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Abstract  

The Scottish Government’s commitment for 100% of electricity consumed in Scotland to be from renewable, 

zero-carbon sources by 2020 continues to drive change in the energy system alongside European and UK targets. 

The growth of renewables in Scotland is being seen at many scales including industrial, domestic and community 

generation. In these latter two cases a transition from the current 'top down' energy distribution system to a newer 

approach is emerging. The work of this paper will look at a ‘bottom up’ view that sees community led distributed 

energy at its centre. This paper uses the modelling tool HESA to investigate high penetrations of Distributed 

Generation (DG) in the Angus Region of Scotland. Installations of DG will follow Thousand Flowers transition 

pathway trajectory1 which sees more than 50% of electricity demand being supplied by DG by 2050. From this, 

insights around the technological and socio-political feasibility, consequences and implications of high 

penetrations of DG in the UK energy system are presented. Results demonstrate the influence that system change 

will have on regional and local emission levels under four separate scenarios. It is shown that the penetration of 

DG requires supplementary installations of reliable and long term storage alongside utilisation of transmission 

and transportation infrastructures to maximise the potential of distributed generation and maximise whole system 

benefits. Importantly, there must be a level of co-ordination and support to realise a shift to a highly distributed 

energy future to ensure there is a strong economic case with a reliable policy backing. 
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Introduction  

As the UK aims to achieve a transition to a low carbon energy system by 2050, whilst maintaining security of 

supply and affordability of energy service, there are many barriers that arise from technical, societal, 

environmental and economic aspects that will need to be overcome. Recent work by the authors and colleagues 

has explored transition pathways for the UK energy system to 2050 under different governance arrangements1 

and the generation and network infrastructure requirements under these pathways2. Particular challenges 

highlighted are how to facilitate the nation's change in energy use habits, the introduction and use of CCS, the 

widespread integration of storage, non-conventional gas and the increasing reliance on renewable generation. 

Changes to system design and operation, and challenges to the norms, arise from policies, drivers and investments 

at international, national, regional and local levels.  

As the UK system transitions to a more sustainable energy system, that continues to provide secure, affordable 

and low-carbon energy services, new energy vectors are introduced, such as CO2 emerging as a tradable and 

transportable commodity and non-conventional gas displacing use of natural gas in the system. The introduction 

of new energy vectors in the UK system requires the application of methods that account for their 

interdependences and the roles and interactions of the actors who participate within the network. Assessing these 

interdependencies is particularly important given recent UK energy policy announcements that place a new 

emphasis on gas-fired electricity generation, alongside new renewables and nuclear generation3. The future of 

national electricity and gas grids must be reconciled with a transition to a low carbon energy system that could 

include significantly higher proportion of distributed generation (DG), as well as new end use technologies for 

heat provision such as electric heating – this requires tools for whole systems energy analysis. 

Scotland has surged ahead of the rest of the UK setting its own renewable energy targets that reach further than 

UK government targets set out in the Climate Change Act 4. The Scottish Government targets aim to meet the 

equivalent of 100% of the demand for electricity from renewable energy by 2020 with an interim target of 50% 

by 2015 5. The 2015 target was met nearly a year ahead of schedule with the equivalent of 49.8% of Scotland’s 

electricity consumption in 2014 coming from renewable generation6. Scotland has a concentration of renewable 

resources in the UK, and has some of the highest potential of renewable generation in Europe 7. Therefore, the 

deployment potential of renewable electricity generation (including that of distributed generation) is high, with 

an ambition of the Scottish Government “to see more householders, public sector organisations and businesses 



generating their own energy from micro-renewables, moving the technology from a niche market to the 

mainstream” 5.  

It is therefore necessary to investigate the feasibility, and implications, of high penetrations of distributed 

generation in Scotland. National drivers and objectives will impact local and regional energy systems and 

encourage, or demand, system change either in design or operation. It needs to be established therefore what 

upgrades to existing infrastructures are necessary and what, if any, new infrastructures must be introduced as a 

result of a shift of system objectives and constraints. 

In order to model the transition of Scotland to 2050 and a lower carbon system, with a higher share of generation 

coming from renewables and a greater share of generation from distributed sources, a trajectory for change must 

be established. This work will draw on the socio-technical scenarios work of the Transition Pathways and 

Realising Transition Pathways EPSRC consortia8 and specifically the Thousand Flowers Pathway for UK energy 

system transition. The Transition Pathways consortium developed three ‘transition pathways’ – classed as socio-

technical storylines and derived from a social and engineering analysis of key actors in the energy system9, 10. The 

three transition pathways describe plausible evolutions of the UK toward a low carbon economy to 2050 for the 

UK’s transition to 2050 and a lower carbon economy1, 2, 11, 12. In the Thousand Flowers transition pathway there 

is a diversity of local, bottom-up, drive from individuals, community groups and local authorities who encourage 

system change by becoming active participants in the energy system. This range of local energy solutions 

challenges the dominance of large energy companies and sees, by 2050, more than 50% of demand being fulfilled 

by distributed generation. The necessary technical and institutional transformation necessary to move from a 

centralised system to this highly distributed energy future of the Thousand Flowers Transition Pathway was 

completed by the Realising Transition Pathway Consortium 13. The Scottish Government’s targets for the 

penetration of renewables and local energy projects6 aligns with the Thousand Flower scenario hence the multiple 

energy system analysis of a Scottish system transition in this paper will be done in the context of a of the Thousand 

Flowers transition pathway. 

This paper will begin by introducing the modelling approach for this work – the HESA tool. Following there is a 

description of the Scottish energy system being modelled – the Angus region – and a discussion of parameters 

used in simulations. The paper closes by first presenting a discussion of the results of simulations before drawing 

conclusions. 

  



Modelling Approach  

In order to examine the implications of a greater penetration of renewables and DG in Scotland, the Thousand 

Flowers Pathway is used as context for modelling the Angus region in the East of Scotland. A regional – rather 

than national – study was utilised in the work described in this paper as the dominance distributed generation in 

the pathway meant that a higher resolution, than a national model would allow, was necessary. The HESA (Hybrid 

Energy System Analysis) tool14, 15, is used to investigate costs and implications to energy flows in the Angus 

region using a multiple energy vector model to identify feasible energy systems.  

Taking a system view across multiple energy vectors allows for the examination of integrated systems as they 

move toward a low carbon economy 16-21. Where the physical infrastructure of different energy vector systems 

meet, for example gas-fired power stations or mixed-demand centres, there is already joint working taking place 

(necessary in both planning and operation). HESA exploits this joint working procedure between sectors to co-

ordinate future infrastructure installations and reinforcements while working for a common goal thus representing 

more 'horizontally integrated energy companies' 22 that work across more traditional energy company boundaries 

(and their principal vectors). The HESA tool facilitates the investigation of feasible future energy infrastructure 

designs when different energy vector systems (i.e. electricity, natural gas and solid fuels etc) undertake co-

ordinated and collaborative system planning and operation to lower overall system costs (either to themselves, the 

customers or other objective). 

This linking of energy vector infrastructures creates flexibility and provides an opportunity for a new way of 

planning energy systems and dispatching energy along different energy vector streams 16, 17. Examples of 'whole 

energy system' research in the literature such as Hammond et al. 23 analyses historical data regarding the UK’s 

energy usage across multiple energy carriers to determine the adjustments to the infrastructure to accommodate 

changes in consumption habits from 1965 to 2000. A combined model of the American gas and electricity 

networks were used to predict movement in nodal pricing 17, 18 through use of past data sets, but was a model of 

economic transitions rather than necessary physical improvements to the system.  

HESA brings together the use of several successful methods in the literature including a modular framework used 

by Bakken and Holen16 where separate components represent transport, generation and storage elements. The 

Energy Hub technique, developed at ETH Zurich 24, is used in multiple studies19-21, 24 and is a mathematical 



formulation for system component representation that incorporates the relationships between different energy 

carriers for use in modelling and optimizing coupled energy systems such as national energy networks.  

Energy hubs are interfaces where a number of energy inputs from an external system are connected to loads 

through a set of energy convertors. A hub is able to represent conversion of energy between different energy 

vectors, for example the conversion of energy from natural gas into heat and electricity by a CHP unit. Simpler 

conversions through electric transformers or heat exchangers and integrated storage elements are also possible. 

One energy hub is able to represent a geographical collection of convertors, storage capacity and direct 

transportation, and can represent components on the scale of a dwelling, community, town or even a country. In 

this way, energy hubs are able to act as Virtual Power Plants 25, 26.  

 

Figure 1 A simple 2-component, 3-vector energy hub 

The hub in Figure 1 is an example of a simple configuration with only direct electrical transmission and a gas 

turbine. The inputs of electricity and natural gas, to the hub are defined as ௘ܲ and ௚ܲ respectively, the electricity 

output ܮ௘ with the emissions due to the gas turbine߯௚. All components of a hub have a coupling factor assigned 

to the technology and here are assigned as to the efficiency of the electrical transmission, ߟ௘௘்  , (which can be used 

to incorporate losses) and the fuel efficiency of the gas turbine, ߟ௚௘ீ். The electricity output of the simple hub is 

calculated through the use of the component coupling factors as follows  

ࢋࡸ  ൌ ࢀࢋࢋࣁ ࢋࡼ ൅ ࢍࡼࢀࡳࢋࢍࣁ Equation 1 

Emissions from the gas turbine are calculated based on the quantity of fuel throughput by use of the emission 

factor ࢀࡳࢋࢍ࡯ ሺࢋ࢘࢖ሻ
 to determine total emission output:  

ࢍ࣑  ൌ  Equation 2 ࢍࡼሻࢋ࢘࢖ሺ ࢀࡳࢋࢍ࡯

Combining Equation 1and Equation 2 gives: 
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 ൤ࢍ࣑ࢋࡸ൨ ൌ ൥ࢀࢋࢋࣁ ૙ࢀࡳࢋࢍࣁ ሻ൩ࢋ࢘࢖ሺ ࢀࡳࢋࢍ࡯ ൤ࢍࡼࢋࡼ൨ Equation 3 

Equation 3 can be simplified to a form with the hub output vector ࡸ  related to the hub’s input vector ࡼ by the 

conversion matrix as follows: 

ࡸ  ൌ  Equation 4 ࡼ࡯

With inputs ࢏ࡼ and outputs ࢏ࡸ the ith hub, Ȣ௜, becomes a component module of a larger system representation - a 

Node - as seen in Figure 2. Nodes are used in the modelling to represent the generation, demand, storage and 

transmission and transportation capability and capacity of a geographical area.A number of nodes are connected 

via transportation and transmission networks for the modelling of conversion and transportation of multiple energy 

vectors. Figure 2 illustrates such an arrangement for a node, Node Į, and the connection of components and the 

flow of energy vectors from its associate hub, storage and demand components (labelled ݅). 

 

Figure 2 An energy hub with renewable energy sources (࢏ࢋࡾ). The hub is connected to a system with local 

storage. 

Figure 2 demonstrates the integration of non-dispatchable renewable energy sources (࢏ࢋࡾ) and storage capacity 

 .with a hub model (Ȣ௜) and its representation of dispatchable generation and transmission throughput (࢏ࡿ)

Formulaic representation is such that the input vector (ࡼ௜) for the hub ܪ௜  is the sum of the energy import from the 

rest of system (ࡲఈ௜), the storage dispatched to the hub (ࡿ௜) and the renewable energy sources at the hub (࢏ࢋࡾ). 
Such that: 

࢏ࡼ  ൌ ࢏ࢻࡲ ൅ ࢏ࡿ ൅  Equation 5 ࢏ࢋࡾ

The formulations of individual hubs and nodes in a system are optimised to find a least cost solution for the 

generation/provision of energy. Following on from dispatch HESA identifies feasible, and least cost, 
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transportation solutions using network flow programming 17, 18, a technique that is computationally "much faster 

than linear programming since network flow can be viewed as a special linear programming problem"27. 

The electrical connections between zones will not be modelled in terms of resistance, inductance or impedance of 

lines and neither will natural gas lines be examined for density and temperature limitations. Instead, system 

specification will limit the flow or rate of flow through connections, progressing further to describe the losses that 

will occur in the transfer. In this way, bulk transfers are considered and shortfalls in transfers will inform necessary 

reinforcements to support the particular generation and demand regimes as defined by the transition pathways  

The system wide transportation and transmission problem takes the description of the multiple energy networks 

together with the net export or import of each of the hubs for each energy vector as inputs to an optimisation 

problem. Optimisation is used to find a least cost solution (i.e. generation levels, storage dispatch and 

transportation) so that the total system will be balanced such that no one hub is either in net deficit or excess of 

any vector by creating flows across the necessary lines in such a way that total system costs are minimised.  

The objective cost for HESA optimisation problem can be determined according to a varied number of aims for 

example: 

 Minimising the total cost to the system operators/maximising their profit margins; 

 Minimising the use of the networks and therefore operating similarly to the principle of reducing food 

miles 28 and using what is produced locally; 

 Minimising the total cost of energy to the end user; 

 Minimising the cost or number of reinforcements to the network; or 

 Minimising the total carbon emissions. 

It is very important that the cost objective of any problem is properly considered and formulated. Other research 

that has utilized energy hubs have included maximising revenue for generators that have taken part in system 

balancing 29, minimising the total cost of 'raw' energy needed for generation and end use 30, and minimising the 

cost of energy needing to be injected into a system 31. 

For the examination of the Thousand Flowers transition pathway we will examine the Angus region of Scotland 

which has clusters of population, a distribution of renewable energy resources and a connecting electrical and gas 

network. Simulations will be run over multiple system objectives to determine the impact of objectives and drivers 

for transition. The following section provides more details on the regional simulation studies.  



Simulations 

The HESA simulation tool was used to examine the Angus region of Scotland which is identified in the context 

of a map of Scotland in Figure 3a. Angus is a region that lies of the East coast of Scotland and borders 

Aberdeenshire, Perth and Kinross, and Dundee City but with electrical connections to Perth and Kinross and 

Dundee City only. The six population centres of Arbroath, Brechin, Carnoustie, Forfar, Kirriemuir and Montrose 

are all shown in Figure 3b as well as the electrical connections in the region. The Angus region of Scotland was 

chosen as the model for simulations as it has a range of population centres including urban, suburban and rural 

representing the mixed nature of demand in Scotland. Secondly, the region is not islanded with electricity and gas 

grids which are both non-constrained, resilient and connected to the greater UK national networks. Choosing the 

Angus region as a model allows for the examination of regional network operation in Scotland under multiple 

system objectives without severe network constraints affecting results.   

 

Figure 3a&b - The location of Angus in Scotland and a map of the network and the interaction of load 

centres within the Angus. 

The Angus region was analysed using the HESA simulation tool to determine the applicability of different 

technologies (namely Solar PV, micro-wind and CHP units) in the region to meet different system objectives. A 

simulation was carried out of the Angus region model in 2050 with no DG installed so there existed a baseline for 

comparison. Further simulations were then completed following a trajectory for the installation of DG technology 

as laid out in the Thousand Flowers transition pathway 1, 2. Some data used in this analysis was drawn from the 
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DECC 2050 Pathway Calculator 32 which had been calibrated to fit Thousand Flowers in 2050 to ensure accuracy. 

A description of the Angus region model and simulation parameters now follows.  

The Angus Region model 

A representative model of the Angus region was generated for the purpose of running simulations using the HESA 

tool. The model of the region included the electrical and gas networks that couple high population density areas, 

local energy demands of heat, electricity and natural gas, distributed energy resources and representations of grid 

electrical and natural gas supply. Line lengths and capacities of the electrical and natural gas network were drawn 

from system operator data 33, 34 and a schematic of the electrical grid connectivity is presented in Figure 4.  

 

Figure 4 - A representation of the network and load centres structure of the Angus. All nodes have an 

assigned numeric label as for ŶŽĚĞ ɲ in figure 2, load centres are represented as hexagons, connections to 

the UK grid trapezoids and connector (or branch) nodes as squares. All lines are numbered with the convention ࢐ࡸ. 
2050 demand data for the six high density population areas was generated utilizing both national DECC data 35 

and regional census 36 data. Demand data was drawn from the DECC pathways analysis with level representative 

of the Thousand Flowers transition pathway with a low average house temperature and the highest thermal 

efficiency levels. Average household electricity consumption in 2050 was consequently 1,388 kWh per annum 

and gas consumption 181 kWh per annum. Heat demand was calculated separately from these figures due to the 

inclusion of the heat energy vector in the model allowing for separate representation.  
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2001 Census data was used to determine the number of dwellings in the Angus region’s population centres 

alongside occupancy levels and thus determine the energy demand of each of the population centres. Census data 

was also utilized to determine the maximum levels of solar photovoltaics and micro-wind turbines installations as 

per the per person and per dwelling statistics in the DECC 2050 Pathway Analysis 35. This work led to the Angus 

region model data as in Table 1. 

Table 1- 2050 Demand and generation statistics of Angus population centres 

Alongside local distributed generation within the population centres there are network connections to other regions 

meaning that supplementary energy supply (multiple vectors) can be drawn from other nodes to satisfy demand. 

Similarly, surplus generation (multiple vectors) can be can be exported to the rest of the grid. This can be done to 

the North or the South via nodes 14 and 15 respectively as seen in Figure 4.  

Simulation parameters 

A ‘baseline’ simulation was run with no distributed generation installed on the grid. Similarly, there was no natural 

gas CHP units installed, with all heating being from traditional gas boilers instead. This ‘baseline’ simulation was 

run with the objective to minimize the total cost of energy to the consumer (which includes generation and 

transport costs). In contrast to this baseline, a series of simulations were run that represent distributed generation 

installation rates of the Thousand Flowers pathway. This trajectory has an install of 5.4 m2 of solar photovoltaic 

panels per resident and 5 kW of wind per household alongside 40% of properties transitioned to natural gas CHP 

for space and hot water heating. A summary of the trajectories can be seen in Table 2. 

Trajectory Gas CHP Gas Boiler Wind PV 

Baseline 100% 0% None None 

Zone 2 9 10 11 12 13 

Town Name Brechin Kirriemuir Montrose Forfar Carnoustie Arbroath 

No of dwellings 3,722  2,759  5,499  6,134  4,472  10,887  

Max wind install 

(kW) 

18,610  13,795  27,495  30,670  22,360  54,435  

Max solar install 

(kW) 

41,337  29,522  60,566  69,292  56,635  127,872  

Electricity Demand 

(MWh/annum) 

5,167  3,830  7,634  8,515  6,208  15,114  

Natural gas 

Demand 

(MWh/annum) 

673  499  995  1,110  809  1,970  

Heat Demand 

(MWh/annum) 

31,495  23,346  46,532  51,906  37,842  92,126  



Thousand Flowers 40% 60% 5 kW per 

household 

5.4 m2 per resident 

Table 2 A Summary of technology installations in the different trajectories 

Throughout all simulations of 2050 trajectories, costs and incomes are generated from 2015 data and have not 

been adjusted to a 2050 economic model. Similarly, demand and generation data and emissions ratings are based 

on existing 2015 technologies and there is no projection of efficiency changes out to 2050. Although there are 

methods in the literature for forecasting electricity prices37 and projecting domestic demand using, for example a 

MARKEL model38, 39 such activities are out with the purview of the works in this paper and beyond its limitations. 

However, as all figures and sources are consistent across all simulations comparisons can be made between them 

and analysis completed of the impacts of different objections and constraints and then conclusions drawn. 

The simulations presented in this paper of the analysis of the Angus region use the energy hub for representation 

of technology options as seen in Figure 5. This is a versatile and complex 7-component, 5- energy vector hub 

model, designed for HESA, as ‘multi-purpose’ and ‘fully adaptable’ such that the hub is universal across the 

system. The energy hub is used to represent the distributed generation and transmission capabilities of a singular 

population centre. The hub that is used in this analysis contains four generation components – conventional gas 

boilers, gas fired CHP, wind, solar – as well as transmission capabilities for electricity, natural gas and heat (useful 

if district heating is to be considered).  

 

Figure 5- Regional system analysis energy hub  
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Results and Discussion 

The summary results of simulations of a 2050 view of the Angus region (labelled S-1 to S-4) are shown in Table 

3 under a variety of objectives (either minimizing carbon dioxide emissions or costs to the consumers) and level 

of constraint on the network. As a condition of the simulations all demand (across the multiple vectors) is met 

through dispatch of local and grid generators and supply and a feasible energy transport solution found. Cost of 

energy to the consumers was calculated by a function of the costs of importing natural gas and electricity and the 

revenue received from local generation by way of Feed in Tariffs and export tariffs 40.  

 

The simulation S-1 is the ‘baseline’ 2050 trajectory with no distributed generation and is reflective of a 'businesses 

as usual' pattern and is a base for comparison of the other studies. As such, in the case of S-4, the constrained 

network study, the maximum network capacity was set to the S-1 network capacity (+10%) as the investment 

necessary for S-1 would take place even without DER deployment thus that network is taken as the benchmark.  

Simulation S-1 S-2 S-3 S-4 

Trajectory Baseline Thousand 

Flowers 

Thousand 

Flowers 

Thousand 

Flowers 

Objective £ £ kg CO2 £ 

Network constrained No No No Yes 

     
Population Centre Yearly Electrical Surplus (MWh) 

2: Brechin -5,167 36,749 2,732 -311 

9:Kirriemuir  -3,830 32,583 597 -1,047 

10: Montrose  -7,634 40,193 6,177 1,734 

11:Forfar -8,516 41,781 7,765 2,680 

12: Carnoustie  -6,208 39,586 5,570 2,090 

13: Arbroath -15,114 87,289 54,979 8,513      
 

Total System Statistics 

Net Electrical Import/Export Import Export Export Export 

(MWh) (46,470) (-278,180) (-77,820) (-13,659) 

Direct emissions (kg CO2) 60,622 62,411 62,411 62,411 

Approx. revenue ( per household) -£663 £2,331 £899 £392 

          
Table 3 - Angus simulation results with electrical and emissions data 



 

Figure 6 - Generation and export/import comparisons of the Angus simulations 

The objective of system operation produces noticeable differences to the utilization (and therefore necessary 

installation of) distributed generation as seen in Figure 6. In an unconstrained network simulation when there is 

no financial force but rather a drive to minimise emissions, as in S-3, there is no compulsion to produce more 

generation than is necessary. This is in comparison to S-2 where an objective to minimize cost to (and maximize 

revenue of) households sees very high levels of electrical generation from distributed sources and very high net 

annual export. Total local annual electrical generation in this S-2 is 325 GWh with a net export from Angus in the 

year of 278 GWh. However, in S-3 we see a markedly less significant level of local generation totally just 124 

GWh in 2050 and a net export of 77.8 GWh which reduces the impact on the network.  

Therefore, an emissions objective creates a very different picture of electrical generation in Angus than when 

considering monetary gain, however as can be seen in Table 2 direct emissions levels are consistent throughout 

the four simulations. This is due to the boundaries of the model including only the direct emissions of Angus – 

from production and consumption of energy (natural gas, heat and electricity) - and not considering the export of 

local low carbon electricity benefitting neighbouring regions and the savings in emissions that would be then 

created elsewhere.  

The emissions levels are constant across the three Thousand Flowers trajectory simulations as all emissions in S-

2 to S-4 are coming from the same source - heat generation by way of gas fired CHP and more conventional 

boilers. To reduce these emissions efficient and renewable (zero carbon) technologies must be found to heat 

domestic dwellings. Biomass is a low carbon option but research shows that there are many challenges in with 
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regard to limited space and suitability of crops for growth [16] as well the 'low carbon' title given to biomass being 

challenged [17].  

Comparing the electrical surplus results for the population centres in the Angus region between S-4 and S-2 (the 

constrained and unconstrained simulations) in which both have cost as an objective function sees that a constrained 

network, although still allowing all demand to be met my electricity from DER sources, DER is highly under-

utilised. Even utilising the availability of local electrical storage units the output from DG is curtailed meaning 

that total electrical export from the constrained system in S-4 is less than 5% of that in S-2 and the financial 

revenue is less than half that in S-2. This means that a constrained network and lack of financial investment beyond 

a 'business as usual' case will prevent the full utilisation of DER and the economic benefits that they can bring. 

Finally, we can see that simulation S-4, in a 2050 with a heavily constrained network, with an objective to 

minimize cost (maximize revenue) which had driven up local generation in S-2, generation is heavily constrained. 

Annual local generation is only 60 GWh and total grid export 14 GWh. Therefore, if we are to have any meaningful 

levels of distributed generation installed it is essential to reinforce the grid beyond ‘business as usual’ levels.  

To minimise the carbon intensity of electricity used domestically it is essential that the most is made of the zero-

direct-emissions from domestically installed DG. In modelling simulations S-2 to S-4 all contained the capability 

to store electric locally, with high efficiencies for long periods, hence the ability to stay 'off grid'. It is therefore 

important that affordable storage units for a local scale are available. This requires financial backing and clear 

revenue streams for market entrants but will enable carbon free energy from DG to be produced locally and stored 

when (natural) resources are not available (i.e. a calm night when neither wind or solar generation can generate). 

Local electrical storage, as well as an increased capacity in the networks, is therefore essential to minimising 

emissions from dwellings as well as generating maximum value from DG for communities and other stakeholders.  

Looking across the simulations studies considered what is demonstrated is that local drivers will affect local 

change. Especially in the case of minimising emissions in simulation S-3, it is seen that a drive to minimise local 

emissions will do just that, minimise the emissions within a boundary. However, as the UK energy system is 

operated nationally, and emission targets are national, there is a need for areas with abundant renewable resources, 

such as Angus and those like it, to over-produce ‘green energy’ for export with consumption elsewhere. 

Specifically in areas where renewable sources are scarce. This type of approach would require a coordinated 

national scale energy system plan to enable the costs of installation of generation to produce electricity and 

electrical storage to stabilise intermittency, and the mismatch of demand and supply curves, to be shared. 



Similarly, the benefits to a national system from local, distributed, action must also be shared whether they be 

monetary, emissions savings or otherwise.  

A lack of clarity for the future of the energy system means uncertainty for investors, for R&D in and installation 

of distributed generation, storage and associated transmission and transportation network reinforcements. In the 

case of a system with a high penetration of DG there needs to be regional planning – on a level similar to that of 

the Angus model – so that the geographic and societal specifics of an area can be best understood and realised. 

National co-ordination and harmonisation is needed for energy system change (where applicable) along with a 

wider sharing of knowledge, burdens and benefits, that can also be distributed. In the Distributing Power Report 

41 the Realising Transition Pathways consortium offered an architecture of support for coordinating and supporting 

a highly distributed energy future of this kind. Here a National Energy Programme would be responsible for 

delivering capacity for system balancing. A regulator ‘OFGEM+’ would have another arm or responsibility, 

operated through Regional Energy Partnerships (REP), to enable and regulate distributed energy from Local 

Energy Schemes and regulate local suppliers.  

  



Conclusions 

This paper has investigated the feasibility, and implications, of high penetrations of distributed generation in 

Scotland. In doing so, the integrated energy system of Angus, a region in the East Coast of Scotland was 

represented using the HESA tool, developed by the authors for the analysis for multiple energy vector systems. 

The model of Angus used to investigate varying penetrations of DG in Scotland included the six major population 

centres in Angus and the transmission and transportation systems that connects them. The investigations of the 

system, in 2050, showed that that in order to minimise the curtailment of DG installations and maximise the 

utilisation of locally energy generated in a region it was essential that DG penetration is included in future network 

plans else curtailment and/or exports are high and utilisation low.  

Simulations demonstrated that a future energy network that exists without the added capacity for the level of DG 

outlined in the Thousand Flowers Pathway, heavily constrain the possibility of exporting to the greater system 

and the revenue that such exports grant. Simulation results showed that with a constrained network system exports 

were only 17.5% of those of a non-constrained network with sufficient network capacity and that household 

revenue was curtailed to only 5% of the maximum capability.  

In order to maximise the utilisation of locally generated energy local, regional or national electricity storage, 

alongside local, regional and national interconnection is a critical technology in system transition. If sufficient, 

reliable and local electrical storage is available regions could become electrically self-sufficient with capacity 

available to export excess thus creating local revenues and injecting money into the local economy. Alongside 

storage, installation of new heating technologies are essential along with distributed generation as Scotland’s 

energy sector transitions to 2050. Emissions from natural gas fired heating systems were the main contributor to 

domestic emissions in the Angus region simulations. As such, it is important that technologies such as biomass 

fired heating units are considered to increase the percentage of renewable heat in Scotland and/or heat pumps to 

reduce local emissions.  

This paper has identified that the different drivers, at different scales, for system change – whether that is to 

minimise environmental impacts, maximise revenues or minimise the reliance on external sources – dramatically 

changes system operation parameters and therefore planning concepts. For example, if the aim is to minimise the 

CO2 emissions of a region, i.e. a local driver impacted the local system, then the installation and utilisation of 

renewables would only be at a level to displace carbon intensive grid electricity demand. However, in the case of 



the Angus region modelled here, with an abundance of renewable resources as in most of Scotland, there is 

opportunity for higher rates of installation that would displace carbon intensive generation in other parts of the 

national system. Therefore, to best meet national targets, national drivers must permeate to all levels of system 

planning and be present to action change throughout the greater system. In the case of the installation of distributed 

generation, and other enabling technologies such as storage, for proper utilisation and to maximise benefits across 

multiple system aspects (finance, emissions etc.) alongside national frameworks, policies and drivers for change 

there must be regional frameworks of support, guidance or coordination to encourage, manage or perhaps itself 

determine and initiate system developments or change. Else, local solutions will only solve local issues and the 

difficulties faces by a greater national system will be unresolved.  

New thinking and approaches to coordination and regulation of energy system transitions, like those considered 

in this paper, could see greater energy autonomy devolved to the regions and cities of the UK but within a 

framework that supports, and helps to meet, national objectives. The work of this paper has considered the case 

from the perspective of a single Scottish region however, further modelling and thinking is required to better 

understand the implications of a fully distributed UK energy system.  
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