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Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local
heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the
electron beams drives Langmuir waves which couple nonlinearly into damped ion-acoustic waves.
Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%.
Our results support applications to the production of warm dense matter and as a driver for inertial
fusion plasmas.

I. INTRODUCTION

Plasma heating by electron beams is the subject of in-
tense study due to its varied applications, such as warm
dense matter production [1], laboratory astrophysics [2],
and magnetic and inertial confinement fusion [3, 4], and
the insights into fundamental plasma theory it provides.
These electron beams can be produced by the absorption
of a high power laser pulse by an overdense material [5].
While beam electrons may give up their energy simply by
colliding with particles in the plasma [6–9], the collective
process of beam-plasma instability, in which the beam
electrons act together to drive plasma waves, can also
efficiently extract energy from the beam [10]. Further,
this collisionless stopping process may be effective even
for relativistic electron beams whose collisional stopping
length is much longer than the target. On a coarse level,
we might expect collisionless stopping (a collective effect)
to be relevant for plasmas with a large plasma parame-
ter [11]. Even for densities well above solid density the
plasma parameter may be large at sufficiently high tem-
peratures. In particular, the plasma parameter is large
for the conditions in the hot spot of an inertial confine-
ment fusion isobaric compression, but not in the dense
fuel layer surrounding the hot spot (due to the relatively
low temperature of the dense fuel). Representative in-
ertial confinement hot spot and fuel parameters may be
found in [12–14].

An analytic treatment of the collective stopping of a
single relativistic electron beam was given in [15], calcu-
lating the parameters which favor collective stopping and
examining strategies to localize the energy deposition.
Other studies include theoretical treatments of beam-
plasma instabilities [16, 17], collective stopping of elec-
tron beams [18–20], Vlasov-Poisson simulations of collec-
tive heating [21] and ion-acoustic wave decay [22], as well
as experiments on nonlinear coupling between plasma
waves [23] and on plasma heating by counter-propagating
laser-generated electron beams [24, 25]. Recent reviews

of laser-plasma interaction [26] and fast electron trans-
port [9] contain much detailed information together with
further references.

In this paper we use relativistic multi-fluid theory (sec-
tion II) and Vlasov-Maxwell simulations (section III) to
consider a new mechanism by which two obliquely cross-
ing electron beams can efficiently transfer their energy
to a dense plasma. Specifically, we show an instability
in which the crossing beams drive Langmuir waves in
the plasma, and these Langmuir waves nonlinearly cou-
ple into large-amplitude ion-acoustic waves. These ion-
acoustic waves decay leading to ion-acoustic turbulence.
We demonstrate that the background electrons show a
factor 2.8 increase in kinetic energy with a coupling effi-
ciency of 18%.

II. LINEAR THEORY

To investigate the first step of the energy cascade pro-
cess, we derive the linear growth rates for the instabil-
ity of two obliquely crossing relativistic electron beams
in a background plasma. Here the two beams and the
background plasma are each described by a separate rel-
ativistic fluid, giving three fluids in total, and the ions
provide a stationary neutralizing background of density
n0 (note that because the ions here are fixed, all modes
in Fig. 1 are electron modes, as opposed to the simula-
tions below where ions are free to move). The equations
governing the system are Maxwell’s equations and con-
tinuity and momentum equations for each electron fluid,
together with equations defining the charge and current
densities ρ and J in terms of the fluid densities and ve-
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locities nα and vα (α = 1, 2, 3),

~∇ · ~E =
1

ǫ0
ρ (1)

~∇× ~B −
1

c2
∂t ~E = µ0

~J (2)

~∇× ~E + ∂t ~B = 0 (3)

~∇ · ~B = 0 (4)

∂tnα + ~∇ · (nα ~vα) = 0 (5)

(∂t + ~vα · ~∇) ~γαvα =
q

m
( ~E + ~vα × ~B) (6)

~J = qn1 ~v1 + qn2 ~v2 + qn3 ~v3 (7)

ρ = qn1 + qn2 + qn3 − qn0 (8)

where n1, n2, ~v1 and ~v2 are the beams’ number densi-
ties and velocities, n3 and ~v3 are the background plasma
number density and velocity, γj = (1 − v2j /c

2)−
1
2 , q is

the electron charge, m is the electron mass, and n0 is the
background ion density (here we assume singly charged
ions). The instability growth rates may be calculated us-
ing standard linearization methods [11] in which the field
equations are reduced to a linear equation

M(k, ω)u = 0, (9)

where if N is the number of fields then M is an N ×
N matrix depending on wavevector k and frequency ω
and u is the N element vector of field mode amplitudes.
The explicit form of this dispersion matrix M is given
in the appendix. The frequencies of modes with a given
wavevector k are then determined from the dispersion
relation

det (M(k, ω)) = 0. (10)

Fig. 1 shows the theoretical growth rate maps of the
instability for 1 MeV electron beams with a density, nb,
of 0.01 times the background density, n0, on the top row
(a,b), and for 0.1 MeV electron beams with nb/n0 = 0.1
on the bottom row (c,d). The left column (a,c) corre-
sponds to beams crossing at 90◦, travelling in the positive
x and y directions. The right column (b,d) corresponds
to beams crossing at 180◦ travelling along the x axis.
The system of two beams crossing at 90◦ has a symme-
try about the line y = x which induces the symmetry of
the growth rate maps in (a) and (c) under reflection in
the line ky = kx. With the beams crossing at 180◦ the
system has a symmetry under reflection in the x and y
axes which is again inherited by the growth rate map.
Note that the effectiveness of the second stage of the en-
ergy cascade, that is, the nonlinear coupling of the Lang-
muir waves into ion-acoustic waves, will depend on the
wavevector spectrum of the Langmuir waves, since the
nonlinear coupling strength depends on the relative ori-
entations of the wavevectors involved [18]. The cases (a)

(a) (b)

(c) (d)

FIG. 1. Theoretical growth rate maps for the first stage of
the energy cascade process: the instability arising due to two
beams crossing in a dense plasma. The growth rates are
shown for beams crossing at an angle of 90◦ in (a) and (c)
and 180◦ in (b) and (d). The beam energy E and beam den-
sity fraction nb/n0 are E = 1 MeV, nb/n0 = 0.01 in (a) and
(b), E = 0.1 MeV, nb/n0 = 0.1 in (c) and (d). Note the
different scales.

Light modes 

Beam modes 

Langmuir modes 

(a) (b)

ω (ωp)

-4 -2 0 2 4

FIG. 2. The real part of the mode frequencies for a system
of two relativistic electron beams crossing in a background
plasma at angles of (a) 90◦and (b) 180◦. The different sheets
of the dispersion surface correspond to different modes of the
system.

and (c) in which the beams cross at 90◦ give a higher
maximum growth rate, corresponding to a mode with
kx = ky travelling diagonally between the two beams,
as well as a spectrum of unstable modes which covers a
wider range of angles. Since in the linear phase of the
instability each mode grows independently, these growth
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(c) Ion-acoustic wave instability

ωpt = 350

0 2 4 6 8

0

-5

-10

Wavevector (ωp /c)
L
o
g
|n�

2

(d) Ion-acoustic turbulence

ωpt = 750

Electrons Ions

FIG. 3. Time history of the power spectra of the electron
and ion densities from a 1D Vlasov simulation of two electron
beams crossing at 180◦, showing the waves present during
each stage of the heating process. Each timestep shows a dif-
ferent stage of the energy cascade: (a) the generation of Lang-
muir waves by the instability of the crossing beams, (b) the
nonlinear coupling of the Langmuir waves into ion waves, (c)
the instability of the ion-acoustic waves and (d) ion-acoustic
turbulence.

rate maps show that beams crossing at 90◦ will initially
couple their energy into Langmuir waves more rapidly.
Fig. 2 shows the real part of the frequencies which solve

the 2D dispersion relation as a function of 2D wavevector
~k. The different sheets of the dispersion surface corre-
spond to different modes of the system. In particular the
diagonal quasi-planar sheets correspond to beam modes
propagating at the beam velocities. The curved sheets
at the top and bottom are light modes. Only a small
number of the modes shown here are unstable, that is,
have a positive imaginary component of frequency.

III. VLASOV-MAXWELL SIMULATIONS

To follow the nonlinear evolution of the crossing beams
and the coupling of the beam-driven Langmuir waves
into ion-acoustic waves, we have performed simulations
with the Vlasov-Maxwell code VALIS [27]. This code
solves the Vlasov-Maxwell system in up to two space
and two momentum dimensions on an Eulerian phase
space grid. VALIS advances the distribution functions
from one time step to the next using an operator-split
conservative scheme with separate 1D advections in each
position and momentum coordinate [28], the advections
being performed using the Piecewise Parabolic Method
[29]. A Vlasov code is well suited to the present study
due to its low noise and ability to resolve the distribu-
tion function f even in regions of phase space where f
is very small, both very useful traits for studying insta-

bilities. We consider electron beams crossing at 180◦ in
a background plasma. The background electron and ion
temperatures are 4 keV, corresponding to the range of
temperatures of hot spots in inertial confinement fusion
targets. The background plasma density in the simula-
tion is a free parameter setting the scale of the units,
though we have in mind an electron number density of
n = 1026 cm−3. Both electron beams have a mean rel-
ativistic kinetic energy of 1 MeV and a density of one
percent of the background density, in the practically rele-
vant regime of high beam energy and low fractional beam
density. The two beam distributions have a temperature
of 40 keV. The narrow energy spread of the beams used
here deserves comment; while the electron energy dis-
tribution generated by a typical overdense laser-plasma
interaction is often characterized by one or two compo-
nents with exponential decay in energy, it is conceivable
that during the transport of the beam through dense
matter the lower energy electrons will be significantly
stopped, leaving the remaining distribution with a nar-
rower peak in energy [30]. No collision operator is used
since for a plasma of number density n = 1026 cm−3 and
electron and ion temperatures Te = Ti = 4keV, the elec-
tron plasma frequency is ωpe = 5.64× 1017 s−1, over 200
times the electron collision frequency, while the simula-
tions here ran for a time 2000/ωpe corresponding to 320
plasma periods, with much of the interesting dynamics
occurring early in the simulation.

The initial electron distribution function is a sum of
three drifting Maxwell-Jüttner distributions. The distri-
butions are initially homogeneous and periodic boundary
conditions are employed. Due to the low noise level in
the code an initial low amplitude white noise perturba-
tion is included in the electrons’ spatial distribution to
seed the initial beam-plasma instability. We simulate
the system in one space and one momentum dimension,
and hence waves which would propagate obliquely to the
beams cannot be captured. The ion mass in the sim-
ulations is mi = 1000me. While this ion mass is only
0.54 times the mass of a hydrogen ion (or 0.27 times
the mass of a deuterium ion), we do not expect this to
change the results significantly since with mi = 1000me

the time scale of the natural oscillations of the ions is
an order of magnitude greater than the electrons and so
the ion population will evolve on a different timescale to
the electrons. The spatial grid covers 400 c/ωp0 and the
time 2000/ωp0. The relativistic momentum space for the
electrons spans ±20mec, for the ions ±0.25mic. The di-
mension of the (x, p) phase space grid was 4196 × 2048
for both electrons and ions.

Fig. 3 shows a time history of the power spectra of the
electron and ion densities (the modulus squared of their
spatial Fourier transforms). Each frame shows a different
stage of the energy cascade. In (a) at ωpt = 150 there is a
single peak in the electron density spectrum representing
a Langmuir wave driven by the two beams crossing in the
plasma. It is at a wavevector k0 = 1.1ωp/c, in agreement
with the most unstable mode predicted by the multiple
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FIG. 4. (a) Space-time plot of the electron density showing
each stage of the energy cascade. (b) The numerically calcu-
lated frequency and wavevector, ω and k, of the waves pro-
duced by instability or nonlinear coupling in the dashed boxed
portion of Fig. 4 (a). Overlaid are the theoretical dispersion
curves. The red sections of the dispersion curves indicate fre-
quencies with a positive imaginary part, showing instability.

relativistic fluid theory. In (b) at ωpt = 250 we see a
peak at 2k0 in both the electron and ion spectra rep-
resenting an ion-acoustic wave driven nonlinearly by the
beam driven Langmuir wave [18]. The higher order peaks
in the electron spectrum are Langmuir waves resulting
from the nonlinear coupling. In (c) at ωpt = 350 the
ion-acoustic feature in the electron and ion spectra from
(b) has generated higher order peaks as the ion-acoustic
wave becomes unstable. In (d) at ωpt = 750 sharp peaks
are no longer visible in the electron and ion spectra, the
continuous fall off with wavevector indicating a turbulent
state.

Fig. 4 (a) shows a space-time plot of the electron den-
sity from the simulation, giving a global picture of the
interaction. Initially the beams drive Langmuir waves
in the plasma via beam-plasma instability. These Lang-
muir waves become large and couple into ion-acoustic
waves. The ion-acoustic waves are then damped, and
the plasma ends in a state of ion-acoustic turbulence.
The bunched structures in the dashed boxed region of
Fig. 4 (a) show that localized wavepackets are formed.
Fig. 4 (b) shows the Fourier transform of the portion

(a) ωpt = 150

Bunched Langmuir

waves

(b) ωpt = 250

Localized

ion-acoustic waves

Localized

beam

modes
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Daughter Langmuir

waves
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Ion-acoustic
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0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Time history of the wave phase space distribution
of the electron density. This shows the distribution of the
plasma waves in the space of position, wavevector and fre-
quency (see text). The gridded surfaces are the theoretical
dispersion surfaces.

of Fig. 4 (a) indicated by the dashed box, highlighting
the time in which the beams become unstable and ion-
acoustic waves begin to form. Fig. 4 (b) shows the distri-
bution of waves in wavevector and frequency, i.e. in (k, ω)
space. This provides a discrete approximation to the
space-time Fourier transform ñ(k, ω) of the electron den-
sity n(x, t), ñ(k, ω) =

∫
n(x, t) exp (−i(kx− ωt)) dx dt.

The orange curves plotted on (b) show the roots of
the dispersion relation from an electrostatic relativistic
multi-fluid model for the two beams, background elec-
trons and ions, with temperature terms included. The
predominance of modes along the linear dispersion curves
in Fig. 4 (b) demonstrates the utility of the linear wave
properties even in this nonlinear interaction. The red
sections of the dispersion curves have a positive imagi-
nary component of the frequency, leading to an exponen-
tial growth of the mode amplitude and thus instability.
Fig. 4 shows the evolution of the waves responsible for
the energy cascade from the electron beams to the plasma
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FIG. 6. Time evolution of the fractional energy change of the
background electrons (blue line) and beam electrons (orange
line) during the collisionless heating process.

particles.

To further study the evolution of the waves shown
in Fig. 4 responsible for the energy cascade, we em-
ploy a mathematical representation which reveals de-
tailed information on the time evolution of the wavevec-
tor, frequency and location of the waves. This is a
wave phase space distribution [31, 32], here defined as
a space-time windowed Fourier transform g according to
g(x, k, t, ω) =

∫
n(y, s)wxt(y, s) exp (−i(ky − ωs)) dy ds,

where wxt(y, s) = exp (−(y − x)2/σ2
x − (s− t)2/σ2

t ) is a
Gaussian window function and the parameters σx and σt

determine the window width in space and time.

Fig. 5 shows volume plots of |g(x, k, t, ω)|
2
for a range

of times t, which we may interpret as the distribution of
waves in position, wavevector and frequency at the time
t. The gridded surfaces show the dispersion surfaces from
the relativistic multi-fluid theory used in Fig. 4. Fig. 5
(a) shows the early formation of bunched high frequency
Langmuir waves, located along the Langmuir wave dis-
persion surface as predicted by the linear theory. (b)
shows that the ion-acoustic waves generated are local-
ized near the position of the large Langmuir wavepack-
ets. This local information is important since the Lang-
muir waves are able to drive ion-acoustic waves more
rapidly by bunching to increase the local Langmuir wave
intensity, which in turn increases the coupling rate into
ion-acoustic waves. (c) shows similarly localized daugh-
ter Langmuir waves together with bunched ion-acoustic
waves, while in (d) the spread of the low frequency part
of the distribution in k indicates ion-acoustic turbulence.
Fig. 5 unfolds the plasma dynamics into the interaction
of localized wavepackets of a variety of frequencies and
wavevectors, providing a detailed picture of the evolution
of the waves responsible for the energy cascade process.

Fig. 6 shows the time evolution of the fractional kinetic
energy change of the beam electrons and the background
electrons. These energies are calculated using a simula-
tion in which the electron beams and the background
electrons are separate species, allowing a clean calcu-
lation of the energy of each component. Fig. 6 shows
that 18% of the electron beam kinetic energy is coupled
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FIG. 7. Numerically calculated ω-k distribution of the elec-
tron density from 2D Vlasov-Maxwell simulations of 1 MeV
beams crossing at (a) 90◦and (b) 180◦. The bottom faces
show the distribution in wavevector k integrated over fre-
quency ω. The red spheres in (a) show the most unstable
modes predicted by the relativistic multi-fluid theory of Fig. 1
(a).

into the plasma electrons, giving a factor 2.8 increase in
plasma electron kinetic energy.

Fig. 7 shows the electron density distribution in ω and
k from 2D Vlasov-Maxwell simulations of two 1 MeV
electron beams of density nb/n0 = 0.01 crossing in a
plasma at (a) 90◦and (b) 180◦. The largest amplitude
wave in (a) travels diagonally between the beams with
positive projection of its phase velocity vector along each
beam velocity vector. It occurs at the wavevector and fre-
quency predicted by the linear theory above, shown in (a)
by the red spheres. Note that the modes corresponding
to the two red spheres have phase velocities in the same
direction although their wavevectors point in opposite di-
rections, since their frequencies differ by a factor of −1.
Both positive and negative frequencies are shown here
since including the negative frequency modes facilitates
the consideration of nonlinear wave coupling. The bases
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of the 3D plots show the wave distribution in (ω,~k) in-

tegrated over ω, giving the distribution in ~k space which
is here two-dimensional.

IV. CONCLUSIONS

In conclusion, we have provided a theoretical and com-
putational study of dense plasma heating using crossing
relativistic electron beams. The heating is due to the col-
lective processes of beam-plasma instabilities and nonlin-
ear wave coupling. Using a relativistic multi-fluid model
we have calculated linear growth rates for the instabil-
ity of two electron beams obliquely crossing in a plasma.
Vlasov-Maxwell simulations exhibit features predicted by
the theory for the beam-plasma instability and the sub-
sequent nonlinear coupling of Langmuir and ion-acoustic
waves. Using a wave phase space analysis we have studied
the evolution of the location, wavenumber and frequency
of all waves involved in the heating process in clear relief.
The simulations show a kinetic to thermal coupling effi-
ciency of 18% into the plasma electrons giving a factor
of 2.8 increase in plasma electron kinetic energy. Fur-
ther, the effect of collisions on a longer timescale will act
to thermalize the background electron distribution and
equalize the electron and ion temperatures on a timescale
of ∼ 5 picoseconds. This means that within the confine-
ment time of an inertial-fusion target some of the energy
collectively coupled into the background electrons may
be transferred to the plasma ions and so contribute to
increasing the neutron yield. These results are very en-
couraging for the auxiliary heating concept [33], where
the heating of the central hot spot by shock wave con-
vergence [12, 34] is supplemented by this process.

V. ACKNOWLEDGMENTS

The authors thank all of the staff of the Central Laser
Facility and the Scientific Computing Department at
STFC Rutherford Appleton Laboratory for their help
and support. This work has been carried out within the
framework of the EUROfusion Consortium and has re-
ceived funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053.
Computing resources provided by STFC Scientific Com-
puting Department’s SCARF cluster. The authors would
like to acknowledge the use of the University of Oxford
Advanced Research Computing (ARC) facility in carry-
ing out this work [35]. MCL thanks the Royal Society
Newton International Fellowship for funding. This work
was also supported by OxCHEDS, STFC and EPSRC.
PAN gratefully acknowledges the William Penney Fel-
lowship at AWE plc.

VI. APPENDIX

In this appendix we show the explicit form of the dis-
persion matrix M(k, ω) used in the linear theory section
to derive the frequencies and growth rates from our rel-
ativistic multi-fluid model. Since M is an 18 × 18 ma-
trix we have displayed it as four blocks A, B, C, and
D in terms of which M = (A,B,C,D). Here the quan-
tity βαj = vαj/c is the jth component of the velocity
of species α normalized to the speed of light and nα is
the zeroth order density of species α normalized to the
background ion density.

A =









































































i (−ω + kxβ1x + kyβ1y) ikxn1 ikyn1 0

0 −

i(−ω+kxβ1x+kyβ1y)(β2
1y−1)

(−β2
1x

−β2
1y

+1)3/2
iβ1xβ1y(−ω+kxβ1x+kyβ1y)

(−β2
1x

−β2
1y

+1)3/2
0

0
iβ1xβ1y(−ω+kxβ1x+kyβ1y)

(−β2
1x

−β2
1y

+1)3/2
−

i(β2
1x−1)(−ω+kxβ1x+kyβ1y)
(−β2

1x
−β2

1y
+1)3/2

0

0 0 0
i(−ω+kxβ1x+kyβ1y)

√

−β2
1x

−β2
1y

+1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
β1x n1 0 0
β1y 0 n1 0
0 0 0 n1

0 0 0 0
0 0 0 0
0 0 0 0









































































(11)



7
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

i (−ω + kxβ3x + kyβ3y) ikxn3 ikyn3 0

0 −

i(−ω+kxβ3x+kyβ3y)(β2
3y−1)

(−β2
3x

−β2
3y

+1)3/2
iβ3xβ3y(−ω+kxβ3x+kyβ3y)

(−β2
3x

−β2
3y

+1)3/2
0

0
iβ3xβ3y(−ω+kxβ3x+kyβ3y)

(−β2
3x

−β2
3y

+1)3/2
−

i(β2
3x−1)(−ω+kxβ3x+kyβ3y)
(−β2

3x
−β2

3y
+1)3/2

0

0 0 0
i(−ω+kxβ3x+kyβ3y)

√

−β2
3x

−β2
3y

+1

β3x n3 0 0
β3y 0 n3 0
0 0 0 n3

0 0 0 0
0 0 0 0
0 0 0 0









































































(13)

D =































































0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
iω 0 0 0 0 iky
0 iω 0 0 0 −ikx
0 0 iω −iky ikx 0
0 0 iky −iω 0 0
0 0 −ikx 0 −iω 0

−iky ikx 0 0 0 −iω
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L. F. B. Hopkins, S. Le Pape, et al., Physical Review
Letters 112, 055001 (2014).

[35] A. Richards, University of Oxford Advanced Research

Computing (2015) zenodo.10.5281/zenodo.22558.


