Chen, Herman Z.Q. and Kitaev, Sergey and Mutze, Torsten and Sun, Brian Y. (2017) On universal partial words. Electronic Notes in Discrete Mathematics. ISSN 1571-0653 (In Press),

This version is available at https://strathprints.strath.ac.uk/60593/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.ukl) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

[^0]
On universal partial words

${ }^{1}$ School of Science, Tianjin Chengjian University, P.R. China
${ }^{2}$ Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
${ }^{3}$ Institut für Mathematik, TU Berlin, Germany
${ }^{4}$ College of Mathematics and System Science, Xinjiang University, Urumqi, P.R.China

Abstract

A universal word for a finite alphabet A and some integer $n \geq 1$ is a word over A such that every word of length n appears exactly once as a (consecutive) subword. It is well-known and easy to prove that universal words exist for any A and n. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from A may contain an arbitrary number of occurrences of a special 'joker' symbol $\diamond \notin A$, which can be substituted by any symbol from A. For example, $u=0 \diamond 011100$ is a universal partial word for the binary alphabet $A=\{0,1\}$ and for $n=3$ (e.g., the first three letters of u yield the subwords 000 and 010). We present several result on the existence and non-existence of universal partial words in different situations (depending on the number of \diamond_{s} and their positions), including various explicit constructions. We also provide numerous examples of universal partial words that we found with the help of a computer. The full version of the paper is available at [4.

1. Introduction

For a finite alphabet A, we say that a word u is universal for A^{n} if u contains every word of length $n \geq 1$ over A exactly once as a (consecutive) subword. For example, for the binary alphabet $A=\{0,1\}$ and for $n=3$, $u=0001011100$ is a universal word for A^{3}. The cyclic version of universal words is known as De Bruijn sequences, which are a centuries-old and wellstudied topic in combinatorics, and over the years they found widespread use in real-world applications (see [4). The following classical result is the starting point for our work.

Theorem 1. For any finite alphabet A and any $n \geq 1$, there exists a universal word for A^{n}.

In this paper we consider universality of so-called partial words, words that in addition to letters from A may contain any number of occurrences of an additional special symbol $\diamond \notin A$. The idea is that every occurrence of \diamond can be substituted by any symbol from A, so we can think of \diamond as a 'joker' or 'wildcard' symbol. Formally, we define $A_{\diamond}:=A \cup\{\diamond\}$ and we say that a word $v=v_{1} v_{2} \cdots v_{m} \in A^{m}$ appears as a factor in a word $u=u_{1} u_{2} \cdots u_{n} \in A_{\diamond}^{n}$ if

[^1]there is an integer i such that $u_{i+j}=\diamond$ or $u_{i+j}=v_{j}$ for all $j=1,2, \ldots, m$. For example, for the alphabet $A=\{0,1,2\}$, the word $v=021$ occurs twice as a factor in $u=120 \diamond 120021$ because of the subwords $0 \diamond 1$ and 021 of u, whereas v does not appear as a factor in $u^{\prime}=12 \diamond 11 \diamond$. Partial words were introduced in [2], and they too have real-world applications (see [3]) and appear in various contexts in combinatorics (see 4]).

The notion of universality given above extends straightforwardly to partial words, and we refer to a universal partial word as an upword for short. The simplest example for an upword for A^{n} is $\diamond^{n}:=\diamond \diamond \ldots \diamond$, the word consisting of n many \diamond_{s}, which we call trivial. For another example, $\diamond \diamond 0111$ is an upword for A^{3}, whereas $\diamond \diamond 01110$ is not an upword for A^{3}, because replacing the first two letters $\diamond \diamond$ by 11 yields the same factor 110 as the last three letters. Similarly, $0 \diamond 1$ is not an upword for A^{2} because $10 \in A^{2}$ does not appear as a factor (while $01 \in A^{2}$ appears twice as a factor).

2. Our Results

In this work we initiate the systematic study of universal partial words. In stark contrast to Theorem 1, there are very few general existence results on upwords, but many non-existence results. The borderline between these two cases seems rather complicated, which makes the subject even more interesting. This is also reflected in our proofs, which become more technical than the straightforward proof of Theorem 1. In addition to the size of the alphabet A and the length n of the factors, we also consider the number of ∇_{s} and their positions in an upword as problem parameters. The following lemma was useful in obtaining some of our results.

Lemma 2. Let $u=u_{1} u_{2} \cdots u_{N}$ be an upword for A^{n}, $A=\{0,1, \ldots, \alpha-1\}$, $n \geq 2$, such that $u_{k}=\diamond$ and $u_{k+n} \neq \diamond$ (we require $\left.k+n \leq N\right)$. Then for all $i=1,2, \ldots, n-1$ we have that if $u_{i} \neq \diamond$, then $u_{k+i}=u_{i}$. Moreover, we have that if $u_{n} \neq \diamond$, then $\alpha=2$ and $u_{k+n}=\overline{u_{n}}$ (the complement of u_{n}).

For upwords containing a single \diamond, we have the following results.
Theorem 3. For $A=\{0,1, \ldots, \alpha-1\}, \alpha \geq 3$, and any $n \geq 2$, there is no upword for A^{n} with a single \diamond.

For the binary alphabet, the situation is more interesting (see Table 1).
Theorem 4. For $A=\{0,1\}$, any $n \geq 3$ and any $k \in\{1,2, \ldots, n-1\}$, there is an upword for A^{n} with a single \diamond at position k.

Theorem 5. For $A=\{0,1\}$ and any $n \geq 2$, there is no upword for A^{n} with a single \diamond at position n.

Theorem 6. For $A=\{0,1\}$, there is no upword for A^{n} with a single \diamond at position k for $n=3$ and $k=4$, and $n=4$ and $k \in\{5,7\}$.

Conjecture 7. For $A=\{0,1\}$ and any $n \geq 1$, there is an upword for A^{n} with a single \diamond at position k except the cases covered in Theorems 5 and 6 .

To support Conjecture 7, we performed a computer-assisted search and indeed found upwords for all values of $2 \leq n \leq 13$ and all possible values of k other than the ones excluded by the beforementioned results. Some of

n	k	
1	1	$\diamond($ Thm. 4)
2	1	$\diamond 011$ (Thm. 4 . Thm. 12) - (Thm. 5)
3	1 2 3 4	$\begin{aligned} & \diamond 00111010 \text { (Thm. }{ }^{4} \text {) } \\ & 0 \diamond 011100 \text { (Thm. } 4 \text {) } \\ & \text { - (Thm. } 5 \text {) } \\ & - \text { (Thm. }{ }^{6} \text {) } \end{aligned}$
4	1 2 3 4 5 6 7 8	$\begin{aligned} & \diamond 00011110100101100 \text { (Thm. }{ }^{4} \text {) } \\ & 0 \diamond 010011011110000 \text { (Thm. }{ }^{4} \text {) } \\ & \left.01 \diamond 0111100001010 \text { (Thm. } 4^{4}\right)^{-(T h m . ~} 5 \text {) } \\ & \text { - (Thm. }{ }^{6} \text {. } \\ & 01100 \diamond 011110100 \\ & \text { - (Thm. } 6 \text {) } \\ & 0011110 \diamond 0010110 \end{aligned}$
5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	

TABLE 1. Examples of upwords for $A^{n}, A=\{0,1\}$, with a single \diamond at position k.
these examples are listed in Table 1 and the remaining ones are available on the third authors' website [1].

For upwords containing two \diamond_{S} we have the following results (see Table 2).
Theorem 8. For $A=\{0,1\}$ and any $n \geq 5$, there is no upword for A^{n} with two $\diamond s$ of the form $u=x \diamond y \diamond z$ if $|x|,|y|,|z| \geq n$ or $|x|=n-1$ or $|z|=n-1$ or $|y| \leq n-2$.

Corollary 9. For $A=\{0,1\}$ and any $n \geq 2, \diamond \diamond$ and $\diamond \diamond 0111$ are the only upwords for A^{n} containing two $\diamond s$ that are adjacent (up to reversal and letter permutations).

We also construct an infinite family of binary upwords with two $\diamond_{\text {s }}$.

$n=2$	$\diamond \diamond$
$n=3$	$\diamond \diamond 0111(\mathrm{Thm} . \overline{12}$
	$\diamond 001011 \diamond$
$n=4$	$\diamond 00011 \diamond 1001011($ Thm. 10
	$\diamond 0001011 \diamond 10011$
	$001 \diamond 110 \diamond 001$
$n=5$	$\diamond 0100 \diamond 101011000001110111110010$
	$\diamond 0000111 \diamond 100010010101100110111$ (Thm. 10
	$\diamond 00001001 \diamond 10001101011111011001$
	$0 \diamond 0011 \diamond 0100010101101111100000$
	$0 \diamond 010110 \diamond 00011101111100100110$
	$0 \diamond 0101110 \diamond 0001101100100111110$
	$00 \diamond 0011 \diamond 00101011011111010000$
	$01 \diamond 01100101110 \diamond 0100000111110$
	$01 \diamond 0110010111110 \diamond 01000001110$
	$001 \diamond 0101 \diamond 001110111110000010$
	$011 \diamond 011010010 \diamond 0111110000010$
	$01001 \diamond 1110 \diamond 010000011011001$

TABLE 2. Examples of upwords for $A^{n}, A=\{0,1\}$, with two \diamond_{s}.

Theorem 10. For $A=\{0,1\}$ and any $n \geq 4$, there is an upword for A^{n} with two $\diamond s$ that begins with $\diamond 0^{n-1} 1^{n-2} \diamond 10^{n-2} 1$.

Cyclic upwords, where factors are taken cyclically across the word boundaries, are also of our interest. Note that the trivial solution \diamond^{n} is a cyclic upword only for $n=1$. For the cyclic setting we have the following rather general non-existence result.

Theorem 11. Let $A=\{0,1, \ldots, \alpha-1\}$ and $n \geq 2$. If $\operatorname{gcd}(\alpha, n)=1$, then there is no cyclic upword for A^{n}. In particular, for $\alpha=2$ and odd n, there is no cyclic upword for A^{n}.

In fact, we know only a single cyclic upword, namely $\diamond 001 \diamond 110$ for $n=4$ (up to cyclic shifts, reversal and letter permutations).

3. Directions of further Research

Concerning the binary alphabet, it would be interesting to achieve complete classification of upwords containing a single \diamond (see Conjecture 7). For two $\diamond_{\text {s such }}$ a task seems somewhat more challenging (recall Table 2, Theorem 8 and see the data from [1]). Some examples of binary upwords with three $\diamond_{\text {s }}$ are listed in Table 3, and deriving some general existence and nonexistence results for this setting would certainly be of interest.

The next step would be to consider the situation of more than three \diamond_{s} present in an upword. The following easy-to-verify example in this direction was communicated to us by Rachel Kirsch [5].

Theorem 12. For $A=\{0,1\}$ and any $n \geq 2, \diamond^{n-1} 01^{n}$ is an upword for A^{n} with $n-1$ many $\diamond s$.

$n=3$	$\diamond \diamond \diamond$
$n=4$	$\diamond \diamond \diamond 01111($ Thm. 12
	$\diamond \diamond 001 \diamond 11010$
	$0 \diamond 001 \diamond 110 \diamond 0$
$n=5$	$\diamond 0010 \diamond 0111 \diamond 10011011000001$
	$\diamond 0000111 \diamond 10001001101100101 \diamond 1$
	$\diamond 0000101110 \diamond 1000110101001111 \diamond$
	$\diamond 00001111101 \diamond 10001011001 \diamond 01$
	$\diamond 0000110101001110 \diamond 1000101111 \diamond$
	$\diamond 00001101100100111 \diamond 1000101 \diamond 1$
	$0 \diamond 1100 \diamond 001111101101000101 \diamond 1$

TABLE 3. Examples of upwords for $A^{n}, A=\{0,1\}$, with three \diamond_{s} for $n=3,4,5$.

Complementing Theorem 12, we can prove (applying Lemma 2 to the first and second \diamond_{s}) the following non-existence result in this direction.

Theorem 13. For $A=\{0,1\}$, any $n \geq 4$ and any $2 \leq d \leq n-2$, there is no upword for A^{n} that begins with $\diamond^{d} x_{d+1} x_{d+2} \ldots x_{n+2}$ with $x_{i} \in A$ for all $i=d+1, \ldots, n+2$.

It would also be interesting to find examples of cyclic upwords other than $\diamond 001 \diamond 110$ for $n=4$ mentioned before.

Finally, a natural direction would be to search for (cyclic) upwords for non-binary alphabets, but we anticipate that no nontrivial upwords exist in most cases (recall Theorem 3), if they exist at all (we do not know any). As evidence for this we have the following general non-existence result.

Theorem 14. For $A=\{0,1, \ldots, \alpha-1\}, \alpha \geq 3$, and any $d \geq 2$, for large enough n there is no upword for A^{n} with exactly d many $\diamond s$.

4. Acknowledgements

The authors thank Martin Gerlach for his assistance in our computer searches. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science Foundation of China. The last author was supported by the Scientific Research Program of the Higher Education Institution of Xinjiang Uygur Autonomous Region (No. XJEDU2016S032).

References

[1] Currently http://www.math.tu-berlin.de/~muetze
[2] J. Berstel and L. Boasson. Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci., 218(1):135-141, 1999. WORDS (Rouen, 1997).
[3] F. Blanchet-Sadri. Open problems on partial words. In G. Bel-Enguix, M. D. JiménezLópez, and C. Martín-Vide, editors, New Developments in Formal Languages and Applications, pages 11-58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[4] H. Z.Q. Chen, S. Kitaev, T. Mütze, and B. Y. Sun. On universal partial words. arXiv:1601.06456, 2016.
[5] B. Goeckner, N. Graber, C. Groothuis, C. Hettle, B. Kell, R. Kirsch, P. Kirkpatrick, and R. Solava. Personal communication, 2016.

[^0]: The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.

[^1]: *E-Mail: zqchern@163.com
 \dagger E-Mail: sergey.kitaev@cis.strath.ac.uk
 \ddagger E-Mail: muetze@math.tu-berlin.de
 §E-Mail: brian@mail.nankai.edu.cn

