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Abstract—In this paper, a combinatorial optimisation al-
gorithm inspired by the Physarum Polycephalum mould is
presented and applied to the optimal trajectory planning of
a multiple asteroid tour mission. The Automatic Incremental
Decision Making And Planning (AIDMAP) algorithm is capable
of solving complex discrete decision making problems with the
use of the growth and exploration of the decision network. The
stochastic AIDMAP algorithm has been tested on two discrete
astrodynamic decision making problems of increased complexity
and compared in terms of accuracy and computational cost to
its deterministic counterpart. The results obtained for a mission
to the Atira asteroids and to the Main Asteroid Belt show
that this non-deterministic algorithm is a good alternative to
the use of traditional deterministic combinatorial solvers, as
the computational cost scales better with the complexity of the
problem.

I. INTRODUCTION

Discrete decision making problems are common problems

within the field of engineering. For example, the design of

a network, the scheduling of operations and the planning of

a trajectory can be represented as combinatorial problems

[1][2][3]. As the complexity of such problems increases with

the growth of the set of decisions, it is favourable to develop

efficient strategies to solve these problems. The algorithms

that can solve these type of problems can be divided into two

categories: deterministic and non-deterministic algorithms. Ex-

amples of stochastic algorithms are ant colony optimisation,

genetic algorithm and particle swarms [2], while deterministic

algorithms are for example the branch-and-bound, tabu search

and pattern search algorithms [4][5][6].

In this paper, a non-deterministic algorithm inspired by the

Physarum Polycephalum mould is presented and applied to

two problems in the field of astrodynamics. For a comparison

between the Physarum algorithm, Branch and Cut and Genetic

Algorithms, on the solution of Multi Gravity Assist trajectory

problems, the interested reader can refer to [3][7].

Although various strategies based on this type of algorithm

were previously developed to solve among others the shortest

path problem and to obtain the trajectory for a multi-gravity

assist mission, these algorithms were either non-generic, or not

made public [3][8][9]. As such, it was decided to develop a

more general version of the algorithm that is capable of solv-

ing various complex discrete decision making problems. The

developed method has been named the Automatic Incremental

Decision Making And Planning (AIDMAP) algorithm and has

been integrated into the open-source SMART-O2C toolbox

developed by the Advanced Space Concepts Laboratory of

the University of Strathclyde. It is therefore freely available

under the MPL2.0 license on https://github.com/strath-ace/

smart-o2c.

The AIDMAP algorithm and its operators are first described

in Section II. In Section III, the developed algorithm is applied

to two case studies. These case studies include a mission to the

Atira asteroids and a mission to the Main Asteroid Belt. The

goal of the former case study is to compare AIDMAP against

a deterministic branch and prune strategy while the goal of the

latter case study is to apply AIDMAP to a decision making

problem with a large database of possible decisions. Section

IV describes the benchmarking of the algorithm to measure the

convergence speed versus the success rate. Finally, a number

of conclusions are drawn in Section V.

II. AUTOMATIC INCREMENTAL DECISION MAKING AND

PLANNING ALGORITHM

As mentioned in the introduction, the AIDMAP algorithm

takes its inspiration from the Physarum Polycephalum mould.

To simulate this mould, a number of virtual agents are used

to resemble nutrients inside veins that move through and

allow the incremental branching of new veins. Each of these

veins have a radius, length and an amount of flux going

through them, where the latter depends on the first two.

These characteristics are stored in so-called nodes that are

placed in between every two veins. Aside from the vein

characteristics, each node also contains the problem-specific

attributes. As each node resembles a certain decision, a set of



Fig. 1. The flowchart describing the AIDMAP algorithm

nodes connected by veins can resemble the set of consecu-

tive decisions present in the aforementioned discrete decision

making problems.

The pseudo-code of the algorithm is shown in Algorithm 1

and a flowchart of the algorithm can be seen in Figure 1. In

the following sections, the various steps and operators of the

algorithm are described in detail.

Algorithm 1 AIDMAP Algorithm

1: initialise algorithm variables

2: for each generation do

3: for each virtual agent do

4: while end condition not reached do

5: create & evaluate decision paths (see Sec. II-B)

6: calculate probabilities (Eqs. 2, 3)

7: probabilistically choose next node

8: move agent to node

9: if end condition reached then

10: save agent’s path as a solution

11: end if

12: end while

13: dilate vein radii (Eq. 4)

14: end for

15: increase vein radii in best path so far (Eq. 5)

16: simulate evaporation (Eq. 6)

17: if vein radius outside of limits then

18: vein radius = limit

19: end if

20: if restart condition (see Sec. II-F) then

21: reset vein radii

22: update fluxes and probabilities

23: end if

24: end for

A. Virtual Agents

As can be seen on lines 1 to 3 in Algorithm 1, the algorithm

starts with an initialisation, after which the nested loop over

all generations and virtual agents is started. The amount of

generations and virtual agents is specified by the user.

During each generation the predefined number of virtual

agents are moved across nodes. As noted earlier, these virtual

agents resemble nutrients as they move through the veins and

encourage the growth and exploration of the decision network.

B. Decision Network Growth

When a virtual agent arrives at a node, it will first attempt

to create a predefined number of decision paths to nodes that

are not yet connected to the node the virtual agent is currently

evaluating.

To do so, a loop is used that constructs new nodes, checks

their validity and their potential to connect to the current node.

This process continues until no more possible nodes are found,

a maximum number of attempts Ffindmax
have been made to

find new nodes or the specified number of ramification nodes

kram have been generated.

During the generation of new nodes, each node is assigned

a number of problem-specific attributes, a vein length, an

initial radius defined by the user and a flux, and its validity

is checked. The flux is calculated using a variation on the

equation proposed in various previous papers on the Physarum

Polycephalum and the classical Hagen-Poiseuille equation for

the volumetric flow rate through a cylindrical duct with a

certain length [10][11][12]. The equation used in the algorithm

can be seen in Equation 1:

Qij =
πr4ij

8µ

1

Lij

(1)

where rij is the radius of the vein from node i to node j,

µ is the fluid viscosity, Lij is the vein’s length and Qij is

the flux going through the vein. From this equation, one can

see that as the length and radius increase, the amount of flux

decreases and increases respectively. By defining a larger flux

as being more favourable, one can set the length of the vein

equal to the cost of the connection between the two nodes.

As the fluid viscosity µ and the initial radius upon creation

are defined by the user as well, and the vein length is found

using a cost function provided by the user, the flux through a

vein can now be found. The node’s problem-specific attributes

are determined using a second file specified by the user. This

generation of potential decision paths corresponds to line 5

in Algorithm 1. If the required number of valid ramification

nodes has been generated, no more possible nodes are found

or a maximum number of attempts to find a valid ramification

node Ffindmax
have been made, the algorithm decides whether

to grow or further explore the decision network

C. Decision Network Exploration

In order to decide whether an agent moves to grow the

decision network or to explore it, the flux calculated using

Equation 1 is used.

First, as shown in line 6 of Algorithm 1, the probability of

the agent moving from node i to node j is calculated using

Equation 2:

Pij =
Qλ

cj

ij
∑

j∈Ni
Qλ

cj

ij

(2)

In this equation, Pij is the probability of moving from node i

to node j, Qij is the flux flowing through the vein from node

i to node j, Ni is the total number of potential nodes that

agent can choose to move to, λ is the ramification coefficient



and cj is a constant that is 1 for nodes that are not yet linked

to the current node, and 0 otherwise.

Once the probability has been found, it is weighted using

Equation 3 to find the actual probability for an agent to move

to node j [13]:

pij =

{

Pij(1− pram) if node is linked

Pijpram if node is not linked
(3)

where pram is the probability of ramification as defined by

the user. Using this probability, a non-deterministic choice is

made by the agent when moving to the next node.

D. Vein Dilation

Once a virtual agent is no longer able to move or an end

condition has been reached, the radius of the veins it has

passed through is increased as shown in line 13 of Algorithm 1.

This simulates dilation caused by the nutrients flowing through

a vein. The dilation caused by agent k is modelled using

Equation 4 [13]:

∆r
(k)
ij

∣

∣

∣

∣

dilation

= m
r
(k)
ij

L
(k)
tot

(4)

where m is the linear dilation coefficient and L
(k)
tot is the total

length of the veins traversed by agent k. It can be noted from

Equation 2 that as this radius increases, the chance of another

agent to move to the same vein increases. Once this dilation

has been processed, the algorithm continues iterating over the

agents that have not yet been moved.

E. cAMP Process & Vein Contraction

Once all the agents of a generation have moved, two

additional processes are taken into account, being an additional

vein dilation and contraction process. These correspond to

lines 15 and 16 in Algorithm 1 respectively.

Firstly, it should be noted that the original Physarum algo-

rithm was adapted to include another term in the dilation pro-

cess that is based on the Dictyostelium Discoideum amoeba.

When this amoeba starves, it starts to emit cyclic Adsenosine

Monophosphate (cAMP) waves. As the other amoeba are

sensitive to this chemical in their aggregative and slug stages,

the result is that the amoeba start aggregating, thus showing

collective behaviour [14]. In the AIDMAP algorithm, this

starving amoeba is resembled by the agent with the best

objective function, and the call for aggregation is simulated

by a linear dilation of the vein radii of the best path. This can

be seen in Equation 5 [13]:

∆rijbest

∣

∣

∣

∣

elasticity

= GFrijbest (5)

where GF is the growth factor that is defined by the user and

the subscript ijbest denotes all the veins of the best path.

Secondly, the evaporation is taken into account using Equa-

tion 6 [13]:

∆rij

∣

∣

∣

∣

evaporation

= −ρrij (6)

One can see in this equation that once a generation has been

completed, all radii over the entire graph are reduced by a

factor ρ, being the evaporation coefficient. In combination with

Equation 5 and 4, the result of this is that veins that have not

been traversed by any agents have their radius, and thus their

probability, reduced.

As the vein dilation and contraction may lead to the radius

of certain veins to be reduced to zero or to become too large, a

check is performed to confirm whether the radius is outside of

the bounds defined by a minimum and maximum radius set by

the user. When this is the case, the radius is set to the minimum

or maximum radius respectively. If one were to not perform

this check, certain solutions could potentially be excluded or

one solution could overpower the decision network [13].

F. Restart Procedure

Before the next generation is evaluated, a last check is

performed. The reason for this is that, as every agent that

moves through a certain vein increases the probability of that

vein, there exists the risk of premature stagnation [13]. In order

to prevent this premature stagnation, a restart procedure was

implemented. This process works as follows: by comparing the

path that each agent has travelled in a generation, it is checked

whether two agents have at least ncom
min nodes in common.

If this is the case, the radii throughout the entire vein are

reset to their initial values and the corresponding fluxes and

probabilities are recalculated [13]:

rij = rini (7)

As shown in line 24 of Algorithm 1, the algorithm continues

to the next generation once this conditions has been checked,

thus closing the loop.

G. Algorithmic Complexity Considerations

Algorithm 1 shows that AIDMAP’s algorithmic complexity

is equivalent to a standard ACO. This is clear also from the

key mechanisms defined in Eqs. (1) to (6). Since AIDMAP

simultaneously grows and explores the tree of decisions, the

time complexity is not dependent on the number of nodes and

branches. On the other hand, all parts of the tree are preserved

in memory. Therefore, the memory allocation grows with the

number of function evaluations.

III. CASE STUDIES

In order to test the algorithm described in Section II, two

case studies have been evaluated. Both of the two case studies

are related to the field of astrodynamics and mission analysis,

and can be described as complex discrete decision making

problems.

A. Low-Thrust Constrained Mission to the Atira Asteroids

As a first case study, a mission to the Atira asteroids is

evaluated. This problem is based on the paper published by

Di Carlo et al. in 2015 [15].

The Atira asteroids are asteroids that can be characterised by

the fact that their orbit lies completely inside the heliocentric



TABLE I
OVERVIEW OF THE AIDMAP PARAMETERS AND THEIR VALUES

Linear Dilation Coefficient m 1e-3
Evaporation Coefficient ρ 1e-4
Growth Factor GF 5e-3
Number of Agents Nagents 20
Number of Generations Ngenerations 200
Ramification Probability pram 0.7
Ramification Weight λ 1
Initial Radius rini 2
Minimum Radius rmin 1e-3
Maximum Radius rmax 5
Fluid Viscosity µ 1
Ramification Nodes kram 5
Max. Child Finding Attempts Ffindmax

1e4
Restart Threshold ncom

min 4

Earth orbit. However, these asteroids are difficult to study due

to the limitations of the ground-based telescopes, as these

can only detect the asteroids when the Sun is not in the

field of view of the telescope. As these asteroids may form

a significant threat to our planet, a mission was proposed

to improve the knowledge of the Atira asteroids using a

spacecraft [15]. Therefore, the objective in this case study is

to visit as many Atira asteroids as possible, with the least

amount of required change in velocity ∆V. In order to prevent

the need to use costly manoeuvres to change the spacecraft’s

inclination, the nodal points of the considered asteroids are

targeted [16]. The result of this, is that the spacecraft should

arrive at the nodal point at the exact time that the asteroid is

at this point in its orbit as well.

In the aforementioned paper, the final solution is obtained by

first determining the optimal sequence of asteroids, departure

times and arrival times using a branch-and-prune deterministic

algorithm developed for discrete problems, called LambTAN

(Lambert to Target Asteroids at Nodal points). The solution is

found by using the patched conic approximation and modelling

the transfer orbits as Lambert arcs [16]. Once the optimal

sequence has been found, it is passed into a second algorithm

that optimises the trajectory for the low-thrust spacecraft. In

this case study, only sequence-finding will be considered.

To do so, each vein will represent the transfer from one

celestial body to the next, while the nodes between two

veins will contain the information on these transfers and the

respective celestial bodies. Using this definition, the length

shown in Equation 1 represents the ∆V needed for the transfer.

As such, when the required ∆V is lower, the amount of flux

increases, thus in turn increasing the probability of the nutrient

moving along the vein with a lower ∆V.

1) Algorithm and Problem Settings: As can be noted from

Section II, the algorithm requires the user to define a number

of parameters. An overview of these parameters and the values

used to solve this case study can be seen in Table I. The values

shown in this table were obtained through the use of literature,

testing and tuning [3][7].

As mentioned in Section II-B, the algorithm checks the

validity of potential child nodes during the decision network

growth process. To perform this check, a number of problem-

specific boundaries are tested. If either of these boundaries

is not upheld, the potential child node is considered invalid

and the algorithm will perform another attempt at finding a

potential child node.

Firstly, it is tested whether the departure date required to

arrive at the asteroid at the specified epoch with the chosen

time of flight does not lie in the past. This check is equivalent

to confirming that the required departure date does not lie

before the arrival date of the previous arc:

Tdeparck
≥ Tarrarck−1

(8)

Secondly, the feasibility of translating the impulsive Lambert

transfer to a low-thrust trajectory is tested. This is done using

the following two constraints [15]:

ToFarckϵ ≥ C∆Varck (9)

ToFarckϵ ≥

√

V 2
0 − 2VfV0cos

(π

2
∆i

)

+ V 2
f (10)

where ToFarck is the time of flight of the Lambert arc, ϵ is

the acceleration of the spacecraft’s low-thrust engine, C is an

empirical coefficient, ∆Varck is the required ∆V found for the

Lambert trajectory, ∆i is the change in inclination, V0 is the

spacecraft’s velocity when it passes the previous asteroid and

Vf is the velocity at the end of the Lambert arc. The latter of

these two equations is the so-called Edelbaum condition and

it should be noted that in this equation, ∆i can be set to zero

due to the fact that only the nodal points of the asteroids are

targeted [17].

As a fourth constraint, the minimum perihelion distance of

0.31 Astronomical Units (AU) discussed in the aforementioned

paper is considered. Using Equation 11, this condition is

checked [15]:

a(1− e) ≥ rpmin
(11)

in which a is the semi-major axis of the spacecraft’s orbit,

e is its eccentricity and rpmin
is the predefined minimum

perihelion distance [17].

In order to encourage the algorithm to find more solutions

with a larger number of asteroids, a limit was set on the time

between the spacecraft passing an asteroid and the starting

time of the next Lambert arc. This time is defined as the

waiting time Twait and its boundaries are checked using

Equation 12:

Twait ≤ Twaitmax
(12)

Furthermore, for the algorithm to find manoeuvres that can be

done using the spacecraft, a limit was also set on the departure

∆V:

∆Vdep ≤ Vmaxarck
(13)

Lastly, as the spacecraft will only have a limited amount

of fuel, an upper limit for the total ∆V required for the full

trajectory was set:

∆Vtot ≤ ∆Vmax (14)

An overview of the used parameters and their values for these

equations can be found in Table II [15]. In this table, T0



TABLE II
PROBLEM PARAMETERS FOR THE MISSION TO THE ATIRA ASTEROIDS

T0 01/01/2020
Tend 01/01/2030
ToFmin 35 days
ToFstep 10 days
ToFmax 365 days
Twaitmax 730 days
∆Vmaxarck

3 km/s from Earth

1.5 km/s from transfer orbits
∆Vmax 4 km/s
rpmin

0.31 AU

ϵ 10−4 m/s2

C 2

TABLE III
THE OPTIMAL SOLUTION FOUND USING THE AIDMAP ALGORITHM

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

2013JX28 2020/09/29 205 2021/04/22 0.87
2006WE4 2022/05/14 215 2022/12/15 0.86
2004JG6 2023/06/04 245 2024/02/04 0.65
2012VE46 2024/09/21 255 2025/06/03 0.39
2004XZ130 2026/09/15 205 2027/04/08 0.74
2008UL90 2028/07/31 195 2029/02/11 0.30

Total: 3.81

is the mission starting time, Tend is the mission end time

and ToFmin, ToFstep and ToFmax denote the minimum and

maximum time of flight for the Lambert arc as well as the time

step at which the time of flight is evaluated. While these values

were obtained from the paper by Di Carlo et al., it should be

noted that the minimum time of flight is different. The reason

for this, is that the algorithm used in the paper by Di Carlo

et al. to find the optimum time of flight, evaluates the time-

frame in a backward motion from 365 days to 30 days, while

using a time step of 10 days. Because of this, the minimum

time of flight evaluated by this algorithm was 35 days [15]. As

the program written for this case study evaluates the possible

time of flights in an increasing fashion, the minimum time of

flight has to be set to 35 days to be able to obtain the solution

presented in the paper when the time step of 10 days is used.

2) Results: Using the settings shown in Tables I and II,

the solution shown in Table III is obtained. In this table,

Tdeparc
and Tarrarc

denote the departure and arrival times of

the Lambert arc, and ToFarc is the time of flight for this arc.

For ease of reference, the results obtained by Di Carlo et al. are

shown in Table IV. Interesting to note from this table, is that

the trajectory uses the same sequence of asteroids and dates for

TABLE IV
THE OPTIMAL SOLUTION FOUND BY DI CARLO ET AL. [15]

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

2013JX28 2020/09/29 205 2021/04/22 0.87
2006WE4 2022/05/14 215 2022/12/15 0.86
2004JG6 2023/06/14 235 2024/02/04 0.61
2012VE46 2024/09/11 265 2025/06/03 0.36
2004XZ130 2026/09/15 205 2027/04/08 0.73
2008UL90 2028/07/31 195 2029/02/11 0.34

Total: 3.77

TABLE V
THE ORBITAL ELEMENTS OF THE FOUR ADDITIONAL ATIRA ASTEROID

Asteroid: 2013TQ5 2014FO47 2015DR215 2015ME131

a [AU] 0.7737 0.7522 0.6664 0.8049
e [-] 0.1556 0.2711 0.4716 0.1989
i [deg] 16.3986 19.1980 4.0903 28.8765
Ω [deg] 286.7789 358.6600 314.9819 314.3638
ω [deg] 247.3049 347.4558 42.2604 164.0285
M0 [deg] 232.5338 52.1090 50.8887 189.7431
t0 [MJD2000] 6055.5 6055.5 6055.5 5652.5

TABLE VI
THE OPTIMAL SOLUTION FOUND BY THE AIDMAP ALGORITHM WHEN

THE NEWLY DISCOVERED ATIRA ASTEROIDS ARE ADDED TO THE

DATABASE

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

2015ME131 2020/01/10 195 2020/07/23 0.61
2014FO47 2021/04/15 285 2022/01/25 0.54
2008UL90 2022/03/19 195 2022/09/30 0.27
2004JG6 2023/03/16 325 2024/02/04 0.65
2013JX28 2024/04/12 275 2025/01/12 0.62
2012VE46 2025/01/19 135 2025/06/03 0.35
2010XB11 2026/11/24 195 2027/06/07 0.77
2006WE4 2028/07/16 245 2029/03/18 0.18

Total: 3.99

the arrival times as found by Di Carlo et al., and that the time

of flight of the Lambert arcs is similar to those presented in

the paper for all but the 3rd and 4th arc, causing the required

∆V to be 0.04 km/s higher. However, as the 3rd arc is 10 days

more than the one presented in the paper and the 4th arc is

10 days less, this difference cancels itself out with respect to

the departure times, thus resulting in the departure times also

being similar for all but these arcs. It should be mentioned

that for the 5th and 6th arcs, while the departure dates, time

of flights and arrival dates are equal to those presented in the

paper, the ∆V needed for these manoeuvres was found to be

0.01 km/s larger and 0.04 km/s smaller than the ones shown

in the paper by Di Carlo et al. The cause of this, is a minor

difference in the initial starting position. This small difference

propagates through the solution, slightly changing the required

orbit, in turn causing the Lambert arcs to change as well.

In an attempt to further evaluate the mission’s potential, four

additional Atira asteroids that have been discovered since the

paper was published were added to the database as well. The

osculating orbital elements of these four Atira asteroids can be

seen in Table V [18]. The optimal solution found when these

four additional Atira asteroids have been added to the database

can be seen in Table VI. As expected, the adding of additional

target asteroids for the spacecraft to move to increases the total

number of asteroids that can be visited within the mission time.

However, while this solution is capable of visiting 2 additional

asteroids, the required ∆V is also 0.18 km/s higher.

B. Low-Thrust Constrained Mission to the Main Asteroid Belt

The second case study consists of the preliminary identi-

fication of an optimal sequence of flyby’s of the asteroids

in the Main Asteroid Belt, with a constraint on the possible

realisation of the trajectory with a low-thrust engine. In this



TABLE VII
OVERVIEW OF THE AIDMAP PARAMETERS AND THEIR VALUES USED FOR

THE MISSION TO THE MAIN ASTEROID BELT

Linear Dilation Coefficient m 5e-3
Evaporation Coefficient ρ 1e-3
Growth Factor GF 5e-3
Number of Agents Nagents 10
Number of Generations Ngenerations 40
Ramification Probability pram 0.7
Ramification Weight λ 1
Initial Radius rini 2
Minimum Radius rmin 1e-3
Maximum Radius rmax 5
Fluid Viscosity µ 1
Ramification Nodes kram 5
Max. Child Finding Attempts Ffindmax

2e4
Restart Threshold ncom

min 5

TABLE VIII
RANGE OF ORBITAL ELEMENTS FOR THE SPACECRAFT’S INITIAL ORBIT

USED FOR THE COMPUTATION OF THE MOID WITH THE ASTEROIDS

rp [AU] ra [AU] i [deg] Ω [deg] ω [deg]

1 [2.36, 3.20] [0, 35] 0 [0, 360]

case, the objective is also to visit as many asteroids as possible

within the time frame, with the least amount of ∆V. The

problem assumes the same acceleration as used in the mission

to the Atira asteroids, being 10−4 m/s2. The time-frame for

the mission starts at 02/01/2029 and ends on 02/01/2049.

1) Algorithm and Problem Settings: The settings shown

in Table I were adapted through testing, in order to cope

with the increased complexity of the problem while having

access to the same computational resources. The values used

instead for this case study are shown in Table VII. Moreover,

other mission related parameters need to be defined before

AIDMAP can be applied to the problem. In particular, the

initial orbit and the various boundaries on time and ∆V need

to be set. The definition of the initial orbit for the mission

to the Main Asteroid Belt is based on the concept of the

Minimum Orbital Intersection Distance (MOID) between the

spacecraft’s orbit and the asteroids’ orbits [19]. The MOID

is computed for a time period of 20 years. The database of

asteroids in the Main Belt with diameter greater than 10 km

and different possible initial orbits is considered. The possible

orbital elements considered for the initial spacecraft orbit are

given in Table VIII.

For each possible initial orbit of the spacecraft, the aster-

oids with MOID < 0.01 AU with respect to this orbit are

sought. For the combinations of initial orbits and asteroids that

satisfy this condition, the relative phasing is also considered,

propagating the orbits of both spacecraft and asteroids. This

process allows one to identify an initial orbit with close

encounters (MOID < 0.01) to many asteroids in the database.

In particular the orbit characterised by orbital elements rp =

1 AU, ra = 3.1066 AU, i = 0 deg, Ω = 0 deg, ω = 150 and

M0 = 101 deg on 01/01/2030 has both MOID < 0.01 and the

condition on orbital phasing satisfied for the encounter with

37 asteroids in the database. This orbit is therefore the chosen

initial orbit for use in the AIDMAP algorithm.

As for the problem boundaries, the same boundary parame-

ters need to be defined as done for the first case study. In this

case, the maximum ∆V for an individual transfer arc was set to

be 0.75 km/s, the maximum total ∆V was set to 5 km/s and the

empirical coefficient C was assumed to be 2. For the minimum

and maximum time of flight, the boundaries were set to be 4

days and 730 days, using a time step of 10 days. These limits

were found from the results obtained by the computation of

the closest encounters between the spacecraft and asteroids. In

particular the minimum and maximum total time between two

encounters was found to be 4 days and 1064 days respectively.

By setting the maximum time of flight and waiting time to both

be equal to 730 days, one allows for the total time between

encounters to be 1064 days plus an additional margin for the

transfer orbit. The latter is needed due to the fact that the

initial orbit defined above does not necessarily get sufficiently

close to the asteroid, since it only guarantees that the MOID

is lower than 0.01 AU. The AIDMAP algorithm on the on the

other hand will attempt to intersect the orbit with the asteroid’s

centre, hence requiring a margin for the total transfer time.

It should be noted that for this case study, Equation 9 was

slightly altered. Namely, Equation 15 is used instead:

(ToFarck + Twaitk − Tmeas)ϵ ≥ C∆Varck (15)

In this equation, it may be noticed that two additional terms

have been added. Firstly, the waiting time was included due

to the fact that low-thrust engine could also provide thrust

during the waiting time, thus slightly relaxing the constraint.

However, another term Tmeas was introduced to ensure that

the low-thrust engine does not need to be turned on during

the time that measurements are performed near the asteroid.

In this problem, Tmeas was set to be 20 days.

Aside from that, the boundary shown in Equation 10 is

ignored in this case study, as the Edelbaum shown here is

only valid for near-circular orbits [17]. As the initial orbit

used in this case study is significantly eccentric, as opposed

to the orbit used in the first case study, this boundary is not

taken into account.

2) Results: The solution obtained using the parameters

stated in Tables I and II can be found in Table IX. In this table,

Tdeparc
, Tarrarc

and ToFarc denote the departure time, arrival

time and time of flight of the Lambert arc respectively. It can

be seen in this table that the resulting trajectory is capable

of visiting 11 out of the 37 considered asteroids, and that the

total ∆V is 2.94 km/s.

The effectiveness of preprocessing the database and se-

lecting only a subset of asteroids is tested by comparing

the solution shown in Table IX with the solution obtained

when the full database of asteroids larger than 10 km is used.

This database contains the osculating orbital elements of 1977

objects [18]. It was predicted that, as the amount of agents and

generations is kept the same, and the database is larger, the

chance of selecting the more favourable asteroids and arrival

times decreases. This in turn may have a negative impact on

the final solution found. The solution can be seen in Table X.



TABLE IX
THE TRAJECTORY FOUND FOR THE MISSION TO THE MAIN ASTEROID

BELT

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

1906VP 2029/02/20 724 2031/02/14 0.20
Klytia 2032/07/03 634 2034/03/29 0.10
1939TA 2034/04/25 644 2036/01/29 0.23
1935OB 2036/05/20 404 2037/06/28 0.70
1905PS 2037/11/09 364 2038/11/08 0.08
1925TD 2038/11/15 334 2039/10/15 0.47
1902LK 2040/04/25 484 2041/08/22 0.38
Kassandra 2041/09/28 384 2042/10/17 0.15
1978QP1 2043/10/20 364 2044/10/18 0.25
1935MG 2046/04/19 374 2047/04/28 0.14
1973FF1 2047/06/04 364 2048/06/02 0.23

Total: 2.94

TABLE X
THE TRAJECTORY FOUND WHEN THE FULL ASTEROID DATABASE IS USED

AS INPUT

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

1992UU 2029/09/28 684 2031/08/13 0.17
1908DH 2032/07/18 574 2034/02/12 0.38
1905QD 2035/02/21 274 2035/11/22 0.20
1905PS 2037/01/03 674 2038/11/08 0.58
1902LK 2040/04/05 504 2041/08/22 0.24
Asia 2041/11/18 534 2043/05/06 0.40
1978QP1 2043/10/30 354 2044/10/18 0.24
1892N 2044/11/26 514 2046/04/24 0.04
1924QL 2046/08/02 384 2047/08/21 0.33
1906TP 2047/08/25 234 2048/04/15 0.75

Total: 3.33

From this table, it can be observed that the best solution is

capable of visiting 10 asteroids using a ∆V of 3.33 km/s. By

comparing this solution with the one shown in Table IX, it

can be concluded that using the database of the 37 asteroids

as input for the algorithm, as opposed to the full database of

1977 asteroids, is indeed effective when the settings shown in

Table VII are used. In order to be able to cope with the larger

dataset, a larger number of agents and generations are needed

to sufficiently explore the search space.

IV. BENCHMARKING

To evaluate the efficiency of the AIDMAP algorithm, the

original algorithm used in the paper by Di Carlo et al. was

compared to the algorithm discussed in this paper.

LambTAN is a deterministic algorithm that takes inspira-

tion from a combination of the branch-and-prune algorithm

and the incremental pruning discussed in [20] and [21]. In

essence, LambTAN branches out through the search space and

constructs and assesses transfers arcs one after another. If a

solution is found to be non-feasible, the branch is pruned [15].

The comparison is done by evaluating the number of func-

tion evaluations and the success rate of AIDMAP assuming

that the solution provided by LambTAN is the reference. This

is reasonable as the solution generated by LambTAN was

obtained with a nearly exhaustive deterministic search.

The use of AIDMAP is considered successful if the final

solution has the same sequence as the one found by the Lamb-

TAN algorithm and if the ∆V found is at most 5, 10 or 15
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Fig. 2. The success rate of the AIDMAP algorithm as a function of the
number of generations when the settings shown in Tables I and II are used
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Fig. 3. The number of function evaluations performed by the AIDMAP
algorithm when a set number of generations is evaluated and the settings
shown in Tables I and II are used

percent larger than the one found by the LambTAN algorithm.

The trends of success rate versus number of generations can

be found in Figure 2. To obtain this graph, the values shown

in Tables I and II were used as inputs, and a dataset of 40

runs was used for each data point.

From this graph, it can clearly be seen that the success rate

increases as the number of generations increases. However, it

can also be noted that with a boundary of 5 percent, the success

rate at 100 and 160 generations is lower than one would expect

from observing the trend. The cause of this is likely to be the

limited size of the dataset. Nonetheless, the trend observed

here is similar to the one of other Physarum-based algorithms

[3]. As for how the amount of function evaluations changes

with the amount of generations, this can be seen in Figure 3.

In this figure, a function evaluation is defined as a call to the

cost function.

Interesting to note here is that the number of function

evaluations performed when a certain amount of generations is

selected, often overlaps with an amount of function evaluations



performed when a lower or higher number of generations is

used. The cause of this, is the non-deterministic nature of the

algorithm; the number of function evaluations performed when

a certain number of agents and generations is selected is not

a set value.

To compare these statistics with LambTAN’s, it should be

mentioned that LambTAN performs 6.9·107 function evalua-

tions to obtain the solution. It can be noted that this is more

than a factor 30 larger than the amount of function evaluations

performed by the AIDMAP algorithm when 20 agents, 200

generations and the settings shown in Tables I and II are used.

While LambTAN is guaranteed to succeed due to the fact

that it is evaluating all available trajectories, it becomes highly

inefficient to use LambTAN when the dataset of possible

asteroids increases significantly. Due to this disadvantage of

LambTAN and the increasing need for algorithms that can

efficiently solve large and complex combinatorial problems,

the AIDMAP algorithm can certainly be considered a valuable

alternative.

V. CONCLUSION

In this paper, the bio-inspired Automatic Incremental De-

cision Making And Planning (AIDMAP) algorithm has been

presented and its operators have been described. The proposed

algorithm has furthermore been applied to two discrete deci-

sion making problems in the field of astrodynamics.

In the first case study, it has been shown that the AIDMAP

algorithm is capable of accurately reproducing the optimal

trajectory to six Atira asteroids found using an alternative

deterministic algorithm, and that the AIDMAP algorithm is

capable of finding a new optimal solution when the database

is updated with a set of newly discovered Atira asteroids.

In the second case study, a mission to the Main Asteroid

Belt, it has been demonstrated that, by first using the Minimum

Orbital Intersection Distance to find the optimal starting orbit

and potential set of visitable asteroids, the AIDMAP algorithm

can effectively find an optimal solution for a discrete decision

making problem with an increased level of complexity.

To benchmark the AIDMAP algorithm, the number of

generations used by the AIDMAP algorithm in the first case

study was varied and the number of function evaluations

and success rate was compared to those of the deterministic

LambTAN algorithm. It has been shown that, while LambTAN

always succeeds in finding the optimal solution, the number

of function evaluations it requires is more than a factor 30

larger than the amount of function evaluations performed by

the AIDMAP algorithm in the test presented in this paper. Due

to the increasing need for algorithms that can efficiently handle

large scale combinatorial problems, it can be concluded that

the AIDMAP algorithm provides, at comparable accuracy of

the solutions found, a more efficient alternative to the currently

existing deterministic algorithms.
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