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Multi-Objective Optimisation of Constellation

Deployment Using Low-Thrust Propulsion

Marilena Di Carlo∗, Lorenzo Ricciardi∗ and Massimiliano Vasile†

Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, UK

This work presents an analysis of the deployment of future constellations using a com-

bination of low-thrust propulsion and natural dynamics. Different strategies to realise the

transfer from the launcher injection orbit to the constellation operational orbit are investi-

gated. The deployment of the constellation is formulated as a multi-objective optimisation

problem that aims at minimising the maximum transfer ∆V , the launch cost and maximise

at the same time the pay-off given by the service provided by the constellation. The paper

will consider the case of a typical constellation with 27 satellites in Medium Earth Orbit

and the use of only two launchers, one of which can carry a single satellite. It will be

demonstrated that some strategies and deployment sequences are dominant and provide

the best trade-off between peak transfer ∆V and monetary pay-off.

Nomenclature

a Semimajor axis
i Inclination
Ω Right ascension of the ascending node
µ Earth’s gravitational parameter
R⊕ Earth’s radius
J2 Second zonal harmonic of the Earth’s gravitational potential
f Acceleration of the low-thrust engine
β Elevation angle of the low-thrust vector
α Semi-amplitude of the thrust arcs
ToF Time of flight
∆V Variation of velocity required for the transfer

I. Introduction

Satellite constellations are used for a wide range of applications and are deployed in different orbital
regime around the Earth, according to their purpose. Navigation systems such as the Global Positioning
System (GPS), the Russian Glonass and the Chinese BiDou are based on satellite constellations in Medium
Earth Orbit (MEO). The European Space Agency is currently launching its own navigation system, Galileo,
in MEO. Telecommunication services are provided by constellations in Low Earth Orbit (LEO) such as Glob-
alstar and Iridium. Constellations are present in Sun-Synchronous Orbits for Earth Observation purposes
(A-Train) and in Geosynchronous High-Elliptic Orbit (HEO) for communications service to high-latitude
regions (Sirius). More constellation services are going to be launched in the near future: as an example,
OneWeb LLC plans to put 720 small satellites in LEO starting in 2017 to provide broadband services.

This trend demands for an efficient satellite constellation launch and deployment strategy.
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†Professor, Department of Mechanical & Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow,
G1 1XJ, UK.

1 of 16

American Institute of Aeronautics and Astronautics



As the number of satellites in orbit around the Earth increases it is also paramount to devise an appropri-
ate de-orbiting strategy for the spacecraft at the end of the constellation lifetime. The aim is to avoid what
happened on February 10, 2009, when an inactive Russian communications satellite, Cosmos 2251, collided
with one of the satellite of the Iridium constellation, producing almost 2,000 pieces of debris. It is therefore
desirable to equip future constellations with a propulsion system with sufficient propellant to de-orbit at the
end of life or move to a safe graveyard orbit.

In this work, we study the deployment of a constellation using low-thrust propulsion. The interest
is in finding an optimal deployment sequence (which satellite is allocated to which slot), optimal launch
sequence (which satellites are launched with which launcher) and optimal transfer strategy (which low-
thrust trajectory is required to achieve the required slot) that can provide maximum pay-off, minimum
launch cost and minimise the mass of propellant. The first objective defines the monetary gain provided by
the service delivered by the constellation. The earlier the satellites in the constellation start providing their
service the higher is the pay-off is. The last objective, the propellant mass, is dictating the sizing of the
propulsion system and the mass allocated to the deployment sequence.

The deployment sequence is a complex combination problem that is here addressed with a simple de-
terministic greedy incremental algorithm that provides fast, though suboptimal, solutions. A separate com-
biantorial problem, equivalent to a bin packing problem, is solved to identify all the possible launch sequences
assuming only two launchers are available. The solution of this second combinatorial problem provides the
cost of the launch sequence. Finally the transfer strategy is optimised with a memetic evolutionary al-
gorithm, called MACS2 (Multi-Agent Collaborative Search) that maximises the pay-off and minimises the
maximum ∆V of the transfer. The ∆V costs of the transfers are calculated with a set of simple analytical
formulas that accounts for the simultaneous variation of semi-major axis, inclination and right ascension of
the ascending node.

The paper is structured as follows. After defining the target constellation, the paper introduces the
approaches to define the deployment and launch sequences. It will then present the analytical formulas and
the different transfer strategies followed by the multi-objective optimisation of the deployment and transfer
of all the satellite in the constellation. It will be shown that some strategies are dominant and are to be
preferred in the case analysed in this paper.

II. Configuration of the Constellation

The constellation considered in this study is a Walker Delta 56◦:27/3/1 constellation in MEO.1 In the
notation i : t/p/f used to describe Walker Delta constellation, i represents the inclination of the orbit, t the
total number of satellites, p the number of planes and f is the relative spacing between satellites in adjacent
planes. The semimajor axis of the orbits is aMEO = 24200 km and the right ascension of the ascending node
of the three planes are equally spaced of 120 deg. It is assumed that the only perturbation acting on the
satellites is due to the second order zonal harmonic of the geopotential, J2. This perturbation causes the
right ascension of the orbital plane to drift at a rate given by:2

Ω̇ = −3

2
nJ2

(

R⊕

aMEO

)2

cos iMEO (1)

where n =
√

µ/a3MEO is the mean motion of the satellite on its orbit, µ is the Earth’s gravitational
parameter, R⊕ is the Earth radius and J2 = 1.0826 · 10−2 and iMEO = 56 deg.

A graphical representation of the considered constellation is given in Figure 1, where the axis are in
Earth- radii.

III. Deployment Sequence

In this section the method adopted to define the deployment sequence is described. The deployment
sequence allows to define which satellite is allocated to which slot and the order with which these slots
should be filled.

In this paper, the desired coverage strategy is the one that maximises the rate at which the constellation
reaches its fully deployed coverage, i.e. that delays as much as possible eventual partial overlaps of coverage.
To avoid dealing with a rather complex geometric problem involving the intersection of several spherical
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Figure 1. Walker Delta 56◦:27/3/1 constellation.

caps, the problem was tackled using an analogy: each satellite was considered an electrically charged particle
that could be collocated in one of the available slots. By using this analogy, the desired coverage strategy
translates into the strategy that minimises of the integral over time of the energy of the whole system,
assuming that the time interval between the collocation of each subsequent satellite is constant.

A brute force analysis of all the possibilities for 27 satellites would require considering 27! combinations (≈
1028), so in order to solve the problem a greedy tree-search approach was used instead. With this approach,
an initial position for the first satellite was chosen. Then, the integral over time of the energy resulting from
the addition of one satellite was computed for all possible remaining positions, and all combinations with
the same minimum were stored. With this approach, at each stage, a locally optimal choice is made, in
an attempt to find the global optimum. This was repeated, stage by stage, for all promising combinations
until all the satellites were collocated, and was also repeated for every possible choice for the initial satellite.
This greedy approach does not guarantees to find the global optimal solution but provides good solutions
in a reasonable amount of time. Due to the symmetries present in the problem, multiple equivalent optimal
solutions are possible, but only one is considered in the following.

The optimal satellite deployment sequence obtained is shown in Figure 2, where the x axis indicates the
number of the satellite and the y axis the plane (from 1 to 3) of arrival of the satellite.

Satellite number
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Figure 2. Representation of the optimal sequence of satellite deployment.
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IV. Launchers

In this study two European launchers are considered: Vega3 and Ariane 5.4 For each launcher, models
relating payload mass, target inclination and semimajor axis are developed from available data as simple
second order bivariate polynomials. Figures 3 and 4 show the resulting surface for the two launchers.

Figure 3. Relationship between mass and injection
semimajor axis and inclination for Vega

Figure 4. Relationship between mass and injection
semimajor axis and inclination for Ariane

Due to fairing limitations, it is assumed that Vega can carry one satellite in orbit, while Ariane can carry
four satellites of the constellation. With this assumption, and for a constellation of 27 satellites, 7 possible
combinations of Ariane and Vega launches allow the deployment of the entire constellation. The total cost
of the launches differ for the seven possibilities. Assuming a cost per launch of 32 million euros for Vega and
200 million euros for Ariane, the total cost reported in Table 1 can be obtained. The table also reports, for
each combination, the total number of possible launch sequences.

Table 1. Combinations, launch sequences and total cost of Vega and Ariane launches for the deployment of a
constellation of 27 satellites

1 2 3 4 5 6 7

Number Ariane launches 0 1 2 3 4 5 6

Number Vega launches 27 23 19 15 11 7 3

Possible launch sequences 1 24 210 816 1365 792 84

Total cost [M e] 864 936 1008 1080 1152 1224 1296

Table 1 shows that two limit value exist for the cost of the launches. The minimum cost is obtained
when all the launches are realised using Vega (option 1). The maximum cost is obtained when 6 launches
are realised with Ariane and 3 with Vega (option 7). Assuming a rate of one launch per year, option 1 would
require 27 years while option 7 would require 9 years, so there is a clear trade-off between total cost of the
launches and total deployment time (which relates to a reduced pay-off). Due to the very large total number
of possible launch sequences for the 7 deployment strategies (each of which would be followed by the solution
of a bi-objective optimisation problem for the minimisation of the ∆V and the maximisation of pay-off),
only a systematic study of the two limit cases was performed in the rest of the study.

V. Low-Thrust Transfer

The injection of the satellites on their final orbit can be obtained with a direct injection or with an
indirect injection. In the direct injection case the launcher leaves the spacecraft on its final operational
orbit. In the indirect injection case, the launcher leaves the spacecraft on a lower altitude orbit and the
spacecraft moves to the final operation orbit using its propulsion system. In this work the indirect injection
is considered and it is assumed that the spacecraft is equipped with low-thrust engine for the transfer from
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the injection to the final orbit.
Once the launchers leaves the satellite on the injection orbit, the low-thrust engine is operated to obtain

the following variation of the orbital elements:

• ainj → aMEO = ainj +∆a

• iinj → iMEO = iinj +∆i

• Ωinj → ΩMEO = Ωinj +∆Ω

Four possible low-thrust strategies are considered to achieve these variations, simultaneously, in a given
time of flight ToF . These strategies are presented in the following subsections.

A. Strategy 1: ∆ΩJ2 + (∆a,∆i)

In this case the transfer from injection to operational orbit is realised in two phases:

1. During the first phase the spacecraft waits on its initial injection orbit, where the effects of the drift of
Ω due to J2 is higher (Equation 1). The low-thrust engine is off during this phase and the variation of
a and i is zero. The time of flight associated to this phase is identified as ToFS1

1 . The right ascension
at the end of this phase is identified as ΩS1

1f . The variation in time of Ω is:

Ω̇ = −3

2

√
µJ2R

2
⊕ cos iinja

−7/2
inj (2)

so that ToFS1
1 and ΩS1

1f are linked by the following relationship:

ToFS1
1 =

ΩS1
1f − Ωinj

3

2

√
µJ2R2

⊕ cos iinja
−7/2
inj

(3)

2. The second phase is realised switching on the low-thrust engine, during two thrust arcs per revolution.
During this phase the semimajor axis and inclination change from their initial value to their final
values. The variable drift due to J2 is such that at the end of the transfer the right ascension changes
from ΩS1

1f to ΩMEO. The time of flight of the second phase is ToFS1
2 . The simultaneous variation of a

and i in a given time of flight ToFS1
2 can be obtained with two tangential thrust arcs of semi-amplitude

α and elevation angle β, centered at the nodal points of the orbit. β has equal and opposite value on
the two thrust arcs. The relevant equations for this transfer can be obtained from the Gauss equations
for the variation in time of the semimajor axis and inclination of circular orbits with tangential thrust:5

da

dt
=

2a2

h
f cosβ

di

dt
= f

a

h
cosu sinβ

(4)

where h is the angular momentum of the orbit, f is the low-thrust acceleration and u is the argument
of the latitude.

The variation of a and i with the argument of the latitude u of can be expressed as:

da

du
=

da

dt

dt

du
=

2a3

µ
f cosβ

di

du
=

di

dt

dt

du
=

fa2 sinβ cosu

µ

(5)

The mean variation of a over one orbital revolution can be obtained from:

¯(

da

dt

)

=
1

T

[
∫ α

−α

da

du
+

∫ π+α

π−α

da

du

]

(6)
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to obtain:

di

dt
=

2fa sinβ sinα

π
√
µa

(7)

Analogously, for the inclination:

di

dt
=

2fa sinβ sinα

π
√
µa

(8)

In order for a and i to reach the final value simultaneously, the following equation is integrated from
ainj to aMEO and from iinj to iMEO:

da

di
=

2aα cosβ

sinα sinβ
(9)

This results in:

tanβ =
2α (iMEO − iinj)

sinα log(aMEO/ainj)
(10)

The time of flight of the transfer can be expressed as a function of α and the initial and final orbital
elements as:

ToFS1
2 =

π

2fα

(
√

µ

ainj
−
√

µ

aMEO

)

√

1 +
4α2 (iMEO − iinj)

2

sin2 α log2(aMEO/ainj)
(11)

By using the equation above it is possible to find α and therefore β that allow to realise a variation of
a and i in a given time of flight. The cost of the transfer can be computed analytically from:

∆V =
1

cosβ

(
√

µ

ainj
−
√

µ

aMEO

)

(12)

During the variation of a and i the right ascension changes due to J2 and the variation of a and i with
time. The value of Ω at the end of the second phase can be expressed as:

ΩS1
2f = ΩS1

1f +
k1

1 + k22
k3 (13)

where

k1 = − 3πµJ2R
2

4a4injf sinβ sinα
exp

[

4 log(aMEO/ainj)iinj
(iMEO − iinj)

]

k2 =
4 log(aMEO/ainj)

(iMEO − iinj)

k3 = exp(k2iMEO)(k2 cos iMEO + sin iMEO)− exp(k2iinj)(k2 cos iinj + sin iinj)

(14)

It has to be noted that Equations 14 become singular when (iMEO − iinj) is small. In the case
iMEO = iinj an alternative non-singular formulation is available, but it is not presented here because
the case iinj = iMEO is not considered in this work.
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If the combined transfer ∆ΩJ2 + (∆a,∆i) has to be realised in a total time of flight ToFtot, the values
of ToFS1

1 and ToFS1
2 can be computed solving the system of equations given by ΩS1

2f = ΩMEO and:

ToFS1
1 + ToFS2

1 = ToFtot (15)

and using Equations 3 and 13. The possibility of realising the transfer by applying first (∆a,∆i) and then
∆ΩJ2 is not considered since the variation of Ω with J2 at high values of a, such as aMEO, is limited
(Equation 1). Figure 5 shows an example of transfer realised using this strategy, with time of flight of 550
days and low-thrust acceleration equal to 1.205 · 10−4m/s2. The variation of semimajor axis is from 10000
to 24200 km, the inclination changes from 51 to 56 deg and the right ascension changes from 0 deg to 150
deg. The relevant parameter of the low-thrust control are α = 49.13 deg and β = 12.62 deg. The cost of the
transfer is ∆V = 2.31 km/s.

Figure 5. Variation of a, i and Ω during low-thrust transfer with strategy 1.

B. Strategy 2: (∆a,∆i) + ∆Ωβ

In the second considered low-thrust strategy the transfer from injection to operational orbit is realised in
two phases:

1. During the first phase a and i are changed from their initial values ainj and iinj to their final values
in MEO using the same method used in phase 2 of Strategy 1, with low-thrust applied on two thrust
arcs of semi-amplitude α1. This variation takes place in a time of flight ToFS2

1 . The right ascension
at the end of the first phase is computed from Equation 13 as:

ΩS2
1f = Ωinj +

k1
1 + k22

k3 (16)

2. During the second phase Ω is changed using the low-thrust engine and out-of-plane thrust, with two
thrust arcs of semi-amplitude α2 and elevation angle β = 90 deg applied at the apsidal points of the
orbit.

Using the Gauss equation for Ω, the variation of Ω with time is given by:

dΩ

dt
= f

a sinu sinβ

h sin i
(17)

The corresponding variation of Ω with the argument of the latitude is:

dΩ

du
=

fa2 sinu

sin i
(18)

The mean variation of Ω during one orbital revolution, due to both the out-of-plane thrust and J2, is:

dΩ

dt
=

2f sinα2

π sin i

√

µ

a
− 3

2

√
µJ2R

2
⊕ cos ia−7/2 (19)
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If the variation of Ω has to be realised in a time of flight ToFS2
2 , the semi-amplitude of the thrust arcs

can be computed from:

sinα2 =

ΩMEO−Ω
S2

1f

ToFS2

2

+ 3

2

√
µJ2R

2
⊕ cos iMEOa

−7/2
MEO

2f
π sin iMEO

√

µ
aMEO

(20)

The cost associated to the variation of Ω can be computed analytically from:

∆V = sin iMEO

√

µ

aMEO

α

sinα
(ΩMEO − ΩS2

1f ) (21)

When the combined transfer (∆a,∆i) + ∆Ωβ has to be realised in a total time of flight ToFtot, the
equations defined above, together with ToFS1

1 + ToFS2
1 = ToFtot, do not provide a sufficient number of

equations to solve the system and to find α1 and α2. It is possible however to define different arbitrary
values of ToFS2

1 < ToFtot and compute the corresponding values of α1, α2 and ToFS2
2 . In particular, it is

possible to find a ToFS1
1 such that the ∆V of the transfer is the minimum possible value.

The possibility of realising the transfer by applying first ∆Ωβ and then (∆a,∆i) is not considered since
the variation of Ω with J2 at low altitude is higher than the variation of Ω obtainable with the low-thrust
engine.

An example of transfer realised with this strategy is shown in Figure 6. The initial and final orbital
elements are those used for the previous example . The transfer is realised with ∆V = 2.3045 km/s and the
parameter of the low-thrust control are α1 = 32.70 deg, β = 11.78 deg and α2 = 21.77 deg.

Figure 6. Variation of a, i and Ω during low-thrust transfer with strategy 2.

C. Strategy 3: (∆a,∆Ω)NoWait + ∆i

The low-thrust transfer using strategy 3 is realised in two phases:

1. During the first phase a tangential thrust with β = 0 is used to increase the semimajor axis from ainj
to aMEO. The engine is on during two thrust arcs per revolution, of semi-amplitude α1.

The time of flight is given by:

ToFS1
1 =

π

2fα1

(
√

µ

ainj
−
√

µ

aMEO

)

(22)

The cost of this phase can be computed analytically from:

∆V =

√

µ

ainj
−
√

µ

aMEO
(23)
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The right ascension at the end of the transfer can be obtained by integrating dΩ/da obtained from the
equations for dΩ/dt and da/dt. This results in:

ΩS3
1f = Ωinj +

3

32

µJ2R
2
⊕ cos iinj

fα1

(

1

a4MEO

− 1

a4inj

)

(24)

2. During the second phase the thrust is applied during two thrust arcs per revolution, of semi-amplitude
α2, with elevation β = 90 deg, to change the inclination from iinj to iMEO.

The time required can be computed from:

ToFS2
2 =

iMEO − iinj
2f
π

√

µ
a sinα2

(25)

The cost of this phase is:

∆V =
α2

sinα2

√

µ

aMEO
(iMEO − iinj) (26)

The variation of right ascension during this phase can be obtained from Equation 13 and subsection
A, as particular case in which the variation of semimajor axis is zero:

ΩS3
2f = ΩS3

1f +
3

4

πµJ2R
2
⊕

fa4MEO sinα2

(sin iinj − sin iMEO) (27)

The above equations can be used to solve the problem in which the entire transfer has to be realised in
a given time of flight. In particular the equations to satisfy are:

ToFS3
1 + ToFS3

2 = ToFtot

ΩS3
2f = ΩMEO

(28)

The possibility of realising the transfer by applying first ∆i and then (∆a,∆Ω) is not considered since
the cost of the variation of i at low altitude is higher.

An example of transfer realised with this strategy is shown in Figure 7. The transfer is realised with
∆V = 2.6201 km/s, α1 = 33.68 deg and α2 = 30.31 deg.

Figure 7. Variation of a, i and Ω during low-thrust transfer with strategy 3.

D. Strategy 4: (∆a,∆Ω)Wait + ∆i

This strategy is analogous to strategy 3 presented above. The difference is in the introduction of a waiting
time TS4

wait, during phase 1, when the engine is off and the drift of Ω due to J2 can be exploited. The first
of Equations 28 is modified as:

TS4
wait + ToFS4

1 + ToFS4
2 = ToFtot (29)
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and Equation 27 is now expressed as:

ΩS4
1f = Ωinj +

3

32

µJ2R
2
⊕ cos iinj

fα1

(

1

a4MEO

− 1

a4inj

)

− Ω̇TS4
wait (30)

In this case, as for strategy 2, the number of relevant equations is not sufficient to solve the problem when
the transfer has to be realised in a total time of flight ToFtot. A value of ToFS4

1 < ToFtot exist however for
which the ∆V of the transfer is minimum.

An example of transfer realised with this strategy is shown in Figure 8. The blue lines represent the
waiting time on the initial orbit. The transfer is realised with ∆V = 2.6104 km/s and α1 = 85.81 deg and
α2 = 8.22 deg.

Figure 8. Variation of a, i and Ω during low-thrust transfer with strategy 4.

E. Low-thrust strategies comparison

Figure 9 shows the ∆V required to realise the transfer defined in the previous example, for different values
of the times of flight and using the four strategies defined in the previous subsection. For strategies 2 and
4, where a unique solution does not exist, the plotted solutions are the ones corresponding to the values of
ToF1 and ToF2 providing the lower value of the ∆V for that transfer.

For the multi-objective optimisation of constellation deployment strategy 1 is considered. This gives
lower ∆V than strategy 3 and 4 and, compared to strategy 2, does not require out-of-plane maneuvers to
change the right ascension of the ascending node.

The discontinuity in the curve relative to strategy 1 at ToF of approximately 600 days is due to a jump
of the variation of Ω, during the first phase, from less than 2π to a variation of more than 2π, that is a jump
from |ΩS1

1f −Ωinj | < 2π to |ΩS1
1f −Ωinj | > 2π. This causes the time of flight available for the second phase to

be reduced of an amount equal to 2π/Ω̇, thus increasing the total ∆V . It has to be noted that a variation
of more than 2π during the first phase of strategy 1 might be necessary in order to reach simultaneously the
final orbital elements at the end of the transfer.

VI. Multi-Objective Deployment Optimisation

The objectives of the optimisation of the constellation deployment are the minimisation of the maximum
∆V of all the low-thrust transfer, the maximisation of the profit of the constellation and the minimisation of
the cost of the launches. As regards the cost of the launches, the two extreme cases in Table 1 are considered.
The objectives considered in the following are therefore:

• Minimisation of the maximum ∆V of the low-thrust transfers

• Maximisation of the profit obtained from the deployment of the constellation. Each satellite is assumed
to generate profit from the moment it reaches its final orbit, up to an an end date defined as 5 years
after the last launch. The adimensional profit rate considered in this work is of one unit per day.

The multi-objective problem is solved using the memetic multi-objective optimiser Multi Agent Collab-
orative Search (MACS2).6 Multi-Agent Collaborative Search is a meta-heuristic that combines local and
global search heuristics. A set of agents is endowed with a list of possible actions that can involve other
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Figure 9. ∆V of the low-thrust transfer for different time of flights and low-thrust strategies.

agents or simply collect information on a neighborhood of each agent. In MACS2 the idea of search di-
rections was introduced in the logic of the agents, which could select new candidate solutions according to
either dominance or Tchebycheff scalarisation. All solutions that are non-dominated or satisfy Tchebycheff
scalarisation criterion are stored in a global archive that contains the best approximation of the Pareto front.
Therefore, at each iteration of MACS2, archive maintains the set of locally Pareto optimal solutions, while
the populations of agents explore the parameter space in search for improvements. MACS2 was shown to
be very effective compared to more traditional multi-objective optimisers at providing a good balance of
convergence and spreading of the solutions.

The vector of optimisable parameters, that is handled by MACS2, includes, for each satellite launched:

• Semimajor axis of the injection orbit, ainj

• Inclination of the injection orbit, iinj

• Right ascension of the ascending node of the injection orbit, Ωinj

• Time of flight from the injection to the operational orbit, ToF

When four satellites are launched with Ariane, the time of flights of the four satellites are constrained
such that the sequence of deployment defined in Section III is still satisfied. The final semimajor axis and
inclination of the arrival orbit are aMEO and iMEO. The right ascension of the arrival orbits is computed
from Equation 1, based on the arrival time of the satellite on the selected orbit. The boundaries for the
parameters to optimise are:

6878 km ≤ ainj ≤ 9378 km

0 deg ≤ iinj ≤ 50 deg

0 deg ≤ Ωinj ≤ 360 deg

300 days ≤ ToF ≤ 1500 days

(31)

The selected values of admissible ainj have been chosen in order to avoid regions where the effect of
the drag is not negligible (a < 6878 km) and regions where the drift of Ω due to J2 is not very significant
(a > 9378 km). Likewise the range of inclinations is restricted to exploit natural dynamics for the change of
Ω.

The considered value of the acceleration for the low-thrust transfer is 1.20510−4m/s2.

VII. Results

This section presents the results obtained for the two selected cases in Table 1: maximum launch cost
with minimum launch time, minimum launch cost with maximum launch time.
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A. Maximum launch cost with minimum launch time

Option 7 in Table 1 identifies the solution with minimum launch times (9 years, in the assumption of 1
launch per year) but maximum cost for the launches (1296 million euros). The total cost of the 9 launches is
fixed but different combinations of sequences of Ariane and Vega launches exist for that cost. In particular,
84 possible combinations of launches can be identified; some of these combinations are presented in Table 2,
where V stands for launch with Vega and A for launch with Ariane.

Table 2. Possible combinations of Ariane and Vega launches for solution with deployment of the constellation
in 9 launches

X
X

X
X
X
X
X
X
X
X

Comb.
Launch

1 2 3 4 5 6 7 8 9

1 V V V A A A A A A

2 V V A V A A A A A
...

78 A A A A V A V V A
...

81 A A A A A V V V A

82 A A A A A V V A V

83 A A A A A V A V V

84 A A A A A A V V V

Each combination defined in Table 2 generates a Pareto set in the plane ∆Vmax-Profit. The 84 Pareto
sets obtained are shown in Figure 10, with different color for each combination. A single Pareto set can be
obtained by considering the non-dominated solution of the 84 combinations. This is shown in Figure 11,
along with a number identifying the sequence of Vega and Ariane launchers (Table 2).
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Figure 10. Pareto sets of the 84 combinations of
launches corresponding to option 7 in Table 1.
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Figure 11. Non-dominated solutions resulting from
the combinations of the 84 Pareto sets in Figure 10

Results in Figure 11 show that only four combinations of launches give non-dominated results. These are
combinations 78, 81, 82 and 84. The sequence of launchers for these four cases can be found in Table 2. The
solutions of combination 84 are characterised by higher profit and higher maximum ∆V while the solutions
of combination 78 are characterised by lower profit and lower maximum ∆V .

Details of the two extreme solutions of the Pareto set are presented in Tables 3 and 4. The table shows
the number of the plane where each satellite is launched, the year of the launch, the name of the launcher,
the time of flight and ∆V associated to the low-thrust transfer, the parameters of the injection orbit and
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the right ascension of the final orbit.
The times of flight in Table 3 are averagely higher than the times of flight in Table 4. Higher times of

flight results in lower ∆V but also lower pay-off from the constellation, since the final time of full disposal
of the constellation is shifted in time.

The optimal injection orbits are in both cases characterised by a value of the inclination iinj close to the
upper limit of 50 deg. This is due to the fact that changes of inclination are expensive in term of ∆V and
require long times of flight and are therefore penalised both in term of ∆Vmax and profit.

Table 3. Solution with minimum maximum ∆V and lower profit (combination of launches 78)

Plane ID Year Launcher ToF [days] ∆V [km/s] ainj [km] iinj [deg] Ωinj [deg] ΩMEO [deg]

1 1 Ariane 624.47 2.53 9378.00 49.93 0.00 327.30

3 1 Ariane 625.47 2.54 9378.00 49.93 0.00 207.25

2 1 Ariane 637.20 2.55 9378.00 49.93 0.00 86.63

2 1 Ariane 638.20 2.55 9378.00 49.93 0.00 86.58

2 2 Ariane 519.19 2.55 9378.00 50.00 157.03 73.68

2 2 Ariane 520.19 2.55 9378.00 50.00 157.03 73.63

3 2 Ariane 521.19 2.53 9378.00 50.00 157.03 193.58

3 2 Ariane 522.19 2.53 9378.00 50.00 157.03 193.53

2 3 Ariane 484.95 2.54 9378.00 50.00 0.00 56.35

1 3 Ariane 500.58 2.55 9378.00 50.00 0.00 295.53

1 3 Ariane 501.58 2.55 9378.00 50.00 0.00 295.48

1 3 Ariane 502.58 2.55 9378.00 50.00 0.00 295.43

3 4 Ariane 838.05 2.53 9377.98 50.00 70.56 138.73

2 4 Ariane 839.09 2.53 9377.98 50.00 70.56 18.67

2 4 Ariane 840.09 2.53 9377.98 50.00 70.56 18.62

3 4 Ariane 841.09 2.53 9377.98 50.00 70.56 138.57

2 5 Vega 448.68 2.55 9378.00 50.00 0.00 19.99

2 6 Ariane 655.91 2.54 9378.00 49.92 226.14 350.01

1 6 Ariane 656.91 2.53 9378.00 49.92 226.14 229.96

3 6 Ariane 657.91 2.53 9378.00 49.92 226.14 109.91

1 6 Ariane 658.91 2.53 9378.00 49.92 226.14 229.86

3 7 Vega 412.90 2.55 9378.00 50.00 21.06 103.61

1 8 Vega 579.87 2.55 9378.00 49.99 7.71 195.74

1 9 Ariane 677.39 2.53 9374.53 49.96 199.03 171.50

3 9 Ariane 678.40 2.53 9374.53 49.96 199.03 51.45

1 9 Ariane 679.40 2.53 9374.53 49.96 199.03 171.40

3 9 Ariane 680.40 2.53 9374.53 49.96 199.03 51.35

B. Minimum launch cost with maximum launch time

Option 1 in Table 1 identifies the solution with maximum launch times (27 years, under the assumption of
1 launch per year) but minimum total cost for the launches (864 million euros).

In this case only one combination exist for the 27 launches with Vega. The resulting Pareto front is
shown in Figure 12.

The higher profit with respect to the case of maximum launch cost and minimum launch time is due to
the fact that the profit is computed based on the time required for the full deployment of the constellation.
In this case the deployment takes 27 years, plus the time of flight of the last satellite, while it was 9 years
in the previous case. Table 5 shows details of the solution with higher maximum ∆V and higher profit.
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Table 4. Solution with higher maximum ∆V and higher profit (combination of launches 84)

Plane ID Year Launcher ToF [days] ∆V [km/s] ainj [km] iinj [deg] Ωinj [deg] ΩMEO [deg]

1 1 Ariane 434.47 2.87 8623.69 50.00 146.72 337.25

3 1 Ariane 435.47 2.82 8623.69 50.00 146.72 217.19

2 1 Ariane 436.47 2.83 8623.69 50.00 146.72 97.14

2 1 Ariane 437.47 2.83 8623.69 50.00 146.72 97.09

2 2 Ariane 405.06 2.85 8719.53 49.68 177.65 79.66

2 2 Ariane 406.06 2.85 8719.53 49.68 177.65 79.61

3 2 Ariane 407.06 2.80 8719.53 49.68 177.65 199.56

3 2 Ariane 408.06 2.80 8719.53 49.68 177.65 199.50

2 3 Ariane 452.77 2.84 8594.14 50.00 92.03 58.03

1 3 Ariane 453.77 2.86 8594.14 50.00 92.03 297.98

1 3 Ariane 454.77 2.86 8594.14 50.00 92.03 297.93

1 3 Ariane 455.77 2.86 8594.14 50.00 92.03 297.88

3 4 Ariane 420.57 2.83 8685.03 49.46 178.91 160.59

2 4 Ariane 421.57 2.88 8685.03 49.46 178.91 40.54

2 4 Ariane 422.57 2.87 8685.03 49.46 178.91 40.49

3 4 Ariane 423.57 2.82 8685.03 49.46 178.91 160.44

2 5 Ariane 501.19 2.84 9294.10 46.04 221.98 17.24

2 5 Ariane 502.19 2.84 9294.10 46.04 221.98 17.19

1 5 Ariane 503.19 2.69 9294.10 46.04 221.98 257.14

3 5 Ariane 504.19 2.73 9294.10 46.04 221.98 137.09

1 6 Ariane 388.98 2.82 8666.91 49.99 189.51 243.99

3 6 Ariane 389.98 2.86 8666.91 49.99 189.51 123.94

1 6 Ariane 390.98 2.81 8666.91 49.99 189.51 243.89

1 6 Ariane 391.98 2.81 8666.91 49.99 189.51 243.83

3 7 Vega 363.79 2.83 8728.84 49.95 104.34 106.18

1 8 Vega 362.44 2.88 8821.09 48.11 186.58 207.13

3 9 Vega 333.83 2.84 8787.84 49.48 10.25 69.50

The higher values of ∆V are due to the limited launch capabilities of Vega with respect to Ariane. The
inclination of the injection orbit is indeed lower than in Table 3 and 4.

VIII. Conclusions

The paper presented the study of the deployment of a constellation of 27 satellites on 3 planes in MEO
using low-thrust propulsion and two possible launchers, Ariane and Vega. A sub-optimal but effective
sequence was defined for the launches of the satellite, to allocate each satellite to a specific slot of the
constellation. Two launch options (maximum launch time with minimum launch cost and minimum launch
time with maximum launch cost) were studied. The transfer from injection to operation orbit was realised
with low-thrust trajectories that exploit the natural perturbations due to the Earth’s gravitational potential.
Pareto sets were generated to show the relationship between the pay-off of the constellation and the the mass
of propellant required for the most expensive low-thrust transfer from injection to operational orbit. Results
showed that only four combinations of sequence of launches constitute the points of the non-dominated
Pareto set for the case of minimum launch time with maximum launch cost. In this case the launch of
the constellation can be realised in 9 years, with increase in the pay-off that could be obtained with small
variations of the maximum ∆V . The extreme case of maximum launch time (27 years) with minimum launch
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Figure 12. Pareto set corresponding to option 1 in Table 1.

cost was also studied. In this case the sequence of launches is fixed and only one Pareto set exists.
Future study will consider the possibility of realising the low-thrust transfer with an out-of-plane manuever

to change the right ascension of the orbit and will extend the study to all the possible range of costs of the
launches options.
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Table 5. Solution with higher maximum ∆V and higher profit for launches with Vega only

Plane ID Year Launcher ToF [days] ∆V [km/s] ainj [km] iinj [deg] Ωinj [deg] ΩMEO [deg]

1 1 Vega 479.96 4.10 8056.69 35.19 202.69 334.87

3 2 Vega 538.48 5.10 7674.50 27.23 158.37 192.67

2 3 Vega 434.60 4.21 7922.37 35.85 196.60 58.99

2 4 Vega 534.96 4.49 8091.04 33.18 118.76 34.60

2 5 Vega 461.75 3.75 8338.37 38.84 245.55 19.31

2 6 Vega 623.39 4.79 8101.14 26.79 149.88 351.72

3 7 Vega 618.04 4.95 8154.60 26.34 254.89 92.87

3 8 Vega 592.09 5.16 8139.59 26.36 190.83 75.10

2 9 Vega 551.55 4.65 8116.09 28.58 247.00 298.09

1 10 Vega 562.23 4.84 7893.93 28.91 244.28 158.41

1 11 Vega 505.64 4.95 7458.27 30.74 141.15 142.24

1 12 Vega 385.42 3.59 7822.33 42.63 173.26 129.41

3 13 Vega 515.57 4.81 8554.87 28.90 192.58 343.47

2 14 Vega 462.22 4.01 8039.53 37.85 121.40 207.13

2 15 Vega 509.53 4.88 8045.47 29.79 103.71 185.53

3 16 Vega 556.41 4.12 8920.56 29.71 106.02 283.95

2 17 Vega 573.93 4.95 8221.12 26.17 127.12 143.90

2 18 Vega 576.23 4.85 8092.05 28.47 224.02 124.65

1 19 Vega 471.27 4.57 8154.85 32.28 176.69 351.02

3 20 Vega 550.67 4.70 8592.51 29.14 156.64 207.74

1 21 Vega 551.40 4.94 8370.21 25.38 160.31 308.57

3 22 Vega 639.89 4.83 8471.34 24.20 208.49 164.81

1 23 Vega 573.90 4.95 7973.60 25.48 207.63 269.14

1 24 Vega 508.33 4.31 8094.43 32.24 134.14 253.44

3 25 Vega 609.78 5.36 8417.44 22.98 132.38 109.00

1 26 Vega 557.36 4.83 8334.08 28.74 221.32 212.62

3 27 Vega 426.53 4.04 8274.67 36.45 177.77 80.34
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