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Generalised Intrusive Polynomial Expansion (GIPE) is a novel method for the propagation of multidimensional com-

pact sets through dynamical systems. It generalises the more widely-known Taylor Differential Algebra in that it allows

the use of generic polynomial representations of a multi-dimensional set. In particular the paper proposes the use of

truncated Tchebycheff series. Unlike Taylor expansions, that are not generally convergent, Tchebycheff expansions

provide fast uniform convergence with relaxed continuity and smoothness requirements, guaranteeing near-minimax

approximation. This methodology has proven to be competitive for uncertainty propagation in orbital dynamics, es-

pecially when dealing with a large number of uncertain variables. Moreover, it provides the user with a complete

polynomial representation of the uncertain region at any point of the propagation, allowing for remarkable gain of

insight into the underlying properties of the uncertain dynamics. The paper presents the application of the GIPE ap-

proach to the end-of-life analysis of Low Earth Orbit satellites, with special emphasis on the case of the de-orbiting

and re-entry of GOCE and the de-orbiting of objects with high area to mass ratio. The effect of various sources of

uncertainty on the end-of-life dynamics is thus analysed, such as the drag model or the accuracy of the initial orbit

determination.

I. INTRODUCTION

The paper will consider two different studies. The first

one is the end-of-life trajectory of GOCE. The ESA vehi-

cle, which re-entered the atmosphere in November 2013,

was intensively tracked during its final days. This case

is studied by means of a high-fidelity 3-dof propagator in

a geocentric cartesian reference frame. The second ex-

ample concerns objects with high area-to-mass ratio, such

as pieces of a solar panel. For instance, it could model a

cloud of fragments resulting from a collision in Low Earth

Orbit (LEO). This case is tackled by means of simplified

dynamics in the osculating orbital elements and refined

with the aid of the aforementioned propagator. Both these

cases will demonstrate low initial altitudes, leading to re-

entry in a matter of days as drag strongly impacts the or-

bital motion. For this application, GIPE represents a valu-

able approach to simulate a range of values for various

uncertain quantities, such as initial orbit and atmospheric

conditions. Being capable of propagating the uncertain

set through the dynamics at once, a complete representa-

tion of the uncertain quantities of interest is available to

the user at any point of the simulation, making dynamic

analysis possible. A comparison is provided between Tay-

lor Differential Algebra and a GIPE approach based on

Tchebycheff approximation, where their numerical stabil-

ity properties for LEO dynamics are put to the test.

Taylor Differential Algebra is based on the Truncated

Power Series Algebra (TPSA) introduced by Berz in

19861, 2 and is nowadays a popular methodology in the

space sector. Recent applications in astrodynamics and

celestial mechanics can be found in the work of Di Lizia

et al.3 and Armellin et al.4,5 and in the work of Jorba et

al.6

Brisebarre and Joldes7 provided in 2010 a formal com-

parison of the TPSA with Taylor, Tchebycheff and New-

ton basis in the univariate case, proving that enhanced ac-

curacy can be obtained by means of hyperinterpolation-

based approaches with respect to derivative-based alge-

bras. In the case of Tchebycheff basis, the development

of a multi-variate algebra and its application in astrody-

namics, to the knowledge of the authors, appears in 2015

with the work of Riccardi et al.8
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An important feature of this study is that it will test the

hypothesis that hyperinterpolation-based approaches are

more stable when using piece-wise-defined models that

do not provide infinite differentiability between their sub-

domains. All results presented hereby make use of the

implementation of GIPE provided in SMART-UQ.9

II. INTRUSIVE APPROACH

Given a continuous, piece-wise differentiable, function

f(x) : Ω ⊂ R
d → R, we consider the approximation

f(x) = P (x) + r(ε) =
∑

i,|i|≤n

piαi(x) + r(ε) , [1]

where Ω = [−1, 1]d, x ∈ Ω , i ∈ [0, n]d ⊂ N
d , |i|=

∑d

r=1
ir, r(ε) is a remainder (with ε ∈ Ω), and αi(x) is a

polynomial basis of choice, up to order n. The number of

coefficients for a complete expansion is given by

Nd,n =

(

n+ d

d

)

=
(n+ d)!

n! d!
, [2]

The polynomial P (x) belongs to the function space

Pn,d(αi) of polynomials of order n in d dimensions, in

the αi basis.

The definition of the polynomials can be extended to

a generic hyper-rectangle Ω = [a,b] ⊆ R
d ; being τ :

Ω → Ω the linear mapping between the two regions, the

generalised expansions are defined over Ω by

αi(x) = αi(τ(x
′)) , [3]

where x′ ∈ Ω. So without loss of generality the domain

Ω is considered hereafter.

II.i Polynomial Algebra

The function space Pn,d(αi) can be equipped with a

set of elementary arithmetic operations, generating an al-

gebra on the space of polynomials or polynomial space in

the αi basis, such that, given two elements A(x), B(x)
approximating any two functions fA(x) and fB(x),

fA(x)⊕ fB(x) ∼ A(x)⊗B(x) , [4]

where ⊕ ∈ {+,−, ·, /} and ⊗ is the corresponding oper-

ation in Pn,d(αi). This allows one to define the algebra

(Pn,d(αi),⊗), of dimension dim(Pn,d(αi),⊗) = Nd,n,

the elements of which belong to the polynomial ring in d
indeterminates R[x] and have degree up to n. Each ele-

ment P (x) of the algebra, is uniquely identified by the set

of its coefficients p = {pi : |i|≤ n} ∈ R
Nd,n such that

P (x) =
∑

i,|i|≤n

piαi(x) . [5]

The operations of addition and subtracting are de-

fined as follows: being A(x) and B(x) two elements of

(Pn,d(αi),⊗), identified by the set of coefficients a,b ∈
R

Nd,n , respectively, the result of their sum or difference

is

C(x) = A(x)±B(x) , [6]

identified by the set of coefficients c ∈ R
Nd,n such that

c = a± b . [7]

The product of two polynomials is defined accordingly

to the basis used. For example, the product between two

monomial basis is defined as

xi · xj =

{

xi+j if |i+ j|≤ n
0 otherwise

, [8]

the result thus truncated to the order n. Given that the

computational cost of multiplying two polynomials not in

the monomial basis is generally higher, arithmetic opera-

tions can always be performed in the monomial basis, as

far as the transformation

ν : Pn,d(αi) −→ Pn,d(φi) [9]

from the current basis into the monomial basis φi can be

defined. One can now take two general polynomial ex-

pansions A(x) and B(x), express them in terms of mono-

mials, and apply the following multiplication operation

ν(A(x)) · ν(B(x)) =





∑

i,|i|≤n

aix
i









∑

i,|i|≤n

bix
i



 .

[10]

By collecting all the contributions to each monomial xi,

it is possible to compute the coefficients of the product

approximation with substantially less operations than for

the case of multiplication in the polynomial ring R[x].
In the same way as for arithmetic operations, it is possi-

ble to define a composition rule in the polynomial algebra

such that

g(y(x)) ∼ G(y) ◦Y(x) , [11]

where ◦ is the composition function on (Pn,d(αi),⊗)
and g(x) and y(x) are, respectively, a multivariate func-

tion and an array of d multivariate functions in the

real space, with G(x) and Y(x) their polynomial ex-

pansions. The composition rule can be used to intro-

duce the counterpart, in the algebra, of division oper-

ation and elementary function: being h(y) any of the

functions {1/y, sin(y), cos(y), exp(y), log(y), ...}, H(y)
its univariate polynomial expansion, f(x) a multivariate

function and F (x) its multivariate polynomial expansion,

their composition is approximated by

h(f(x)) ∼ H(y) ◦ F (x) , [12]
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in which ◦ denotes the composition of an element of the

algebra with an univariate polynomial

◦ : Pn,1(αi)× Pn,d(αi) −→ Pn,d(αi) . [13]

Being composition defined between polynomials in the

same basis, to perform multiplication between polynomi-

als in the monomial basis and avoid the computational

cost of transforming the result back to the current basis,

composition between polynomials in the monomial basis

can only be used. In this case, being H(x) the expansion

of an elementary function in the chosen polynomial basis,

it is

h(f(x)) ∼ ν(H(x)) ◦ Fφ(x) , [14]

where Fφ(x) is the approximation in the monomial basis

of f(x). Hence, without loss of generality, all arithmetic

operations can be performed in Pn,d(φi).

It needs to be noted that for the case of Tchebycheff

expansions, given that high order terms have contribution

to low order terms in the monomial basis∗, H(x) is ex-

panded up to no less than 1.5 times the order of the alge-

bra and ν(H(x)) is truncated afterwards. This has been

found to minimise the loss of accuracy when the change

of basis is performed. Hence, for the proposed Tcheby-

cheff approximation the transformation ν is between the

functional spaces

ν : P⌈1.5n⌉,d(αi) −→ Pn,d(φi) , [15]

where αi is the Tchebycheff basis and φi the monomial

basis.

Note that since H(x) is an univariate polynomial, the

change-of-basis matrix is of order n + 1, or size (n +
1)× (⌈1.5n⌉+ 1) in case of Tchebycheff approximation,

instead of order Nd,n, rendering the conversion computa-

tionally cheaper than in the multivariate case.

II.ii Set Propagation in Dynamical Systems

Consider the following Cauchy problem

{

ẋ = f(x,b)
x(t0) = x0

, [16]

where b ∈ Υ ⊆ R
q is a vector of model parameters and

the initial conditions have value x0 ∈ Σ0 ⊆ R
c so that

d = q + c. We can now propagate the set Ω = Υ × Σ0

through the dynamics (16) by representing x0 and b as

elements of the algebra (Pn,d(αi),⊗) and applying any

integration scheme with operations defined in the algebra.

∗ If we consider for example the forth order term of the univariate

basis C4(x) = 8x4
− 8x2 + 1, this has a contribution to the

second order term of the monomial basis.

As an example, if X0 := (X1(x), ..., Xc(x)) and

B := (B1(x), .., Bq(x)) are initialised as elements of the

algebra:

X1(x) = α11
(x) , B1(x) = α1c+1

(x) , [17]

X2(x) = α12
(x) , B2(x) = α1c+2

(x) ,

. . . . . .

Xc(x) = α1c
(x) , Bq(x) = α1d

(x) ,

where α1j
(x) is the first order base in the j-th component.

If a simple Euler scheme is used, then at each integration

step one has:

Xk = Xk−1 +∆t Fk−1, [18]

where F0 is the polynomial approximation of f(x0,b),
obtained evaluating in the algebra the right-hand side in

X0 and B. Hence Xk is the polynomial representation of

the system flow at the kth time-step.

III. RE-ENTRY DYNAMICS

Two different ways to perform orbit propagation have

been interfaced with the aforementioned intrusive ap-

proach, namely with Cartesian and Keplerian coordinates.

In this work, the former is more elaborate than the latter

in the sense that is takes into account orbital perturbations

in a more precise way. Both are described in this section.

III.i Propagation with Cartesian coordinates

This propagator is a C++ implementation of Mon-

tenbruck and Gill10 for a spherical spacecraft. The state

vector consists of the Cartesian coordinates for position

and velocity in an inertial frame. Due to the low altitudes

considered in this study, only two forces are included in

the dynamics: Earth’s gravity (up to order and degree 9

in the geopotential) and atmospheric drag. In particu-

lar, the latter is based on the Jacchia-Gill representation

of density. In this model, a standard value for the loga-

rithm of density is computed from bi-variate polynomials

(functions of altitude and exospheric temperature), before

adding various contributions such as seasonal or latitudi-

nal corrections. These polynomials being piece-wise de-

fined on 2-D sub-intervals, they can be handled for point-

wise propagation via ’if’ conditions. However, it is not

as simple for the algebra, especially for the Tchebycheff

approach. For Taylor expansion, it is enough to use the

central point as the reference to know in what sub-interval

the model needs to be locally approximated. On the other

hand, Tchebycheff interpolation considers a whole inter-

val that can lie in between two sub-intervals. The solution

chosen here is twofold. Since there are only two ranges

for temperature, the transition between the two is gener-

ally represented with a sigmoid function i.e. the different

IAC–2016–C1.7.1.x35369 Page 3 of 12



67th International Astronautical Congress, Guadalajara, Mexico. Copyright c© 2016 by the authors. Published by the International Astronautical Federation with permission.

possibilities are both interpolated and the final result is a

weighted sum of the two. As for altitude, on the other

hand, when the range of the polynomial is expected to

overlap two sub-intervals, the density function is still ap-

proximated with Tchebycheff polynomials, but it is done

via bivariate approximation of the piece-wise defined log-

arithm.

As far as numerical integration is concerned, the

Runge-Kutta-Fehlberg 4(5) scheme was used. Since it

features step-size control, it required some adaptation for

the algebras. In order to compute the estimated error, the

central value was used for Taylor while the upper bound of

the corresponding polynomial was used for Tchebycheff,

estimated via its coefficients.

The uncertain state variables considered via the in-

trusive approach are the initial position and velocity of

the object. The other uncertain parameters are related to

drag. Describing the object itself, there are its mass, cross-

sectional area and drag coefficient, assuming a spherical

representation for its aerodynamic geometry. Only two

uncertain parameters are not dependent of the object: the

mean solar flux and the geomagnetic index. These quan-

tities are parameters in the computation of atmospheric

density. They are assumed to be constant over time for

the duration of the simulation.

III.ii Propagation with Keplerian coordinates

This propagator simulates the effects of atmospheric

drag on osculating orbital elements, assuming a spherical

shape for aerodynamics. It is based on equations given

in Bezdek and Vokrouhlicky11 that are written with the

eccentric anomaly as the independent variable. They pro-

vide state derivatives for long-term effects in the varia-

tion of semi-major axis a, eccentricity e, inclination i and

argument of perigee ω (the variation of the right ascen-

sion of the ascending node being neglected). The model

used here for atmospheric density is simply an exponen-

tial term, assuming a uniform scale factor over the whole

range of altitudes. The Earth’s oblateness is not taken into

account.

The integration scheme is Runge-Kutta 4. The uncer-

tain state variables are the Keplerian coordinates a, e, i
and ω. Uncertainty on the aerodynamics is gathered in

one single quantity CDA/m i.e. the product between the

drag coefficient and the area-to-mass ratio. The last two

uncertain parameters are the reference values used to de-

fine the uniform exponential scale of the atmospheric den-

sity, namely at altitudes 120 and 1000km.

IV. RESULTS

This section will present the results obtained for two

cases of study: the de-orbiting and re-entry of the GOCE

mission of ESA and a more generic scenario concerning

the de-orbiting of objects with high area-to-mass ratio.

IV.i De-orbiting and re-entry of GOCE

Three examples are presented hereby, simulating con-

secutive stages in GOCE’s orbit decay. In late October

and early November 2013, shortly before its re-entry, the

ESA spacecraft was on a polar orbit with altitudes around

200km. Nominal values for initial position and velocity

at initial epoch are taken from the Precise Orbit Determi-

nation performed over this period. Other nominal param-

eters of interest are summarised in Table 1.

Table 1: Nominal parameters, GOCE test cases.

Mass 1002.152 kg

1 Cross-sectional area 1.6286 m2

Drag coefficient CD 2.0

Mean solar flux 132 · 10-22 W/(m2Hz)

Geomagnetic index 3.22

In all cases, the uncertain region has been propagated

by means of the Tchebycheff approach proposed as well

as using Taylor Differential Algebra. All uncertain quan-

tities are thus represented by polynomials in 10 variables.

Comparison between the two intrusive methods is pro-

vided in terms of accuracy and run-time. A uniform

Monte Carlo sample of cardinality Ns = 105 of the initial

uncertain region has been propagated and the results taken

as reference values. Root mean square errors (RMSE) and

peak errors in the radial, transverse and binormal direc-

tions (r, t and h, resp.) are reported, defined as

RMSEx =

√

√

√

√

1

Ns

Ns
∑

i=1

(x̂i − xi)2 ,

max. errx = max
1≤i≤n

(|x̂i − xi|) ,

where xi is the true value of the state obtained by forward

integration of the sample and x̂i is the approximate value

computed evaluating the polynomial expansion obtained

with one or the other algebra. Run-times have been scaled

with the total CPU time required for the aforementioned

direct propagation.

GOCE Example 1

The first simulation is initialised at 03:00:00 on

22/10/2013 and spans 8 days. The set up regarding un-

certainties considered is summarised in Table 2.

The accuracy and run-time results for this example are

reported in Table 3. It is interesting to remark that for

this test case, an increase in the degree of the algebra is
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Table 2: Uncertainties, GOCE example 1.

Initial positions (x, y, z) ± 0.1 km

Initial velocities (ẋ, ẏ, ż) ± 0.1 m/s

Mass ± 0.1 kg

Cross-sectional area ± 0.4 m2

Mean solar flux ± 5 · 10-22 W/(m2Hz)

Geomagnetic index ± 0.6

not producing a notable improvement in terms of mean

accuracy with either of the two methods tested. For the

Tchebycheff approach, using a higher order appears to

translate into a slight reduction of the maximum errors,

the RMSE values remaining approximately constant. In

the case of the Taylor differential algebra, both error mea-

sures increase with the order. In particular, at degree 5

the maximum error peaks and the expansions start to di-

verge in the distal sections of the uncertain region. This

is due to numerical instability in relation to the high-order

terms of the algebra, and it proves that stability issues,

bound to occur for high orders and long simulation times,

can be delayed with the use of Tchebycheff approxima-

tion. This is specially true for simulations such as this one,

where some elements in the model are piece-wise-defined

and do not present infinite differentiability between their

subdomains; the Tchebycheff approximation method will

smooth these non-differentiabilities as soon as they appear

within the bounds of the domain, whereas Taylor algebra

will only take them into account when the central point

crosses from one subdomain to another, thus experienc-

ing an abrupt change of state. Nevertheless, it is worth

noticing that, Taylor differential algebra being a local ap-

proach, its accuracy in the vicinity of the central point

is fairly good even in such a near-divergence situation,

as can be observed in Figure 2. The Tchebycheff-based

approach is not spared by numerical issues, even if they

occur at higher orders than with Taylor. For this exam-

ple, Tchebycheff expansions start to diverge at degree 6,

leading to coefficients that are orders of magnitude higher

than expected. No meaningful information can then be

retrieved from the polynomials obtained, not even for the

nominal set of parameters, which is also explained by the

fact that this method attempts global approximation over

an interval and, as a result, failure to converge is global as

well.

GOCE Example 2

This simulation is initialised at 03:00:00 on 30/10/13

and covers 10 days of flight. With respect to Example

1, a larger uncertainty is considered in the initial veloc-

ity, whereas tighter bounds are set for the drag force pa-

Fig. 1: Final position: Monte Carlo sample of 105 points,

GOCE example 1.
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Tchebycheff deg. 5

Taylor deg. 5

Fig. 2: Final position comparison between Tchebycheff

and Taylor algebras of order 5 and Monte Carlo sam-

ple of 102 points, < t, r > plane, GOCE example 1.

rameters. The uncertainty values considered are shown in

Table 4.

The accuracy and run-time results for this example are

reported in Table 5. By comparing Figures 4 and 1 one

notices that the longer simulation time and the higher un-

certainty on initial velocity lead to a much larger final un-

certain region, spanning almost half a revolution. This

is too large a domain to be represented accurately with a

single set of polynomial expansions, which explains why

both intrusive approaches give less accurate results than

in the previous example. In order to evaluate this hypoth-

esis, a non-intrusive approach based on Tchebycheff hy-

perinterpolation of the final states is applied on a subset of

the Monte Carlo sample. The results, for degree 5, yield

errors of the order of 50% of those of the intrusive; its ac-
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Table 3: Errors and run-time, GOCE example 1. All errors in [km].

Approach Order RMSEr Max. errr RMSEt Max. errt RMSEh Max. errh Run-time

Taylor 3 3.242 26.432 13.207 68.231 0.007 0.049 0.027

Tchebycheff 3 3.256 26.951 13.156 74.859 0.007 0.050 0.037

Taylor 4 2.600 18.536 22.839 238.236 0.007 0.055 0.076

Tchebycheff 4 3.092 27.057 14.644 46.610 0.007 0.045 0.095

Taylor 5 3.457·103 4.309·104 3.669·104 5.347·105 8.773 124.341 0.281

Tchebycheff 5 3.014 26.064 12.320 47.187 0.006 0.023 0.326
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0
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4
x 10
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Final position
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]

MC
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Fig. 3: Final position comparison between Tchebycheff

and Taylor algebras of order 5 and Monte Carlo sam-

ple of 102 points, < h, r > plane, GOCE example 1.

curacy, although better, can still be considered relatively

poor, which confirms the difficulty in representation of the

domain. The run-time of the non-intrusive technique is

also much shorter in this case (0.032 in scaled unit), due

to the fact that intrusive methods become advantageous

in terms of computational performance only with a larger

number of uncertain parameters for a simulation of this

complexity.

Figures 5 and 6 show a comparison between a subset of

cardinality 102 of the Monte Carlo sample and the evalu-

ation in the same subset of the final Tchebycheff and Tay-

lor expansions of order 4. Once again the local nature of

the Taylor approach is manifest, yielding acceptable rep-

resentation of the vicinity of the central point even in near-

divergence. Note that the polynomial approximations ob-

tained with the Tchebycheff algebra also show lower ac-

curacy in the distal sections of the uncertain region, but in

a much more subtle fashion. This is due to the fact that

numerical error in the coefficients of the polynomials will

Table 4: Uncertainties, GOCE example 2.

Initial positions (x, y, z) ± 0.1 km

Initial velocities (ẋ, ẏ, ż) ± 1.0 m/s

Mass ± 0.1 kg

Cross-sectional area ± 0.2 m2

Mean solar flux ± 2.5 · 10-22 W/(m2Hz)

Geomagnetic index ± 0.3

have a larger impact in the edges of the uncertain set of

parameters, where the high-order terms are relevant, thus

its effect has a smaller impact than the effect of a local ap-

proximation technique. As regards the trend of the error

with the degree, the intrusive methods behave in a similar

way to example 1, with the difference that the drop in ac-

curacy in the Taylor algebra appears at degree 4 instead of

5. The Tchebycheff approach is also diverging at order 6.

Fig. 4: Final position: Monte Carlo sample of 105 points,

GOCE example 2.

GOCE Example 3

This simulation is initialised at 03:00:00 on 09/11/2013

and spans 31 hours, covering the final stage of the de-

orbiting process. The uncertainties considered are the

largest among the three examples presented, as shown in

Table 6.
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Table 5: Errors and run-time, GOCE example 2. All errors in [km].

Approach Order RMSEr Max. errr RMSEt Max. errt RMSEh Max. errh Run-time

Taylor 3 122.613 1.657·103 151.695 1.625·103 0.184 2.640 0.027

Tchebycheff 3 120.529 1.525·103 126.876 1.333·103 0.181 2.587 0.049

Taylor 4 1.174·103 1.200·104 1.535·104 1.680·105 20.353 218.861 0.071

Tchebycheff 4 87.039 1.129·103 66.847 289.450 0.118 1.762 0.126

Tchebycheff 5 88.749 1.057·103 91.609 301.194 0.078 0.383 0.367
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and Taylor algebras of order 4 and Monte Carlo sam-

ple of 102 points, < t, r > plane, GOCE example 2.

Results in Table 7 demonstrate the same trends dis-

cussed in the cases above. In particular, the Taylor ap-

proach loses accuracy in the t direction at degree 5, as

shown in Figure 8. Note that, unlike in the previous ex-

amples, the Tchebycheff algebra of order 6 achieves con-

vergence. This can be explained by the shorter simula-

tion time span. Indeed, a longer propagation time yields a

higher number of integration steps and thus a higher num-

ber of operations between polynomials, which leads to a

growth in truncation error. The run-time of the Tcheby-

cheff algebra of order 6 is larger than the propagation of

the Monte Carlo sample of cardinality 105, but would still

be one order of magnitude faster than the sampling of 106

occurrences.

IV.ii De-orbiting of objects with high area-to-mass ratio

(HAMR)

The following examples simulate the orbital decay of

a cloud of debris, as could result from an orbital collision.

The focus is on objects with high area-to-mass ratios, e.g.
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Fig. 6: Final position comparison between Tchebycheff

and Taylor algebras of order 4 and Monte Carlo sam-

ple of 102 points, < h, r > plane, GOCE example 2.

Fig. 7: Final position: Monte Carlo sample of 105 points,

GOCE example 3.

pieces of solar panels or blankets. The intrusive approach

allows for uncertainty on the initial spreading as well as
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Table 6: Uncertainties, GOCE example 3.

Initial positions (x, y, z) ± 1.0 km

Initial velocities (ẋ, ẏ, ż) ± 1.0 m/s

Mass ± 0.1 kg

Cross-sectional area ± 0.4 m2

Mean solar flux ± 5.0 · 10-22 W/(m2Hz)

Geomagnetic index ± 0.6
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and Taylor algebras of order 5 and Monte Carlo sam-

ple of 102 points, < t, r > plane, GOCE example 3.
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in the size of the pieces of satellites.

The interest of intrusive uncertainty propagation tech-

niques for the study of debris lies in the possibility to

propagate a cluster of objects at once, providing a time-

wise polynomial representation of the evolution of this

cluster. The availability of such a representation allows a

great flexibility in analysis. Furthermore, this analysis can

be conducted dynamically and used to enhance the simu-

lations. Targeting a cloud of objects with high area-to-

mass ratio in LEO will put to the test the extent to which

such methods can capture the non-linearities inherent to

the dynamics of orbital decay and deal with uncertain re-

gions that evolve in an asymmetric fashion.

First a simplified analysis of the problem, considering

only the long-term effects of drag, will be conducted by

means of a propagation in the osculating orbital elements.

Uncertainty is considered in the initial elements as well

as in the parameters of the drag model, which is defined

by the inverse of the ballistic coefficient, δ = CDA/m,

and a uniform exponential model with reference densi-

ties ρ0 and ρt specified at two reference altitudes, here

120 and 1000 km, respectively. The numerical set up is

summarised in Table 8. A seven-dimensional polynomial

algebra of order 4 is used for the propagation. Accuracy

along the simulation is measured for both Taylor DA and

Tchebycheff algebra.

In the remaining subsections, the same model as in

IV.1 will be applied to the study of clusters of HAMR

objects. Two examples are shown, labeled HAMR case 1

and 2, involving nominal area-to-mass ratios 4 and 3 or-

ders of magnitude higher than that of GOCE, respectively.

The propagation has been stopped when approaching the

lower altitude limit of the atmospheric model used. Hence

case 1 needs to be stopped much before case 2 since the

cloud decays faster due to its higher area-to-mass ratios.

These two cases consider a nominal initial state defined

by an orbit of 6800 km of semi-major axis and 30o of in-

clination, with the rest of orbital parameters set to zero.

The common set up regarding nominal parameters and

uncertainties are shown in Tables 9 and 10. Considering

uncertainty also in the drag coefficient, simulations in the

Taylor and Tchebycheff algebras operate with polynomi-

als in 11 variables.

The format in which the results are presented for

HAMR case 1 and 2 is identical to that of section IV.1.

HAMR in Keplerian coordinates

Figure 10 shows how the uncertainties affect the orbital

decay and compares the ability of Taylor DA and Tcheby-

cheff algebra to capture these dynamics. The effects of

drag on the inclination are very small up to fifty revolu-

tions and hence are not shown. The differences between

the two algebras are barely perceptible, whereas it is pos-
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Table 7: Errors and run-time, GOCE example 3. All errors in [km].

Approach Order RMSEr Max. errr RMSEt Max. errt RMSEh Max. errh Run-time

Taylor 3 3.211 105.579 4.716 146.813 0.005 0.215 0.024

Tchebycheff 3 3.215 105.656 4.678 144.956 0.005 0.215 0.054

Taylor 4 1.517 71.298 3.032 105.059 0.004 0.187 0.066

Tchebycheff 4 1.496 70.673 2.904 101.213 0.004 0.186 0.112

Taylor 5 0.793 45.836 41.429 911.541 0.005 0.103 0.249

Tchebycheff 5 0.832 51.900 2.463 76.222 0.004 0.165 0.322

Tchebycheff 6 0.530 40.039 2.313 58.638 0.004 0.149 1.222

Table 8: Nominal parameters and uncertainties, HAMR in

Keplerian coordinates.

a 7500 ± 10 km

e 0.100 ± 0.005

i 30 ± 1o

ω 180 ± 1o

δ 0.22 ± 0.01

ρ0 2.438·10−8 ± 1.219·10−9 kg/m3

ρt 3.019·10−15 ± 1.510·10−16 kg/m3

Table 9: Nominal parameters, HAMR test cases.

Mass 1.0 kg

Drag coefficient CD 2.0

Mean solar flux 150 · 10-22 W/(m2Hz)

Geomagnetic index 3.0

sible to remark that the errors with respect to the direct

propagation increase with the length of the simulation,

as shown in Tables 11 and 12, which report the evolu-

tion with the number of revolutions of the error measures

obtained comparing Tchebycheff and Taylor algebra, re-

spectively, with the direct propagation of a sample of car-

dinality 104.

For a point in the uncertain space, these results show

the typical trend of orbital decay in elliptic orbits. Re-

garding the propagation of the uncertain set as a whole,

note that the uncertain region can become very large as

the simulation advances and some points in the set start

re-entering. Due to the fast dynamics of re-entry, this will

lead to a highly non-linear region that is increasingly dif-

ficult to capture with a single polynomial expansion.

HAMR case 1

This case considers a nominal area-to-mass ratio of 10

m2/kg with uncertainty of ±10% and has been propagated

for 4h 26min 24s.

Table 10: Uncertainties, HAMR test cases.

Initial positions (x, y, z) ± 0.01 km

Initial velocities (ẋ, ẏ, ż) ± 0.1 m/s

Mass ± 0.01 kg

Drag coefficient CD ± 0.2

Mean solar flux ± 5 · 10-22 W/(m2Hz)

Geomagnetic index ± 0.66

Table 11: Error measures along the simulation for alti-

tudes of apogee (ap) and perigee (pe), Tchebycheff

algebra of order 4, HAMR in Keplerian coordinates.

All errors in [km].

Rev. RMSEap Max. errap RMSEpe Max. errpe
10 0.009 0.030 0.480 1.639

20 0.020 0.078 0.985 3.641

30 0.033 0.150 1.526 6.293

40 0.049 0.246 2.118 10.155

50 0.069 0.358 2.801 16.408

Results for accuracy and run-time are presented in Ta-

ble 13. Due to the very short simulation time and small

uncertain region, all errors are moderate and there is no

divergence of any of the methods up to degree 6. For the

same reason, there are no remarkable differences between

the errors attained by the Tchebycheff and Taylor Alge-

bras. Figures 11 and 12 show the asymmetric final un-

certain region obtained by the direct simulation and the

intrusive techniques of order 5, the minimum altitude at-

tained by the former being around 100km. Note that due

to the large impact of drag on the dynamics, the uncertain

region spans out of the osculating plane in a more abrupt

fashion than in IV.1.

HAMR case 2

This case considers a nominal area-to-mass ratio of 1

m2/kg with uncertainty of ±10% and has been propagated
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Table 12: Error measures along the simulation for alti-

tudes of apogee (ap) and perigee (pe), Taylor alge-

bra of order 4, HAMR in Keplerian coordinates. All

errors in [km].

Rev. RMSEap Max. errap RMSEpe Max. errpe
10 0.009 0.030 0.480 1.640

20 0.020 0.078 0.985 3.647

30 0.033 0.149 1.526 6.310

40 0.049 0.245 2.118 10.195

50 0.069 0.354 2.802 16.491
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Fig. 10: Altitudes of apogee vs. altitudes of perigee for

HAMR in Keplerian coordinates in several stages of

the uncertainty propagation.

for 1day 14h 24min.

Results for accuracy and run-time are presented in Ta-

ble 14. Figures 13 and 14 show the final uncertain region

in terms of position. Note that the asymmetry is clear but

not as extreme as in case 1 since the propagation has been

stopped at a higher minimum altitude.

The error measures obtained are overall still good but

larger than in case 1, with RMSE values around one order

of magnitude higher in the r and t directions. This is so

because, even if the initial uncertainties are significantly

smaller and the asymmetry less extreme, the simulation

time is one order of magnitude larger, and hence the nu-

merical and truncation error that accumulates along the

propagation is manifest. As has been argued in IV.1, it is

this same effect that causes Taylor DA to follow a differ-
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ent trend from Tchebycheff, presenting loss or no signifi-

cant gain of accuracy from degree 4 to 5, and divergence

at degree 6.

V. CONCLUSIONS

The paper presents a Generalised Intrusive Polyno-

mial Expansion (GIPE) approach to propagate generic

sets through dynamical systems and illustrates its appli-

cation to end-of-life analysis of Low Earth Orbit objects.
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Table 13: Errors and run-time, HAMR case 1. All errors in [km].

Approach Order RMSEr Max. errr RMSEt Max. errt RMSEh Max. errh Run-time

Taylor 3 2.937 112.406 2.395 61.711 0.011 2.742 0.025

Tchebycheff 3 2.983 113.388 2.442 61.011 0.011 2.737 0.033

Taylor 4 1.761 86.684 1.069 89.749 0.011 2.817 0.079

Tchebycheff 4 1.779 86.984 1.069 90.138 0.011 2.817 0.098

Taylor 5 1.172 69.399 0.679 102.889 0.011 2.852 0.341

Tchebycheff 5 1.133 67.911 0.638 105.428 0.011 2.861 0.410

Taylor 6 0.861 57.725 0.607 108.401 0.011 2.863 1.420

Tchebycheff 6 0.809 55.598 0.583 111.329 0.011 2.870 1.759

Table 14: Errors and run-time, HAMR case 2. All errors in [km].

Approach Order RMSEr Max. errr RMSEt Max. errt RMSEh Max. errh Run-time

Taylor 3 21.820 564.628 8.277 181.444 0.042 1.229 0.024

Tchebycheff 3 21.784 564.164 8.089 179.452 0.042 1.230 0.032

Taylor 4 10.638 365.054 6.285 145.775 0.021 0.832 0.079

Tchebycheff 4 10.647 365.108 6.269 144.819 0.022 0.834 0.095

Taylor 5 8.196 313.276 8.713 185.892 0.018 0.777 0.349

Tchebycheff 5 6.610 268.453 5.697 132.896 0.012 0.589 0.404

Taylor 6 3.641·103 1.018·105 6.277·104 1.759·106 32.534 913.46

Tchebycheff 6 4.767 214.34 5.450 123.688 0.008 0.448
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and Taylor algebras of order 5 and Monte Carlo sam-

ple of 102 points, < t, r > plane, HAMR case 2.

In particular, it can be used to study the evolution of pieces

of satellites with high area-to-mass ratios resulting from a

collision in LEO.

Intrusive uncertainty propagation methods present sev-
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eral implementation drawbacks with respect to their non-

intrusive counterparts. Namely, they require a modifica-

tion of the deterministic simulation solver and will need

a larger number of operations for a single step of simu-
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lation. On the other hand, they remove the necessity to

propagate a sample and train a surrogate model, since the

model itself is propagated through the simulation. This is

a very powerful feature by itself; the model being avail-

able at any time, dynamic analysis is made possible. Fur-

thermore, it translates into a much lower computational

complexity when the number of uncertain parameters is

high enough and/or the simulation dynamics are simple

enough. Problems with these properties are relatively

common in astrodynamics.

In the GIPE modular framework the propagation is

conducted by means of a polynomial algebra in the mono-

mial basis that relies on an arbitrary function approxima-

tion method, and can hence be set to act as a differen-

tial algebra or as a hyperinterpolation-based algebra. This

versatility has been taken advantage of to provide a com-

parison between Taylor Differential Algebra and Tcheby-

cheff Algebra that is representative of the general proper-

ties of these two families of polynomial algebras.

The key difference between differential and

hyperinterpolation-based approaches is that the for-

mer use local derivative-based function approximation

methods in the vicinity of the nominal set of parameters,

referred to as central point, while the latter rely on

hyperinterpolation techniques that attempt global con-

vergence over an interval whose bounds are estimated.

The practical implications of this are that, whereas

differential algebras are more robust for dynamics

presenting inherent singularities that cannot be avoided

by reformulation (e.g. simulation of a gravity assist),

interval-based approaches are less prone to experience

numerical instability when dealing with discontinuities

and non-differentiabilities in the simulation model (e.g.

with piecewise-defined empirical models, as most atmo-

spheric models are). The results discussed hereby, which

make use of the Jacchia-Gill atmospheric model, prove

that one can delay the apparition of such instabilities

with very slight loss in computational performance, by

using a hyperinterpolation-based method such as the

proposed Tchebycheff Algebra. This is especially so

when dealing with uncertain regions that are large with

respect to the characteristic units of the simulation. On

the other hand, when these instabilities appear they will

provoke global failure to represent the uncertain region,

whereas with Taylor Differential Algebra one can obtain

relatively acceptable accuracy near the central point even

in near-divergence situations.
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