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a b s t r a c t

A predictive load shifting controller has been developed and deployed in a low-carbon house near

Glasgow, UK. The house features an under floor heating system, fed by an air-source heat pump. Based

on forecast air temperatures and solar radiation levels, the controller firstly predicts the following day’s

heating requirements to achieve thermal comfort; secondly, it runs the heat pump during off peak peri-

ods to deliver the required heat by pre-charging the under floor heating. Prior to its installation in the

building, the controller’s operating characteristics were identified using a calibrated building simulation

model. The performance of the controller in the house was monitored over four weeks in 2015. The mon-

itored data indicated that the actual thermal performance of the predictive controller was better than

that projected using simulation, with better levels of thermal comfort achieved. Indoor air temperatures

were between 18 �C and 23 �C for around 87% of the time between 07:00 and 22:00. However, the per-

formance of the heat pump under load shift control was extremely poor, with the heat being delivered

primarily by the unit’s auxiliary immersion coil. The paper concludes with a refined version of the con-

troller, that should improve the day-ahead energy predictions and offer greater flexibility in heat pump

operation for future field trials.

� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The domestic sector faces a range of challenges as the UK
attempts to drastically cut its carbon emissions by 2050. Key issues
are reducing the overall demand for heat and decarbonising the
residual heat loads, which encompass both space heating and hot
water provision. If the supply of electricity in the UK is progres-
sively decarbonised at the macro and micro-scales, through the
deployment of renewable generation, then the electrification of
heat using heat pumps would be an effective means to provide
the low-carbon space heating, hot water and possibly cooling
required by the domestic sector. However, the widespread adop-
tion of heat pumps would significantly increase power flows on
the electricity network. Wilson et al. [1] indicated that a shift of
only 30% of domestic heating to heat pumps could result in an
increase of 25% in the total UK electrical demand. To mitigate the

potential negative impacts of heat pumps, particularly increased
peak demand and to reduce or delay network upgrade costs,
time-shifting of heat pump demand could become essential.

There have been many papers published, focusing on load shift-
ing of household heat demands and their impacts. For example,
Callaway [2] used modelling and simulation to assess the potential
for manipulation of large populations of thermostatically con-
trolled loads to follow variable renewable generation. In another
modelling-based study, Parkinson et al. [3] designed a controller
for distributed heat pump management that also accounted for
indoor comfort constraints that often occur when load shifting.
Wang et al. [4] modelled the potential for load shedding in a large
population of many thousands of unbuffered domestic heat pumps
by manipulating of the space heating set point. Patteeuw [5] et al.
looked at the potential of load shifting in large populations of buf-
fered domestic heat pumps to reduce carbon emissions from the
power system as a whole, with their modelling study, which used
linear programming and simple thermal models, showing reduc-
tions in power system CO2 emissions of 1–7% if price based load
shifting was implemented.

This paper is primarily concerned with the practicality of, and
thermal impact of heat pump load shifting at the level of the indi-
vidual dwelling. Again, there are many published papers in the
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literature looking at this area. For example, Hong et al. [6,7] found
that shifts in heat pump operating times of up to 6 h were possible
in thermally improved dwellings, but only with the addition of up
to 500 l of hot water thermal buffering. Arteconi et al. [8] investi-
gated the use of buffering in less well-insulated buildings, indicat-
ing that up to 800 l of buffering would be required to deliver only
1 h of load shifting. Kelly et al. [9] investigated load shifting of heat
pump demand to off-peak periods in low carbon housing and
found that to avoid discomfort up to 1000 l of hot water thermal
buffering would be required. Renaldi et al. [10] used cost optimisa-
tion to identify optimum storage sizes for load shifting heat pump
operation to off peak. Their modelling used synthetic heat loads
and a system that featured back up immersion heating. The result-
ing cost-optimised store sizes (200–300 l) were considerably smal-
ler than those identified using engineering modelling approaches
[6–8,9,10].

In all of the papers cited, the authors used modelling to assess
the potential for load shifting with a variety of technologies and
in different operating contexts. Whilst this provides useful data
for technology development and future network planning, mod-
elling has its limitations in that it cannot highlight practical prob-
lems associated with the application and implementation of
domestic heat load shifting, such as poorly functioning equipment
or failure to achieve predicted levels of thermal comfort. A range of
studies have indicated that the thermal modelling of buildings and
their systems tend to provide over optimistic results compared to
what is achieved in reality (e.g. Norford et al. [11], Knight et al.
[12]), particularly in relation to energy use. Ryan and Sandqusit
[13], recommend that to improve accuracy models are calibrated
against empirical data to improve performance. In this paper the
performance of a load shifting system was modelled, with the
results used as the basis for the design of a day-ahead, predictive
load shifting controller. Importantly, the model used was cali-
brated using monitored data and the energy and thermal perfor-
mance of the controller operating in a real building was then
monitored and assessed.

1.1. Novelty of the work

The novel features of the work reported are (1) the use of a cal-
ibrated simulation model to identify the parameters for the a load
shift controller, which was then implemented in a real building; (2)
monitoring of the performance of the controller and heating equip-
ment over several weeks; and (3) the performance was assessed
from the perspective of both energy use and the resulting indoor
thermal conditions – so the comfort conditions achieved in the test

building under the load shifting control are a key metric for the
success or failure of the load shifting approach.

2. Methodology

The work described in this paper involved six distinct stages of
activity. These were as follows.

1. Deployment of monitoring equipment and acquisition of per-
formance data;

2. development and calibration of a simulation model of the test
house;

3. use of the model to identify the parameters for a predictive con-
trol algorithm;

4. assessing the virtual effectiveness of load shifting using
simulation;

5. implementation of the load shift controller in the real test
house; and

6. monitoring and assessment of actual performance under load
shifting.

The results emerging from the monitoring of the load shifting
controller and systems performance highlighted important issues
regarding heat pump operation under intermittent load shifting
control and also allowed the load shift control algorithm to be fur-
ther refined.

2.1. Details of the test house

The building used for the tests the Applegreen House is located
at BRE Ltd’s Innovation Park, Motherwell near Glasgow (55.78�N,
3.99�W). The house is intended to be a demonstration of a mass-
market, low-cost, modular-build, low-carbon house. The building
is shown in Fig. 1. The house is steel framed, has a slab-on-grade
concrete foundation with a flat-roof construction. The roof is
weatherproofed using bituminous felt. The building is clad in insu-
lated panels, which are externally rendered; the upper half of the
building also features external timber cladding.

Windows are double-glazed. The interior of the house is fin-
ished with plaster-on-stud and carpeted throughout.

The house has a total floor area of 127 m2 spread over an upper
and lower floor and has an internal volume of 304 m3. As the house
is a test facility, it was unoccupied during the reported experi-
ments; the implications of this are discussed later in the paper.

Heating and hot water are provided by a 3/5 kW NIBE F470 air
source heat pump – the heat delivered to the house is recovered

Nomenclature

DT hysteresis relay temperature (�C)
Ĉ estimated amount of charge (kW h)
Usol daily average solar insolation (W/m2)
�Text daily average external air temperature (�C)
rf signal standard deviation
rm characteristic length scale
UH heat output (W)
Uon hysteresis controller on heat flux (W)
C amount of charge (kW h)
C� enhanced estimated amount of charge (kW h)
d number of variables in Gaussian process training set
kðxi; xjÞ Gaussian process covariance function
mðxÞ Gaussian process mean function
P heat pump power (kW)
Pmax maximum heat pump power (kW)

R2 coefficient of determination (1)
TH;set heating set-point temperature (�C)
tc duration of charge (h)
Tdb dry-bulb air temperature (�C)
Terr control error temperature (�C)
Tmax maximum temperature (�C)
Tmean mean temperature (�C)
Tmin minimum temperature (�C)
Tmrt mean radiant temperature (�C)
Toff hysteresis controller off temperature (�C)
Ton hysteresis controller on temperature (�C)
Top operative temperature (�C)
tsim start time for simulated flexible load-shift (h)
Tsp radiative set-point temperature (�C)
U-value steady-state thermal transmittance (W/(m2 K))
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from the exhaust air. The maximum heat pump output is 3 kW; a
5 kW direct electric immersion coil is also available if required.

The heat pump was coupled to a mechanical ventilation system
with the evaporator located in the extract duct. The heat pump
evaporator therefore acted as a heat recovery device. The mechan-
ical ventilation system delivered 55 l/s of outside air or approxi-
mately 0.65 AC/h. Unlike the tank-buffered heat pump systems,
which feature in the literature (e.g. [7,9]), the heat pump serves
an underfloor heating system, which supplies the lower and upper
floors. The heat is delivered into pipes embedded in the floor
screed, which is approximately 70 mm deep. The heavyweight
floor screed therefore acts as the heat store and thermal buffer
between the heat pump and the interior of the house.

The heat pump includes an internal 170 l hot water tank. A sys-
tem schematic is shown in Fig. 2. However, hot water demand was
not considered in these tests.

The house also features a 3 kW PV array on the rooftop which
feeds into the house supply after power conditioning and
inversion.

2.2. Monitoring and data acquisition

Prior to the development of the simulation model and field trial
of the predictive controller, the house was instrumented with the
variation in indoor temperatures and external climate data moni-
tored for several weeks in July and August 2015.

The data acquisition system used a wireless Eltek RX250AL
Receiver/Logger along with three Eltek wireless transmitters; two
of these were used to measure indoor temperature and relative
humidity, and the final transmitter was used to measure the cur-
rent at the consumer unit. During the monitored period, total elec-
trical amperage was recorded; this was converted into watts,
assuming a voltage of 230 V.

A laptop running a customised data acquisition algorithm
polled the logger for monitored data and uploaded this via a web
service interface to a UK-based cloud server at 10 min intervals.
Each upload held two sets of 5 min data readings from the
transmitters.

The instrumentation also included a rooftop weather station
supplied by Campbell Scientific, which measured direct and diffuse
solar radiation, external air temperature and RH, wind speed and
direction. Readings were recorded at 5 min intervals. This data
was downloaded manually and merged with the data from the log-
ger. An example of the collected data is shown in Fig. 3, which
shows the variation in indoor temperatures and external
conditions.

The air leakage of the building was checked using a blower door
test. The results indicated that the fabric leakage rate was 3 air-
changes-per-hour when pressurised to 50 Pa. Under normal oper-
ating conditions this translates to leakage rate of 0.06 air-
changes-per-hour.

The initial measurements of the heat pump system indicated
that almost all of the heat was supplied by the 5 kW immersion
coil due to a low return temperature from the under floor heating
circuit preventing the compressor from operating. The low temper-
ature was the unavoidable result of the heat pump being run inter-
mittently during off peak tariff periods for the tests described in
this paper. The work therefore proceeded on the assumption that

Fig. 1. The Applegreen house at BRE Innovation Park, Motherwell.

Fig. 2. Schematic of air source heat pump system.
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the heat supplied from the heat pump would be the 5 kW from
immersion heater output; this was later confirmed in the analysis
of the data from the load shift control tests.

2.3. Simulation model and calibration

A model of the test house was developed for the ESP-r building
simulation tool [14]. The wireframe 3-D geometry of the model is
shown in Fig. 4a. An ESP-r model is a thermodynamic representa-
tion of a building, which typically comprises three core
constituents.

� The 3-D geometry of the building is divided into thermal zones,
a zone being a notionally enclosed volume within the building,

typically corresponding to a specific room. The zone volume is
bounded by surrounding surfaces, such as an external wall,
internal wall, window, floor, etc. The enclosed space can be
modelled at different resolutions: typically the space is mod-
elled as a well-mixed volume at a homogeneous temperature,
with heat transfer coefficients used to account for phenomena
such as stratification; alternatively the volume can be replaced
by a CFD ‘domain’ [14]. The latter approach has been adopted in
this case as this has been demonstrated to provide sufficient
accuracy for systems and controls modelling [15]. However, if
the function of the analysis was ventilation analysis then the
CFD approach would be more appropriate.

� Materials data – each surface has one or more layers that corre-
spond the material layers seen in the real building, with each

Fig. 3. Example of monitored data.

Fig. 4a. The ESP-r geometric representation of the Applegreen house.
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layer comprising a specific material type. ESP-r uses a large
materials database, which holds information on the following
material properties for a wide range of common building mate-
rials: conductivity k, density q, specific heat cp, absorptivity and
emissivity (–). Additional data is held for transparent materials
relating to solar transmission s, reflection c and absorption a, at
different angles of incidence (0, 40, 55, 70, 90�).

� The geometric and materials data is augmented with schedules
that define the magnitude and time variation of internal heat
gains from occupants and equipment along with user defined
heating control set points, which can be used in the calculation
of the time varying heat demand for the building.

The core ESP-r model described above can be used extract var-
ious dynamic performance characteristics such as the variability in
indoor temperatures, heat fluxes through surfaces, the heating
power required to maintain set point temperature in zones, etc.

The resolution of the core model can also be improved with the
addition of one or more networks, which are a series of interlinked
components. Networks can be used to define the building’s HVAC
system in detail [14], or to describe bulk airflow paths [16], or
the building’s renewable energy and electrical systems [17] (where
appropriate). In the model described here, an airflow network
model was used to determine the bulk buoyancy and pressure dri-
ven air flow between zones along with pressure and buoyancy dri-
ven infiltration and influence of mechanical ventilation. A
schematic of the airflow network is shown in Fig. 4b. At each time
step boundary pressures were calculated at external nodes based
on wind conditions, and the pressures at internal nodes and airflow
through each connection were calculated iteratively.

The house model is available for examination and use, and can
be download from: http://fits-lcd.org.uk/file_uploads/Other/
173158__Applegreen_Calibrate.tar.gz. ESP-r is available from:
https://github.com/ESP-rCommunity/ESP-rSource.

A summary of the geometric and fabric details of the model is
provided in Tables 1a and 1b.

The mathematical basis of ESP-r has been described exhaus-
tively elsewhere by Clarke [14], so only a summary is provided
here. In the tool, a building model (zones, surfaces, networks) are
decomposed into thousands of control volumes, a control volume

being an arbitrary region of space to which conservation equations
for energy (thermal and electrical), continuity, momentum, species
can be applied and one or more characteristic equations formed.
The number of equations depends on the resolution of the model.
In this case only the energy and continuity equations are required
for each control volume. A typical model of a building will contain
thousands of such volumes, with sets of equations extracted and
grouped according to the physical system (e.g. transfer, fluid flow,
power flow, etc.). The equations that describe the heat transfer
associated with the building fabric are linearised and solved
directly, using a mixed implicit-explicit formulation that is uncon-
ditionally stable. The bulk fluid flow and power flow equations (if
required) are solved iteratively, and converge for the vast majority
of cases. The ESP-r tool and its solution method have been the sub-
ject of extensive validation activities over many years, these are
described by Strachan et al. [17].

The solution of these equations sets with real time series cli-
mate data, coupled with control and occupancy-related boundary
conditions yields the dynamic evolution of temperature, energy
and fluid flows within the building and its supporting systems.

The model’s predictions of indoor air temperature were cali-
brated using the weather and indoor temperature data collected
in the months leading up to the setting-up of the load shifting
experiment. This calibration was a multi-stage process that
involved iteratively manipulating the characteristics of the air flow
network flow connections to the exterior of the building, shown in
Fig. 4b, until a match was achieved between average infiltration
and the value from the blower door test. Next, the monitored heat
input (assumed to be equivalent to the measured background elec-
trical demand) was imposed on the model as a heat gain profile;
the air flow network connections between the indoor nodes were
modified to achieve temperature difference between the two floors
broadly commensurate with the monitored data. Finally, building
fabric U-values were degraded to account for thermal bridging
and other building defects. The wall U-values emerging from this
process are as shown in Table 1b.

The air temperature predictions of the model against measured
data are shown in Fig. 5. The model typically produces air temper-
atures within ±1 �C of measured conditions and the model accu-
rately follows the trends in temperature fluctuations seen in the

Fig. 4b. Schematic of the airflow network linked with the model.
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measured data. The accuracy of the sensors is ±0.1 �C. For the pur-
poses of controller development, this level of accuracy was deemed
sufficient.

It should be noted that because the test house has an under
floor heating system, the most accurate measure of thermal com-
fort would be the dry resultant temperature (DRT), which com-
prises both the mean radiant temperature and the air
temperature. However, the monitoring equipment installed in
the test house could only measure the air temperature. The simu-
lation data was analysed to assess the impact of this shortcoming
and its potential implications for comfort assessments.

Table 2 shows an analysis of the difference between the air and
DRT for the test house with the under floor heating system active.
At the minimum house temperature, there was an appreciable dif-
ference of over 2 �C between the air and DRT. However, low tem-
peratures such as this tended to occur outside periods of
assumed occupancy and the difference at higher temperatures
and the overall average difference was less than 1 �C, indicating
that for the majority of time, the difference between the two tem-
peratures was small. Based on these findings, it was assumed that
the air temperature alone could act as a reasonable proxy for com-
fort conditions.

2.4. Parameter estimation the load shift control algorithm

The simulation model was used to determine the characteristics
of a predictive load shift controller to be installed in the test house.
This was a two stage process.

Table 1a

Summary details of Applegreen house model thermal zones.

Zone name Level Volume (m3) Glazing (m2) Façade (m2) Partitions/ceiling/floor (m2) Floor (m2)

Master bedroom Ground 44.9 3.24 26.4 52.4 18.7

Office & entry Ground 28.3 9.6 3.6 48.1 11.8

Bedroom 1 Ground 25.4 0.9 15.1 37.1 10.6

Bedroom 2 Ground 25.4 0.9 15.1 37.1 10.6

Plant room Ground 3.6 0 2.5 12.4 1.5

Bathroom Ground 13.9 0.3 4.8 29.6 5.8

En-Suite Ground 10.6 0.3 3.6 25.6 4.4

Living Upper 50.8 11.2 48.4 27.5 21.2

Upper hall Upper 25.2 9.5 14.2 29.0 10.5

WC Upper 5 0.3 6.3 11.8 2.1

Study Upper 20.5 12.4 17 19.5 8.5

Dining Upper 25.4 18.9 23.6 10.6 10.6

Kitchen Upper 25.2 14.9 17.9 19.8 10.5

Table 1b

Summary details of Applegreen house model internal and external constructions.

Description Thickness (mm) Number of layers Mass per (m2) U-value (W/m2 K) Area in building (m2)

Ground level Façade wall 235 7 72.3 0.2 67

Upper level Façade wall 242 5 67.6 0.2 58.8

Thick acoustic partition 165 7 47.5 0.306 55.9

Thin non-acoustic partition 90 3 40.9 1.38 14.1

Thin acoustic partition 95 5 35.0 0.53 74.3

Internal door 50 1 29.2 1.8 29.5

Glazing frame 69 2 44.6 1.46 9.9

Façade glazing 26 3 25 1.21 30.2

Roof (flat) 271 6 109 0.18 63.3

Ground level floor 530 4 677 0.18 63.3

Intermediate floor 435 5 352 0.4 59.6

Fig. 5. Monitored and predicted temperatures: (a) Upstairs livingroom; (b)

Downstairs kitchen.

Table 2

Difference between simulated air and dry resultant temperatures.

Gauged temperature Tmin/�C Tmax/�C Tmean/�C

Zone dry bulb 11.3 35.7 21.2

Mean radiant 15.4 38.4 22.0

Zone dry resultant 13.9 36.0 21.6

Zone dry bulb – resultant 2.6 0.3 0.4
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� Using hourly test reference climate data for Glasgow as a
boundary condition (19 km from the test house site), the cali-
brated simulation model was then used to determine the daily
heat load (or ‘charge’), C (kW h), required to heat the house to
21 �C over an assumed occupied period of (07:00–22:00) as
shown in Fig. 6.

� Secondly, a series of simulations were run to determine if the
calculated charge could successfully be shifted to off-peak peri-
ods whilst still maintaining indoor comfort conditions.

The performance of the house model was simulated over a cal-
endar year at 15 min time intervals. For each simulated time step
during the heated period, the model calculated the heat required
to maintain temperatures at the set point of 21 �C. This was then
aggregated for each day in order to determine the heating charge,
C, in kW h. The time-varying heat input to the building model is
shown at the top of Fig. 7. The area under the graph is the total
diurnal charge, C that the building required, to reach and maintain
comfort conditions. This work relies on the principle that it is pos-
sible to alter the shape of the heat load to a ‘block’ that can then be
shifted back into the economy period (see bottom of Fig. 7) by pre-
charging the heavy weight floor screed (i.e. thermal storage) using
the under floor heating system, which then slowly releases heat
into the building during the assumed occupied period (07:00–
22:00).

Assuming that the heating system output was fixed at the mea-
sured 5 kW, then the duration of charge was calculated from tc = C/
P. The load-shifted heating start time (shifting the heating charge
into the period 0000–0700 h) was then calculated from Eq. (1).

ts ¼
7� C=P; C=P 6 7

24þ ð7� C=PÞ; C=P > 7

�

ð1Þ

where ts is the start time (h), C is the calculated amount of charge
(kW h) and P is the heating system capacity (5 kW h).

Note that where the calculated charge and capacity resulted in a
charge time of greater than 7 h, the charge would begin prior to
midnight (00:00).

The model’s estimations of the daily heating charge were used
to create a regression algorithm, which could then be implemented
in the test house as part of a predictive controller for the heat
pump. The predictive controller would estimate the day ahead
heating charge based on forecast daily mean temperatures and
solar radiation levels.

A linear regression analysis was done on the simulation model
output data to generate a polynomial (Eq. (2)) which related the
calculated daily heating charge C to the corresponding daily aver-

age solar radiation Usol (W/m2) and average external temperature
�Text (�C) – both of which could be derived from the boundary cli-
mate data in the model simulations.

Ĉð�Text;UsolÞ ¼ p00 þ p10
�Text þ p01Usol þ p20

�T2
ext þ p11

�TextUsol

þ p02U
2
sol þ p21

�T2
extUsol þ p12

�TextU
2
sol þ p03U

3
sol ð2Þ

where Ĉ is the estimated heating charge (kW h). The regression
coefficients are given in Table 3 with 95% confidence bounds.

The goodness of fit could be analysed via the coefficient of
determination, which for the surface defined by (2) is R2 = 0.881,
with a corresponding root-mean square deviation of 6.53 kW h,
equivalent to a prediction error of tc,RMSE = 1.3 h. Note that this
measure is scale-dependent, therefore forecasting errors for partic-
ular variables will vary.

A refinement of the regression model that improves the regres-
sion algorithm’s day-ahead charge predictions is undertaken at the
end of the paper.

Eq. (2) can be visualised as a control surface as shown in Fig. 8
with the simulated heating charge C shown in marked points.

When implemented in the real test house as part of a predictive
controller, Eq. (2) would be used to estimate day-ahead heating

no heating heating to set point temperature no heating 

Fig. 6. Control periods used for amount of charge calculations.

Fig. 7. Visualisation of load-shift controller design with data specific to 2015-03-

12. Top figure shows heat flux calculated by basic (ideal) controller. Bottom figure

shows the same heat flux re-shaped and shifted to the economy period.
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charge Ĉ (and subsequently start-stop times) based on the day
ahead forecast for mean daily temperature and solar radiation.

Note that the equation as shown does not include an allowance
for internal occupant gains as the house was not occupied during
the tests. However, a similar expression for heating charge,
accounting for gains could be developed by including a suitable
occupancy pattern in the simulation model.

2.5. Assessing the impact of load shifting using the model

The impact on indoor thermal conditions from shifting the heat-
ing charge to off-peak periods (00:00–07:00) was first investigated
using the calibrated model, with performance again simulated over
a year using the Glasgow climate data set a boundary condition.
These simulations used a modified version of the ESP-r tool, which
featured the day-ahead heating charge equation (Eq. (2)) inte-
grated into the code; this calculated the next-day heating charge

Ĉ using the following day’s temperature and solar data from the

model’s climate file. The heating charge Ĉ was delivered into the
under floor screed of the model’s lower and upper floor construc-
tions, as would happen in the real building.

Assessment of the load shifting controller performance looked
at the temperatures achieved in the house between 07:00 and
22:00, specifically assessing if thermal comfort could be main-
tained after load shift. If temperatures fell below 18 �C or rose
above 23 �C, then it was assumed that the occupants would expe-
rience discomfort. Fig. 9 shows the amount of time spent inside
and outside the comfort range and indicate that the heating charge
could be moved to off peak periods without significant discomfort
conditions occurring. This was due to two main factors. Firstly, the
house fabric was well insulated, which limited temperature drops

during unheated periods. Secondly, the upper and lower floor
screed (under floor heating) acted as a substantial thermal
store – approximately 8.61 m3 of screed material. Together, the
insulated fabric and floor thermal capacity allowed the house to
ride through the occupied period of 07:00–22:00 without temper-
atures dropping significantly. Fig. 10 shows the difference in
predicted indoor temperatures between the original simulated
control and the simulated load-shifted control.

2.6. Implementation and monitoring of the load shift control in the test

house

The load shifting control system implemented in the real test
house comprised the following elements.

1. heat pump control interface;
2. monitoring and data acquisition system;
3. load shift controller.

The NIBE heat pump used in the house could be accessed remo-
tely using an internet interface or SMS-based interface. The SMS-
based interface was chosen for this work as, unlike the internet
interface, the heat pump data could be accessed by 3rd party appli-
cations. The SMS interface allowed the heat pump to be switched
on and off and also allowed the heat pump internal data to be
accessed if required.

Load shift algorithm, based around Eqs. (1) and (2) and support-
ing software was implemented within a Linux-based cloud server
and carried out the following tasks.

� The controller parsed a day-ahead weather forecast from a
meteorological web service and used it to calculate the average
air temperature and total solar insolation for the following day;
this was done at hourly intervals over the preceding day to cap-
ture changes in the forecast.

� The control algorithm used the forecast data to calculate the
heating charge and associated heating charge time and start/
stop times for the heat pump.

� Finally the on/off control signals were passed back to the heat
pump in the test house using the Twilio SMS web API which
allows cloud based applications to send and receive voice calls
and SMS messages.

The communications and data logging system are illustrated in
Fig. 11.

Table 3

Coefficients of linear regression model used to predict day-

ahead charge with 95% confidence bounds.

p00 73.39 (67.68,79.11)

p10 �1.402 (�2.848,0.04382)

p01 �0.3156 (�0.4126,�0.2187)

p20 �0.1372 (�0.2398,�0.03465)

p11 �0.0105 (�0.02309,0.002098)

p02 0.001044 (0.0004678,0.001619)

p21 0.0008879 (0.00013,0.001646)

p12 9.105 � 10�6 (�2.84,4.661) � 10�5

p03 �1.477 � 10�6 (�27.1,�2.45) � 10�7

Fig. 8. Plot of surface for Ĉð�Text;UsolÞ with marks for simulated diurnal charge from two perspectives.
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The performance of the implemented load shift controller was
tested during September 2015, a period when daytime tempera-
tures had dropped enough for the heat pump to run for appreciable
periods of time. The field trials comprised two phases.

1. The control system was tested under manual operation: a fore-
cast of the following days weather was obtained and Eqs. (1)
and (2) were used to determine the heating start time; this
was passed to the heat pump using an SMS message sent from
the IF mobile phone application: IF allows tasks to be logic con-
trolled and time scheduled. The purpose of these manual tests
was simply to test that the controller, communications to and
from the heat pump and the data acquisition system was func-
tioning correctly.

2. Following a successful manual test, the heat pump was then
subject to fully automated control using the cloud based con-
troller, this calculated the heating charge and subsequent
start/stop times and passed these directly to the heat pump
via SMS messages. The output from the controller and moni-
tored data was streamed to a live website.

Note that during the initial testing phase, inspection of the
monitored power data indicated that PV generation was being
recorded as well as the heat pump power demand. In order to iso-
late the heat pump energy use, the power produced by the PV had
to be removed from the monitored data. To do this, the PV power
production was estimated from the monitored climate data using
the Araujo-Green method [18] and subtracted from the total
recorded wattage.

Once the automated controller was established, the indoor con-
ditions and heat pump power demand were recorded using the
monitoring system described previously over a period of approxi-
mately three weeks.

3. Results and discussion

Analysis of monitored indoor air temperatures when the fully-
automated load shift controller was in operation indicated that
they remained between 18 �C and 23 �C for 87% of the time
between 07:00 and 22:00, when the heat pump was operated
under load shifting control (see Fig. 11). The remaining 13% of
the monitored period, temperatures were above 23 �C but less than
25 �C. This performance was actually slightly better than predicted
using simulation, which indicated comfort conditions being
achieved for approximately 84% of occupied hours.

Fig. 12 shows typical conditions from the test from Sept 8–Sept
12. Higher temperatures occurred when solar gains pushed indoor
temperatures above 23 �C. As the heat was pre-delivered into the
floor screed, the heating system tested was unable to respond to
disturbances after the initial charging period. So, for example,
greater than forecast levels of solar radiation would lead to higher
indoor air temperatures than predicted. Note that on the two days
with the highest solar radiation the calculated charge was zero.

The total energy consumption of the heat pump during the
monitored period in September was 434 kW h and the total run
time was 91 h. This gave an average power consumption of
4.8 kW and indicates (as was suggested by the initial tests) that
the heat supply was almost all from the auxiliary heating coil
rather than the heat pump itself. This is evident in the power
demand plot in Fig. 12.

3.1. Improving the house model and controller parameter estimation

While the results from the field trial were satisfactory, the work
had a number of limitations that could be improved upon. Specif-
ically, these related to further developing the house model used to
estimate the controller parameters and improving the load shifting
equation and its calibration

1. The model used to calibrate the controller assumed that the
temperature in the house was held to 21 �C during occupied
periods, whereas a range between 19 and 23 �C would be within
comfort limits – avoiding over and under heating. Therefore in
the simulation model some hysteresis was added to the repre-
sentation of heating control, with a ‘dead band’ added between
19 and 23 �C (Fig. 13). So, when the indoor temperature was or
fell below 19 �C the house heating would operate until the tem-
perature reached 23 �C and then remain inoperative until the
temperature fell back to 19 �C. This scheme reduces cycling
and also increases the potential for flexibility in when the heat-
ing system operates (see Fig. 14).

2. Additionally, when estimating the parameters for the controller
using Eq. (2), the daily charge C (kW h) was calculated with
model, which assumed that the heating flux was delivered
directly to the indoor air. In reality, the test house utilised
under-floor heating, which would emit a portion of this energy
via convection to the air, and via long-wave radiation to the sur-
rounding walls and ceiling; this discrepancy could cause the
amount of charge required to be underestimated. Therefore,
the calibration model was refined, with the heating input deliv-
ered into the floor screed.

3. The regression equation for the day-ahead heating charge used

only two parameters: average daily external temperature, �Text,

and average daily solar insolation, Usol. This doesn’t take

Fig. 9. Time spent in different temperature ranges during the occupied hours under

the load-shift controller during days where there was heat input to the house.

Original controller

Fig. 10. Dynamic temperature profiles for ideal control and load-shift controller

(data shown for 2015-03-12).
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account of the indoor temperature prior to the input from the
heat pump. Consequently, a revised version of the controller
was developed that accounted for the indoor temperature. Here,
instead of the controller parameters being identified using a
regression equation, a more sophisticated Gaussian process
regression was applied.

The following paragraphs provide more detail on these
improvements.

The operation of the heating control was altered to operate with
hysteresis, with a switch on point of 19 �C and a switch off point of
23 �C, which would lead to fluctuations of 2 �C above or below the
desired zone operative temperature of 21 �C. This can be modelled
using a relay shown in Fig. 15, where DT = 2 �C, Uon = 10 kW and
Terr = Tsp � Top. Top is the operative temperature of the zone, here

Fig. 11. Illustration of the data acquisition and cloud-based control.

Fig. 12. The breakdown of indoor temperatures over the September test period.

Fig. 13. Measured heat pump charge, external climate, and indoor temperatures for 2015-0908/12.
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defined as a mix of the zone’s dry bulb temperature and mean radi-
ant temperature as

Top ¼ ð1=2ÞTop þ ð1=2ÞTmrt ð3Þ

Operative temperature is a better metric with which to assess
comfort than air temperature alone in systems such as under floor
heating where a significant component of the heat delivery is
radiant.

To reflect this, the heat input to the house model was altered
from a purely convective input to a mixed convective/radiant flux:

Uconvective ¼ ð2=5ÞUH ð4Þ

Uradiant ¼ ð3=5ÞUH ð5Þ

The radiant flux was distributed to the surfaces in the model on
an area and emissivity basis, while the convective heat flux was
injected to the air in each zone of the model. The total amount of
heat flux required during each simulation time step was aggre-

gated per day as C� ¼
R

UH in order to determine the new diurnal

charge calculation, C�, in kW h.
To improve parameter estimation for the load shift equation,

Gaussian process regression (GPR) was applied. GPR models are
nonparametric probabilistic models [19] i.e. the model structure
is not predefined as in Eq. (2) but is determined from the available
data. This is beneficial as the number of input parameters to the
regression increases, the complexity of a predefined polynomial
surface would increase rapidly, and selecting a possible candidate
function for accurate predictions becomes more difficult. This type
of regression model has already been successfully utilised in
related fields, such as for short-term wind speed prediction [20],
electricity price forecasting [21], and the calibration of building
energy models [22].

To construct the GPR model, the algorithm was provided with a

training set fðxi; yiÞ; i ¼ 1;2; . . . ;ng, where xi 2 R
d and yi 2 R, drawn

from an unknown distribution. A GPR model addresses the ques-
tion of predicting the value of a response variable ynew, given the
new input vector xnew, and the training data.

In this work, the training set was obtained via the annual sim-

ulation, with xi ¼ ð�Text;i;Usol;i; T0;iÞ, d ¼ 3, yi ¼ Ci, and each

i ¼ 1; . . . ;365 represents each i-th day of the year. Compared to
the regression model (2), here the GPR model adds the additional
parameter T0, which is the internal air temperature at the begin-
ning of the economy period.

A GPR model is given as

f ðxÞ ¼ GPðmðxÞ; kðxi; xjÞÞ ð6Þ

where it is fully specified by its mean function m(x) and covariance

function kðxi; xjÞ. It is assumed that it is a zero mean GP with covari-

ance function as the squared exponential kernel function, with a
separate length scale for each predictor. It is defined in Eq. (7).

kðxi; xjjhÞ ¼ rf exp �
1

2

X

d

m¼1

ðxim � xjmÞ
2

r2
m

" #

ð7Þ

where for the training dataset obtained via the annual simulation
the kernel parameters or hyperparameters are: signal standard
deviation is rf = 36.092 and the characteristic length scales are
r1, . . . , r3 = (5.454, 1.6349, 1.7462).

The resulting coefficient of determination for the GPR model
was R2 = 0.954 (8.3%increase in goodness of fit), with a correspond-
ing root-mean square deviation of 4.62 kW h, equivalent to a pre-
diction error of tc,rmse = 0.92 h (29.2% reduction in error). Fig. 16
shows a comparison of predictive results for the multiple linear
regression and Gaussian process regression models.

3.2. Further analysis – flexibility in load shifting

The refined house model was employed to assess the potential
for flexible load-shifting in the house. Whereby the load-shift was
not fixed as in Eq. (1), but could be manipulated to start anywhere
within the economy period (00:00–07:00) as long as the day-ahead
simulation indicated that the predicted indoor temperatures
would be satisfactory. Such flexibility (see Fig. 17) is useful as it
can be used to prevent unintended load synchronisation in large-
scale, automated load shifting schemes (e.g. [23–25]), which can
exacerbate rather than improve the impact of electrified heating
on the network.

In the field trial, the calculated charge was always supplied as
close as possible to the occupied period i.e. the charge was offset
from 07:00. However, the heating charge doesn’t always need to
be delivered at 7 � C/P provided that (1) the calculated length of
charge is less than the length of the economy period, and (2) that
the indoor environmental conditions will still be satisfactory when
the load is shifted to an alternative time window. In this case, there
is some flexibility in when the heating charge can be delivered;
this provides latitude for improved load manipulation with large
numbers of loads. The degree of flexibility is estimated here using
a metric giving the number of ‘‘flexible hours”, tf, in a diurnal per-
iod. This is given by the following equation.

no heating no heating heating to set point temperature 

Fig. 14. Ideal mixed-mode control algorithm.
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tf ¼
7� tc; tc 6 7

0; tc > 7

�

ð8Þ

where tc = C/P is the calculated charge time (h). Note that the
amount of flexibility on days with little to zero amount of diurnal
charge (tc < 20 min) was not considered as flexible hours, since
the actual use of the heat pump was negligible.

The proportion of the flexible hours in (8) that would result in
satisfactory indoor environmental conditions was determined via
a series of annual simulations whereby the day-ahead diurnal
charge was injected at a start time, tsim, of 00:00, 00:30, 01:00
and so on up until 06:30. The new start time for the block of charge
is then given by Eq. (9):

tf ¼

24þ ð7� tcÞ; tc > 7

7� tc; ð7� tsimÞ < tc 6 7

tsim; otherwise

8

>

<

>

:

ð9Þ

The results from each simulation were then compared with the
same temperature criteria used in Section 3 in order to find the
range of start times that achieved acceptable indoor environmental
conditions. Note that the calculated number of hours estimated
here will be conservative, as a real occupied building would have
additional internal gains from occupants and appliances to con-
tribute to the heat demand.

Fig. 18 shows the number of hours of flexibility in each day of
the year and Fig. 19 shows the cumulative number of hours of flex-
ibility for each month of the year.

The modelling analysis indicated that flexibility (the ability to
vary when the heat pump operates with and off-peak period) var-
ies seasonally, with the least temporal flexibility being available

Fig. 15. Hysteresis controller for on/off flux control period.

Fig. 16. Comparison of calibration results for the multiple linear regression and

Gaussian process regression models.

Fig. 17. Illustration of ‘‘flexibility” in heat pump operation.
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when the load is at its highest such as January and December. This
was due to the heating load being such that heat pump needed to
be active for all or the majority of off peak hours. Flexibility was
also low in July as the heat pump was hardly used.

4. Conclusions

A full scale demonstrator for thermal load shifting in a low car-
bon house has been established at BRE’s Innovation Park near Glas-
gow. The house features an exhaust air heat pump and under floor
heating.

The house thermal characteristics were tested and a calibrated
building simulation model developed, this was used to identify the
parameters for a load shift equation. This equation estimated the
day-ahead heating charge required to maintain comfort conditions
(18–21 �C) based on the next day’s forecast average temperature
and solar radiation levels. This was implemented in a load shift
controller system that operated the heat pump in the real test
house.

The algorithm was initially tested using simulation, indicating
that load shifting would not have a serious impact on thermal com-

fort, with conditions maintained between 18 and 21 �C for 84% of
the time for the period 07:00–22:00 h.

The load shifting system was then implemented and tested in
the house during September 2015 with results from the tests indi-
cating that load shifting of the full space heating charge to off-
peak-periods (00:00–07:00) was feasible for the test house with-
out any substantial impact on thermal comfort during nominal
occupied periods, with temperatures generally remaining between
19 �C and 23 �C. Peak temperatures were below 25 �C. However,
significant solar gains occasionally pushed the upper floor temper-
ature above 23 �C; as the heating charge had already been deliv-
ered to the floor slab, the system was unable to respond to this
disturbance. Performance during the measured period was actually
better than that suggested by simulation, with temperatures
between 18 and 23 �C (0700–2200) for 87% of the time.

As the building was unoccupied during the tests, the impact of
occupation was not accounted for – this would include heat gains
from occupants and disturbances due to opening and closing exter-
nal doors and windows. However, the same combination of mod-
elling and testing could be used to develop new controller
parameters and verify the efficacy of control in an occupied
dwelling.

Despite comfortable conditions being maintained during load
shifting, the measured energy performance of the house’s exhaust
air heat pump proved to be extremely poor. Analysis of the current
drawn by the unit showed that the demand during off peak heating
periods was approximately 5 kW; this indicated that almost all of
the heat was supplied to the house was by the unit’s auxiliary
immersion heater (COP 1.0) rather than the heat pump itself,
which has a nominal COP of 3. Subsequent investigation revealed
that the compressor rarely switched on due to a low return water
temperature alarm; something that is unavoidable with intermit-
tent off-peak operation. It is unclear whether this problem is
intrinsic to the design of the heat pump, or whether the control
settings of the unit were poorly set during commissioning.

An enhanced load shift equation and calibration approach were
developed to improve the day ahead energy predictions based on
data collected from the monitoring equipment deployed in the test
house.

Finally, a method for determining the amount of flexibility
available on load-shifting was demonstrated using simulation,
indicating that the ability to move a heating charge within a
defined off-peak heating window diminished with increasing heat-
ing load for a fixed capacity heating system.

5. Limitations and future work

There are a number of areas where the work reported here
could be further refined.

Subsequent field trials could analyse the operation of the
enhanced load-shift controller and the flexible load-shifting algo-
rithm in the test house to quantify any advantage over the original
load-shift controller used in the field trials in this work.

The house was unoccupied during the controller test, so the
impact of heat gains from occupants and occupant activity on the
performance of the load-shifting algorithm could not be assessed;
further research would require tests on an occupied house or at
least include simulated occupancy.

The heating system tested here included under floor heating,
which supports extensive time shifting of the thermal load. How-
ever, such underfloor heating is really only an option for load shift-
ing in new housing. Experiments with the heat pump buffered
using a storage tank would provide valuable insight into the per-
formance and limits of load shifting when retrofitted into older
house types.

Fig. 18. Daily number of hours of load-shift flexibility.

Fig. 19. Monthly cumulative number of hours of load-shift flexibility.
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The heat pump system control was limited to on and off switch-
ing. Future heat pump systems will feature compressors that can
be modulated; allowing more nuanced manipulation of heat pump
output to be implemented.

The exhaust air heat pump used in these trials was unable to
operate effectively with intermittent operation. A more conven-
tional air source heat pump system using outside air would be rec-
ommended for future trials.

Finally, the work reported here focused on space heating. In an
occupied house the need for hot water heating would also need to
be accommodated by the load shift controller.
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