile, as can be

seen in Fig. 5(b). In order to define an upper limit to the ex-

pected conversion, we will consider the Gaussian fit of the SHG

for the SFG theory detailed in the following section. The beam

waist radius of this Gaussian fit is 90 µm, and it contains almost

70% of the total SHG power. Given the separation between the

peaks, very tight focusing would decrease the beam overlap,

while loose focusing would not provide the high intensities re-

quired for nonlinear interaction. The set-up used experimentally

is a compromise between these two considerations.

B. SFG Efficiency

BBO offers a high nonlinear coefficient for the SFG process,

which is unfortunately compromised by the large walk-off an-

gle present at our phase-matching wavelengths (Table I). This

walk-off inherently affects the conversion efficiency of the pro-

cess, severely limiting the output power. Boyd and Kleinman

modelled this behaviour by means of a so called h function,

which modifies the output power (neglecting pump depletion)

[38]:

P3 =
32π2d2

eff

ε0cn2
3λ1λ2λ3

P1P2e
−αLL · h(B, ξ) (3)

In the equation P3 is the output (THG) power, while P1

and P2 correspond to the input fundamental intracavity power

and SHG power. Crystal length (L), crystal nonlinear coefficient

(deff ), crystal absorption coefficient (α), crystal refractive index

at THG wavelength (n3) and all three wavelengths are also

present.

This h function shows that the process heavily depends on a

focusing parameter ξ = L/b, with b = 2z0 being the confocal

parameter and L the length of the crystal; and on a birefringent,

or walk-off, parameter B proportional to the walk-off angle ρ,

the wavenumber and the length of the crystal:

B = ρ/2
√

L(k1 + k2)/2 (4)

Boyd and Kleinman’s study showed that larger values of

the walk-off parameter correspond to smaller values of the h

function, and hence lower output power. At the same time the
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TABLE II
EXPERIMENTAL PARAMETERS

λω λ2 ω w 0
ω w 0

2 ω

674 nm 337 nm 39 µm 90 µm

Pω P2 ω L de f f

26 ± 4 W 30 ± 5 mW 5 mm 1.55 pm/V

nω n2 ω n3 ω ρ

1.665 1.712 1.696 82.60 mrad

Fig. 6. Effect of walk-off parameter in the SFG process, calculated using the
parameters in Table II. B = 14 is the walk-off parameter value in our experiment.

optimum focusing condition changes towards weaker focussing

as the walk-off increases.

Guha and Falk generalized Boyd and Kleinman’s study by

considering mixing of Gaussian beams with different confocal

parameters [39]. As mentioned in Section II-A, the parameters

of the fundamental beam are defined by the geometry of the

cavity (beam waist of 39 µm in the SFG crystal). While the

previous calculations have shown that the SHG beam was off-

centre and not Gaussian, we define an upper limit on the likely

conversion by now considering it to be Gaussian and coaxial

with the fundamental, with a diameter of 90 µm, which corre-

sponds to the size of the Gaussian fit on Fig. 5(b). According to

the theory, the efficiency of SFG conversion is strongly depen-

dent on the beam sizes, but also on the nonlinear coefficient and

the walk-off angle.

We computed Guha and Falk’s generalized h function (equa-

tion 39 in [39]) numerically for our experimental parameters,

summarized in Table II. We assume ∆k = 0 for all calculations

(see Appendix).

The walk-off angle for a given crystal is fixed by the phase-

matching angle at the desired wavelengths. In the case of this

study, the wavelengths 674, 337 and 224.5 nm have phase-

matching at θ = 58.1° in BBO, with a corresponding walk-off

angle of 82.60 mrad. If the crystal is 5-mm-long, the correspond-

ing walk-off parameter is B = 14. The calculated output power

is limited to approximately a hundred µW for our experimental

conditions. In Fig. 6 we have plotted the results for the expected

output power of the SFG process as a function of the walk-off

parameter, to show its impact on the conversion efficiency. The

total output power is relatively sensitive to small variations in

the input powers (Pω and P2ω ), and therefore we have plotted an

Fig. 7. h function vs the SHG focusing parameter ξ2 for different B parameter
values. For our experimental conditions (B = 14), the walk-off effect reduces the
output power by an order of magnitude with respect to the case of no walk-off.

upper and lower limit to the THG power estimation to account

for the error introduced by small uncertainty in the transmission

of the HR mirrors through which the low power fundamental

and second harmonic beams were detected. It can be seen that

the maximum output power rapidly decreases from around half

a mW to the hundred µW level as the walk-off parameter in-

creases to our experimental value. This shows that, for the given

input power, the third harmonic power achieved in this exper-

iment was as good as could be expected given the walk-off of

BBO. As a comparison, in the more common process 1064 nm

+ 532 nm → 355 nm the required phase-matching orientation

corresponds to a walk-off parameter of B = 10 in BBO, while it

would be B = 2.4 in LBO (which offers phase matching at these

wavelengths). The corresponding h function would be respec-

tively 2 and 5 times larger than in our case and therefore higher

conversion would be expected.

Fig. 7 shows the dependence of the h function with the focus-

ing parameter of the SHG beam for different walk-off parame-

ters. The optimum value of the h function tends towards looser

focusing for larger B values (that is to say walk-off suppresses

the conversion more strongly for tighter focussing).

A means to reduce the impact of walk-off, the use of sev-

eral pieces of the nonlinear crystal (either separated in space

or built in a monolithic structure), has been extensively studied

by Zondy et al. [40]–[42]. With this technique, the walk-off di-

rections in two consecutive sections of the crystal are opposite

to each other, and therefore compensate one another. Walk-off

compensated (WOC) structures have already been used experi-

mentally to demonstrate improved SHG [43]. In our particular

experiment, they would provide the extra advantage of remov-

ing the walk-off-induced separation between the fundamental

and second harmonic beams, making them collinear throughout

the cavity.

A monolithic WOC structure has a lower walk-off parameter

B for equivalent crystal length. As an example, if we were to
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use a monolithic structure made of five 1-mm-thick plates with

a total length of 5 mm (same length as our BBO crystal) for

our SFG process, the walk-off parameter would be B = 6,

as opposed to the current value of B = 14 (curves plotted in

Fig. 7), and roughly doubling the output power (see Fig. 6).

For our experiment, use of WOC-BBO structures as nonlinear

crystals for both SHG and SFG processes would offer higher

SHG powers with better overlap between the SFG input beams

and, furthermore, increased efficiency of the SFG for substantial

improvement of the THG output power. However monolithic

WOC structures are not widely available commercially and such

improvements remain the subject of future work.

IV. CONCLUSION

We have demonstrated third harmonic generation in a visible

SDL, providing continuous wave laser emission in the deep ul-

traviolet region of the electromagnetic spectrum and producing

the shortest wavelength to date from an SDL. The laser gener-

ates emission of 78 µW continuous wave at 224.5 nm, with a

tuning range over 350 cm−1. Compared with other schemes used

to achieve CW, UVC laser emission (e.g., [8], [9]), the setup is

relatively compact thanks to the short fundamental wavelength

(requiring fewer conversion steps) and the fact that the frequency

conversion is carried out intracavity.

We have studied the limitations to the output power of our

current nonlinear conversion set-up, and shown that the second

to third harmonic conversion achieved is as high as could be

expected given the large value of the walk-off angle for the cor-

responding phase-matching in BBO. The use of walk-off com-

pensating structures or periodically-poled crystals would allow

significant improvements to the conversion efficiency, subject

to commercial availability at the wavelengths of interest.

AlGaInP-based SDLs are a relatively immature laser technol-

ogy and improvements to their efficiency are still being made

with further optimisation of the gain structure (see e.g., multi-

Watt CW operation recently reported by Mateo et al. [31]), such

that the fundamental power available for conversion can be sig-

nificantly increased. We therefore expect that tunable, deep UV

output on the order of several mW could be generated using

this type of laser. Further, SDLs based on this material have

shown fundamental emission from 640 nm–690 nm such that

wavelengths between approximately 213 nm–230 nm may be

targeted for specific applications, including, but not limited to,

two-photon absorption of atomic oxygen and xenon [3], vibra-

tional bands of NO, O2 [44], metal transitions [45], etc. Such

a compact, solid-state laser solution offers many advantages

over the few alternatives available at wavelengths <230 nm,

thus opening up new applications and the opportunity to make

others more practical for use outside the laboratory.

APPENDIX

Since the optimal phase-matching value is not necessarily

∆k = 0 (see [38] for discussion), we have calculated the vari-

ation of h with phase mismatch ∆k·L for two different condi-

tions: for our experimental walk-off (B = 14) and focusing;

and in absence of walk-off (B = 0) with tighter focusing. The

Fig. 8. Effect of phase-matching in the SFG process. For B = 14 curve the
peak is centred at ∆k = 0. For B = 0 curve the optimum phase-matching
value is greater than 0.

results are plotted in Fig. 8, and confirm that in our case no

phase mismatch is desired. While the experimental work is not

heavily affected by this result (since the crystal is manually

aligned to the maximizing position), we assume ∆k = 0 for all

calculations.
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