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SUMMARY

The distinctive firing pattern of grid cells in the medial
entorhinal cortex (MEC) supports its role in the repre-
sentation of space. It is widely believed that the hex-
agonal firing field of grid cells emerges from neural
dynamics that depend on the local microcircuitry.
However, local networks within the MEC are still
not sufficiently characterized. Here, applying up to
eight simultaneous whole-cell recordings in acute
brain slices, we demonstrate the existence of unitary
excitatory connections between principal neurons in
the superficial layers of the MEC. In particular, we
find prevalent feed-forward excitation from pyrami-
dal neurons in layer lll and layer Il onto stellate cells
in layer Il, which might contribute to the generation
or the inheritance of grid cell patterns.

INTRODUCTION

The hippocampus and parahippocampal regions are critically
involved in learning and memory as well as in neurological dis-
eases such as temporal lobe epilepsy and Alzheimer’s disease.
More specifically, these regions are engaged in neuronal compu-
tations representing space. In particular, neurons in the medial
entorhinal cortex (MEC) show grid field activity in which firing lo-
cations are organized in a regular hexagonal lattice (Fyhn et al.,
2004; Hafting et al., 2005; Moser et al., 2014; Rowland et al.,
2016). The mechanisms underlying the formation of grid fields
are still unclear and an ongoing matter of intense debate
(McNaughton et al., 2006; Fuhs and Touretzky, 2006; Burgess
et al., 2007; Burak and Fiete, 2009). It has been proposed that
pattern formation in grid cell activity could arise via Turing insta-
bility (McNaughton et al., 2006; Kropff and Treves, 2008; Row-
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land et al., 2016), where competition between short-range acti-
vation and long-range suppression generates stable spatial
patterns (Turing, 1952). Long-range suppression could be due
to recurrent inhibitory projections, as proposed by attractor
models (McNaughton et al., 2006; Fuhs and Touretzky, 2006;
Burak and Fiete, 2009), or due to firing rate adaptation, as pro-
posed by adaptation models (Kropff and Treves, 2008; Bailu
et al., 2012). Although based on the same principle, these two
model classes rely on very different neuronal implementations
and make specific predictions about the synaptic connectivity
and single-cell properties within the MEC. However, experi-
mental evidence for both scenarios is rare or even contradictory
(Beed et al., 2010; Couey et al., 2013; Buetfering et al., 2014).
Therefore, a fundamental step to unveiling the origin of grid cell
patterns is to characterize the local microcircuits within the su-
perficial layers of the MEC.

Here we report on feedforward and recurrent excitatory con-
nections among principal cells of the MEC. In an in vitro slice
preparation, we performed simultaneous whole-cell patch-
clamp recordings of up to eight neurons in layers Il and Il of
the rat MEC. Such octuple recordings offer a combinatorial
advantage over dual or quadruple recordings in that up to 56
connections can be tested at once, thereby facilitating connec-
tivity studies even when the connectivity rate is low. Synaptic
coupling was tested by driving presynaptic action potential firing
with somatic current injections, leading to excitatory postsyn-
aptic potentials (EPSPs) in the case of synaptic coupling. With
this technique, we analyzed the connection probability and syn-
aptic properties in the superficial layers of the MEC.

RESULTS

Local Excitatory Connections of Layer Il Pyramidal
Cells

Within the MEC—or cortical subfields in general—synaptic
connections between principal neurons can be separated into

—
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intra- and inter-laminar connections. To date, there are only a few
reports published addressing the neuronal connectivity in the
MEC (Dhillon and Jones, 2000; Beed et al., 2010; Couey et al.,
2013; Fuchs et al., 2016). Motivated by these, we first tested
the intra-laminar connectivity among identified principal neurons
in layer Ill of the MEC. Confirming an earlier report that had been
performed using sharp microelectrodes in a “blind” approach
(Dhillon and Jones, 2000), we found that layer lll pyramidal neu-
rons contact other pyramidal neurons in this layer at a connectiv-
ity rate of 5.7% (Figures 1A1-1A3, 12 of 209 connections tested;
Figures 1C1 and 1C2). Next, we were interested in the inter-
laminar connectivity between superficial layers Il and Il (Figures
1B1-1B3). We observed excitatory connections from layer Il py-
ramidal neurons onto layer Il principal neurons at a rate of 3.8% (7
of 184 connections tested, ignoring possible differences in cell
types of target cells in layer Il). In turn, we found only one excit-
atory connection projecting from a layer Il principal neuron onto
a pyramidal cell in layer Ill (0.5%, 1 of 184 connections tested).
These findings suggest a directionality of connections arising
from layer Il pyramidal neurons onto layer Il principal neurons.

Cell Type-Specific Feedforward Connectivity

In contrast to layer I, where the majority of neurons are pyrami-
dal cells, principal neurons in layer Il comprise two well
described classes of cells: stellate cells and pyramidal cells

M\M |0v5mv

Figure 1. Inter- and Intra-laminar Excitatory
Connectivity in Superficial Layers of the
MEC

(A1) Reconstruction of two layer Il pyramidal cells.
(A2) Firing patterns of the recorded cells.

(A3) Presynaptic action potentials and corre-
sponding EPSPs.

(B1) Biocytin staining of six simultaneously re-
corded cells. All cells are numbered according to
the labels shown on the right. Three principal
neurons were recorded in layer Il of the MEC (blue
lines), and three pyramidal cells were recorded in
layer Ill (orange lines).

(B2) Firing patterns of the recorded cells.

(B3) One neuron was stimulated with a train of four
action potentials while the postsynaptic responses
of the other neurons were monitored. Data were
recorded in current clamp mode and are displayed
in the corresponding columns for pre- and post-
synaptic signals. Presynaptic action potentials of
pyramidal cell 6 (orange box, bottom) elicited
EPSPs in the connected stellate cell 1 (orange box,
top; orange trace, magnification).

(C1) Connection probability of contacts from layer
Ill onto layer Il (left), from layer Il onto layer IlI
(center), and from intra-laminar contacts within
layer lll, determined by the number of connected
pairs divided by the number of tested connections.
(C2) Connectivity scheme of layer Ill pyramidal
cells, stellate cells, and layer Il pyramidal cells in
superficial layers of the MEC.

P2 and P3, pyramidal cell in layer Il or lll, respec-
tively; S, stellate cell; LI, layer I; LI, layer II; LI,
layer Il.
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(Varga et al., 2010). To characterize and discriminate these two
cell types of layer Il, we combined immunoreactivity against
reelin or calbindin with an analysis of intrinsic electrophysiolog-
ical properties. Reelin- and calbindin-expressing principal
neurons were classified as stellate cells and pyramidal cells,
respectively (Figure 2). We confirmed earlier findings (Varga
etal., 2010; Fuchs et al., 2016) showing that these two cell types
represent electrophysiologically distinct groups (Figure S1).
Importantly, we identified one intrinsic parameter as a particu-
larly reliable measure to discriminate reelin- and calbindin-ex-
pressing neurons: the depolarizing “sag” potential analyzed in
response to hyperpolarizing voltage steps was significantly
shorter in reelin-positive cells compared with calbindin-express-
ing cells (reelin-positive cells (n = 110, 31.3 £ 3.7 ms) versus cal-
bindin-positive cells (n = 25, 45.9 + 7.4 ms); Figure S1). There-
fore, we used this cellular property to unequivocally classify
principal neurons in layer Il for which the immunoreactivity was
uncertain (see also Figure S1 and cell classification in the Sup-
plemental Experimental Procedures). We applied these criteria
and found that inter-laminar excitatory synaptic contacts are
cell type-specific; i.e., all observed contacts were between pyra-
midal neurons in layer lll and stellate cells in layer Il. However, in
these recordings, we did not detect any inter-laminar connection
among pyramidal neurons of both layers (0 of 84 connections
tested for each condition; Figures 1C1 and 1C2). Remarkably,
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we observed layer Il pyramidal neurons to contact layer Il stel-
late cells at a rate of 7.0% (7 of 100 tested connections; Figures
1C1 and 1C2). In contrast, we found only one connection from
layer |l stellate cells onto layer lll pyramidal cells (1.0%, 1 of
100 connections tested; Figures 1C1 and 1C2). Intrinsic electro-
physiological parameters—i.e., the ratio of the first two inter-
spike intervals (ISls) upon injection of positive current (ISI 1 /
ISI 2, index for burst firing), the latency to the first spike, and
the depolarizing afterpotential (dJAP)—were recently used to
further categorize principal neurons in layer Il of the MEC (Fuchs
et al., 2016). However, in our hands, the same analysis did not
unveil additional clusters of principal neurons in layer Il of the
MEC (Figures S1 and S2).

Together, our multi-cellular recordings demonstrate connec-
tions among principal neurons in the superficial layers Il and IlI
of the MEC; these connections are cell type-specific and largely
unidirectional toward stellate cells of layer Il.

Excitatory Synaptic Connectivity within Layer Il

Having established the presence of predominantly unidirectional
coupling that connects layers Il and I, we were interested in the
excitatory connectivity within layer Il of the MEC (Figures 2A and
2B). We tested a total of 882 synaptic connections and found
22 excitatory connections among stellate cells (connectivity,
~2.5%; Figures 2C1 and 2C2). Again, we observed that connec-
tions between the two principal neuron entities exhibit a cell
type-specific wiring scheme. Although pyramidal cells form syn-
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Figure 2. Stellate Cells, but Not Pyramidal
Neurons, Receive Strong Excitatory Input
in Layer Il of the MEC

(A1) Biocytin staining of eight simultaneously re-
corded neurons. All cells are numbered according
to the labels shown on the right. The inset shows
the immunohistochemistry of cells 1 and 6. The
upper cell (1) is immunoreactive to reelin but not to
calbindin, whereas cell 6 is immunoreactive to
calbindin but not to reelin.

(A2) One neuron was stimulated with a train of four
action potentials while the postsynaptic responses
of the other neurons were monitored. Data were
recorded in current clamp mode and are displayed
in the corresponding columns for pre- and post-
synaptic signals. The presynaptic action potentials
of cell 6 (red box) elicited EPSPs in the connected
cell 1 (red trace on top, magnification).

(B1) Reconstruction of two layer Il stellate cells.
(B2) Immunohistochemistry of biocytin-filled,
reelin-positive, calbindin-negative cells in layer Il of
the MEC.

(B3) Firing patterns of the recorded cells.

(B4) Presynaptic action potentials of cell 2 and
corresponding postsynaptic EPSPs in cell 1.

(C1) Connection probability of contacts onto stel-
late cells (left) and layer Il pyramidal cells (right), as
determined by the number of connected pairs
divided by the number of tested connections.

(C2) Connectivity scheme of layer Il pyramidal cells
and stellate cells in layer Il of the MEC.
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aptic contacts onto stellate cells at a remarkable rate of ~13.5%
(17 of 126 tested connections; Figure 2C), stellate cells never
contact pyramidal neurons (0 of 126 connections tested; Fig-
ure 2C). Taken together, these results suggest a specific direc-
tionality in the information flow within the superficial layers of
the MEC, with a majority of the excitatory projections converging
onto stellate cells in layer Il.

Characteristics of Excitatory Connections in the
Superficial Layers of the MEC

Finally, we analyzed various properties of synaptic transmission
in the coupled cell pairs and observed specific differences. First,
we found significantly higher amplitudes of unitary synaptic re-
sponses at contacts of layer Il pyramids onto layer |l stellate cells
(range, from 0.09 to 4.6 mV; median, 0.3 mV; interquartile range
[IQR], 0.7 mV; Figure 3A) compared with unitary synaptic con-
nections among stellate cells (range, from 0.07 to 0.9 mV; me-
dian, 0.15 mV; IQR, 0.13 mV; Figure 3A; p = 0.01). Second,
intra-laminar connections onto stellate cells had particularly
short synaptic delays compared with inter-laminar projections
and layer lll-layer Il connections (latency, p < 0.001; Figure 3B;
for further analyses on action potential (AP) time to peak values,
distance distribution, and age dependence of excitatory connec-
tivity, see Figures S3B-S3D). Third, we observed that the
EPSP kinetics of intra-laminar connections onto stellate cells
were particularly fast in comparison with layer llI-layer Il or layer
Ill-layer Il connections (rise time (10%-90%) and half-width of
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EPSP; Figures 3C and 3D). To characterize the strength of the
coupling of different cell types (Figure 4A), we weighted the con-
nectivity rates by EPSP amplitudes (Figure 4B), which allowed to
compare more directly the relative strengths of the different syn-
aptic junctions. Intriguingly, we found that the total weighted
feedforward connectivity onto stellate cells was much stronger
compared with the recurrent connectivity among these neurons,
even in light of the ratio of 60%:40% reported for reelin-positive
stellate cells and calbindin-positive (or Wolfram syndrome
1-positive) pyramidal cells (Varga et al., 2010; Sun et al., 2015).
This directionality within the superficial layers of the MEC sug-
gests organizational principles in a brain area that is regarded
to be pivotal for memory formation.

DISCUSSION

The present study provides direct evidence for feedforward and
recurrent excitatory connectivity within the superficial layers of
the MEC. Remarkably, we demonstrate a high rate of feedfor-
ward excitatory connections from pyramids of layers Il and Il
onto stellate cells in layer Il (Figure 4A). In addition, we observe
a high synaptic coupling strength at the pyramidal cell-stellate
cell synapse within layer Il. We also consistently find recurrent
excitatory synaptic connections among pyramidal cells in layer
Il and stellate cells in layer II. This latter result challenges the pre-
vailing view of excitatory connections among stellate cells in
layer Il of the MEC being sparse or even absent (Couey et al.,
2013; Pastoll et al., 2013; Fuchs et al., 2016; for a comparison
of connectivity values in the MEC, see Figure S3E). Although
Fuchs et al. (2016) report on excitatory connections among
intermediate stellate and stellate cells, our analysis does not
support any additional differentiation. However, the reported
connection probability of all stellate cells, irrespective of their
sub-classification, resembles the connectivity rate we observe
in our present study. In addition, similar to our findings, the
highest connectivity rate in layer Il was found in connections
impinging on stellate cells (Fuchs et al., 2016). Nonetheless,
the origin of the differences in the classification of principal neu-
rons in layer Il remains unclear.

EPSP half width (ms)

The observed excitatory couplings are
consistent with cross-correlation analysis
of the spiking activity of MEC principal

neurons and grid cells in behaving rats (Quilichini et al., 2010;
Tocker et al., 2015) and with an increase in excitatory synaptic
transmission during grid field crossing (Schmidt-Hieber and
Hausser, 2013; Domnisoru et al., 2013; Heys et al., 2014).

From a functional perspective, our data suggest that mono-
synaptic recurrent excitatory connections could constrain grid
cell activity within a low-dimensional continuous attractor
(Yoon et al., 2013). This may explain why grid cells of the same
module tend to react in concert to external manipulations of
the geometry of the environment (Barry et al., 2007, 2012) or to
manipulations of the light conditions (Chen et al., 2016; Pérez-
Escobar et al.,, 2016). However, it remains unclear whether
such recurrent connections are also responsible for the forma-
tion of grid cell patterns (McNaughton et al., 2006; Fuhs and
Touretzky, 2006; Burak and Fiete, 2009). We found that the feed-
forward connectivity onto layer |l stellate cells is much stronger
compared with the recurrent connectivity among these neurons
(Figure 4B). Therefore, assuming that grid cell patterns do origi-
nate in layer |l stellate cells, where most of the excitatory inputs
converge (Figure 4B), our data support feedforward rather than
recurrent dynamics shaping grid cell activity in this region. This
view favors feedforward models of grid cell formation (Kropff
and Treves, 2008; Bailu et al., 2012). Alternatively, layer |l stellate
cells could inherit their grid-like tuning from upstream principal
cell populations, such as pyramidal cells in layer Il (Sun et al.,
2015) or layer lll, rather than generating spatial patterns exclu-
sively. This inheritance process, which requires a specific func-
tional connectivity pattern, could be achieved in an unsupervised
manner and could result in improved grid-like tuning in the down-
stream structure. Indeed, we have modeled such a scenario and
found that the activity of grid cells might be inherited and
improved by a Hebbian mechanism (Figure S4). Future studies
will have to examine this scenario using state-of-the art genetic
cell type-specific manipulations in detail. Importantly, recent
work has already provided some evidence for grid cells being
present in adjacent brain regions, such as the pre- and parasu-
biculum (Boccara et al., 2010).

We obtained our data from acute brain slice preparation. This
approach has two consequences: First, because of the slicing,
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axons are cut, most likely not in a uniform way, and all cell sub-
type-specific connections are severed equally; in contrast,
because of the geometrical layout of cortical structures, the con-
nections between different subsets of neurons might be affected
differently (Barth et al., 2016). As a consequence, our data may
provide an underestimation of the actual excitatory connectivity
matrix in superficial layers of the MEC; however, recent work us-
ing two-photon targeted whole-cell recordings in vivo surpris-
ingly found very similar connectivity rates as in slice preparations
(Jouhanneau et al., 2015). Second, by its nature, our approach
precludes the investigation of grid cell firing. However, grid field
activity is evident in principal cells of superficial layers of the
MEC (Rowland et al., 2016 but see Tang et al., 2015), and thus
it is highly likely that the architecture of this microcircuit is the
substrate that shapes this distinct pattern of activity.

In summary, our data highlight the presence of frequent excit-
atory synaptic connections among principal cells in the MEC and
support the view that grid-forming neuronal networks can rely on
excitatory connections.

EXPERIMENTAL PROCEDURES

Experimental Animals

Animal maintenance and experiments were in accordance with the respective
guidelines of local authorities (Berlin state government, T0073/04) and fol-
lowed the German Animal Welfare Act and European Council Directive 2010/
63/EU regarding the protection of animals used for experimental and other sci-
entific purposes.

Electrophysiology

Slice Preparation

Wistar rats (post-natal day [P]21-P60, both sexes) were decapitated following
isoflurane anesthesia. The brains were removed and transferred to ice-cold
sucrose-based artificial cerebrospinal fluid (SACSF) containing 87 mM NaCl,
75 mM sucrose, 26 mM NaHCOg, 2.5 mM KClI, 1.25 mM NaH,PQO,4, 0.5 mM
CaCl,, 7.0 mM MgCl,, and 25 mM glucose, saturated with 95% O, and 5%
CO; (pH 7.4). Slices (400 pm, taken from the dorsal third of the MEC) were
cut on a vibratome (VT1200S, Leica Biosystems) in a horizontal plane that
was tilted to the perpendicular axis of the pial surface of the entorhinal cortex.
Slices were stored in an interface chamber (32°C-34°C), continuously oxygen-
ized with carbogen, and perfused with ACSF containing 119 mM NaCl, 26 mM
NaHCO3;, 10 mM glucose, 2.5 mM KCI, 2.5 mM CaCl,, 1.3 mM MgCl,, and
1.0 mM NaH,PO, at a rate of ~1 mL/min. The slices were allowed to recover
for at least 1 hr after preparation before they were transferred into the
recording chamber.

1114 Cell Reports 79, 1110-1116, May 9, 2017

signaling onto layer Il stellate cells of the MEC.

Connectivity

As described recently (Bohm et al., 2015; Peng et al., 2017), recordings were
performed in ACSF at 32°C-34°C in a submerged recording chamber. Cells
in the MEC were identified using infrared differential contrast video microscopy
(BX51WI, Olympus) and selected within a distance of 10-250 um. We performed
somatic whole-cell patch-clamp recordings (pipette resistance, 2.5-4 MQ) of up
to eight cells simultaneously. One cell was stimulated with a train of four action
potentials at 50 Hz, elicited by 1- to 2-ms-long current injections of 2-4 nA. For
characterization, increasing steps of current were injected (1 s; increment,
50 pA). In a few experiments, a hyperpolarizing or depolarizing holding current
was applied to keep the membrane potential at —60 mV. In total, we recorded
136 layer Ill pyramidal cells, 87 layer |l pyramidal cells, and 315 layer |l stellate
cells. The intracellular solution contained 135 mM potassium-gluconate,
6.0 mM KCl, 2.0 mM MgCl,, 0.2 mM EGTA, 5.0 mM Na,-phosphocreatine,
2.0 MM Na,-ATP, 0.5 mM Na,-GTP, 10 mM 4-(2-hydroxyethyl)-1-piperazinee-
thanesulfonic acid (HEPES) buffer, and 0.2% biocytin. The pH level was
adjusted to 7.2 with potassium hydroxide (KOH). Recordings were performed
using Multiclamp 700A/B amplifiers (Molecular Devices). Signals were filtered
at 6 kHz, sampled at 20 kHz, and digitized at 16-bit resolution using Digidata
1550 and pClamp 10 (Molecular Devices).

Data Analysis

Connectivity

Synaptic connections were identified when there was a postsynaptic potential
corresponding to the presynaptic stimulation in the averaged trace from 40-50
sweeps. A baseline period (2 ms) just prior to the stimulation and the averaged
postsynaptic peak during the first action potential was used for the analysis of
the EPSP amplitudes, synaptic delays, and EPSP kinetics with AxoGraph X
(https://axographx.com). Only pairs in which the first postsynaptic peak was
clearly discernible were used for analysis. The statistical significance of differ-
ences in EPSP amplitudes, latency, rise time, AP time to peak, half-width, or
paired-pulse ratio (PPR) was calculated using Kruskal-Wallis test and post
hoc Dunn’s test for multiple comparisons. The example traces in Figures 1
and 2 were filtered at 1 kHz and represent averages of 25-50 sweeps. The
AP trains in Figures 1B3 and 2A2 are displayed as single sweeps.
Immunohistochemistry and Neuroanatomy of Principal Cells

After recording, slices were transferred into a fixative solution containing 4%
paraformaldehyde in 0.1 M phosphate buffer. Primary antibodies were diluted
in incubation medium (PBS containing 2.5% normal goat serum and 1%
Triton). Immunoreactions for calbindin were carried out with a rabbit antibody
(Cb-38, Swant, diluted 1:10,000) and for reelin with a mouse antibody
(MAB5354, Millipore, diluted 1:1,000). Secondary antibodies conjugated to
Alexa 555 (or Alexa 594) and Alexa 647 (diluted 1:500, Molecular Probes)
raised against mouse and rabbit were used to detect the location of the pri-
mary antibodies; streptavidin was conjugated to Alexa 488 for biocytin (diluted
1:500). The slices were then mounted in Fluoroshield (Sigma-Aldrich)
and analyzed. Image stacks of specimens were imaged on a Leica TCS
SP5 confocal microscope (Leica Microsystems). Images were quantified


https://axographx.com

using ImagedJ software (https://rsbweb.nih.gov/ij/). The reconstructions in
Figures 1B1 and 2A1 were done after blind deconvolution with AutoQuant
X3 (MediaCybernetics). Figures 1A1 and 2B1 were done with the aid of the
Neurolucida 3D reconstruction system (MicroBrightField).

Cell Classification

For cell classification of layer Il principal neurons, we made use of the differen-
tial immunoreactivity of these cells to reelin and calbindin and the analysis of
intrinsic electrophysiological properties. For further details, see Supplemental
Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
and four figures and can be found with this article online at http://dx.doi.org/
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Figure S1. Intrinsic properties of reelin-positive and calbindin-positive cells in layer II of the
entorhinal cortex, Related to Figure 1. Included are successfully stained cells, for which all nine
intrinsic electrophysiological properties were recorded (n = 115 reelin-positive cells, blue, and n = 26
calbindin-positive cells, red). For details concerning the analysis of the respective parameter see
Supplemental Experimental Procedures below. Box edges indicate the first and third quartiles, the
median and the mean are given by the grey line and ‘plus’ symbols, respectively. Percentages spanned
by the whiskers correspond to 9% and 91%, respectively.
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Figure S2. Absence of further categorization among reelin- and calbindin-expressing principal
neurons in layer II of the MEC, Related to Figure 1. (A) For layer II stellate cells (n = 180) the
distribution of three intrinsic parameters is plotted (as in Fuchs et al., 2016): the depolarizing
afterpotential (dAP) amplitude, the latency to first spike, and the ratio of interspike interval 1 and
interspike interval 2 (ISI 1/ ISI 2). Based on these criteria no further categorization of stellate cells
was detected. (B) Similarly, the distribution of three intrinsic parameters in 27 identified (calbindin-
expressing) layer II pyramidal neurons: depolarizing afterpotential (dAP) amplitude, latency to first
spike, and sag potential amplitude, as in Fuchs et al., 2016. Based on these criteria, no further
categorization of stellate cells was observed. (C) Principal component analysis performed on all nine
intrinsic electrophysiological parameters. The projection on the first two principal components shows
a clear separation between the two classes. Included are successfully stained cells for which all nine
intrinsic electrophysiological properties were recorded (see also Figure S1 for display of all
parameters).
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Figure S3. Properties of excitatory synaptic connections in the superficial layers of the MEC,
Related to Figure 4. (A) Paired-pulse ratios (EPSP2/EPSP1) for the different groups. (B) AP time
to peak for the different groups, measured as time from the peak of the presynaptic AP to the peak of
the postsynaptic EPSP. (C) Distance of the connected cells, measured from the centers of the somata.
(D) Connection probability between stellate cell — stellate cell (S—S) and layer II pyramidal cell —
stellate cell (P2—S) at different ages. Age range from p21 to p29: (S—S) 2.0% (seven out of 356
connections tested) and (P2—S) 15.2% (12 out of 79 connections tested). Age range from p30 to p60:
(S—>S) 2.9% (15 out of 526 connections tested) and (P2—S) 10.6% (five out of 47 connections
tested). Statistical significance of displayed differences was assessed by Dunn’s test of multiple
comparisons. * P <0.05; ** P <0.01; *** P <0.001; **** P <0.0001. Properties are shown only for
contacts with more than one connection found. (E) Compilation of excitatory connectivity values in
superficial layers of MEC based on previous studies. Numbers are gathered from Dhillon and Jones
(2000), Couey et al. (2013) and Fuchs et al. (2015), and the present study. Abbreviations: SC: Stellate
cell, Im SC: intermediate stellate cells, PC: pyramidal cells, Im PC: intermediate pyramidal cells, L2:
layer II principal cells, L3: layer III pyramidal cells.
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Figure S4. Improvement of grid tuning in a feed-forward network model, Related to Figure 4.
(A) Model schematic. In a target principal-cell population, each output neuron (example: grey disc)
receives feed-forward excitation (red discs) from N spatially tuned inputs and inhibition (blue disc)
from spatially-untuned interneurons. At the top row, four examples of the input rate maps are shown
(dark blue: O spikes/s, dark red: peak rate reported at the top, gridness score reported at the bottom
left corner). Input rate maps are noisy hexagonal grids with common spacing and orientation but
different phases. An example of the trajectory covered by a virtual-rat is shown at the bottom right
(10 minutes of exploration). (B) Gridness scores of the excitatory inputs (N" = 400, see examples in
A). (C) Gridness scores of the outputs before learning, i.e., with random feed-forward weights (N°"
=400). (D) Development of the excitatory synaptic weights (top row, weights from 0 to w"* in grey
scale) and corresponding output firing rate maps (bottom row) for one example output neuron. Four
snapshots are shown (see simulation times at the top). Nearby pixels in the synaptic weight maps
correspond to inputs with similar grid phases. Output rates are color-coded as in A. (E) Gridness
scores of the outputs at the end of the simulation (t = 240 min). The red vertical lines in B, C, and E
denote median gridness score values.



Supplemental Experimental Procedures

Cell classification. To differentiate layer II principal neurons, we made use of the differential
immunoreactivity of these cells, i.e. stellate cells expressing the glycoprotein reelin and pyramidal
neurons expressing the Ca®* binding protein calbindin (Varga et al., 2010). Immunolabeling revealed
238 reelin-positive and 48 calbindin-positive cells, enabling us to classify them as stellate- and
pyramidal neurons, respectively. We further analyzed nine electrophysiological parameters in all
cells, if possible (Figure S1; see also Alonso and Klink, 1993; Canto and Witter, 2012): Resting
membrane potential values represent initial voltages recorded after arriving in the whole-cell
configuration. The input resistance was calculated from the deviation from baseline of steady-state
voltage responses evoked by intracellular current injections (50 pA). The latency to first spike at
rheobase was determined as the time from the onset of the depolarization step current to the onset of
the action potential (threshold: dV/dt = 90 V/s). The spike duration at rheobase was found as the
duration from spike onset to the time point where the decaying slope of the action potential crossed
the onset voltage level again. The adaptation ratio was calculated both as the ratio of the last and the
first interspike intervals (last ISI/ISI 1) or as the ratio of the first two interspike intervals (ISI 1/ ISI
2) at current steps of +500 pA and 1000 ms. The depolarizing afterpotential (dAP) for spikes at
rheobase was determined by calculating the voltage difference between the local minimum of the fast
afterhyperpolarization (fAHP) and the following depolarizing peak (Alonso and Klink, 1993).
Amplitude and half-width (i.e., the duration at 50% of the amplitude) of the sag potential were
measured in response to -750 pA (or -100 pA) current injection. We observed that the half-width of
the sag potential -750 pA current injection predicted best the immunoreactivity to reelin and calbindin
of layer II principal cells (Fig. S1). This enabled us to define a threshold for the classification of cells
with non-sufficient staining. To find the best separation value, we used a linear 1d support vector
machine (SVM, from the Python scikit-learn package, version 0.18.1) taking into account the class
imbalance of reelin-positive and calbindin-positive cell numbers. The weighted SVM for the half-
width of the sag potential was 37.2 ms (accuracy: 0.93; 10-fold cross validation) at -750 pA current
injection (in some of the recorded cells we injected only -100 pA, yielding a weighted SVM of 45.2
ms with a slightly reduced accuracy: 0.85; 10-fold cross validation). Finally, we classified neurons
that were non-sufficiently stained as follows: cells were classified as reelin-positive and therefore as
stellate cells, if the half-width of the sag potential was <36 ms for -750 pA current injection (or <42
ms for -100 pA current injection) and as calbindin-positive and therefore as pyramidal cells if the
half-width of the sag potential was 238 ms (-750 pA) or 248 ms (-100 pA). Layer III pyramidal cells
could be easily distinguished from both layer II pyramidal and stellate cells based on clear differences

in input resistance (mean £ SD: 124 + 32 MQ) and resting membrane potential (mean £ SD: -67 =+ 5



mV) in layer III pyramidal cells (see Fig. S1 for comparison with layer II stellate and pyramidal

neurons).

Modeling. Here we show that feed-forward excitatory projections could support the inheritance of
grid-cell activity across distinct neuronal populations, and that grid patterns could become more
regular through this inheritance process. To this end, we model the activity of a population of weakly-
tuned grid cells projecting to a target principal-cell population as a virtual rat explores a square
enclosure. Input firing-rate maps were obtained by distorting with noise hexagonal grids with
common spacing and orientation, but different spatial phases (Fig. S4A, B), similarly to what is
observed within a grid-cell module (Hafting et al., 2005). The feed-forward connectivity was sparse
and initially random, that is, each neuron in the target principal-cell population received input from a
set of noisy grids with random spatial phases. Such a random connectivity slightly decreased the grid
tuning of the output spatial maps (Fig. S4C). Indeed, in a feed-forward network, the output grid tuning
could be improved only by selecting input grids with similar phases. But how to obtain such an input
selection that crucially depends on the behavioral correlates of neural activity?

We suggest that Hebbian plasticity could drive this selection. In Fig. S4D we illustrate this hypothesis
for one example output neuron in the target principal-cell population. Initially, the output neuron was
driven by a random set of inputs, and the corresponding output firing-rate map was spatially irregular
(Fig. S4D, left-most panels). With experience, however, inputs with similar grid phases increased
their synaptic strength, and, as a result, a more regular grid pattern emerged at the output (Fig. S4D,
right-most panels). The spatial phase of the output grid depended on the initial state of the synaptic
weights and on the trajectory of the virtual rat, which were both random. Nevertheless, regardless of
the initial conditions, the firing-rate maps at the output (Fig. S4E) were consistently more regular
than the ones at the input (Fig. S4B).

In summary, we demonstrate with a computational model that grid tuning could be inherited and even
be improved via feed-forward projections across distinct principal-cell populations. We assumed that
the experimentally observed feed-forward connections (Figs. 1-3) were also representative for grid
cells and that cells with weak grid tuning (same period, same orientation, but different phase) in an
input layer projected to a target grid cell in an output layer. Note that inheritance requires only weak
grid tuning at the input layer (see input gridness scores in Fig. S4B).

A connectivity pattern suitable for the inheritance was learned from the activity correlations already
present at the input. We suggest that such learning could happen concurrently with the development
of grid cells in the first ~3 weeks of age (Langston et al., 2010; Wills et al., 2012, 2010), and that
grid-field inheritance could take place in feed-forward projections from pyramidal cells in layer II or

III to stellate cells in layer II. This is in line with recent reports that both stellate and pyramidal cells



show grid spatial tuning (Sun et al., 2015), although it remains unclear which principal-cell population

contains the most-regular grids (Sun et al., 2015; Tang et al., 2014).

Model implementation.
We model a feed-forward network of N excitatory inputs with rates {rji“ 1j=1,2, ...,Nin}

projecting to N°“! excitatory outputs with rates { " : i=1,2, .., N°" }, where

Pt (@) = [Zﬂyz wij 1" (%) — 7‘0]+~ (1)

The vector X = [x;, X, | is the position of the virtual rat in the environment, w;; is the synaptic weight
from input neuron j to output neuron i, ry > 0 spikes/s is a spatially-homogeneous inhibitory rate,
and the function [z], =z if z>0,=0ifz < 0 is a static non-linearity. The input rates are modeled
by distorting with noise hexagonal grids with common spacing and orientation, but different spatial

phases:

(@) = [ag; (D) + (1 - a)§; D], )

where g;(X) is a hexagonal grid with phase ¢;, ;(X) is a realization of a 2-dimensional noise
process, and the parameter 0 < a < 1 weights the strength of the grid signal in relation to the noise.
The grid signal g;(X) is the sum of three planar waves with wave vectors {En :n = 0,1,2 } that are

60 degrees apart:

n=2

cos (En (2 + @ ))

n=0

- 4m rcos(nm/3+ f)

(x) = ith - =
9;(X*) =B with &y T3l sin(nz/3+ B) 1’ (3)

where B > 0 controls the grid amplitude, f sets the grid orientation, and T is the grid spacing. The
spatial phases {(,3 j} are sampled to cover the entire phase space evenly. The input noise is uncorrelated

across neurons but correlated across spatial locations such that it varies smoothly in space.
Specifically, the noise is generated by low-pass filtering 2-dimensional white Gaussian noise with a
circularly-symmetric Gaussian filter: G (X¥)= exp(—|%¥|/2 o), where g, controls the filter width. The

mean and the variance of the noise are normalized to match the ones of the input signal g; ().

The excitatory synaptic weights {Wi j} are changed according to the following Hebbian learning rule:



“4)

where 77 is a small learning rate and y > 0 spikes/s sets the threshold between long-term potentiation

and long-term depression. Additionally, the synaptic weights {wi j} are bounded between 0 and

max

w™ at each time point. At the initial condition, a random subset of N'P < N synaptic weights are

set at the upper bound w™** > 0 whereas all the other weights are set to 0.

The virtual rat explores a square arena of side-length L with a correlated random walk with movement
directions that vary smoothly in time. Precisely, the rat’s trajectory is a sample of the 2-dimensional

stochastic process

dd—)it = v [cos(8,),sin(0,)] with 0, = W, , @)
where X ¢ 1s the position of the virtual rat at time t, the process 8, sets the direction of motion, and W;
is a standard Wiener process. The parameters v and gy control the speed of motion and the tortuosity
of the trajectory. At the boundaries of the environment, only movement directions towards the interior
of the arena are retained.

Parameter values: N = N°U = 400, 1o = 3 spikes/s, a =0.27, B=6, £ =0,T =14m, o, =
0.15m,n=2- 10~>1/s, y = 3.8 spikes/s, w™™* = 0.067, N** =15, L =4 m, v = 0.2 m/s, gy =
0.7.

Gridness scores of input and output firing-rate maps were computed with the algorithm proposed by

(Stensola et al., 2012).
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