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ABSTRACT 

Delayed Hydride Cracking (DHC) is a crack growth mechanism that occurs in zirconium al-
loys, including the pressure tubes of CANDU reactors. DHC is caused by hydrogen in solution in 
zirconium components being diffused to any flaws present, resulting in an increased concentration 
of hydrogen within these flaws. An increased hydrogen concentration can lead to brittleness, fol-
lowed by cracking, in high-stress regions of a pressure tube. Regular in-service ultrasonic inspection 
of CANDU pressure tubes aims to locate and classify any flaws that pose a potential for DHC initi-
ation. A common approach to inspection is the use of a bespoke tool containing multiple ultrasonic 
transducers to ensure that each point on the pressure tube is inspected from a minimum of three 
angles during a scan. All flaws from within the inspected pressure tubes must be characterized prior 
to restarting the reactor, thus the time-consuming analysis process lies on the critical outage path. 
This process is manually intensive and often requires a significant amount of expert knowledge. A 
modular system to automatically process outage data to provide decision support to analysts has 
been developed. This system saves time on the critical outage path while providing repeatable and 
explicable measurements. Part of the analysis process requires the depth of all flaws to be measured, 
which is often the most time consuming stage of the analysis process. This paper describes an ap-
proach that utilizes captured analysts knowledge to perform automatic flaw depth estimation. 
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1  INTRODUCTION 

As a large proportion of nuclear power plants are entering the latter stages of their operational lifetimes, 
ensuring reliability of components within the plant becomes more necessary for both continued safety and 
to minimize unplanned outages. In the case of the Canada Uranium Deuterium (CANDU) reactor, planned 
outages are generally scheduled approximately every three years where a comprehensive inspection of the 
reactor components takes place. A diagram of the CANDU reactor is shown in Figure 1 [1], where the 
pressure tubes and the fuel bundles contained within them are annotated, along with other key components 
of the reactor. As part of the inspection program, a subset of the reactor’s 480 pressure tubes are examined 
non-destructively using a series of ultrasonic measurements [2]. These measurements are manually ana-
lyzed by a team of human analysts, which is a time-consuming process that lies on the critical path to the 
restart of the reactor. In order to reduce the time spent during analysis, and to increase the repeatability of 
measurements made, a modular system called Automated Data Analysis for Pressure Tubes (ADAPT) has 
been developed that aims to replicate the process performed by the human analysts in order to provide 
decision support for manual analysis. 

A key function of ADAPT is the estimation of the depth of a located defect. Accurate measurement of 
a defect’s depth allows the tracking of defect growth over time, as well as the ability to perform informed 
simulations of defect behavior over time. Delayed Hydride Cracking (DHC) is a major concern within 
reactor designs that utilize zirconium components and is caused by increased hydride concentration coupled 
with the increased mechanical stresses associated with these defects as well as the heating and cooling 
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cycles of the reactor. Aside from manufacturing flaws, the most common areas where hydride build-up 
takes place are surrounding defects caused by in-service operation. Defective regions are modelled in soft-
ware to predict when the pressure tube is at risk of DHC [3], at which time the pressure tube will be replaced 
to ensure no damage can occur to the reactor, which is a possible consequence following a leak. These 
simulations make a conservative assessment that can be improved by knowing accurate dimensions of a 
defect.  

This paper presents an expert-systems inspired method to measure the depth of a defect within a 
CANDU pressure tube. Expert systems have become common for prognostics and health management for 
industrial use for a number of years [4], and have been previously applied to ultrasonic NDE for the vali-
dation of simulations [5]. The use of expert systems for prognostics in nuclear applications is less common 
[6,7] and the use of an expert system for ultrasonic depth measurement in a nuclear application is a novel 
application of the approach. Results from this method are compared to measurements made by human op-
erators where accuracy is determined by assessing the differences in depth reported by the human operator 
and the algorithm.  

 

2 PRESSURE TUBE INSPECTION 

 

Pressure tubes within CANDU reactors are inspected using a rotating tool containing multiple ultra-
sonic devices. The motivation behind using multiple devices on a single tool is to inspect the tube from a 
number of different angles to maximize the information available about potential defects [8]. The tool is 
moved through the pressure tube, recording its position as well as the ultrasonic signals from each device. 

Figure 1. An illustration of the CANDU reactor, showing the pres-

sure tubes discussed in this paper and the fuel bundles that reside 

within the pressure tubes. A full pressure tube contains 12 fuel bun-

dles. 



This data is then provided to the analysis team who review the measurements using custom software (a 
screenshot of which is shown in Figure 2), locating, sizing and classifying any defects found. 

Once a defect has been located and the length and width measured, the depth is determined by examining 
B-scan datasets and locating the ultrasonic reflection from the bottom of a defect. Every B-scan dataset 
contains ultrasonic measurements from three sources: a 20 MHz normal incidence probe operating in pulse-
echo mode (NBeam); a 10 MHz axial pitch-catch shear-wave probe in a full-skip configuration (APC); a 
10 MHz circumferential pitch-catch shear-wave probe, also in a full-skip configuration (CPC). The full-
skip configuration allows for inspection from below the defect, which is useful when oxide deposits within 
the defect make measurements from the surface difficult.  A slice of data from each of these sources can be 
also seen in the screenshot shown in Figure 2. 

The depth measurement process involves initially locating the reference back-wall reflection, which 
can be complicated by the fact that the distance between the probe and the internal surface of the pressure 
tube does not remain constant as the inspection tool rotates during the scan. Once the reference has been 
located, the reflection from the bottom of the target defect must be located in an A-scan. Individual A-scans 
can appear complex if they are subject to noise or if the bottom of the defect is rough. Each A-scan is a 
superposition of all of the reflections that occur within the pressure tube and complex A-scans are comprised 
of multiple reflections. In this case, analysts must use their knowledge and experience to select the appro-
priate reflection for each A-scan. The depth is then calculated by comparing the position of the backwall 
reference to the position of the bottom of the defect.  

Figure 2. A screenshot from the ultrasonic analysis software. Three different B-scan datasets are availa-

ble for each position and each dataset is comprised of individually focused A-scans. The backwall reflec-

tions appear to curve due to the movement of the tool as it rotates inside the pressure tube. 



The confidence in the depth measurement is increased by repeating the process on each of the three 
data sources. If the measurements from each source agree then the analyst can be reasonably confident that 
the depth is accurate. If they differ, the analyst seeks an explanation and potentially seeks another measure-
ment point within the dataset. 

 

3 PROPOSED METHODOLOGY 

In order to faithfully reproduce the process used by analysts, the CommonKADS approach to 
knowledge representation was adopted [9]. Knowledge Acquisition and Documentation Structuring 
(KADS) defines a structured approach to designing knowledge-based systems and this approach matured 
into the well-known CommonKADS methodology.  

CommonKADS defines general guidelines for knowledge capture, knowledge representation and the 
implantation of knowledge systems. The process of representing a system using CommonKADS involves 
building a series of related models. An overall task model has been derived that defines the analysts’ role 
in the overarching inspection process. From the task model, individual components of the analysis process 
have been highlighted for development in a knowledge system. The depth estimation process is one of these 
components and the one focused upon in this paper. 

Formal knowledge elicitation was conducted with domain knowledge experts in order to build up a 
knowledge model. Within CommonKADS, knowledge models have three main categories: task, inference 
and domain knowledge. Domain knowledge specifies the domain-specific knowledge required for comple-
tion of the task. It defines the expert knowledge and allows facts about a system to be ascertained. The 
inference knowledge describes the reasoning that takes place within a system. The inference knowledge 
can be used to evaluate information made available through the domain knowledge in order to establish 
new facts about the system. The task category of the knowledge model represents the goals that an expert 
will work towards and includes a decomposition into subtasks and inferences required to complete the task. 

For the specific application of depth estimation using ultrasonic data, a task model was generated with 
each subtask able to be represented by an inference model or an algorithm. In order to remove the require-
ment to revisit a dataset multiple times in a potentially iterative process, the concept of a ‘depth -map’ was 
instead introduced. Instead of a single measurement being made from each A-scan, multiple measurements 

Figure 3. A visual representation of the ‘depth-map’ that contains multiple measurements from each A-

scan. 



are made with a confidence assigned to each. These measurements are stored in a dataset that can be referred 
to when making inferences. A visual representation of this dataset is shown in Figure 3. 

A task knowledge model was generated from formal knowledge capture sessions with experts, as well 
as extracting information from inspection specification documentation. The task subsection of the 
knowledge model is represented by the image in Figure 4. The model is split into two main sections: the 
initial creation of the depth-map, and the selection of the most likely overall depth measurement for any 
given point. 

The generation of the depth-map is pri-
marily algorithm-driven and the main goal of 
this section is to identify potential measure-
ment points and establish key feature param-
eter values where are used as inputs to the in-
ference model. Identification of the most 
likely depth measurements is achieved by ap-
plying a set of domain rules representing con-
fidence adjustments to each element of the 
depth-map. This inference model is shown in 
Figure 5.  

Once each element of the depth-map has 
been assigned a confidence, the highest con-
fidence element is chosen as the best meas-
urement for each pixel. Finally, to report a 
single depth, the largest depth found in the 
processed depth-map is returned from the sys-
tem. 

Figure 6 shows some example domain 
rules defined within the knowledge base. 
Each of these rules, when fired, modifies the 
confidence of an individual element within 

Figure 4. A portion of the task subsection of the knowledge model for measuring the depth of a defect within a 

CANDU pressure tube. 

Figure 5. The inference model for used to calculate the 

confidence of each point in a pixel of the depth-map. 



the depth-map. These rules are assigned a unique identification number in order to facilitate tracking of the 
rules that have been fired for a given input. There are currently 16 rules defined within our knowledge base. 
These rules are run against each element within the depth map and are each rule can be run over 10,000,000 
times per defect when estimating the depth over a large area. 

Consider a typical A-scan such as the one depicted 
in Figure 7 with selected features overlaid on the image. 
Each feature has the following key feature parameter val-
ues: 

 Amplitude: the magnitude of the signal at the lo-
cation of the feature. 

 Backwall Reflection Feature: A Boolean value, 
which is true if the feature, is determined to be from the 
backwall reflection. 

 Maximum Outside Backwall Region: A Boolean 
value, set to true if the feature has the largest magnitude 
outside of the backwall area. 

 Is Local Maxima: A yes/no value that checks if 
the feature has the highest amplitude compared to the 
others for the A-scan. 

 Depth: the distance from the backwall reference 
position that the feature is. 

 

Each pixel within the depth-map is made up of a number of these features with the associated key feature 

Figure 7. A typical A-scan with highlighted 

features 

Figure 6. A representation of a subset of the confidence rules defined within our knowledge model, and used 

to compute the confidence of individual features within A-scans 



parameter values where are referred to by rules defined within the confidence measurement inference 
model. 

With the defined domain, inference and task categories within the knowledge model, it was possible to 
develop software based on the knowledge of the expert and easily validate captured knowledge using an 
easy-to-understand representation. 

 

4 RESULTS 

The proposed system was tested on historical data from 29 pressure tubes, with 280 defects in total. 
As subjectivity is often a factor among human analysts, a sensible threshold must be defined so that it is 
possible to fully evaluate the system. The threshold is set to 0.1 mm, and was chosen following discussions 
with domain experts. When comparing the results of our system to those of analysts, a form known as a 
verified result was used. Verified results take into account the measurements made by two independent 
analysts and are compiled by a third, lead analyst. These verified results will be taken as a ground truth for 
this system.   

Within the verified result, if a depth of a defect is measured to be less than 0.1 mm, the reported depth 
is listed as ‘<0.1 mm’. Defects that are shallow pose less of a risk for DHC and therefore ascertaining an 
accurate depth is not critical. When making comparisons with the verified result, we assume that depths 
reported at a depth of ‘<0.1 mm’ are at a depth of precisely 0.1 mm.  

The depth measurements were compared to the measurements reported by analysts during the outage 
from which the data was recorded, known as the verified result. Figure 8. (a) shows a histogram of this 
comparison. It can be observed from the figure that the majority of measurements are within 0.5 mm of the 
verified result. There are a number of outliers in this dataset, with an error of over 2 mm. 

Figure 8. (a) The difference between results from the depth measurement algorithm and the ana-

lysts’ verified result. (b) An enlarged region from (a), showing the region around the defined tol-

erance cutoff of 0.1 mm. 



Figure 8. (b) takes a closer look at this histogram where the differences between the automated system 
and verified result are less than 0.3 mm. It appears that while most of the measurements are within the 
defined tolerance of 0.1 mm, there are a number of measurements outside of this region.  

Analysis of the data shows that the depth of a defect has been measured to within 0.1 mm in 79% of 
cases and to within 0.3 mm in 85% of cases. In the cases where there are discrepancies in the depths reported 
by our software and the verified result, analysts can audit the measurements recorded by the system by 
reviewing the report of decisions made by the inference engine as it operated on the rules defined within 
the knowledge model. The analyst is able to view both the knowledge and the reasoning behind any deci-
sions.  

Figure 9 shows an example of the explicability within the system. The analyst may wish to query why 
a depth has been reported for a specific pixel within the depth-map. The analyst can view the elements of 
the depth-map overlaid on the A-scan from which they were extracted. Following this, the analyst can 
‘mouse-over’ the element to view individual confidences and the reasoning behind the assignment of the 
confidences.  

This is particularly powerful as if the expert disagrees with the outcome, then they have a set of rules 
to argue against (e.g. the rules are wrong and need updating, or a case in question lies outside what the rules 
can deal with and therefore additional rules, or refinements are required). 

 

5 DISCUSSION 

From the results presented in the previous section, it is clear that an expert system can perform complex 
ultrasonic measurements to a reasonable degree of accuracy. An earlier implementation of the depth meas-
urement system utilized a simple ‘location of the tallest peak’ algorithm that is commonly found within 
commercial ultrasonic systems for basic depth measurement. The basic implementation achieved approxi-
mately 30% accuracy with a 0.1 mm tolerance, compared to 79% that has been demonstrated with the expert 
system. The CommonKADS approach to knowledge representation has been used as both a basis for de-
veloping the system, as well as a tool used to discuss the domain expertise with analysts and facilitate 
knowledge exchange. 

Figure 9. An example of how the measurements from the ADAPT system are auditable. The analyst has the 

ability to view elements of the depth-map overlaid on the A-scan from which the elements were extracted. 

The analyst can then ‘mouse-over’ elements of interest to view individual confidences and justifications for 
each decision. 



Some discrepancies between the results of our system and the verified result can be attributed to replica 
and historic results. Conservative guidelines state that the maximum depth recorded for a given defect must 
be the depth reported. As analysts review all historical measurements prior to analyzing current data, it is 
possible the results of a previous measurement are reported if an equal depth measurement cannot be made. 
The primary cause of this is due to ultrasonic data being gathered using a 0.2 mm helical scan. Introducing 
a 0.1 mm offset to the inspection tool leads to the scan regions being interleaved and in the case of narrow 
defects, such an offset can lead to a significant change in the maximum depth measured. In the cases where 
the depth cannot be determined ultrasonically, or where the depth measured is close to indicating a risk for 
DHC initiation, a replica is taken. The replica process involves creating a mold of the defect from which 
extremely accurate measurements can then be made. Current verified results do not indicate where meas-
urements originate, therefore it is possible that the verified result reports a depth that cannot me made 
ultrasonically.  

The outliers observed at an offset at approximately 2 mm in Figure 8. (a) can be attributed to a persis-
tent feature that can often be observed in A-scans. If no other suitable candidate depth measurements can 
be found in a given A-scan, these features are instead reported as reflections from a defect. This represents 
a potential improvement that can be made to both the domain knowledge and inference components of our 
knowledge model so that they are excluded in future. 

6 FURTHER WORK 

While the initial results from this technique are promising, it is anticipated that a greater accuracy can 
be achieved by reviewing the knowledge base with a larger range of domain experts. The existing 
knowledge base has been derived from the knowledge of two analysts, which is a relatively small sample 
size. In the future, reviewing this data with other domain experts will ensure that the captured knowledge 
is robust and contains minimal subjectivity with respect to the analysis process. 

In addition, a study will be conducted into the cases where this technique fails to report a depth within 
0.1 mm of the verified result. Defects with different root causes appear different when inspected ultrasoni-
cally and some can be measured with more success than others. For example, if the system can measure the 
depth of all defects caused by fuel bundle vibration to an accuracy of 95% then additional confidences can 
be integrated into the system when they are measuring a particular class of defect. 

 

7 CONCLUSION 

This paper has presented a novel application of the CommonKADS knowledge engineering model, 
namely to apply an expert system process to ultrasonic measurements within structural components of nu-
clear power plants. The results presented show that the technique has promise with an accuracy approaching 
80% when compared to measurements made by analysts. A program of future work has been proposed with 
the aim of being able to use the system with confidence during planned outages. 
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