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Abstract—In this paper, a pulse-shift technique, which divides
every time slot (or chip) into equal-width sub-chips, is used to
model the effect of fiber temperature fluctuations in incoherent
(asynchronous) optical code-division multiple-access (O-CDMA)
systems. With the advances in all-optical thresholding technology,
power detection of ultrashort optical pulses is possible. This
paper also formulates a new pulse-power-detection model for
incoherent O-CDMA and applies it to the analysis of the pulse-
shift technique. Numerical studies and computer simulations are
presented to validate the new analytical model. Our study shows
that the pulse-power model results in better performance than
the conventional pulse-energy model in incoherent O-CDMA.

Index Terms—optical code division multiple access, optical
fiber communications, temperature fluctuation, time skew

I. INTRODUCTION

O
PTICAL code-division multiple access (O-CDMA) has

recently attracted interests in high-speed fiber-optic sys-

tems and networks because it carries desirable characteristics,

such as dynamic bandwidth assignment, efficient in bursty

traffic, soft limit in the number of subscribers, and gradual

performance degradation as a function of the number of

simultaneous users [1]–[9]. With the advances in technology,

multiuser experimental testbeds operating at 10 Gbit/s have

been demonstrated [10]–[12]. The choice of suitable optical

codes is important in the design of incoherent (or direct-

detection) O-CDMA systems because the codes affect spectral

efficiency, capacity, and the amount of multiple-access interfer-

ence (MAI), which, in turn, determines system performance.
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To minimize the impact of MAI, two-dimensional (2-D)

wavelength-time codes with low cross-correlation functions

(of at most one) have been designed. In addition to code

length and weight, this kind of optical codes allows the number

of wavelengths to be adjustable for performance improve-

ment [1]–[3], [13]–[15]. One good example is the family

of carrier-hopping prime codes (CHPCs) because they have

cross-correlation functions of at most one (for minimal MAI)

and zero autocorrelation sidelobes (for ease of code tracking)

[1]–[3]. Moreover, their algebraic construction algorithm can

easily be modified to generate various families of 2-D codes

with expanded cardinality or different code properties [3], [6].

Recently, the effect of environmental temperature fluc-

tuations to incoherent1 fiber-optic O-CDMA systems was

studied [16]. While fiber temperature fluctuations can cause

broadening and time skew in optical pulses, their influence

is pronounced in 2-D wavelength-time codes because multi-

wavelength pulses in codewords see different amounts of time

skew. Osadola, et al. [16] showed that these two phenomena

distorted the autocorrelation function and worsened the system

performance. Moreover, Lin, et al. [9] found that the cross-

correlation function could also be affected, and this should also

be considered whenever there existed time skews in the mul-

tiwavelength pulses of codewords. To accurately account for

the effect of fiber temperature fluctuations to 2-D wavelength-

time codes, a new analytical model of performance will be

needed. To achieve this goal, the pulse-shift technique in [9]

is modified in this paper by borrowing the concept of chip

granularity. The concept subdivides every time slot (or chip)

in each codeword into sub-chips of equal width. The time

skews in the multiwavelength pulses of codewords can then

be quantified as sub-chip shifts. For the first time, the effect

of fiber temperature fluctuations is modeled as a function of

chip granularity in this paper.

1Traditionally, the term “incoherent” refers to an O-CDMA system that does
not require codewords from simultaneous users to be synchronized in the bit
(or frame) level. Also known as “asynchronous” O-CDMA, this multiaccess
technique doesn’t require users to coordinate their transmissions, and they can
transmit their codewords at any time. For ease of mathematics, most of the
papers in incoherent (asynchronous) O-CDMA assumed that the codewords
were synchronized in the “chip” level [1]–[5]. In the study of the effect of
fiber temperature fluctuations, this paper shows that the amounts of time skew
added to the pulses of codewords can be modeled in the terms of “sub-chip.”
Thus, the proposed pulse-shift technique and the analytical models in this
paper assume that the synchronization requirement is further relaxed to the
“sub-chip” level.

0000–0000 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Due to the response-time and bandwidth limitations of

optoelectronic devices (e.g., photodetectors), the “power” of

optical pulses in the picosecond scale could only be detected

as “energy” over several chips [2]. So, the conventional de-

tection/thresholding process in incoherent O-CDMA receivers

relied on the discrimination of the energy of a narrow auto-

correlation peak against the energy of the accumulated cross-

correlation function (from interfering codewords) spreading

over several chips. Even though the cross-correlation function

is usually low in power, the energy (over several chips) can

occasionally be as large as that of the autocorrelation peak.

As a result, the pulse-energy detection will have a tendency

of wrongly recovering data bits of 0 to 1. On the other

hand, by discriminating the actual power (i.e., height) of the

autocorrelation peak from that of the cross-correlation function

within one chip, pulse-power detection can better measure the

actual impact of MAI and results in more realistic performance

measurement.

With the invention of all-optical thresholders [17]–[20],

pulse-power detection is possible in incoherent (asynchronous)

O-CDMA. Two kinds of all-optical thresholders and their non-

linear characteristics on the performances of ultrashort optical-

pulse communication and spectrally-phase-encoded (SPE) O-

CDMA systems were analytically and statistically studied

[21]–[23]. In these studies, the physical models of these all-

optical thresholders were considered, along with the thermal,

shot, beat, and amplified-spontaneous-emission noises. Statis-

tical models of the probability density functions that tied to

the actual physical devices in use were applied. Moreover,

Zefreh and Salehi [23] included the effect of MAI in a SPE-

OCDMA system in the statistical model. Perfect spectral-

phase-code decoding and code independency were assumed

in order to study the actual effect of all-optical thresholders to

the system performance. This paper has several aspects that

make it different from [21]–[23]. No perfect decoding, code

independency, the specific kind of all-optical thresholders in

use, or physical-layer modeling is assumed. Functioning in a

different principle from SPE-OCDMA, incoherent O-CDMA

is best to operate in a MAI-limited environment [24]. Thus,

this paper focus on the effect of fiber temperature fluctuations

to the code properties. The statistical models in [21]–[23]

will be perfect add-ons to this work. Together they can

provide a complete physical-layer model of an incoherent O-

CDMA system under the combined effects of fiber temperature

fluctuations and all-optical thresholders.

There are two themes in this paper: study the fiber-

temperature-fluctuation effect and the pulse-shift technique

under pulse-power and pulse-energy detection in incoherent

(asynchronous) O-CDMA systems. Section II reviews an in-

coherent (asynchronous) O-CDMA system utilizing the pulse-

power detection with all-optical thresholders. Moreover, the

effect of fiber temperature fluctuations to the auto- and cross-

correlation functions of 2-D wavelength-time codes, such

as the CHPCs, are investigated. Besides deteriorating the

autocorrelation peak, the time skews in the multiwavelength

pulses of codewords also affect the cross-correlation functions.

Section II further shows that the time skews can be modeled as

chip granularity [9]. In Section III, new pulse-shift analytical
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Fig. 1. Block diagram of a typical incoherent (asynchronous) O-CDMA
system.

models under pulse-power and pulse-energy detection are

formulated. In Section IV, numerical examples and computer

simulations are presented to validate the models. Our study

shows that the power-detection model gives more realistic

and better performance than the conventional energy-detection

model. Finally, a conclusion is given in Section V.

II. SYSTEM MODEL AND BACKGROUND

In incoherent O-CDMA systems with on-off keying (OOK)

modulation, a user conveys the address codeword of its

intended receiver whenever a data bit of 1 is transmitted,

but nothing is conveyed for a data bit of 0. The notation

(L × N,w, λa, λc) is here used to represent a family of 2-

D wavelength-time codes of L wavelengths, N time slots

(i.e., code length), w pulses (i.e., code weight), the maxi-

mum autocorrelation sidelobe λa, and the maximum periodic

cross-correlation value λc. The w multiwavelength pulses of

each 2-D codeword can be represented as w ordered pairs

[(λ0, t0), (λ1, t1), . . . , (λj , tj), . . . , (λw−1, tw−1)], where each

ordered pair denotes that the pulse of wavelength λj is located

at time-slot (or chip) location tj ∈ [0, N − 1].

A. Incoherent (Asynchronous) O-CDMA System Model

Fig. 1 shows an incoherent (asynchronous) O-CDMA sys-

tem model. The system consists of M stations (or users)

linking to a M × M coupler via optical fibers [1]–[3]. The

coupler is a shared medium used to collect/distribute O-

CDMA waveforms from/to all stations. Each station contains

a pair of optical transmitter and receiver. In the transmitter, a

mode-locked laser is used to generate a train of narrow optical

pulses with a repetition rate of one pulse per bit period [2],

[12]. Whenever there is a “1” in the electrical data-bit stream,

the optical modulator will be opened to pass one such pulse

to the optical encoder. This gated pulse is then split and time

delayed in the optical encoder to generate the optical (address)

codeword of the intended station.

The role of the receiver is to decode the arrival codewords,

distinguish the correct codeword from the interfering code-

words, and finally recover the transmitted data bits. The optical

decoder serves as an inverted filter of its associated optical

encoder, and thus they are constructed using similar hardware.

If an arrival codeword matches with the address codeword of

the optical decoder, an autocorrelation function with a high
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Fig. 2. Optical hard-limiting decoder: (a) 1-D design; (b) 2-D design [30].

peak of height w will be created. This is because the w
pulses of the correct codeword are realigned on top of each

other, all within one chip. On the other hand, an incorrect

(i.e., interfering) codeword will give a low cross-correlation

function at the decoder. For example, the CHPCs are designed

to have λc = 1 in order to minimize the MAI [1]–[3].

It is known that optical hard-limiters [25], [26] can be placed

in an incoherent O-CDMA receiver to reduce the effects of

MAI and near-far problem and, in turn, to improve system

performance [1], [3], [27]–[30]. Fig. 2 shows the designs of

1-D and 2-D optical hard-limiting decoders. For example,

making use of the short carrier-recovery time and high gain of

semiconductor optical amplifiers (SOAs), Kanellos, et al. [25]

demonstrated an optical hard-limiter using a deeply saturated

SOA-based interferometric gate and studied the power transfer

function of the design. Power equalization was achieved by

clamping the output power to a constant level for different

input power levels that are greater than a specific (power)

threshold level Th. Due to the SOA gain dynamics, the 2-D

design in Fig. 2(b) requires the optical hard-limiters be placed

along the individual wavelength paths [30].

Because narrow optical pulses (in tens or few picoseconds)

are used in high-speed incoherent (asynchronous) O-CDMA

systems [2], [10]–[12], the detection of the autocorrelation

peak (within one chip) cannot simply be done by opto-

electronic devices (e.g., photodetectors) because they tend

to measure the energy (over several chips), instead of the

instantaneous power [20], [31]. Although the accumulated

cross-correlation function from multiple interfering codewords

usually carries lower power (per chip) than the autocorrelation

peak, the energy (over several chips) can occasionally be

as strong as that of the autocorrelation peak. As a result, a

threshold detector relying on the pulse-energy detection has a

higher tendency of wrongly recovering data bits of 0 to 1. The

all-optical thresholders overcome this problem and make the

power detection of narrow autocorrelation peaks in the optical

domain possible. They have been applied in ultrashort-pulse

O-CDMA testbeds [17]–[20]. A new pulse-power-detection

analytical model, which discriminate the actual power (i.e.,

height) of the autocorrelation peak from that of the accumu-

lated cross-correlation function, is formulated in Section III.

B. Effect of Fiber Temperature Fluctuations

Due to environmental temperature fluctuations, optical

pulses traveling in long length of optical fiber (e.g., an

underground or transoceanic link) will get broadened and

time-skewed, even though the fiber-optic link is fully com-

pensated for power loss and chromatic dispersion. Osadola,

et al. [16] studied the effect of fiber temperature fluctuations

in high-speed incoherent O-CDMA systems with picosecond

multiwavelength pulses. As the fiber temperature may vary

by 20◦C or higher, the fiber thermal coefficient, which has a

typical value of Dtemp = 0.0025 ps/nm/km/◦C for a nonzero

dispersion-shifted fiber, can severely distort the characteris-

tics (e.g., height, shape, width, and chip locations) of the

correlation functions at the optical decoder. They, in turn,

affect the threshold-decision process and deteriorate system

performance.

Taking into consideration of fiber thermal coefficient Dtemp

(ps/nm/km/◦C), the temperature-induced time skew ∆t (ps)

and broadening ∆σ (ps) of multiwavelength pulses can gen-

erally be expressed as [16]

∆t = Dtemp ×∆T ×∆Λ× d (ps) (1)

∆σ = Dtemp ×∆T ×∆λ× d (ps) (2)

where ∆T (◦C) is the average change in temperature experi-

enced in the fiber of length d (km), ∆Λ (nm) is the spectral

spacing between two adjacent wavelengths, and ∆λ (nm) is

the spectral linewidth of the multiwavelength pulses.

Assume that the multiwavelength pulses from the mode-

locked laser are modeled with a hyperbolic-secant-squared

(sech2) pulse envelope. From (1) and (2), the (normalized)

sech2 pulse envelope after an optical pulse (of one wavelength)

experienced ∆T average temperature change in a fiber of

length d can be expressed as

S(t) =
σ

σ +∆σ
sech2

(

t− k∆t

σ +∆σ

)

(3)

where k ∈ [0, L− 1] denotes the index of the kth wavelength

λk. Without temperature changes (i.e., ∆σ = ∆t = 0), the

pulse in (3) is normalized to have a peak power of 1 and the

full-width at half-maximum (FWHM) duration is about 1.76

times the parameter σ, which is called the duration of the

sech2 pulse.

Without any loss of generality, this paper assumes that λ0 <
λ1 < · · · < λL−1 and they are equally spectral-spaced by ∆Λ.

The time skew of the pulse of wavelength λk increases as a

function of k due to the term k∆t in (3). In other words, the

time skew of a pulse of longer wavelength will be larger and
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Fig. 3. (5× 5, 5, 0, 1) CHPC codeword X1 = [(0, 0), (1, 1), (2, 2), (3, 3),
(4, 4)] of chip-width tc = 5 ps after traveling in a fiber of d = 20 km and
experiencing (a) ∆T = 0◦C and (b) ∆T = 20◦C of temperature changes.
(One color represents one wavelength.)

proportional to k. Also, a pulse of any wavelength is broadened

in time due to the term σ+∆σ in (3). However, the amounts of

broadening are found the same for all pulses because they are

assumed to have identical spectral linewidth ∆λ. To maintain

the same total area under curve (i.e., energy), the peak power

of a pulse decreases as the pulse gets broadened, as indicated

in the term σ/(σ +∆σ) in (3).

In the following illustration, the (5× 5, 5, 0, 1) CHPCs are

used. They consist of N = 5 time slots (or chips), L = 5
wavelengths, and w = 5 mark chips. They are also assumed

to have chip-width tc = 5 ps, pulse parameter σ = 2.5 (i.e.,

FWHM width = 1.76 × 2.5 = 4.4 ps), spectral linewidth

∆λ = 1 nm, spectral spacing ∆Λ = 1 nm, and fiber

thermal coefficient Dtemp = 0.0025 ps/nm/km/◦C. Fig. 3

shows the codeword X1 = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
after traveling in a fiber of d = 20 km and experiencing (a)

∆T = 0◦C and (b) ∆T = 20◦C of temperature changes.

So, Fig. 3(a) resembles to the original codeword without the

influence of fiber temperature fluctuations (i.e., ∆t = 0 and

∆σ = 0). Fig. 3(b) shows that the broadened and time-

skewed pulses of the distorted codeword with ∆t = 1 ps

and ∆σ = 1 ps, calculated from (1) and (2). The pulses

are broadened to 1.76(σ + ∆σ) = 6.2 ps (FWHM) with

the normalized peak power reduced to 0.51. Also from (3),

the amount of time skew depends on the pulse wavelength.

The pulse of wavelength λk is time-skewed by k∆t = k ps,

where k ∈ [0, 4]. So, the amounts of time skew added to the

pulses of wavelengths λ0, λ1, λ2, λ3, and λ4 in the distorted

codeword of X1 are 0, 1, 2, 3, and 4 ps, respectively, as shown

in Fig. 3(b).

If a codeword arrives at its intended decoder, all its w pulses

will be realigned on top of each other and an autocorrelation

peak of w can be obtained in one chip. Using the sech2 pulse

model in (3), the envelope of the autocorrelation peak under

the influence of fiber temperature fluctuations can be computed

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35
0

1

2

3

4

5

Time (ps)

A
u

to
c
o

rr
e

la
ti
o

n

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35
0

1

2

3

4

5

Time (ps)

A
u

to
c
o

rr
e

la
ti
o

n

(a)

(b)

Fig. 4. Autocorrelation function of X1 of chip-width tc = 5 ps after X1

has traveled in a fiber of d = 20 km and experienced (a) ∆T = 0◦C and
(b) ∆T = 20◦C of temperature changes.

by

Auto =
w−1
∑

k=0

σ

σ +∆σ
sech2

(

t− k∆t

σ +∆σ

)

(4)

Using the parameters in Fig. 3, Fig. 4(a) shows the ordinary

autocorrelation function with the peak of w = 5 from the

(5 × 5, 5, 0, 1) CHPC codeword X1. Fiber temperature fluc-

tuations cause the multiwavelength pulses in X1 to broaden

and skew in time. Based on the distorted codeword of X1

in Fig. 3(b), Fig. 4(b) shows the distorted autocorrelation

function, calculated from (4). It is here assumed that the

decoder does not know the amounts of time skew experienced

by the distorted codeword. So, the decoder simply realigns the

pulses in accordance to the original mark-chip locations of X1.

As shown in Fig. 4(b), the autocorrelation peak is time-skewed

to 24.5 ps and the power (i.e., height) is worsened from 5 to

2.22.

Also using the parameters in Fig. 3, Fig. 5(a) shows the

ordinary cross-correlation function between X1 and X2 =
[(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)], without fiber temperature

fluctuations. It is here assumed that X1 arrives at a decoder

with the address codeword of X2. As shown in Fig. 5(a),

the height of the cross-correlation function is approximately

equal to 1. This is because the CHPCs are designed to have

λc = 1. When there exist fiber temperature fluctuations, the

distorted codeword of X1 in Fig. 3(b) gives the distorted cross-

correlation function (at the decoder of X2) in Fig. 5(b). The

distorted cross-correlation function has a peak power of 0.85.

Comparing to the peak power of 0.51 in the distorted pulses in

Fig. 3(b), the maximum cross-correlation function is increased

(i.e., worsened) to λc = 1.67 (i.e., 0.85/0.51), even though the

CHPCs are designed to have λc = 1 originally.

Although the distorted cross-correlation function in Fig. 5(b)

appears lower than the original one in Fig. 5(a), this does not

mean that the impact of MAI is reduced. The autocorrelation



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 35, NO. ?, ???? 2017 5

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35
0

0.5

1

1.5

Time (ps)

C
ro

s
s
−

c
o

rr
e

la
ti
o

n

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35
0

0.5

1

1.5

Time (ps)

C
ro

s
s
−

c
o

rr
e

la
ti
o

n

(a)

(b)

Fig. 5. Cross-correlation function between X1 and X2 =
[(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)] of chip-width tc = 5 ps after X1 has
traveled in a fiber of d = 20 km and experienced (a) ∆T = 0◦C and (b)
∆T = 20◦C of temperature changes.

peak is another important parameter to determine performance

because it affects the degree of discrimination against the

MAI created by the accumulated cross-correlation function

from interfering codewords. As shown in Fig. 4, the distorted

autocorrelation peak gets an even larger reduction when com-

pared to the distorted cross-correlation function in Fig. 5. So,

the ultimate performance indicator of incoherent O-CDMA is

the ratio of the autocorrelation peak to the cross-correlation

function. For example, without fiber temperature fluctuations,

the original auto-to-cross-correlation ratio is about 5 (i.e.,

5/1), as deduced from Figs. 4(a) and 5(a). However, from

Figs. 4(b) and 5(b), fiber temperature fluctuations worsen the

auto-to-cross-correlation ratio to about 2.61 (i.e., 2.22/0.85).

The lowering of this ratio translates into poor performance, as

shown in this paper.

In summary, fiber temperature fluctuations also affect the

cross-correlation function, not only the autocorrelation func-

tion [16]. So, it is important to derive a new performance-

analytical model to more accurately account for the effect of

fiber temperature fluctuations—the main theme of this paper.

C. Relationship to Pulse-Shift Technique

Lin, et al. [9] introduced the pulse-shift technique to

improve the performance of incoherent (asynchronous) O-

CDMA systems. The technique allows every time slot (or

chip) be divided into g sub-chips of equal width, and the

pulses in every codeword can randomly be time-shifted to

start at any sub-chips in their original chip locations, where

g > 1. Let τj be a sub-chip shift of the jth-wavelength

pulse, where τj ∈ {0, tc/g, 2tc/g, . . . , (g − 1)tc/g)} for all

j ∈ {0, 1, 2, . . . , w−1}, and tc is the chip-width. The ordered

pairs of a shifted copy of codeword X can be denoted as

X ′ = [(λ0, t0 + τ0), (λ1, t1 + τ1), . . . , (λw−1, tw−1 + τw−1)].
The analysis in [9] showed that the random pulse-shifts could
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X2,1=[(0, 0), (1, 5), (2, 7)]

t0 t1 t2 t3 t4

2

1

0

t5 t6 t7 t8

Received hard-limited codewords
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Green: X2,0=[(0, 0), (1, 2), (2, 1)]
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(a) (b)
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Height = 2

pulses realigned at t7.×

Fig. 6. Illustrate how the pulse-shift model of g = 2 affects the cross-
correlation function: (a) two original codewords X2,0 and X0,1 and a shifted
codeword X′

1,1
arriving at an optical hard-limiting decoder with the address

codeword X2,1; (b) the maximum cross-correlation function equal to 2 in
power but 1.5 in energy at chip t7.

be exploited constructively to improve code performance if

there existed a feedback mechanism to reconstruct the auto-

correlation peak to w. As a result, the pulse-shift technique

improved code performance as g increased, even though the

cross-correlation function was worsened.

Back to the temperature-fluctuation problem on hand, since

the pulses of each wavelength are time-shifted by an integral

multiple of ∆t, the time-skew effect can equivalently be

modeled by subdividing each chip (of chip-width tc) into sub-

chip of width ∆t, by borrowing the pulse-shift concept in [9].

The chip granularity is here determined by g = tc/∆t. For

example, if ∆t = 1 ps and tc = 5 ps, then this temperature-

fluctuation problem can equivalently be classified as the pulse-

shift model of g = 5. In Section III, the analytical method in

[9] is modified and then applied to more accurately account

for the effect of fiber temperature fluctuations in incoherent

O-CDMA systems.

III. PULSE-POWER-DETECTION MODEL AND ANALYSIS

In this section, the pulse-shift model under pulse-power and

pulse-energy detection in incoherent (asynchronous) O-CDMA

is studied and analyzed.

Using the (3×9, 3, 0, 1) CHPCs with L = w = p1 = p2 = 3
and N = p1p2 = 9 as an example, they have p1p2 = 9
codewords, Xi1,i2 = [(0, 0), (1, i1 + i2p1), (2, 2⊙ p1i1 + (2⊙
p2i2)p1)], where i1 ∈ [0, 2] and i2 ∈ [0, 2]. Fig. 6 illustrates

the cross-correction process when two original codewords

X2,0 = [(0, 0), (1, 2), (2, 1)] and X0,1 = [(0, 0), (1, 3), (2, 6)]
and one shifted codeword X ′

1,1 = [(0, 0), (1, 4 + 1/2), (2, 8)]
arrive at an optical hard-limiting decoder with the address

codeword of X2,1 = [(0, 0), (1, 5), (2, 7)]. Fig. 6(b) shows that

the distorted cross-correlation function has the peak power (or

height) of 2 but the energy (or area) of 1.5 in chip t7. As

illustrated, the pulse-shift creates an undesirable effect to the

cross-correlation function.

Fig. 7 illustrates the autocorrection process when the shifted

codeword X ′
2,1 = [(0, 0), (1, 5 + 1/2), (2, 7 + 1/2)] arrives at

an optical hard-limiting decoder with the address codeword of

X2,1 = [(0, 0), (1, 5), (2, 7)]. Fig. 7(b) shows that the distorted
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Fig. 7. Illustrate how the pulse-shift model of g = 2 affects the autocorre-
lation function: (a) a shifted codeword X′

2,1
= [(0, 0), (1, 5 + 1/2), (2, 7 +

1/2)] arriving at an optical hard-limiting decoder with the address codeword
X2,1 = [(0, 0), (1, 5), (2, 7)]; (b) the autocorrelation peak equal to 3 in
power but 2 in energy at chip t7.

autocorrelation function has the peak power (or height) of 3

but the energy (or area) of 2 in chip t7. For the code weight

of w = 3, the decision-threshold level of the thresholder at

the back-end of the optical decoder should normally be set to

Th = w = 3. The unit of Th is measured in terms of energy if

the conventional energy (optoelectronic) thresholders are used,

but in terms of power if the power (all-optical) thresholders

are used. Using the all-optical thresholders, the autocorrelation

peak with the power (or height) of 3 in Fig. 7(b) will

be recovered as a data bit of 1 correctly. However, if the

optoelectronic thresholders are used, the same autocorrelation

peak, but with the energy (or area) of 2, will not be detected

as a data bit of 1, thus giving a detection error.

In summary, the pulse-energy detection has a tendency

of giving pessimistic performance in the pulse-shift model

because of lower autocorrelation-peak energy caused by pulse-

shifts (e.g., due to fiber temperature fluctuations). On the

other hand, the pulse-power detection may still reproduce

the autocorrelation-peak power to the original level (e.g., see

Fig. 7). Nevertheless, both detection methods in the pulse-shift

model see worsening in the cross-correlation function (e.g., see

Fig. 6).

A. Analysis of Pulse-Shift, Power-Detection Model

Since an incoherent O-CDMA system should normally

operate in a MAI-limited environment [24], the effect of

physical noises is neglected in this section. Also, in OOK,

a data bit of 1 cannot be recovered wrongly as a 0 at a

decoder because an autocorrelation peak exists on top of MAI.

However, a data bit of 0 can be decided wrongly as a 1 if the

MAI raises above the autocorrelation peak (i.e., the decision

threshold).

In general, the hard-limiting error probability of a family

of (L ×N,w, λa, λc) 2-D optical codes in incoherent (asyn-

chronous) OOK O-CDMA systems is given by [1], [3]

Pe =
1

2

w
∑

k=Th

(

w

k

) k
∑

i=0

(−1)k−i

(

k

i

)





λc
∑

j=0

(

i
j

)

(

w
j

)qλc,j





K−1

(5)

Received hard-limited codewords

Green: X'2,0=[(0, 0), (1, 2+1/2), (2, 1)], time delay 3

Blue: X'0,1=[(0, 0), (1, 3), (2, 6+1/2)], time delay 0

t0 t1 t2 t3 t4

2

1

0

t5 t6 t7

Decoder address codeword

X2,1=[(0, 0), (1, 5), (2, 7)]

t0 t1 t2 t3 t4

2

1

0

t5 t6 t7 t8

.×

t8

t0 t1 t2 t3 t4

2

1

0

t5 t6 t7 t8

Decode to 0

Height = 2 
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Fig. 8. Cross-correlation process of pulse-shifted interfering codewords X′

2,0

and X′

0,1
arriving at a decoder with the address codeword of X2,1.

where the factor 1/2 comes from the assumption of equiprob-

ability of data bits of 0 and 1, Th is the decision-threshold

level, K represents the number of simultaneous users, and

qλc,j denotes the probability of getting j ∈ [0, λc] hits in

the sampling time of the cross-correlation function. These hit

probabilities are generally related by [1], [3], [6]

λc
∑

j=0

qλc,j = 1 (6)

λc
∑

j=0

jqλc,j =
w2

2LN
(7)

For the (L×N,w, 0, 1) 2-D optical codes, such as the CHPCs,

the 1-hit probability becomes q1,1 = w2/(2LN) and the 0-hit

probability becomes q1,0 = 1 − q1,1 = 1 − w2/(2LN) by

applying λc = 1 to (6) and (7).

Without any pulse-shifts, the autocorrelation peak is always

equal to w and the decision-threshold level is normally set

to Th = w for recovering a data bit of 1 whenever an

autocorrelation peak is detected at the thresholder.

Due to the pulse-shift model, the time-shifted pulses from

interfering codewords do not always fall entirely into their

mark chips. For example, Fig. 8 shows that there exists three

interfering pulses stacking up at chip t7 in the cross-correlation

function of the pulse-shifted interfering codewords X ′
2,0 and

X ′
0,1 at the decoder of X2,1, where g = 2 is assumed. After

the correlation process, the pulse of λ1 from X ′
2,0 is found in

the second half of chip t7 and the first half of chip t8. X ′
0,1

contributes the pulse of λ0 entirely to t7, whereas the pulse of

λ2 is found in the second half of t6 and the first half of t7. As

a result, these three pulses create one full hit and two partial

hits stacking side-by-side at chip t7. They give a combined

peak power (or height) of 2, as shown in Fig. 8(b). (Note:

The autocorrelation peak should be equal to the code weight

w = 3 if there is no pulse-shift.) In other words, multiple

partial hits in one chip do not necessarily result in one full-hit

in that chip. Thus, this section applies a new analytical method

to account for this situation.

With every chip being divided into g equal-width sub-chips,

the new pulse-shift, power-detection model is formulated as

follows. Whenever there exists at least one sub-chip in a

chip being hit by an interfering pulse in the cross-correlation
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function, this partial hit will first be considered as one “valid”

hit. New (valid) hit probabilities, qλc,j,g for j ∈ [0, λc], for the

(L × N,w, 0, 1) CHPCs are then formulated, where qλc,j,g

represent the probability of getting a total of j ∈ [0, λc]
hits in a chip of the cross-correlation function. Afterward,

the actual hit probabilities, q′λc,j,g
, for the pulse-shift, power-

detection model are calculated by scaling down qλc,j,g with

some appropriate scaling factors in order to reflect the actual

contribution of these partial hits.

Theorem 1: For the (p × p, p, 0, 1) CHPCs, the hit proba-

bilities in the pulse-shift, power-detection model are derived

as

q′2,0,g =
6g2 − g − 1

8g2
(8)

q′2,1,g =
g + 1

4g2
(9)

q′2,2,g =
2g2 − g − 1

8g2
(10)

To validate this new analytical model, it is shown in

the limiting case of g = 1 (i.e., no pulse-shift) that these

hit probabilities will be degenerated to q′2,2,1 = 0 and

q′2,1,1 = q′2,0,1 = 1/2, corresponding to the existence of

one-hits only (i.e., λc = 1). For the case of λc = 1, it

is found that q1,1 = w2/(2LN) = p2/(2p2) = 1/2 and

q1,0 = 1−q1,1 = 1/2 in the conventional hit-probability model

in (6) and (7). Same hit probabilities are found in both models,

thus validating the new analytical model.

Proof: See Appendix A.

Theorem 2: For the (p × p2, p, 0, 1) CHPCs, the hit prob-

abilities in the pulse-shift, power-detection model are derived

as

q′2,0,g =
4g3(4p2 + 2p− 1)− 4g2p(2p+ 1) + g − 1

8g2p(2g − 1)(p+ 1)
(11)

q′2,1,g =
2gp− p+ 1

2p(p+ 1)(2g − 1)
(12)

q′2,2,g =
(g − 1)(2g + 1)

8g2p(p+ 1)
(13)

To validate this new analytical model, it is shown in the

limiting case of g = 1 (i.e., no pulse-shift) that the hit proba-

bilities will be degenerated to q′2,2,1 = 0 and q′2,1,1 = 1/(2p)
and q′2,0,1 = 1−1/(2p), corresponding to the existence of one-

hit only (i.e., λc = 1). For the case of λc = 1, it is found that

q1,1 = w2/(2LN) = 1/(2p) and q1,0 = 1− q1,1 = 1−1/(2p)
in the conventional hit-probability model in (6) and (7). Same

hit probabilities are found in both models, thus validating the

new analytical model.

Proof: See Appendix B.

To compute the hard-limiting error probability of the (L×
N,w, 0, 1) optical codes, such as the CHPCs, in the pulse-

shift, power-detection model, the original hit probabilities,

qλc,j , in (5) are substituted with q′λc,j,g
in Theorems 1 and

2. As explained in Appendix A, the fixed pulse-shift pattern

[i.e, governed by k∆t in (3), caused by fiber temperature

fluctuations] belongs to a special case of all the possible pulse-

shift patterns involved in the derivations of the “average” hit

probabilities in the theorems. Moreover, the hit probabilities

of this fixed pulse-shift pattern are found identical to the

“average” hit probabilities. Thus, this pulse-shift model can

also be applied to analyze the effect of fiber temperature

fluctuations in incoherent O-CDMA systems and complement

the deficiency in the analytical model in [16].

B. Analysis of Pulse-Shift, Energy-Detection Model

In the original pulse-shift model [9], the decision-threshold

level was set to Th = w because it was assumed that the

decoder consisted of a feedback mechanism to realign the

autocorrelation peak to w. Because the energy in the cross-

correlation function can be a non-integer (e.g., see Fig. 6),

Lin, et al. [9] started with the “g-granulated” error-probability

equation in [9, eq. (12)] by means of Markov chain and then

computed the “g-granulated” hit probabilities qk′,l′,g in [9,

eq. (14)], where k′ and l′ take the values from the set of

{0, 1/g, 2/g, . . . , 3− 2/g}.

In this section, it is assumed that the decoder does not have

the pulse-shift information. So, the decision-threshold level

cannot simply be set to Th = w, and the analysis in [9]

is not applicable to this pulse-shift, energy-detection model.

Nevertheless, it is noted that [29, eq. (21)] is the general form

of [9, eq. (12)] because the former becomes the latter when

n = Th = w. In the following, the general form of the “g-

granulated” error probability in [29, eq. (21)] is used to adjust

the decision-threshold level under the pulse-energy detection.

Using w = 3 and g = 2 as an example, the three pulses

in a codeword can be shifted by one sub-chip or no shift

in the pulse-shift model. The autocorrelation peak and thus

the decision-threshold level Th can range from 1.5 to 3 in

energy after realigning these three pulses in the correct-address

decoder. Let’s denote no shift as a 0 and one sub-chip shift

as a 1 to represent the time-shift pattern of the three pulses

in a codeword. Then, the ordered triplet (0, 0, 0) represents

that there are no shifts in the three respective pulses in the

codeword. This case occurs with a probability of 1/8 and give

an autocorrelation peak of 3 (in energy). Similarly, the ordered

triplets (0, 0, 1), (0, 1, 0), and (1, 0, 0) have the occurrence

probability of 1/8 each and an autocorrelation peak of 2.5

(in energy) (e.g., see Fig. 7). The ordered triplets (0, 1, 1),
(1, 1, 0), and (1, 0, 1) have the occurrence probability of 1/8

each and an autocorrelation peak of 2 (in energy). Finally, the

ordered triplet (1, 1, 1) has the occurrence probability of 1/8

and an autocorrelation peak of 1.5 (in energy). However, these

autocorrelation-peak (i.e., decision-threshold) values cannot

directly be applied to [29, eq. (21)] to compute the error proba-

bility for this pulse-shift, energy-detection model because [29,

eq. (21)] requires Th be an integer.

By modifying [9, eq. (12)] and [29, eq. (21)], the pulse-

shift, energy-detection, hard-limiting error probability with the

decision-threshold level Th ′ can be formulated as

P ′
e,Th ′ =

1

2

w
∑

n=Th′

(

w

n

)w−n
∑

j=0

(

w − n

j

)

2j

×

2n+j
∑

i=0

(−1)2n+j−i

(

2n+ j

i

)
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×





⌈3−2/g⌉
∑

k=0

⌈3−2/g⌉
∑

l=0

(

i
k+l

)

(

2w
k+l

)Qk,l,g





K−1

(14)

The hit probabilities, Qk,l,g , were derived in [9, eq. (14)],

where k and l take the values from the set of {0, 1, 2, . . . , ⌈3−
2/g⌉}.

To get around the integer threshold-level restriction of (14),

the following steps are here applied:

1) In the pulse-shift, energy-detection model, all the possi-

ble autocorrelation-peak (i.e., decision-threshold) values

anticipated in the code set in study are averaged to give

Th
′.

2) If Th
′ is an integer, it is directly applied to (14) to

compute the pulse-shift, energy-detection, hard-limiting

error probability.

3) If Th
′ is not an integer, it is rounded down and up

to the nearest integers, giving Th
′
floor = ⌊Th ′⌋ and

Th
′
ceil = ⌈Th ′⌉, respectively. These two integer thresh-

old values are then applied to (14) to find their associated

error probabilities P ′
e,Th ′

floor

and P ′
e,Th′

ceil

, respectively.

Finally, they are averaged by applying

P ′
e,ave = P ′

e,Th′

floor

× dfloor + P ′
e,Th ′

ceil

× dceil (15)

where the factors dfloor = 1 − (Th ′ − Th
′
floor) and

dceil = 1 − (Th ′
ceil − Th

′) represent the distances of

Th
′
floor and Th

′
ceil from the averaged threshold value

Th
′, respectively.

Use the same example with w = 3 and g = 2, the averaged

threshold value is computed by Th
′ = [3 × (1/8) + 2.5 ×

(3/8)+ 2× (3/8)+ 1.5× (1/8)]/4 = 2.25 and then Th
′
ceil =

⌈Th ′⌉ = 3 and Th
′
floor = ⌊Th ′⌋ = 2. Also, dfloor = 1 −

(Th ′ − Th
′
floor) = 0.75 and dceil = 1 − (Th ′

ceil − Th
′) =

0.25. Applying these values to (14) and (15), the average hard-

limiting error probability of the (L×N,w, 0, 1) optical codes,

such as the CHPCs, in the pulse-shift, energy-detection model

can be calculated.

The pulse-shift, energy-detection model can complement

the deficiency of the energy-detection analytical model in

[16]. Osadola, et al. [16] assumed that the cross-correlation

function was not affected by the pulse-shifts created by fiber

temperature fluctuations. However, as shown in Section II, this

assumption is not true. This energy-detection model can give

a more realistic performance than that in [16].

IV. NUMERICAL RESULTS AND VALIDATION

Figs. 9–11 compare the hard-limiting error probabilities, Pe

of (5) and P ′
e,ave of (15), of the (L × N,w, 0, 1) CHPCs in

the pulse-shift, power-detection and energy-detection models

for chip granularity of g = 2, 3, and 4, respectively, where

L = w = p = {3, 5, 7} and N = p2 = {9, 25, 49}. The error

probabilities of the power-detection model are computed by

applying the hit probabilities in (11)–(13) to the Pe equation

of (5). In the power detection with pulse-shifts, the autocor-

relation peak is equal to w because the pulses will not be

shifted out of the entire chip (e.g., see Fig. 7), thus Th = w in

(5). The error probabilities of the energy-detection model are
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Fig. 9. Hard-limiting error probabilities versus the number of simultaneous
users K for the (L × N,w, 0, 1) CHPCs and g = 2 in the pulse-shift,
power-detection and energy-detection models, where L = w = {3, 5, 7} and
N = {9, 25, 49}.
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Fig. 10. Hard-limiting error probabilities versus the number of simultaneous
users K for the (L × N,w, 0, 1) CHPCs and g = 3 in the pulse-shift,
power-detection and energy-detection models, where L = w = {3, 5, 7} and
N = {9, 25, 49}.

obtained by following the steps in the computation of P ′
e,ave in

(15). In general, the performance (i.e., error probability) gets

worse as K increases, due to stronger MAI. The performance

improves with L, N , or w, for both detection models. This is

because the increment of L or N reduces the hit probabilities,

and the increment of w increases the power and energy of the

autocorrelation peaks. Given a set of (w,N), g, and K values,

the solid curves of the power-detection model are always

lower (i.e., better Pe) than the dashed curves of the energy-

detection model. This is because the former have less chances

of recovering wrong data bits, as explained in Section III.

Computer simulations are also performed and the simulation

results are shown as the “◦” and “△” symbols in the figures.
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Fig. 11. Hard-limiting error probabilities versus the number of simultaneous
users K for the (L × N,w, 0, 1) CHPCs and g = 4 in the pulse-shift,
power-detection and energy-detection models, where L = w = {3, 5, 7} and
N = {9, 25, 49}.

The simulation symbols match with the analytical curves, thus

validating the new analytical models in Section III.

The computer simulations are based on the so-called Monte-

Carlo simulation method. They begin with randomly assigning

one distinct codeword to each user (or receiver) as its address

signature. Each of the K simultaneous users transmits the

address codeword of its intended receiver when a data bit of

1 is conveyed. The time frame of the fiber-optic channel is

divided into N chips per bit period, and any simultaneous user

can start to transmit its codeword at any chip to simulate the

bit asynchronism in incoherent (asynchronous) O-CDMA. The

multiwavelength pulses in every codeword are time-shifted

randomly and independently to any one of the g sub-chips in

the original chip positions of the pulses. In the hard-limiting

receiver, if there are multiple pulses of the same wavelength

(coming from multiple interfering codewords) arriving at the

same chip, these pulses are hard-limited and only counted

as one pulse (of that wavelength) at that chip. Afterward,

correlation is performed by comparing the wavelengths in all

w mark chips of the address codeword of the receiver with

the wavelengths and chip locations of the pulses of the hard-

limited signal. If there exists a pulse with the wavelength and

chip location matching one of the mark chips of the address

codeword, “one hit” is added to the count. Due to the time-

shifts, the hit can occur in one or several consecutive sub-chips

within a mark chip of the address codeword and is called

a “partial” hit. In the energy detection, the total energy (or

area) of the partial and full hits at the w mark chips of the

address codeword are summed up. A data bit of 1 is recovered

whenever the total energy in a chip is as high as the decision-

threshold level Th . On the other hand, the power detection

sums up the total power (i.e., height) of the hits (sub-chip

by sub-chip) at the w mark chips of the address codeword.

A data bit of 1 is recovered whenever the total power in

one sub-chip is as high as Th . To determine the proper Th
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Fig. 12. Hard-limiting error probabilities versus the number of simultaneous
users K for the (7 × 49, 7, 0, 1) CHPCs and g = {1, 2, 3, 4} in the pulse-
shift, power-detection and energy-detection models.

value in each simulation iteration, a training codeword (with

random time-shifts among its pulses), which corresponds to

the address of the intended receiver, will be transmitted before

the actual data-bit transmission. This training codeword gives

an autocorrelation peak but can be lowered, due to the pulse-

shifts. The energy and power of this peak will be used as

the decision-threshold level for energy and power detection,

respectively, in that simulation iteration. For the case of a

codeword arriving at its intended receiver, the autocorrelation

peak, which is equal to Th , will lead to the recovery of a data

bit of 1 correctly. If the accumulated cross-correlation function

at the expected chip-location of the autocorrelation peak is

as high as Th , a data bit of 1 will be recovered wrongly.

The number of decision errors is counted by comparing

the recovered data-bit sequence with the transmitted data-bit

sequence. Finally, the error probability is calculated as the

ratio of the number of decision errors to the total number

of transmitted data bits. Moreover, the number of data bits

(i.e., simulation sample size) used for each given number of

simultaneous users K in the computer simulation is 100 times

of the reciprocal of the targeting error probability in order to

provide sufficient simulation iterations.

Fig. 12 compares the hard-limiting error probabilities, Pe

of (5) and P ′
e,ave of (15), of the (7 × 49, 7, 0, 1) CHPCs in

the pulse-shift, power-detection and energy-detection models

as a function of chip granularity g = {1, 2, 3, 4}. The case of

g = 1 corresponds to the original codewords with no pulse-

shifts. The methods to determine the Th values, calculate the

error probabilities, and perform the computer simulations are

identical to those of Figs. 9–11. In general, the performance

gets worse as g increases because a large g-value increases

the number of possible sub-chip positions for pulse-shifts. So,

the probability of getting the partial hits increases with g.

As shown in the theoretical curves and simulation symbols

of g = {2, 3, 4}, it is important to note that the power-

detection model can effectively reduce the deleterious effect
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of pulse-shifts (e.g., due to fiber temperature fluctuations) as

Pe is a weak function of g. As the choice of the g value is

governed by the degree of time-skew severity caused by fiber

temperature fluctuations, one benefit of the new pulse-shift,

power-detection model is on the insensitivity to this effect.

Moreover, the results from the energy-detection model (i.e.,

the dashed curves) in Fig. 12 are opposite to those in [9]. A

feedback mechanism in the decoder was assumed in [9] in

order to track and compensate for the pulse-shifts so that the

original autocorrelation peak was reconstructed. As a result,

the performance was shown to improve with g in [9]. On the

other hand, the pulse-shift, energy-detection model assumes

that no feedback mechanism is available in the decoder. So,

the performance gets worse as g increases.

V. CONCLUSION

In this paper, the effect of fiber temperature fluctuations

to the autocorrelation and cross-correlation functions of 2-

D wavelength-time codes, such as the CHPCs, in incoherent

(asynchronous) O-CDMA systems were investigated. Mod-

ifying the pulse-shift technique in [9], the time skews of

the multiwavelength pulses in codewords were modeled as

a function of chip granularity. Furthermore, the effects of

power and energy detection to the autocorrelation peak, cross-

correlation function, and the decision-threshold level were

studied. New performance analyses for the pulse-shift, power-

detection and energy-detection models were formulated and

validated by computer simulations. Our study showed that

the power-detection model gave more realistic and better

performance than the conventional energy-detection model.

The power-detection model could effectively reduce the effect

of fiber temperature fluctuations as the performance was a

weak function of chip granularity, thus less sensitive to the

time skew.

APPENDIX A

PROOF OF THEOREM 1

For the (p × p, p, 0, 1) CHPCs, the 0-hit, 1-hit, and 2-hit

probabilities can be derived as

q2,0,g =
1

2
(A.1)

q2,1,g =
1

2
×

number of 1-hits

total number of hits
=

1

2g
(A.2)

q2,2,g = 1− q2,0,g − q2,1,g =
g − 1

2g
(A.3)

respectively. Because of the code structure of the CHPCs, an

interfering codeword can always create one 1-hit in the cross-

correlation function. Due to equiprobability of data bits of 0

and 1, the probability of getting 0-hits, q2,0,g in (A.1), is then

equal to 1/2 (from the data bits of 0 only).

In general, the (L × N,w, 0, 1) CHPCs have φ = N
codewords. To calculate the total number of possible hits, one

codeword is chosen to correlate with the other φ−1 codewords.

As each pulse can be shifted to start at one of the g sub-chips

in a mark chip, there are gw possible starting locations for

the w pulses in each codeword. Also, a codeword can have

up to N cyclic-shifts due to bit asynchronism in incoherent

O-CDMA. Thus, the total number of possible hits is found

to be φ(φ− 1)gwN . For the (p× p, p, 0, 1) CHPCs, the total

number of possible hits becomes p(p−1)gpp. Due to the code

structure, an interfering codeword always creates one 1-hit

in the cross-correlation function. If there exists another pulse

being shifted (even by one sub-chip), this will cause a total of

two (partial or full) 1-hits in one chip. To prevent this kind of

“2-hits” from occurring, the gw possible starting locations for

the w pulses in each codeword need to be reduced to gw−1.

Then, the number of 1-hits in the (p× p, p, 0, 1) CHPCs can

be found to be φ(φ−1)gw−1N = p(p−1)gp−1p. So, the ratio

of “the number of 1-hits” to “the total number of all possible

hits” becomes 1/g, and the final form of (A.2) is resulted.

Due to the time-shifts, sometimes the pulses of an in-

terfering codeword cannot stack up atop each other in the

cross-correlation function but side-by-side, instead. In other

words, the contribution of the power of each shifted pulse

may not be complete; an alternative method is needed to

calculate the hit probabilities for these partial hits. For the

(p× p, p, 0, 1) CHPCs, two scaling factors, (g + 1)/(2g) and

(2g+1)/(4g), are used to scale down qλc,j,g in order to reflect

the actual (power) contribution of these partial hits. The scaled

hit probabilities are given by

q′2,0,g = 1− q′2,2,g − q′2,1,g (A.4)

q′2,1,g = q2,1,g ×
g + 1

2g
=

(

1

2g

)(

g + 1

2g

)

(A.5)

q′2,2,g = q2,2,g ×
2g + 1

4g
=

(

g − 1

2g

)(

2g + 1

4g

)

(A.6)

After some manipulations, the final form of (8)–(10) in The-

orem 1 are formulated for the pulse-shift, power-detection

model.

The scaling factors, (g + 1)/(2g) and (2g + 1)/(4g), are

derived by counting all possible patterns of the partial hits in

the cross-correlation functions of the (p × p, p, 0, 1) CHPCs.

For example, for the case of g = 2, there are two sub-chips

per chip. Let’s denote “xy” as the hit pattern of the partial

hits in the first and second sub-chips, respectively, where x and

y ∈ {0, 1, 2}, in which “0” means no hit, “1” means one partial

hit, and “2” means two partial hits in the corresponding sub-

chip. Considering all cases of g = 2 and any p in the pulse-

shift, power-detection model, each of the (partial or full) hits

contributed by the two hit-patterns “01” and “11” is counted

as one full hit, and each of the (partial or full) hits contributed

by the two hit-patterns “11” and “21” is counted as two full

hits. (Note: the hit-pattern “11” comes from “01”+“10” and

the hit-pattern “21” comes from “10”+“11.”) Afterward, the

occurrence probability of each hit-pattern and its expected

value are calculated. For the (p×p, p, 0, 1) CHPCs with g = 2,

the occurrence probabilities of the two hit-patterns contributing

to the 1-hits are both equal to 1/2. So, the expected value

becomes (1/2) × (1/2) + (2/2) × (1/2) = 3/4, which can

equivalently be written as (g+1)/(2g) due to g = 2. Similarly,

the occurrence probabilities of the two hit-patterns contributing

to the 2-hits are both equal to 1/2. So, the expected value

becomes (2/4) × (1/2) + (3/4) × (1/2) = 5/8, which can
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equivalently be written as (2g + 1)/(4g) due to g = 2.

Considering all cases of g = 3 and any p in the pulse-

shift, power-detection model, each of the (partial or full) hits

contributed by the three hit-patterns “001,” “011,” and “111”

is counted as one full hit, and each of the (partial or full)

hits contributed by the five hit-patterns “211,” “221,” “101,”

“121,” and “111” is counted as two full hits. The occurrence

probabilities of the three hit-patterns contributing to the 1-

hits are all equal to 1/3. So, the expected value becomes

(1/3)× (1/3)+ (2/3)× (1/3)+ (3/3)× (1/3) = 2/3, which

can equivalently be written as (g+1)/(2g) due to g = 3. The

occurrence probabilities of the five hit-patterns contributing to

the 2-hits are equal to 1/6, 1/6, 1/6, 1/6, and 1/3, respec-

tively. So, the expected value becomes (4/6)×(1/6)+(5/6)×
(1/6)+(2/6)×(1/6)+(4/6)×(1/6)+(3/6)×(1/3) = 7/12,

which can equivalently be written as (2g + 1)/(4g) due to

g = 3.

According to these results, the general formula of the

expected values are given by (g + 1)/(2g) for the 1-hits and

(2g + 1)/(4g) for the 2-hits. These expected values represent

the actual power contributions of the partial hits in a chip of the

cross-correlation function. They are then used to scale down

the hit probabilities, q2,1,g in (A.2) and q2,2,g in (A.3), in order

to obtain the final hit-probabilities q′2,1,g in (A.5) and q′2,2,g in

(A.6), respectively, for the pulse-shift, power-detection model.

According to the above derivations, the hit probabilities in

(A.1)–(A.3) are computed by considering all possible pulse-

shift patterns in the codewords. The fixed pulse-shift pattern,

governed by k∆t in (3) due to fiber temperature fluctuations,

belongs to one of these pulse-shift patterns. Thus, the total

number of possible hits seen by this fixed pulse-shift pattern is

found to be φ(φ−1)gwN/gw = φ(φ−1)N , and the number of

1-hits is φ(φ−1)gw−1N/gw = φ(φ−1)N/g. According to the

definition of (A.2), the 1-hit probability of this fixed pulse-shift

pattern can be written as q2,1,g = (1/2)× [φ(φ−1)N ]/[φ(φ−
1)N/g] = 1/(2g) for the (p × p, p, 0, 1) CHPCs. So, the

general formula of q2,1,g in (A.2) is applicable to this fixed

pulse-shift pattern. Following the rest of the appendix, the hit

probabilities q2,0,g and q2,2,g and the scaling factors derived

in (A.5) and (A.6) are also applicable to this fixed pulse-shift

pattern. As a result, the analytical model and numerical results

in this paper can be used to account for the effect of fiber

temperature fluctuations in incoherent O-CDMA systems.

APPENDIX B

PROOF OF THEOREM 2

According to (A.3), the 2-hit probability of the (p×p, p, 0, 1)
CHPCs can also be written as

q2,2,g =
1

2
×

number of 2-hits

total number of hits
=

g − 1

2g
(B.1)

Thus, the total number of 2-hits is equal to [(g − 1)/(2g)]×
2× total number of hits = (g − 1)/(2g)× 2× φ(φ− 1)gwN ,

where φ = w = L = N = p in the (p×p, p, 0, 1) CHPCs. This

equation can further be rearranged as p[(g−1)/(2g)×2p(p−
1)gp], in which the terms in the square brackets correspond to

the number of 2-hits in each codeword.
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a 0-hit to a 1-hit

(a) (b) (c)

Fig. 13. Illustrate how a pulse of an interfering codeword can change a 0-hit
to a 1-hit in the cross-correlation function of the (3× 9, 3, 0, 1) CHPCs with
g = 2, in the pulse-shift model for Case 1.

By inspection, it is found that the (p× p, p, 0, 1) and (p×
p2, p, 0, 1) CHPCs have the same number of 2-hits in each

codeword for the same g. Thus, the total number of 2-hits

in the (p × p2, p, 0, 1) CHPCs can be represented as p2[(g −
1)/(2g) × 2p(p − 1)gp]. The 2-hit probability can then be

derived as

q2,2,g =
1

2
×

number of 2-hits

total number of hits

=
1

2
×

p2
(

g−1
2g

)

2p(p− 1)gp

p2(p2 − 1)gpp2

=
(g − 1)

2gp(p+ 1)
(B.2)

The 0-hit probability of the (p × p2, p, 0, 1) CHPCs is

formulated by

q2,0,g = q0 − q0→1 = 1− q1 − q0→1 (B.3)

where q0 represents the probability of getting 0-hits in the

cross-correlation function in the original case (i.e., no pulse-

shifts), and q0→1 represents the probability of changing a 0-

hit to a 1-hit (caused by pulse-shifts) in the cross-correlation

function. There are three pulse-shift cases causing a 0-hit to

become a 1-hit, as follows.

Use the (3 × 9, 3, 0, 1) CHPCs with g = 2 as an example.

Illustrated in Fig. 13(a) for Case 1, the pulse of wavelength

λ2 at chip t8 has {1/g, 2/g, . . . , (g− 1)/g} pulse-shift possi-

bilities of changing a 0-hit to a 1-hit in the cross-correlation

function with the pulse of λ2 in the address codeword at t0.

The other w − 1 = 2 pulses have {0, 1/g, . . . , (g − 1)/g}
pulse-shift possibilities of changing a 0-hit to a 1-hit. The

number of pulse-shift combinations in this scenario is found

to be g(p−1)(g−1) = 2(3−1)(2−1) = 4, for example, coming

from the shifted codewords [(0, 0), (1, 1), (2, 2+1/2)], [(0, 0+
1/2), (1, 1), (2, 2+1/2)], [(0, 0), (1, 1+1/2), (2, 2+1/2)], and

[(0, 0+1/2), (1, 1+1/2), (2, 2+1/2)]. However, in Fig. 13(b),

because the pulse of λ2 at t0 has generated a 1-hit already, the

pulse of λ1 cannot change a 0-hit to a 1-hit anymore, no matter

how much the pulse is shifted. The situation of Fig. 13(c) is
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Fig. 14. Illustrate how a pulse of an interfering codeword can change a 0-hit
to a 1-hit in the cross-correlation function of the (3× 9, 3, 0, 1) CHPCs with
g = 2, in the pulse-shift model for Case 2.

similar to (b) because the pulse of λ0 cannot change a 0-

hit to a 1-hit, either. In summary, the number of pulse-shift

combinations that can change a 0-hit to a 1-hit in Case 1 is

found to be g(p−1)(g−1)×1 = 4, where the factor “1” means

that there is only one wavelength, λ2, changing a 0-hit to a

1-hit. Finally, the total number of pulse-shift combinations in

Case 1 becomes g(p−1)(g − 1)× (p− 1)p2 because this case

appears (p − 1)p2 times in the cross-correlation functions of

the (p× p2, p, 0, 1) CHPCs, by inspection.

Illustrated in Fig. 14 for Case 2, the pulse of wavelength

λ2 at chip t8 has {1/g, 2/g, . . . , (g − 1)/g} pulse-shift possi-

bilities of changing a 0-hit to a 1-hit in the cross-correlation

function with the pulse of λ2 in the address codeword at t0.

The other w − 1 = 2 pulses have {0, 1/g, . . . , (g − 1)/g}
pulse-shift possibilities of changing a 0-hit to a 1-hit. The

number of pulse-shift combinations in this scenario is found

to be g(p−1)(p−1) = 2(3−1)(2−1) = 4, for example, coming

from the shifted codewords [(0, 0), (1, 3), (2, 6+1/2)], [(0, 0+
1/2), (1, 3), (2, 6 + 1/2)], [(0, 0), (1, 3 + 1/2), (2, 6 + 1/2)],
and [(0, 0 + 1/2), (1, 3 + 1/2), (2, 6 + 1/2)]. Different from

Case 1, Fig. 14(b) and (c) in Case 2 can also change a 0-

hit to a 1-hit, and their numbers of pulse-shift combinations

are identical to that of (a). In summary, the number of pulse-

shift combinations that change a 0-hit to a 1-hit in Case 2

is found to be g(p−1)(g − 1) × p = 4 × 3 = 12, where

the factor “p” means that there are p = 3 wavelengths,

λ0, λ1, and λ2, changing a 0-hit to a 1-hit. Finally, the

total number of pulse-shift combinations in Case 2 becomes

g(p−1)(g−1)p×(p−1)2p2 because this case appears (p−1)2p2

times in the cross-correlation functions of the (p× p2, p, 0, 1)
CHPCs, by inspection.

Illustrated in Fig. 15(b) for Case 3, the pulse of wavelength

λ1 at chip t8 has {1/g, 2/g, . . . , (g − 1)/g} pulse-shift possi-

bilities of changing a 0-hit to a 1-hit in the cross-correlation

function with the pulse of λ1 in the address codeword at t0.

The other w − 1 = 2 pulses have {0, 1/g, . . . , (g − 1)/g}
pulse-shift possibilities of changing a 0-hit to a 1-hit. The

number of pulse-shift combinations in this scenario is found

to be g(p−1)(p−1) = 2(3−1)(2−1) = 4, for example, coming
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Fig. 15. Illustrate how a pulse of an interfering codeword can change a 0-hit
to a 1-hit in the cross-correlation function of the (3× 9, 3, 0, 1) CHPCs with
g = 2, in the pulse-shift model for Case 3.

from the shifted codewords [(0, 0), (1, 4+1/2), (2, 8)], [(0, 0+
1/2), (1, 4+1/2), (2, 8)], [(0, 0), (1, 4+1/2), (2, 8+1/2)], and

[(0, 0+1/2), (1, 4+1/2), (2, 8+1/2)]. Also in Fig. 15(c) for

Case 3, the pulse of λ0 at t8 has {1/g, 2/g, . . . , (g − 1)/g}
pulse-shift possibilities of changing a 0-hit to a 1-hit in

the cross-correlation function with the pulse of λ0 in the

address codeword at t0. The other w − 1 = 2 pulses have

{0, 1/g, . . . , (g − 1)/g} pulse-shift possibilities of changing

a 0-hit to a 1-hit. The number of pulse-shift combinations

in this scenario is found to be g(p−1)(g − 1) = 2(3−1)(2 −
1) = 4, for example, coming from the shifted codewords

[(0, 0 + 1/2), (1, 4), (2, 8)], [(0, 0 + 1/2), (1, 4 + 1/2), (2, 8)],
[(0, 0 + 1/2), (1, 4), (2, 8 + 1/2)], and [(0, 0 + 1/2), (1, 4 +
1/2), (2, 8+ 1/2)]. However, in Fig. 15(a), because the pulse

of λ0 at t0 has generated a 1-hit already, the two pulses of

other wavelengths cannot change a 0-hit to a 1-hit anymore,

no matter how much the pulses are shifted. In summary, the

number of pulse-shift combinations that change a 0-hit to a 1-

hit in Case 3 is found to be g(p−1)(g−1)×(p−1) = 4×2 = 8,

where the factor “p − 1” means that there are p − 1 = 2
wavelengths, λ0 and λ1, changing a 0-hit to a 1-hit. Finally, the

total number of pulse-shift combinations in Case 3 becomes

g(p−1)(g − 1)(p − 1) × (p − 1)p2 because this case appears

(p − 1)p2 times in the cross-correlation functions of the

(p× p2, p, 0, 1) CHPCs, by inspection.

Combining these three cases, the probability of changing a

0-hit to a 1-hit can be formulated as

q0→1 =
1

2
×

case 1 + case 2 + case 3

total number of hits

=
g(p−1)(g − 1)(p− 1)p2

2p2(p2 − 1)gpp2

+
g(p−1)(g − 1)p(p− 1)2p2

2p2(p2 − 1)gpp2

+
g(p−1)(g − 1)(p− 1)(p− 1)p2

2p2(p2 − 1)gpp2

=
g − 1

2(p+ 1)g
(B.4)

Thus, the probability of getting 0-hits, defined in (B.3), in the
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(3× 9, 3, 0, 1) CHPCs can be derived as

q2,0,g = 1−
w2

2LN
−

g − 1

2(p+ 1)g

=
2p− 1

2p
−

g − 1

2(p+ 1)g
(B.5)

Furthermore, the probability of getting 1-hits in the (3 ×
9, 3, 0, 1) CHPCs can be derived as

q2,1,g = 1− q2,0,g − q2,2,g =
2gp− p+ 1

2gp(p+ 1)
(B.6)

Similar to the explanations in Appendix A, for the (p ×
p2, p, 0, 1) CHPCs, two scaling factors, g/(2g− 1) and (2g+
1)/(4g), are used to scale down qλc,j,g in order to reflect the

actual (power) contribution of these partial hits. The scaled hit

probabilities are given by

q′2,0,g = 1− qs2,1,g − qs2,2,g (B.7)

q′2,1,g = q2,1,g ×
g

2g − 1
(B.8)

q′2,2,g = q2,2,g ×
2g + 1

4g
(B.9)

After some manipulations, the final form of (11)–(13) in

Theorem 2 are formulated for the pulse-shift, power-detection

model.

The scaling factors, g/(2g − 1) and (2g + 1)/(4g), are

derived by counting all possible patterns of the partial hits in

the cross-correlation functions of the (p× p2, p, 0, 1) CHPCs.

Similar to Appendix A, considering all cases of g = 2 and

any p in the pulse-shift, power-detection model, each of the

(partial or full) hits contributed by the three hit-patterns “01,”

“10,” and “11” is counted as one full hit, and each of the

(partial or full) hits contributed by the two hit-patterns “11”

and “21” is counted as two full hits. (Note: the hit-pattern “11”

comes from “01”+“10” and the hit-pattern “21” comes from

“10”+“11.”) Afterward, the occurrence probability of each hit-

pattern and its expected value are calculated. For example of

the (3×9, 3, 0, 1) CHPCs with g = 2, the occurrence probabil-

ities of the three hit-patterns contributing to the 1-hits are equal

to 7/20, 3/10, and 7/20, respectively. So, the expected value

becomes (1/2)× (7/20)+(1/2)× (3/10)+(2/2)× (7/20) =
2/3, which can equivalently be written as g/(2g − 1) due to

g = 2. Similarly, the occurrence probabilities of the two hit-

patterns contributing to the 2-hits are both equal to 1/2. So, the

expected value is (2/4)× (1/2)+(3/4)× (1/2) = 5/8, which

can equivalently be written as (2g + 1)/(4g) due to g = 2.

Considering all cases of g = 3 and any p in the pulse-

shift, power-detection model, each of the (partial or full) hits

contributed by the five hit-patterns “001,” “011,” “100,” “110,”

and “111” is counted as one full hit, and each of the (partial

or full) hits contributed by the five hit-patterns “211,” “221,”

“101,” “121,” and “111” is counted as two full hits. The

occurrence probabilities of the five hit-patterns contributing to

the 1-hits are 5/24, 5/24, 3/16, 3/16, and 5/24, respectively.

So, the expected value becomes (1/3) × (5/24) + (2/3) ×
(5/24)+(1/3)× (3/16)+(2/3)× (3/16)+(3/3)× (5/24) =
29/48 ∼= 3/5, which can equivalently be written as g/(2g−1)
as g = 3. Similarly, the occurrence probabilities of the

five hit-patterns contributing to the 2-hit are 1/6, 1/6, 1/6,

1/6, and 1/3, respectively. So, the expected value becomes

(4/6) × (1/6) + (5/6) × (1/6) + (2/6) × (1/6) + (4/6) ×
(1/6) + (3/6) × (1/3) = 7/12, which can equivalently be

written as g/(2g − 1) due to g = 3.
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