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Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics
and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity
modulation is captured on a screen placed some distance away. However, retrieving quantitative
information from the shadowgrams themselves is a challenging task because of the non-linear nature
of the process. Here, a novel method to retrieve quantitative information from shadowgrams, based
on computational geometry, is presented for the first time. This process can also be applied to
proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has
been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the
method can accurately retrieve quantitative parameters with error bars less than 10%, even when
caustics are present. The method is also shown to be robust enough to process real experimental
results with simple pre- and post-processing techniques. This adds a powerful new tool for research
in various fields in engineering and physics for both techniques.

I. INTRODUCTION

Shadowgraphy is a technique to visualise modulations
in discrete objects [1, 2] and is used extensively in our
daily life. For example, when sun rays propagate through
a transparent object with non-flat surface, one can read-
ily observe the modulation of the light intensity behind
the object on a screen placed a suitable distance away.
This occurs because when light rays propagate, different
refractive indices in the object cause the rays’ paths to
be deflected, resulting in the intensity modulation. With
its simplicity, the shadowgraphy technique has become
a widely used diagnostic tool in many different fields
in physics and engineering. Examples are diagnosing
plasma wakefields [3], measuring temperatures in com-
bustion processes [4], and characterization of optical sys-
tems [5]. A similar technique, that of proton radiogra-
phy, is also widely employed to diagnose the structure in
laser-plasma experiments [6–11]. In proton radiography,
instead of using light rays, a proton beam is fired into
the plasma. The electric and magnetic fields inside the
plasma deflect the protons’ trajectories. Proton beams
are both highly laminar and have discrete divergence an-
gles that allow magnification of the object, provided that
the screen is placed far enough away from the object. By
looking at the intensity modulation of the proton beam
on the screen, one can see the structure inside the plasma
with ∼ µm resolution. Among the applications of pro-
ton radiography are studies of experimental magnetic re-
connection phenomena [6, 7], observing solitons [8], laser
channeling in plasmas [9, 10], and observing the Weibel
instability [11].

One emphasises here that both the shadowgraphy and

proton radiography techniques share the same underly-
ing principle. Thus, one can refer to proton radiography
as shadowgraphy and vice-versa, without losing general-
ities. We will do this throughout this paper. By doing
so, we show that this new approach provides a powerful
new quantitative diagnostic tool for high-energy-density
plasma science.

Although shadowgraphy is widely used in plasma sci-
ence, in many cases it is used as a qualitative analysis
tool [9, 10]. There have been many efforts in the past to
retrieve the quantitative information from shadowgrams,
but it has only been possible, so far, in limited cases
where the intensity modulations are small. This is done
mainly by employing Poisson’s equation solver [1, 13–15]
or by using the diffusion equation [16] for specific cases
[5, 17]. The equation for small intensity modulation of
shadowgraphy was also obtained by Pogany, et al. [13]
using phase contrast approach and Fresnel diffraction.
The non-linear nature of shadowgraphy makes it a chal-
lenging task for large modulation cases. Some experi-
ments also make use of a grid to estimate the deflection
of the beam [7, 12]. However, the technique depends on
the grid resolution and it becomes harder to estimate
when the feature to be observed is about the same size
as the grid resolution or smaller [9, 10].

In this paper a method to retrieve quantitative infor-
mation from shadowgraphic images for large intensity
modulations, without using a grid, is presented. A co-
herent beam for optical shadowgraphy is also assumed
throughout. By retrieving the quantitative information
one can interpret phenomena in much greater detail, and
thus provide a greater understanding of the diagnosed
system. Section II provides equations underlying the
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shadowgraphy and proton radiography techniques as well
as the basic tools used in the methods section. Then the
new method to retrieve the quantitative information is
explained, as well as its implementation, in section III.
Benchmarking with simulations is presented in section
IV and tests on real experimental results in section V.
Section VI concludes the paper.

II. THEORY

A. Deflectometry

If beams of light or charged particles are fired into
deflecting objects along the z0-axis, they will be deflected
by an amount of

a(x0, y0) = −∇Φ(x0, y0), (1)

where Φ(x0, y0) is the deflection potential. The deflection
potentials for optical shadowgraphy and proton radiog-
raphy cases, respectively, are [14, 15]

Φ(x0, y0) = −
∫

ln η(x0, y0, z0) dz0 (2a)

Φ(x0, y0) =
q

2W

∫

φ(x0, y0, z0) dz0, (2b)

Φ(x0, y0) = − q

m

∫

A · dz0 (2c)

where η is the refractive index of the object in light shad-
owgraphy cases, φ and A respectively are the electric and
magnetic potential, q, W , and m are the charge, energy,
and mass of the particle in the beam, respectively. It
is assumed that the beam propagates in straight lines
during the interaction with the object.
With each deflection, beams at position (x0, y0) on the

object plane are mapped to position (x, y) on the screen
according the equations below,

x = x0 + a · x̂ L
y = y0 + a · ŷ L,

(3)

where L is the distance between the object and the
screen. These equations assume the beams are collimated
before the interaction with the objects. For diverging
beams using the paraxial approximation, one can simply
replace x0 → x0(1 + L/l) and y0 → y0(1 + L/l), where l
is the distance from the beam source to the object.
From the mapping equations, one can obtain the in-

tensity of the beam on the screen as [15]

I(x, y) =
I0(x, y)
∣

∣

∣

∂(x,y)
∂(x0,y0)

∣

∣

∣

, (4)

where I0(x, y) is the beam intensity on the screen with-
out deflections. The term |∂(x, y)/∂(x0, y0)| is the deter-
minant of the Jacobian matrix of (x, y) with respect to

(x0, y0). The Jacobian in the denominator is what makes
shadowgraphy cases non-linear for relatively large a or L.
Moreover, if a or L is large enough, it can make the deter-
minant of the Jacobian matrix very small, hence it causes
very high intensity at some positions on the screen. This
is called caustic.
It is assumed that the object does not emit or absorb

the beam, so the total flux on the screen without the
object (source profile) is the same as the total flux on
the screen with the object (target profile). With this
assumption, the problem can be restated as the Monge
transport problem [18]: how are the particles transported
from the source profile to the target profile such that the
total distance for all particles is minimised? This can
be solved using a combination of Lloyd’s algorithm [19],
Voronoi and power diagram [20], and optimization [21].

B. Voronoi and power diagram

Consider a 2D plane with several sites located on the
plane. For every point on the plane, there is a site which
is closest to the corresponding point. As an example,
Figure 1(a) shows a plane with 3 sites and point A. Com-
pared to the other sites, site 1 is the closest to the point
A. Therefore point A belongs to site 1.
In the construction of a Voronoi diagram [20], the plane

is divided by some regions. All points in a region belong
to the site in the same region. Figure 1(b) is an example
of a Voronoi diagram. Mathematically, the i-th site at
r0i = (x0i, y0i) occupies a region or cell on the source
plane, r0 = (x0, y0), where for all j,

||r0 − r0i||2 ≤ ||r0 − r0j ||2. (5)

The equation above applies only for a case where all
sites have the same weights. However, in some cases,
this does not apply. A site with a larger weight tends
to have a larger region compared to sites with smaller
weights. A diagram resulting from weighted sites is called
as weighted Voronoi diagram or power diagram. A region
in power diagram is called as a power cell. In the power
diagram with weights w, the i-th site at ri = (xi, yi)
occupies a region or power cell on plane r = (x, y) where

||r− ri||2 − wi ≤ ||r− rj ||2 − wj (6)

for all j. Figure 1(c) shows an example of a power dia-
gram with more weight on site 1. In a power diagram, it
is possible for a site to not be located inside its region or
even have no region. Setting all weights to be uniform or
zero produces the Voronoi diagram.

C. Lloyd’s algorithm

Lloyd’s algorithm is a method of dividing a bounded
plane into several regions with approximately the same
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FIG. 1. (a) An example of a case with 3 sites and a point A which is closest to the site 1. (b) A Voronoi diagram where the
plane is divided into several regions based on which site is the closest one. (c) A power diagram with the same position of the
sites as (b), but with more weight assigned to site 1. (d)-(g) Illustration of Lloyd’s algorithm where the centroids of the regions
are denoted by a plus (+) sign.

area. The algorithm starts by deploying randomly a num-
ber of sites on a bounded plane. Then a Voronoi diagram
is constructed to divide the plane into several regions.
For every region, the algorithm calculates its centroid po-
sition. The sites are then moved to the centroid position
of its region, and constructing the Voronoi diagram for
the new positions. The process is then repeated until any
stopping conditions are reached, e.g. maximum number
of iterations, minimum displacement, etc. An illustration
of the algorithm can be found on Figure 1(d)-(g).
There are some cases where the plane is not uniform. If

this is the case, then there are several improvements that
can be made. First, the site can be deployed randomly
using a simple rejection method [22]. Positions on the
plane with lower values tend to reject a site with higher
probabilities. The rejected sites are deployed to other
positions until they are accepted. Second, the centroid
can be calculated by adjusting the values on the plane. It
is similar to calculating the centre of mass of a 2D object
with a non-uniform density.

III. METHOD

In order to retrieve quantitative information of the ob-
ject from the screen, one needs the beam profiles both
with and without the object in position. We refer to the
beam profile without the object as the source profile, I0,
and the profile with the object as the target profile, I.
Initially, a number of sites are deployed randomly on

the source plane profile with a simple rejection method
mentioned above. Then, Lloyd’s algorithm is applied on
the source plane profile to distribute the sites so that
each site has approximately the same flux. This produces
a Voronoi diagram, or a power diagram with weights
w = 0. Once the Lloyd’s algorithm finishes, then the
algorithm performs optimization on the weights.
Denote Vi as the i-th region on the source plane and

Pw

i as the i-th region on the target plane as a function
of all sites’ assigned weights, w. Note that P 0

i = Vi.
Also denote S(Vi) and T (Pw

i ) as the flux of the i-th re-
gion on the source and target planes, respectively. The
objective of the algorithm is to find the weights, such
that transporting the flux from the source plane with in-

tensity profile I0 to the target plane produces the same
intensity profile as the target profile, I, and the total dis-
tance travelled by all regions from the source plane to the
target plane is minimised. Aurenhammer [21] found that
the weights can be found in the minimum of a convex
function,

f(w) = −
∑

i

[

wiS(Vi) +

∫

Pw

i

(

||r− r0i||2 − wi

)

I(r)dr

]

,

(7)
where r0i and wi are the i-th site position and the as-
signed weight, respectively. It is noted that

∫

Pw

i

I(r)dr =

T (Pw

i ). The gradient of the function is given by

∂f(w)

∂wi

= T (Pw

i )− S(Vi), (8)

so any gradient based optimization methods can be em-
ployed. Note that in the optimization process, the sites
positions do not change. It is only the assigned weights
that are changed. These equations have been employed
to design surfaces of transparent objects that produce
caustic designs [23].
Once the minimum of equation 7 is reached, the cen-

troid position of each power cell in the power diagram,
ri, is computed. From the i-th power cell’s centroid po-
sition on the target plane, ri, and the site’s position on
the source plane, r0i, the displacement in the x and y
directions can be obtained by a = (ri − r0i)/L. How-
ever, the displacement from source plane to target plane
is obtained only at positions where the sites on the source
plane are located. To fill in the displacement as a func-
tion of every position on the source plane, a(x0, y0), sites
closest to the 4 corners are first moved to the corners and
then the natural neighbour interpolation is used. The
sites need to be moved to the corners so that the convex
hull of the sites covers all the source plane and thus nat-
ural neighbour interpolation can be used. This causes
some distortion near the corners, but this can be min-
imised by having more sites. The result of this method
is curl-free at most positions, thus the deflection poten-
tial, Φ(x0, y0), can then be obtained by integrating the
deflection in the x or y direction. We call this method
‘the power diagram method’ in the remaining sections of



4

this paper. The complete pseudocode of this algorithm
is given in Algorithm 1 where all the bold face variables
show the vectors of variables for all sites. The illustration
is shown in Figure 2

Algorithm 1 Inverse shadowgraphy and proton radiog-
raphy

1: Input: a shadowgram or a proton radiogram image
2: Output: Φ, the 2D deflection potential of the object
3:

4: % Initialisation

5: Deploy sites randomly on the source plane, x and y

6: repeat

7: Construct the Voronoi diagram with sites at x and y

on the source plane
8: Calculate the centroid of each region, xc and yc

9: x← xc; y← yc

10: until any stopping conditions reached
11: Construct the Voronoi diagram with sites at x and y on

the source plane
12: Calculate S(V)
13:

14: % Gradient-based optimization

15: w← 0

16: repeat

17: Construct the power diagram with x, y, and w on the
target plane

18: Calculate T(Pw) for each site
19: Calculate f(w) and ∆w = ∇wf(w)
20: Update w← w − α∆w

21: until any stopping conditions reached
22:

23: % Finalisation

24: Construct the power diagram with x, y, and w on the
target plane

25: Obtain the centroid positions, xP and yP

26: Assign the displacement, xP−x and yP−y, to each site

27: Move 4 sites closest to the corners to the corners
28: Get the displacement of each pixel using natural neigh-

bour interpolation
29: Integrate the displacement in x or y axis to obtain Φ

A. Implementation

There are a lot of basic computational geometry algo-
rithms employed in the implementation of this method.
First, to obtain the power diagram of sites, algorithms
that use convex hull and transformation to dual space
are employed [24]. Voronoi diagram can be obtained
by the same algorithm by setting all weights to zero.
Bounded Voronoi and power diagrams inside a rectangle
are obtained by clipping the diagram with the rectan-
gle using the Sutherland-Hodgman algorithm [25]. The
Sutherland-Hodgman algorithm is employed for all poly-
gon clippings in the implementation, since all polygons
are convex in this case.
To calculate the function in equation 7, one needs

to compute the weighted area (i.e. S(Vi) and T (Pw

i )),

weighted centroid position (i.e. r0i and ri), and the
weighted moment of inertia (i.e.

∫

Pw

i

||r− r0i||2I(r)dr)
of each cell in the power diagram. In order to simplify
the problem, it is reasonable to pixelate the intensity
profile and assume the intensity within one pixel is con-
stant. Thus, the above parameters can be computed by
splitting the cell into several polygons with uniform den-
sity within a pixel, computing the parameters for each
polygon, and merging the parameters to give the param-
eters for the given cell [29]. The area, centroid position,
and moment of inertia with respect to the origin of a 2D
convex polygon with N vertices can be shown to be

A =
1

2

N−1
∑

i=0

(xi+1yi − xiyi+1) (9a)

xc =
1

6A

N−1
∑

i=0

(xi + xi+1)(xi+1yi − xiyi+1) (9b)

yc =
1

6A

N−1
∑

i=0

(yi + yi+1)(xi+1yi − xiyi+1) (9c)

Iz =
1

12

N−1
∑

i=0

[(x2
i + xixi+1 + x2

i+1)+ (9d)

(y2i + yiyi+1 + y2i+1)](xi+1yi − xiyi+1)

where (xi, yi) is the vertex position of each polygon and
they are ordered in the clockwise direction. Note that
(xN , yN ) = (x0, y0). The cells’ centroids for Lloyd’s al-
gorithm are also computed by this method.
To obtain faster convergence to the global minimum of

the function in equation 7, one can use a quasi-Newton
gradient descent algorithm [26]. However, using a quasi-
Newton algorithm requires O(N2

s ) memory, where Ns is
the number of sites, and it can be very large computation-
ally. Thus, using the limited memory BFGS (L-BFGS)
method [27, 28] can save memory while still achieving fast
convergence. One can also use a multi-stage approach to
minimise equation 7 faster [29]. The complete implemen-
tation code of the algorithm on this paper can be found
at https://github.com/mfkasim91/invert-shadowgraphy.

IV. BENCHMARK WITH SIMULATIONS

A. Magnetic field proton radiography

The first test for this method considers the case of a
proton beam with energy of W = 14.7 MeV propagating
in the positive z-direction and going through a toroidal
magnetic field. The toroidal magnetic field around the
centre gives a line-integrated magnetic field on the object
plane of

−
∫

B× dz = Dm exp

(

−||r||2
2σ2

+
1

2

)

1

σ
r (10)

where Dm is the maximum value of line-integrated value
of the toroidal magnetic field. This basic structure has

https://github.com/mfkasim91/invert-shadowgraphy
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FIG. 2. Illustration of the algorithm with 100 sites. Figure (b) shows the deployed sites in line 5 in Algorithm 1. The results
of Lloyd’s algorithm from line 6 to 10 is shown in Figure (c). The same sites positions are then redeployed on the target plane,
as shown in Figure (e). Figures (f) and (g) are the results of line 17 of the algorithm on the 3rd and 26th iterations, respectively.
Figure (h) and (i) are the results of lines 25 and 26, respectively. The interpolated displacement in line 28 is shown in Figure
(j) and (k). Last, the integration of the displacement yields the deflection potential (l). The distortion at the corners in (l) is
caused from moving 4 sites to the corner as in line 27 in the algorithm.

been found in laser-plasma experiments, such as in mag-
netic reconnection experiments [6, 7]. Even though only
magnetic field cases are considered here, it can be ex-
panded into light shadowgraphy and electric field cases
using equations 2.
The transverse size of the toroidal magnetic field is

assumed to be σ = 30 µm. The beam is deflected by
the magnetic field and captured on the screen L = 2 cm
away. The distance from the source to the magnetic field
is l = 1.3 mm, thus giving magnification of 15. It is
assumed that the magnetic field extent in the z-direction
is very small compared to l and L. Visualisation of the
test case can be seen in Fig. 3.
The beam’s deflected velocity is vt = −e/m

∫

B × dz
where e/m is the charge-to-mass ratio of the proton

beam. Thus, the deflected angle is a = −e/
√
2mW

∫

B×
dz. This gives the deflection potential as in equation 2,
given B = ∇×A.
The value of Dm is varied from 10 MGµm to

340 MGµm. These values cover the cases from small
intensity modulation to the cases where caustics are
formed. Caustics start to appear on the screen at Dm =
190 MGµm. The beam’s intensity modulation is shown
in Fig 4. Gaussian noise is added to each image with
variance about 10% of the average intensity.
From each image of the intensity modulation, the de-

flection potentials are retrieved using the method ex-
plained in this paper. Then one calculates the magnitude
of the line integrated magnetic field, ||

∫

B×dz||, from the
deflection potential. The retrieved value is then com-
pared with the original value to benchmark the method.
The images of the retrieved line-integrated magnetic

field are shown in Fig 5(a). Comparison between the
peaks of the retrieved values of line-integrated magnetic

FIG. 3. Illustration of the test case system. In figure (a),
the proton beam is fired through a toroidal magnetic field
and the intensity modulation is captured on the screen. Fig-
ure (b) shows the magnitude of the line-integrated magnetic
field, −

∫
|B × dz| with maximum value, Dm = 97 MGµm,

and its horizontal 1D-cross-section in figure (c). The inten-
sity modulation on the screen is shown in figure (d) with its
1D-cross-section on figure (e). The intensity on the screen is
augmented by Gaussian noise with variance 10% of the aver-
age intensity value to test robustness of the method.

field and the original values are presented, as well as their
relative errors. To see the improved performance of the
method described in this paper, the line-integrated mag-
netic field profiles are retrieved using Poisson’s equation
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FIG. 4. The beam’s intensity modulation on the screen and
its horizontal 1D-cross-section at the middle position for (a)
small intensity modulation, (b) large intensity modulation,
(c) a case where caustics have formed, and (d) where the
caustics already branched. The value of Dm for cases (a)-(d)
is (24, 97, 194, 290) MGµm, respectively.

solver and compared. Note that no noise has been added
to the intensity images for the Poisson’s equation solver
case. These comparison results are shown in Fig 5(b).
It can be seen that the retrieved line integrated mag-

netic field gives very good agreement with the original
profile, even when caustics are formed. The error on the
retrieved value increases just when the branches of the
caustics are relatively distinguishable. This is because
in regions between the caustics branches, the beams are
coming from more than one different position on the ob-
ject plane, while this method assumes that each region
on the target plane is formed from one region on the ob-
ject plane only. However, one can still infer magnitude
of the deflection potential in this case within some error.
A slightly higher relative error at small values of ||

∫

B×
dz|| is caused by the noise. The intensity modulation at
that point is comparable to the noise. As the intensity
modulation gets larger, the effect of noise seems to be
weaker.
It is observed that this method amplifies low-frequency

components of the image and reduces the high-frequency
components. It makes the power diagram method some-
what less robust to low frequency noise, but robust to
high frequency noise. This can be solved by applying a
high frequency filter to the image before it is processed
using the power diagram method.
On the other hand, the retrieved value using the Pois-

son’s equation solver deviates significantly from the orig-
inal value. The Poisson’s equation solver gives rela-
tive error of 10% when Dm & 30 MGµm while the
power diagram method gives the same relative error when
Dm & 300 MGµm. If one wants an accuracy of less than
10%, the power diagram method gives 10 times larger
working range than the Poisson’s equation solver’s work-
ing range.
As an additional benchmark to the case described

above, we also tried retrieving quantitative information
for arbitrary magnetic field structures. Fig 6 shows the
retrieval results of the magnetic field with various struc-

FIG. 5. Comparison of the magnitude of the line-
integrated magnetic field between (a,top) the original profile
and (a,middle) the retrieved profile. The 1D-cross-section at
the centre position of the original and the retrieved profile is
given in (a,bottom). The dashed green line shows the 1D-
cross-section of the original profile while the solid blue line
shows the retrieved profile. The picture in (a) is taken for
the case with Dm = 194 MGµm, where caustics are just
formed. The quantitative comparison for the maximum value
of the line-integrated magnetic field is given in figure (b).
The top picture (b,top) shows the maximum retrieved value
of ||

∫
B × dz|| using the power diagram method (blue/dark

grey) and the Poisson’s equation solver method (green/light
grey) compared with the original values. The relative error
between the retrieved and original values is given in figure
(b,bottom). The dashed vertical lines in figures (b) show the
value when caustics are present. The dashed horizontal line
shows the relative error of 10%.

tures with the same setup as the previous case. Each
image has a size of 200×200 pixels with depth of 16 bits.
The code was run on a highly parallel computer cluster
using 32 cores. It takes around 2-3 hours to process one
image.
In Fig 6, one can see that the retrieved magnetic field

structures agree very well with the original magnetic
field. It is also apparent that the retrieved magnetic field
can be different from what it seems in the proton radio-
graphy image. Moreover, the size of the structure can
also be different, as shown in Fig 6(e) where the struc-
ture’s size is actually smaller than it seems in the proton
radiography image.

V. TESTS WITH EXPERIMENTAL RESULTS

An analysis method will only be useful if it can be
shown to work on real experimental data and give reason-
able results. In this section, the power diagram method
is used to analyse experimental data from Sävert, et al.
in cases of plasma wakefield shadowgraphy [3]. In the ex-
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FIG. 6. Benchmark with arbitrary structures. (a) A case with 4 derivative Gaussian toroidal magnetic fields with different
strengths and sizes in counter-clockwise direction. (b) Two toroidal magnetic fields where each potential has the form of cos2

with ellipsoidal shape. (c) Two close ellipsoidal Gaussian toroidal magnetic fields in clockwise direction, giving focusing effect
on the proton beam. (d) Gaussian toroidal magnetic field with different directions, i.e. on the left it is counter-clockwise
while on the right it is clockwise. (e) A case with two coaxial conductors with counter propagating currents between the two
conductors. In this case, the conductors obstruct the beam. Magnitude of the magnetic field in each structure is set to form
caustics on the target plane, except on (e) which shows a case with obstruction. The reconstructed images from the retrieved
fields are presented to increase the confidence of the results. Gaussian noise with variance 10% of the average intensity is
also added to the images before the magnetic field information is retrieved. The 1D-cross-sections are taken at the positions
indicated by dashed lines.
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periment, a laser pulse was fired into a plasma to gener-
ate an electron density modulation wave associated with
a laser-driven wakefield. Another laser pulse with much
lower intensity was fired perpendicularly to the wakefield
as a probe for the shadowgraphy method. The electron
density fluctuations of the wakefield caused local modula-
tions of the refractive index in the plasma. The refractive
index modulation in the plasma caused the probe’s path
to bend so that some parts of the probe were brighter
than others at the detector. The refractive index of a
plasma with density profile n(x0, y0, z0) is

η(x0, y0, z0) =

√

1− n(x0, y0, z0)e2

mǫ0ω2
, (11)

where ǫ0 is the vacuum permittivity constant, e and m
are the electron’s charge and mass, respectively, and ω
is the frequency of the light. Using equations 2 and 11
with approximation ω2

p = n0e
2/mǫ0 ≪ ω2, the deflection

potential for light in a plasma is

Φ(x0, y0) ≈
e2

mǫ0ω2

∫

n(x0, y0, z0) dz. (12)

Thus, the information that can be retrieved from shad-
owgrams using the power diagram method is

∫

n dz.
One of the main challenges in inverting the shadow-

grams for real experimental data is the non-uniformity
of the probe’s unmodulated intensity, i.e. the intensity
profile without deflection from objects. This can be a
big problem because the inversion processes from shad-
owgrams to deflection potentials amplify low frequency
components. Even though this can be solved by taking
the intensity profile without the object, the data is not
usually available or reliable because of shot-to-shot vari-
ations. Therefore, a straightforward solution is to apply
a high-pass filter to either the shadowgrams and/or the
resulting deflection potentials.
The pulse that drives the wakefield has a wavelength

of 810 nm, duration of 35 fs, and peak intensity IL =
6 × 1018 Wcm−2. The probe pulse has the same wave-
length, but with shorter duration, 5.9 fs. The shadow-
grams for a plasma with density n0 = 1.65 × 1019 cm−3

are shown in Fig. 7(a). Using the power diagram method
and equation 12, it is possible to infer the line-integrated
relative electron density modulation,

∫

∆n/n0 dz from
the shadowgrams. The inverted results from the shad-
owgrams are shown in Fig. 7(b), where the grey scale
shows the value of the line-integrated relative electron
density modulation,

∫

∆n/n0 dz, as well as their 1D-
cross-sections at the centre of the wakefield in Fig. 7(c).
The figures still show the wakefield features with addi-
tional information of

∫

∆n/n0 dz. It is shown from Fig.
7 that the power diagram method in this paper is ro-
bust enough to analyse real experimental results with
additional preprocessing and post-processing. It should
be noted that we have neglected relativistic effects in
the plasma, e.g. the plasma electrons mass increase,

which may occur during their interaction with the high-
intensity driver pulses. To model this, multi-dimensional
numerical simulations need to be applied [30]

VI. CONCLUSIONS

We have presented a new method to retrieve quan-
titative data from shadowgraphic images. In the cases
considered in this paper, a beam propagates through an
object, gets deflected by it, and is then captured on a
screen. The intensity modulation on the screen acts as
the input and the deflection potential of the object is
regarded as the output of this method. It assumes the
beam propagates in straight lines while interacting with
the object. Besides shadowgraphy, the method in this
paper can also be applied to proton radiography cases.
The method has been benchmarked for a toroidal mag-

netic field case, which has been found in some laser
plasma experiments, and a plasma wakefield shadowg-
raphy case. In some test cases, the method successfully
retrieved the deflection potential profiles with relative er-
ror less than 10% for large intensity modulation, even
for cases where caustics are present. It is also tested
using arbitrary structures of the diagnosed objects and
gives very good results in retrieving structures with their
quantitative parameters. Moreover, it has been shown
that the method is also robust to noise, especially high-
frequency noise. This extends the working range of the
Poisson’s solver equation by an order of magnitude. It is
also shown that the method can be applied to real exper-
imental results, with some additional pre-processing and
post-processing. By applying this method, one can in-
fer quantitative information from shadowgraphy images
with high accuracy. This opens up a new dimension of re-
search in a wide range of areas in engineering and physics.
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FIG. 7. (a) Original shadowgrams of plasma wakefield from Sävert, et al.. Images reproduced with permission. (b) The
retrieved line-integrated relative electron density modulation,

∫
∆n/n0 dz from the shadowgrams with their 1D-cross-sections

at the centre of the wakefields in (c). High pass filter is applied in preprocessing and post-processing of the images. The very
bright and very dark on the images are features obtained from applying high pass filter, as well as horizontal fringes on the left
and right edges.
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