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Multi-Objective Optimal Control of Ascent

Trajectories for Launch Vehicles

Lorenzo A. Ricciardi∗, Massimiliano Vasile†, Federico Toso‡, and Christie Alisa Maddock§

Aerospace Centre of Excellence, Department of Mechanical & Aerospace Engineering

University of Strathclyde, Glasgow G1 1XJ, United Kingdom

This paper presents a novel approach to the solution of multi-objective optimal control
problems. The proposed solution strategy is based on the integration of the Direct Finite
Elements Transcription method, to transcribe dynamics and objectives, with a memetic
strategy called Multi Agent Collaborative Search (MACS). The original multi-objective
optimal control problem is reformulated as a bi-level nonlinear programming problem. In
the outer level, handled by MACS, trial control vectors are generated and passed to the
inner level, which enforces the solution feasibility. Solutions are then returned to the outer
level to evaluate the feasibility of the corresponding objective functions, adding a penalty
value in the case of infeasibility. An optional single level refinement is added to improve
the ability of the scheme to converge to the Pareto front. The capabilities of the proposed
approach will be demonstrated on the multi-objective optimisation of ascent trajectories
of launch vehicles.

Nomenclature

α Angle of attack, rad
ψ Boundary constraints
χ Flight heading angle, rad
δT Throttle
γ Flight path angle, rad
λ Latitude, rad N
g Algebraic constraints
u Control vector
x State vector
µ Bank angle, rad
ωE Rotational velocity of Earth, rad/s
ρ Atmospheric density, kg/m3

θ Longitude, rad E
Ae Exit area of rocket nozzle, m2

Cd Coefficient of drag
CL Coefficient of lift
D Drag force, N
g, g0 Gravitational acceleration, m/s2

h Altitude above Earth surface, m
Isp Specific impulse, s
J, J Objective function(s)
L Lift force, N
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m Mass (of the vehicle), kg
mp Mass of on-board propellant, kg
RE Mean radius of Earth, km
Sref Aerodynamic reference area, m2

T Propulsive thrust, N
t Time, s
v Velocity, m/s

I. Introduction

M
ulti-objective optimal control problems arise when one seeks a control program that is optimal
with respect to multiple conflicting objectives. As such, any multi-objective approach should return

many different solutions, each one consisting of a different trade-off between the different objectives. Only
a limited number of methods exist to solve multi-objective optimal control problems. Coverstone-Carroll
et al.1 combined a genetic algorithm and an indirect approach to optimal control problems in a dual
loop algorithm. In the outer loop, NSGAII generates vectors of co-states and other static optimisation
parameters. For each set, the inner loop solves a single objective optimal control problem, minimising only
one of the objectives. Ober-Blobaum et al.2 used a direct transcription approach coupled with an approach
that scalarised the multi-objective vector along directions pointing at predefined unreachable points in the
criteria space. Each scalar problem was then solved with a standard NLP solver. Kaya & Maurer3 proposed
a similar approach but used a smoothed version of Tchebycheff scalarisation to scalarise the multi-objective
optimisation (MOO) problem. Englander & Vavrina4 proposed a dual loop algorithm in which the outer
loop solved a multi-objective problem handling a set of categorical variables, and the inner loop solved a
set of constrained optimal control problems using Monotonic Basin Hopping, solving for only one of the
objectives.

This paper proposes a direct method based on the Direct Finite Elements in Time5 (DFET) transcription
and the Multi Agent Collaborative Search6 (MACS) multi-objective optimisation algorithm. In DFET, the
time domain is divided into a given number of segments, or elements, and the states and controls are
approximated as arbitrary order polynomials on a spectral basis. DFET was successfully used to solve many
difficult trajectory optimisation problems,7–9 and is a very robust transcription method with many interesting
characteristics. As pointed out by Bottasso et al.,10 if used for forward time integration it is equivalent to
some classes of implicit Runge-Kutta integration schemes. Moreover it can be extended to an arbitrary
high order and supports full h-p adaptivity. MACS is a memetic evolutionary multi-objective optimisation
algorithm in which a population of agents is initially seeded in the search space with a Latin Hypercube
sampling. All agents can perform a set of individual actions to explore their neighborhood and improve their
position. Non-dominated solutions are saved to an external archive. Some agents can, afterwards, perform
social actions, exploiting the information coming from the archive or from other agents to simultaneously
advance towards the Pareto front. Individual and social actions are repeated until a maximum number of
function evaluations is reached. A special archiving strategy ensures a good distribution of points across the
Pareto front.

In order to demonstrate its applicability, the proposed approach is tested on two test cases optimising
the ascent trajectory of a launch vehicle. It is interesting to note that although much research has been
dedicated to the optimisation of rocket ascent trajectories (with the seminal work of Goddard11 dating back
almost a century), most of that effort has been dedicated to include more sophisticated physics12–15 but little
has been done on multi-objective optimal control. The only relevant work found was carried out by Pagano
et al.16 In it rather detailed models were included, but the shape of the control law was defined a priori and
only some of the parameters describing this shape were optimised. Moreover, only one cost function, the
mass of the payload, was maximised. The other objectives were the violations of the constraints.

The paper is structured with the Section II explaining the theory and details of the specific approach,
including the transcription through DFET and the multi-objective optimisation strategy based on MACS,
while Section III the bi-level NLP problem formulation. Section IV details the models and configuration
parameters for the two test cases on the ascent trajectory optimisation of rocket-based launch vehicles.
Section V shows the results and discussion, followed by a short conclusion.
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II. Direct Transcription of Multi-Objective Optimal Control Problems

II.A. Problem Formulation

Multi-objective optimal control problems can be formulated as:

min
u∈U

J = [J1, J2, ..., Ji..., Jm]T

s.t.

ẋ = F(x,u, t)

g(x,u, t) ≥ 0

ψ(x0,xf , t0, tf ) ≥ 0

t ∈ [t0, tf ]

(1)

where J is a vector of objectives Ji that are functions of the state vector x : [t0, tf ] → R
n, control variable

u ∈ L∞ and time t. The functions x belong to the Sobolev space W 1,∞ while the objective functions
are Ji : Rn+2 × R

p × [t0, tf ] −→ R. The objective vector is subject to a set of dynamic constraints with
F : Rn × R

p × [t0, tf ] −→ R
n, algebraic constraints g : Rn × R

p × [t0, tf ] −→ R
s, and boundary conditions

ψ : R2n+2 −→ R
q. Note that the problem in Eq. (1) generally is non-smooth and can include a number of

additional static parameters.

II.B. Problem Transcription

Problem (1) is transcribed into a multi-objective, non-linear programming problem via DFET.5 DFET was
initially proposed by Vasile7 in 2000 and uses finite elements in time on spectral bases to transcribe the
differential equations into a set of algebraic equations. Finite Elements in Time (FET) for the indirect
solution of optimal control problems were initially proposed by Hodges et al.,17 and during the late 1990s
evolved to the discontinuous version. As pointed out by Bottasso et al.,10 FET for the forward integration of
ordinary differential equations are equivalent to some classes of implicit Runge-Kutta integration schemes,
can be extended to arbitrary high-order, are very robust and allow full h-p adaptivity. In the past decade,
direct transcription with FET on spectral bases has been successfully used to solve a range of difficult
problems: from the design of low-thrust multi-gravity assist trajectories to Mercury8 and to the Sun,9 to the
design of weak stabiilty boundary transfers to the Moon, low-thrust transfers in the restricted three body
problem and optimal landing trajectories to the Moon.7

For each individual cost function consider the following Bolza’s problem:

min
u∈U

Ji = αiφi(x0,xf , t0, tf ) + βi

∫ tf

t0

Li(x,u, t)dt (2)

where αi and βi are positive weights. In multi-objective optimisation this formulation corresponds to a
weighted sum scalarisation, which is known to be unable to represent points on non-convex regions of the
Pareto front. To avoid this problem, this paper only considers cases with (αi = 1, βi = 0) or (αi = 0, βi = 1).
The differential constraints can be recast in weak form and integrated by parts leading to,

∫ tf

t0

ẇTx+wTF(x,u, t)dt−wT
f x

b
f +wT

0 x
b
0 = 0 (3)

where w are the generalised weight functions and xb are the boundary values of the states, that may be
either imposed or free. Let the time domain D be decomposed into N finite elements such that

D =

N
⋃

j=1

Dj(tj−1, tj) (4)
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and parametrise, over each Dj , the states, controls and weight functions as

x(t) =
N

℧
j=1

Xj =
N

℧
j=1

l
∑

s=0

fsj(t)xsj (5a)

u(t) =
N

℧
j=1

Uj =
N

℧
j=1

m
∑

s=0

gsj(t)usj (5b)

w(t) =
N

℧
j=1

Wj =
N

℧
j=1

l+1
∑

s=0

hsj(t)wsj (5c)

where
N

℧
j=1

denotes the juxtaposition of the polynomials defined over each sub-interval, and the functions fsj ,

gsj and hsj are chosen among the space of polynomials of degree l, m and (l+1) respectively. It is practical
to define each Dj over the normalised interval [−1, 1] through the transformation,

τ = 2
t−

tj−tj−1

2

tj − tj−1
(6)

This way it is easy to express the polynomials fsj , gsj and hsj as the Lagrange interpolation on the Gauss
nodes in the normalised interval:

fsj =

l
∏

k=0,k 6=s

τ − τk
τs − τi

(7)

and similarly for gsj and hsj . Different Gauss nodes will lead to schemes with slightly different characteristics.
In this work, Gauss-Lobatto nodes will be used for the generation of the polynomials for states and weight
functions, while Gauss-Legendre nodes will be used for the controls. Substituting the definitions of the
polynomials into the objective functions and integrating with Gauss quadrature formulas leads to,

J̃i = αiφi(X
b
0,X

b
f , t0, tf ) + βi

N
∑

j=1

l+1
∑

k=1

σkLi(Xj(τk),Uj(τk), τk)
∆t

2
(8)

and for the variational constraints leads to the system,

l+1
∑

k=1

σk

[

Ẇj(τk)
TXj(τk) +Wj(τk)

TFj(τk)
∆t

2

]

−WT
p+1X

b
j +WT

1 X
b
j = 0 (9)

where τk and σk are the Gauss nodes and weights, and Fj(τk) is the shorthand notation for F (Xj(τk),Uj(τk), τk).
Gauss-Legendre weights and nodes are used for the numerical quadrature in this work, i.e., the polynomials
generated through the Lagrange interpolation over the Gauss-Legendre or Gauss-Lobatto nodes are evalu-
ated at the Gauss-Legendre nodes over each interval. With DFET, the optimal control problem in Eq. (2)
was transcribed into the non-linear programming (NLP) problem (8), which in compact reads as:

min
p

J̃(xs,p)

s.t.

c(xs,p) ≥ 0

(10)

where the vector xs contains all the nodal values for the states and p = [us,x0,xf , t0, tf ]
T collects all the

static and dynamic control variables.

III. Bi-level Multi-Objective Formulation

Problem (10) is further translated into the following two-level optimisation problem:

min
p∗

J̃(x∗,p∗)

s.t.

(x∗,p∗) = argmin {f(xs,p)|c(xs,p) ≥ 0}

(11)
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Algorithm 1 Outer level - MACS2 with local refinement

1: Initialise control parameters p, search directions λ, iter = 0 and population P0

2: Initialise state vector xs

3: iter ← iter + 1
4: Perform individual actions: evaluate objective vector with Algorithm 2
5: Evaluate dominance and Tchebycheff scalarisation of the population and of the archive
6: Archive the non dominated solutions in Ag

7: p← p∗,xs ← x∗
s, P

∗ ← Piter

8: Perform social actions: evaluate objective vector with Algorithm 2
9: Evaluate dominance and Tchebycheff scalarisation of the population and of the archive

10: Archive the non dominated solutions in Ag

11: p← p∗,xs ← x∗
s, , Piter+1 ← P ∗

12: if fun evals < max fun eval then
13: if mod(iter, freq refinement) == 0 then

14: Perform Pascoletti-Serafini refinement.
15: end if

16: GoTo 3
17: end if

Algorithm 2 Inner level, Bi-level formulation

1: Initialise states and controls with xs and pc from outer level
2: Solve constraint equations and return (x∗,p∗)
3: if (x∗,p∗) feasible then

4: Return (x∗,p∗), J̃(x∗,p∗)
5: else

6: Return (x∗,p∗), J̃ = L+ k ·max |c|
7: end if

and solved with a two level solution algorithm. Problem (11) defines two different optimisation problems at
two different levels. The outer level handles the objective vector J̃ and the control parameter p∗. The inner
level finds the state and control vectors x∗ and p∗ that satisfy the constraints c and minimise an inner cost
function f . In the implementation proposed in this paper the inner function is f = 1, therefore the inner
level is only solving the constraints while the out level only handles the minimisation of the objective vector.

III.A. Solution Approach

The overall solution strategy to solve Problem (11) is summarised in Algorithms 1 and 2. MACS generates
trial static and dynamic control parameters pc with a set of individual and social actions (Lines 4 and 8 in
Algorithm 1). For each trial vector Algorithm 2 is invoked to attempt a solution of the constraint functions c.
If the candidate vector pc converges to a feasible solution (x∗,p∗), the inner level returns the corresponding
values J̃(x∗,p∗) for the objective functions, together with the feasible vector (x∗,p∗). If the inner level does
not lead to a convergence, a penalty vector is returned to the outer level together with the solution vector
(x∗,p∗) at the last iteration of the NLP. The penalty solution returned is a vector L large enough that any
non feasible solution will surely be worse than the objective function of any feasible solution. This value is
further penalised by a constant vector k, multiplying the feasibility value at the last iteration returned by
the local optimiser. After a candidate set of solutions is generated with the individual actions, the global
archive Ag is updated with the non-dominated solutions. The same happens after the social actions have
generated a further set of candidate solutions. For more details on the archiving strategy and the generation
of individual and social actions, the interested reader can refer to Ricciardi and Vasile 2015.6

If all the solutions are infeasible the objective vector contains the constraint violation and a pure feasibility
problem is solved until an initial set of feasible solutions is available. As an additional step to refine the
solution and guarantee local optimality, every fixed number of iterations and at the last one, a set of a single
objective problems arising from the Pascoletti-Serafini scalarisation of Problem (10) will be solved with a
gradient based approach.
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III.A.1. Pascoletti-Serafini refinement

The refinement of the solution requires the reformulation of problem (10) in a scalar form. Here we propose
the use of a normalised version of the Pascoletti-Serafini scalarisation, also known as goal attainment method.
Using the Pascoletti-Serafini scalarisation, for each agent, Eq. (10) is transcribed into:

min
α>0

α

s.t.

λijϑij(x,p) ≤ α i = 1, ..,m

c(x,p) ≥ 0

(12)

where λj is the vector of Tchebycheff weights associated to agent j, ϑij is the ith component of the rescaled
objective vector of the jth agent and α is a slack variable. This reformulation of the problem is constraining
the agent’s the move, in criteria space, within the descent cone defined by the point αdj + ζj along the
direction dj = (1/λ1j , ..., 1/λij , ..., 1/λmj). The rescaled objective vector is

ϑij(x,p) =
J̃ij(x,p)− z̃i

z∗ij − z̃i
i = 1, ..,m (13)

where z∗j is equal to J̃j(x,p
c) and (x,pc) is the initial guess for the solution of (12). This way the components

of ϑj(x,p) have value 1 at the beginning of the local search and if the agent converges to the utopia point z̃,
the components of ϑj(x,p) become all equal to 0. The choice of λj and z̃ will be discussed in the following
subsection. From the normalisation one can derive the components of the vector ζj :

ζij =
zi

z∗ij − z̃i
i = 1, ..,m (14)

The presence of the rescaling of the objectives, together with the choice of λj and z̃j , are the elements
that distinguish the proposed approach from the one given in.3 Note that solving problem (12) already
provides a non-dominated solution that can be potentially inserted in Ag and used to update Pk. Note that
the size of the neighbourhood Bj is given by the parameter ρj . The point (x,pc) is taken at random in Bj

if (x,p)j did not change from the previous iteration, otherwise (x,pc) = (x,p)j . If the local search returns
an infeasible solution a penalty value L plus k times the violation of the constraints is assigned to all cost
functions.

III.A.2. Selection of λ and z̃

In Kaya & Maurer,3 the MOOCP was tackled by first solving each of the two individual objectives and
then choosing a set of evenly spaced weights, obtaining a set of directions d. This approach has a two main
limitations: first, since only a local strategy was employed, there is the possibility that the extreme values of
the Pareto front generated are on a local Pareto front. Second, that the approach is not easy to generalise for
more than two objectives: as already stated by its authors regarding the extension to the three objective case
that ”it is well known that the boundary of the Pareto front may very well lie outside the triangle formed by
the three points”.3 The proposed approach instead consists in assigning vector λi = (0, 0, i, .., 0, 0) to agents

solving subproblem i and vector λj = (1,1,1,··· ,1)
‖(1,1,1,··· ,1)‖ to all the other agents. The modified utopia point z̃ is

given by
z̃ = 2z− z∗A (15)

where z and z∗A are respectively the utopia and nadir points of the current approximation to the Pareto
front that is contained in the archive Ag.

IV. Case Studies

The multi-objective optimisation approach was applied to two case studies: a modified Goddard rocket
problem and the upper, rocket-based ascent of a spaceplane to a low Earth orbit. The following section
describes the system models used for the trajectory dynamics and control, including vehicle aerodynamics
and propulsion models.
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IV.A. Case study 1: Modified Goddard Rocket Problem

A multi-objective extension of the Goddard Rocket Problem was already presented in.18 In this work we
extend the physical model to include aerodynamic drag, variation of air density with altitude and variation
of mass due to fuel consumption. The thrusting magnitude is kept constant, but the rocket direction can be
controlled by changing the thrusting angle u. The differential equations of motions are thus:

ẋ = vx (16a)

v̇x =
T cos(u)− 1

2ρ0e
−ySrefCd(v

2
x + v2y)

0.5vx

m
(16b)

ẏ = vy (16c)

v̇y =
T sin(u)− 1

2ρ0e
−ySrefCd(v

2
x + v2y)

0.5vy

m
− g0 (16d)

ṁ = −
T

g0Isp
(16e)

where g0 is the acceleration due to gravity (assumed to be constant), T is the thrust magnitude, ρ0 is the
air density at ground level, Sref is the aerodynamic reference surface area, Cd is the drag coefficient related
to that surface, x and y are the components of the position vector, vx and vy the components of the velocity
vector, m is the current mass of the rocket, Isp is the specific impulse of the rocket and u is the control,
i.e., the thrusting angle. To keep consistency with previous literature models, the values of the constants
are: g0 = 0.0016 and T = 0.004, while for the other parameters the values ρ0 = 0.1, S = 1, Cd = 1 and
Isp = 937.5 were employed.

At the initial time t0 = 0, the launcher is at rest with a prescribed total mass m̄:

x(t0) = 0

vx(t0) = 0

y(t0) = 0

vy(t0) = 0

m(t0) = m̄ = 1

(17)

At the final time tf , the rocket has to be at a prescribed altitude h̄ with zero vertical velocity, irrespective
of the horizontal velocity or position.

y(tf ) = h̄ = 10

vy(tf ) = 0
(18)

The objectives are the minimisation of mission duration and the maximisation of the final horizontal velocity.
As can be seen from Eq. (16e), the fuel consumption rate depends only on thrust magnitude, gravity at sea
level and specific impulse, all of which are constant. The minimisation of mission time for a given initial
mass is therefore equivalent to the the minimisation of total fuel consumption or the maximisation of the
payload at the final time.

min
tf ,u

[J1, J2]
T = [tf , −vx(tf )]

T (19)

IV.B. Case study 2: Spaceplane rocket-based ascent problem

The second case study looks at a more complex problem of the ascent trajectory of a single-stage-to-orbit
spaceplane. The vehicle design employs a hybrid propulsion system that uses an air-breathing engine cycle
for lower atmospheric flight, and switches to a rocket engine cycle at higher altitudes when the atmospheric
density is reduced, meaning a decrease in the lift force, and in the efficiency of the air-breathing engine.
For the test case here, only the rocket-based ascent flight segment is optimised assuming a planar trajectory
contained in the equatorial plane.

The Earth is modelled as a perfect sphere of radius RE = 6378.137 km with rotational velocity ωE =
7.292115× 10−5 rad/s. The gravitational acceleration varies with the altitude h, g = g0R

2
E(h+RE)

−2. The
atmospheric pressure p and density ρ are modelled using the International Standard Atmosphere model. The
dynamic model uses a 3 DOF translational dynamics for a variable-mass point in the rotating Earth-centered
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Earth-fixed (ECEF) reference frame. The forces modelled include gravity, aerodynamic lift and drag, and
propulsive thrust. The equations of motion are given for the translational position r = [h, λ, θ]T and velocity
v = [v, γ, χ]T vectors in spherical coordinates.19

ḣ = ṙ = v sin γ (20a)

λ̇ =
v cos γ sinχ

r
(20b)

θ̇ =
v cos γ cosχ

r cosλ
(20c)

v̇ =
T cos(α)−D

m
− g sin γ + ω2

Er cosλ (sin γ cosλ− cos γ sinχ sinλ) (20d)

γ̇ =
T sin(α) + L

mv
cosµ−

(g

v
−

v

r

)

cos γ + 2ωE cosχ cosλ (20e)

+ ω2
E

( r

v

)

cosλ (sinχ sin γ sinλ+ cos γ cosλ)

χ̇ =
L

mv cos γ
sinµ−

(v

r

)

cos γ cosχ tanλ+ 2ωE (sinχ cosλ tan γ − sinλ) (20f)

− ω2
E

(

r

v cos γ

)

cosλ sin γ cosχ

The control vector is u = [α, µ, δT ]
T which controls the magnitude and direction of the thrust vector,

due to the propulsion system, acting on the centre of mass of the vehicle. The throttle control δT ∈ [0, 1]
dictates the fraction of maximum available thrust applied, which in turn determines the required propellant
mass flow. The vehicle mass is m = m0 +mpayload +mp. As the only time-varying element is the propellant
mass, the time derivative of the vehicle mass is ṁ = −mp.

The propulsion system is a standard rocket engine, with a calculated maximum available thrust at a
given altitude T (h) and a total mass flow rate for the propellants ṁp.

T = δT (Tvac + pAexit) (21a)

ṁp =
δTTvac

g0Isp
(21b)

The configuration used in the test case assumes LOX/LH2 rocket engines with an Isp of 450 s. The fuel
mixture ratio is assumed constant and the two propellants are treated as a single mass flow. The maximum
total thrust in a vacuum is set at Tvac = 4 MN. A penalty proportional to atmospheric pressure p(h) and
nozzle exit area Aexit is added to account for the change in thrust within atmosphere (due to nozzle expansion
under pressure compared to in a vacuum).

The aerodynamic model of the vehicle predicts the total coefficients of lift CL and drag Cd as a function
of the angle of attack α and Mach number M(h, v). Data sets were used to fit a set of polynomial-based
surrogate models for CL and Cd terms, as shown in Fig. 1.

The trajectory segment under test starts from a nominal transition point from air-breathing to rocket
mode, and ascends until the vehicle reaches a 100 km circular, equatorial orbit. As the orbit is planar,
contained within the orbital plane, the out-of-plane control µ = 0. The initial and final boundary conditions
on the problem are therefore,

h(t0) = 28.0 km

λ(t0) = 0◦N

θ(t0) = 0◦E

v(t0) = 1502m/s

γ(t0) = 10◦

χ(t0) = 90◦ (heading due east)

m(t0) = 200000 kg

(22)

h(tf ) = 100 km

v(tf ) = 7381 m/s

γ(tf ) = 0◦
(23)
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Figure 1. Aerodynamic coefficients of lift and drag over the super- and hypersonic regimes.

The objective functions are to maximise the payload mass into orbit by minimising the mass of the
on-board fuel required, and minimising the integral over time of the fourth power of the axial accelerations
experienced by the vehicle. The second objective has been formulated to heavily penalise high values of the
loads while keeping a continuous and differentiable objective function.

min
tf ,u

[J1, J2]
T =

[

−mf ,

∫ tf

t0

(

(T −D) cos(α) + L sin(α)− µ
r2

sin(γ + α)

m

)4

dt

]

(24)

V. Results

For Case Study 1, the problem in Eqs. (16)–(19) was solved using 4 elements of order 6 in the DFET
transcription. The final time is an optimisation variable bounded between 100 s and 250 s. The control
angle is bounded between −π/2 and π/2. In total there are 29 optimisation variables, only one of which,
final time, is static. The problem was solved first with the bi-level approach only, followed by a bi-level
plus an additional single level refinement. For the cheaper bi-level only approach, 30 independent runs were
performed to evaluate the repeatability of the algorithm.

Results for the bi-level approach only are given in Fig. 2 showing the non dominated Pareto front of all 30
independent runs of MACS, and some sample trajectories and control histories. As it can be seen, the current
approach can generate a well spread set of trade-off control laws. The solutions with intermediate time and
final horizontal velocity appear to be rather smooth even if no gradient based technique was employed in
the optimisation. The solution with minimum time appears to be close to an impulsive bang-bang solution,
though a further investigation with h-p adaptivity would be required to understand exactly if that is the
case or not. The solution with maximum time is not well resolved in the first element, indicating that more
function evaluations or better search strategies are needed, and that the solution does not lie on the true
Pareto front. However, the bi-level approach aims at the initial investigation of the trade-off between the
various objectives and the control laws required to achieve those trade-off points. In Case Study 1, the overall
trend of the control laws and how they impact the various objectives is clear: as expected, shorter times
lead to lower final horizontal velocities. Overall, these solutions are very similar to the solutions reported in
Ricciardi et al.,18 where a simpler version of this problem was solved.

Figure 3 shows analogous results for the same problem, but with the additional single level refinement,
which was performed every 20 iterations of MACS. For this refinement, a maximum of 1000 evaluations of
the objectives was allowed. As it is evident, the gradient based single level refinement is able to improve the
quality of the solutions, removing all oscillations from the control laws except for the ones present in the
steep region for point 1. As already pointed out by Vasile and Ricciardi,5,18 h-p refinement is required to
accurately represent that steep variation.

For Case study 2, the problem in Eqs. (20)–(24) was solved using again 4 elements of order 6 in the
DFET transcription. The final time is an optimisation variable bounded between 30 s and 1200 s. The
control angle was bounded between −10◦ and 10◦, while throttle was bounded between 0 and 1. In total
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there are 57 optimisation variables, one of which, final time, is static. The problem was solved directly with
the bi-level plus additional single level refinement with a maximum of 1000 evaluations of the objectives for
each call of fmincon. A comparison with the two single objective optimisations is shown in the results.

Figure 4 shows the Pareto front obtained with 50000 objectives evaluation. The extreme points of the
front (red crosses) are used to perform the comparison with the single objective solutions obtained directly
with fmincon (black stars). As evident from the graph, the multi-objective approach did not converge
to the same value of the single objective for the first objective, indicating that more function evaluations
were needed. On the other hand, the single objective solution of the second problem is dominated by the
Pareto front computed by the multi-objective approach, indicating that the local optimiser stopped at a
local minimum of the function which was not also a global minimum. To overcome this limitation, many
attempts with different initial guesses would be needed, but the global approach here proposed performs
these attempts automatically.

A comparison of some interesting quantities of the solutions of the extreme points of the front and of
the single objective approach is shown in Figure 5. For the maximum payload case, the solution found by
the multi-objective approach has a shorter duration and a slightly lower final mass, but much lower loads
over time. For the minimum loads case, instead, the multi objective approach gives longer times and lower
final mass, but again much lower loads over time. Interestingly, the solution found by the multi-objective
optimiser has a dip in altitude at the beginning of the manoeuvre, which allows the spaceplane to gain
velocity while saving propellant.

VI. Conclusions

This paper described a novel approach to the solution of multi-objective optimal control problems, tran-
scribing the problem using a Direct Finite Elements in Time approach followed by a modified memetic Multi
Agent Collaborative Search optimisation strategy. A bi-level NLP formulation was used, with and without
single-level refinement. Results from two test cases for the ascent trajectory optimisation show the benefits
of this approach: for the modified Goddard rocket problem it found a well defined Pareto front, and the
control laws associated to each solution are also locally optimal. For the spaceplane case it found different
and higher performance solutions with respect to a single objective optimisation, but did not converge to
the same solution found by the pure gradient based single objective approach. Possible explanations for this
could lie in the low number of evaluations of objectives in the single level refinement, or in the insufficient
overall number of function evaluations. Nevertheless it shows a good trade-off between deliverable payload
and maximum axial loads.

An interesting point to note from the first case study is that even though the purely evolutionary bi-level
approach gives lower quality control laws with respect to the combined bi-level and single level refinement,
the Pareto front obtained by the bi-level approach is practically indistinguishable from the one generated by
the combined approach. Possible interesting future research directions could be taken to maximally exploit
the cheaper evolutionary bi-level approach, and call the gradient based approach only when the improvement
of the Pareto front becomes too slow. In addition, it could be interesting to find ways to make the single
level approach computationally cheaper.
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(d) Ground track vs altitude, maximum payload solutions
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(g) Loads vs time, maximum payload solutions
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Figure 5. Comparison of altitude, ground track, mass variation and loads for the two extreme values between single
objective and multi-objective solution
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