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Abstract 14 

Immunity against pneumococcal infections is impaired in older people, and current vaccines are 15 

poorly protective against pneumococcal disease in this population.  Naturally-acquired immunity 16 

against pneumococcal capsular polysaccharides develops during childhood and is robust in young 17 

adults, but deteriorates with advanced age.  In particular, antibody levels and function are reduced 18 

in older people. Pneumococcal vaccines are recommended for people over 65 years of age. 19 

However, the benefits of polysaccharide and protein-conjugated vaccines in this population are 20 

small, due to both serotype replacement and incomplete protection against vaccine-serotype 21 

pneumococcal disease.  In this review we overview the immune mechanisms by which naturally-22 

acquired and vaccine-induced pneumococcal capsular polysaccharide immunity declines with age, 23 

including altered colonization dynamics, reduced opsonic activity of antibodies (particularly IgM) and 24 

impaired mucosal immunity.    25 
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Introduction 26 

Streptococcus pneumoniae, or the pneumococcus, is a major cause of morbidity and mortality in the 27 

elderly.  People aged over 65 experience up to a five-fold increase in the incidence and mortality of 28 

pneumococcal community-acquired pneumonia (CAP) relative to those aged under 65 (1, 2).   In the 29 

United States, an estimated 600,000 episodes of pneumococcal CAP occur annually, with a total cost 30 

to society of US$4.85bn (3); hospitalizations for pneumococcal CAP are predicted to increase by 31 

nearly 100% by the year 2040, with 87% of this increase accounted for by the elderly (4).  In 32 

resource-rich settings, pneumococcal meningitis is becoming a disease of the elderly (5, 6) and 33 

frequently results in death or long-term sequelae, with higher mortality in the elderly than any other 34 

age-group (7, 8).  Pneumococcal bacteremia is associated with substantial mortality whether in 35 

isolation or when associated with confirmed organ infection, and is associated with increased 36 

incidence and mortality in the elderly (9, 10).   37 

Throughout history, humans have suffered from pneumococcal disease and the pneumococcus has 38 

evolved in parallel with our immune systems (11).  The first effective treatment for pneumococcal 39 

disease was passive immunotherapy: the transfer of specific immune serum from naturally-immune 40 

donors or immunized animals to patients with pneumococcal pneumonia (12).  Alongside antibiotic 41 

therapy, pneumococcal vaccines represent a signal success in humanity’s battle against the 42 

pneumococcus. Opsonizing anti-capsular polysaccharide (CPS) antibodies are a recognized correlate 43 

of protection and are common to both the natural and vaccine-induced responses against 44 

pneumococcal disease; therefore in this review we focus on this facet of adaptive immunity.  In the 45 

first part of this review we discuss pneumococcal colonization, naturally-acquired anti-CPS immunity, 46 

and how these change during adulthood. In the second part we focus on the response to 47 

pneumococcal vaccination in the elderly.  We conclude with an overview of mucosal immunity in the 48 

elderly, a summary of important knowledge gaps, emerging strategies, and priorities for future 49 

research.  Although we focus on anti-CPS antibodies, it must be emphasized that successful defense 50 
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against pneumococcal invasion requires concerted input from every arm of the innate and adaptive 51 

immune systems (13, 14).    52 

Search strategy 53 

We searched PubMed for (("streptococcus pneumoniae” OR pneumococcus) AND (antibody OR 54 

humoral OR immunoglobulin) AND (aged OR aging OR elderly OR older)). No limits were applied; the 55 

search strategy was augmented by exploring the “related articles” and “cited by” fields in PubMed as 56 

well as reviewing the reference lists of extracted articles.   57 

The epidemiological, immunological and pathological significance of pneumococcal colonization in 58 

the elderly is a controversial topic 59 

Table 1 lists examples of studies that attempted to define the rate of pneumococcal colonization in 60 

elderly subjects (defined as either >60 or >65 years in different studies) (15-21). Much of the 61 

variation between these studies can be explained by the different sampling sites—nasopharyngeal, 62 

oropharyngeal or saliva—and detection methods—classical culture, polymerase chain reaction (PCR) 63 

or some combination of the two.   64 

Our understanding of pneumococcal colonization, disease susceptibility and natural immunity in 65 

children, young adults and murine models derives from traditional bacterial culture methods in 66 

nasopharyngeal specimens (22, 23).  For example, salivary PCR in children can suggest rates of 67 

colonization approaching 100% (24), but this has yet to be correlated with immunological endpoints, 68 

incidence of clinical disease or protection against future acquisition.  False positive PCR results from 69 

other oral streptococci are also a concern, although steps have been taken to increase the test 70 

specificity in recent studies.   71 

While studies of nasopharyngeal swab cultures from elderly adults have shown lower rates of 72 

colonization than in children (1.8—4.2%) (15-17), the addition of oral swabs and the combination of 73 

traditional culture and PCR can estimate rates of colonization (if defined as ≥1 sample from any site 74 
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testing positive by any method) to as high as 23% in an elderly population (20), or 34% if saliva is also 75 

sampled (21).    76 

Thus, while classical microbiological analysis on nasopharyngeal samples from elderly subjects may 77 

not have as high a yield as molecular analysis of oral or salivary specimens, it has the advantage of 78 

allowing a more direct comparison with previous studies.  It may be simplistic to report PCR as 79 

“more sensitive” than culture, as the clinicopathological significance of low-density, culture-negative 80 

colonization may not be equivalent to that of high-density, culture-positive colonization.  Similarly, 81 

the presence of pneumococcal DNA in the oropharynx may not represent the presence of viable 82 

pneumococci in the nasopharynx.   83 

Most importantly, high nasopharyngeal colonization rates in elderly people (23%, as defined by 84 

classical culture) have been demonstrated during an outbreak in a nursing home (25), suggesting 85 

that culture-positive nasopharyngeal colonization may be a clinically relevant measurement in the 86 

elderly.   87 

In this Review, for the reasons outlined above and to introduce an element of homogeneity when 88 

comparing studies of children, adults, older adults and mice, we will define colonization as the 89 

isolation of pneumococci from the nasopharynx by culture-based methods.   90 

Pneumococcal colonization and naturally-acquired anti-pneumococcal immunity: an age-dependent 91 

phenomenon 92 

The link between pneumococcal colonization (or carriage) and the subsequent development of all 93 

forms of pneumococcal disease is generally accepted, being biologically plausible and supported by 94 

experimental murine models of meningitis, studies of children with otitis media and adults with 95 

pneumonia (23, 26, 27).  However, colonization may be a necessary evil: exposure to pneumococcal 96 

antigens via repeated episodes of nasopharyngeal colonization is key to acquiring and sustaining 97 

anti-pneumococcal immunity. 98 
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Throughout childhood, adolescence and early adulthood, immunity against pneumococcus improves 99 

with age.  Children aged under two years have high rates (over 60%) of nasopharyngeal 100 

pneumococcal colonization (28, 29). Up to 15% of colonization episodes progress to clinical disease 101 

(particularly otitis media) before an immune response can clear the pathogen, which could be 102 

explained by the lack of a robust anti-CPS immune response in young children (23, 30, 31).  103 

Colonization rates fall with increasing age, along with a corresponding reduction in pneumococcal 104 

disease (28). It seems that repeated colonization episodes lead to the development of protective 105 

immunity against the most prevalent circulating pneumococcal serotypes (anti-CPS antibodies are, in 106 

general, specific to a given serotype) (32).  Following the maturation of the immune system and 107 

multiple episodes of colonization, young adults have well-functioning immune systems and 108 

established serotype-specific immunologic memory (33).   109 

Naturally-acquired immunity is multifactorial: non-specific anti-pneumococcal immunity develops 110 

alongside serotype-specific immunity in children, through mechanisms that have not been entirely 111 

elucidated (34).  In young infants with immature anti-CPS responses, epidemiological studies have 112 

suggested that non-specific immunity predominates (35), while serotype-specific immunity comes to 113 

the fore in older children (32).  In adulthood, both epidemiologic and controlled human infection 114 

studies have suggested that serotype-specific immunity plays a major role (33, 36).  We hypothesize 115 

that anti-pneumococcal immunity in older adults is more akin to that of young adults than to that of 116 

infants.  117 

Young adults experience very low morbidity and mortality from pneumococcal disease (e.g. 3.1 cases 118 

annually per 100,000 population, versus 38.6 cases per 100,000 population in children aged under 119 

one year) (8), and their serotype-specific immunity is boosted by occasional episodes of 120 

asymptomatic colonization (33, 36, 37).  However, in old age, a paradox emerges: while 121 

nasopharyngeal colonization appears to be less common in older adults (see TABLE 1), they are at 122 

extremely high risk of pneumococcal disease.   123 
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One hypothesis suggests that the same mechanism (immunosenescence) determines increasing 124 

disease susceptibility with reduced colonization: increased circulating levels of pro-inflammatory 125 

cytokines (“inflammaging”) could lead to clearance of colonization before a natural boosting of pre-126 

existing immunity could take place (38-40). An alternative explanation is that colonization is under-127 

detected in this age-group and that it is a precursor to disease, which cannot be prevented by the 128 

senescent elderly immune system.  Mucosal immunity may be more durable than systemic humoral 129 

immunity (to be discussed in detail later)—this could explain a protection against colonization but 130 

susceptibility to invasive disease. Regardless, older adults are clearly at high risk of pneumococcal 131 

disease, and therefore their natural anti-pneumococcal immunity must differ from that of younger 132 

adults.  Declines in both innate and adaptive immunity combined with increased rates of 133 

comorbidities all contribute to this (41), but we will focus here on antibody-mediated immunity.  134 

Naturally-acquired pneumococcal CPS antibodies: an overview 135 

As outlined above, natural immunity arises following episodic colonization.  Colonization leads to 136 

increased serum levels of anti-pneumococcal antibodies, which are detectable in all adults (42, 43).  137 

In this section we will discuss their role in the control of pneumococcal disease.  Anti-CPS antibodies 138 

are the most widely-studied antibodies and are the direct effectors of vaccine-induced protection, 139 

and therefore we focus on these.   140 

In addition to antibodies generated by natural colonization, others have reported on naturally-141 

arising polyvalent antibodies (often IgM) with potent anti-pneumococcal activity (44)—whether 142 

these antibodies are analogous to those that arise following colonization is unclear.  Furthermore, it 143 

is possible that these antibodies undergo refinement and increased specification over time, 144 

stimulated by antigen presentation (45).  For this review we will define naturally-acquired antibodies 145 

as those that arise following pneumococcal exposure.   146 

Anti-CPS antibodies form a key component of the adaptive immune response, binding to the 147 

pneumococcal capsule and thus opsonizing the bacteria and improving phagocytosis and 148 
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downstream killing.  In addition, antibodies can promote an innate immune response by activating 149 

the classical complement pathway; in murine models this appears to be the dominant complement 150 

pathway in anti-pneumococcal immunity and is mediated via natural IgM rather than IgG (46).   151 

Antibodies are a key product of nasopharyngeal colonization and protect against disease 152 

They are particularly effective in control of bloodstream infections: passive transfer of human 153 

antibodies (generated following experimentally-induced colonization) was protective in a murine 154 

model of lethal bacteremia (36).  Passive transfer of pre-colonization serum from the same human 155 

volunteers conferred a lesser survival benefit. In a separate murine lethal challenge model, CD4-156 

deficient knockout mice were able to mount a protective antibody response following experimental 157 

colonization and survive subsequent bacteremic challenge, whereas antibody-deficient knockout 158 

mice had no survival benefit from prior colonization (47).  Experimental colonization of mice also 159 

generated a protective response against subsequent pneumonia (22).  However, this experiment 160 

found that all arms of the innate and adaptive immune systems were required for protection: 161 

depletion of any of B cells, neutrophils or CD4 cells eliminated the protective response.  This 162 

suggests that the control of mucosal disease is more complex than the control of bloodstream 163 

disease.  Thus, based on the evidence accumulated from a combination of murine and human 164 

challenge models, antibodies induced by pneumococcal colonization have been shown to confer 165 

protection against bacteremia and contribute to protection against pneumonia.   166 

Clearance of colonization is a complex process 167 

Antibodies have an important role in the protection against becoming colonized. In mice, passive 168 

transfer of antibodies lead to agglutination of bacteria following intranasal challenge, which causes 169 

the bacteria to clump and become more vulnerable to mucociliary clearance (48).  Pneumococcal 170 

antibody-mediated agglutination has also been demonstrated in humans following vaccination with 171 

pneumococcal conjugate vaccine (PCV) (49).  In this study, naturally-acquired antibodies were 172 

present in the nasopharynx prior to vaccination, but not in sufficient levels to induce agglutination.   173 
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Murine studies have suggested that the clearance of established colonization is primarily mediated 174 

by CD4 cells and interleukin 17 (IL-17), with a possible contribution from anti-protein antibodies (50-175 

52). Thus, it appears that anti-CPS antibodies generated during a colonization episode do not have a 176 

role in its clearance, though they may be protective against the future acquisition of colonization 177 

and subsequent development of disease.  This role of anti-CPS antibodies is supported by clinical 178 

studies demonstrating the virtual elimination of vaccine-serotype pneumococcal colonization in 179 

vaccinated children (53). The functional importance of anti-CPS antibodies is summarized in Figure 1.   180 

Why does greater lifetime exposure to pneumococcus not lead to enhanced protection in the 181 

elderly? 182 

If pneumococcal colonization leads to the generation of antibodies, and these antibodies are 183 

protective against reacquisition of pneumococcus, then elderly people should be particularly well 184 

protected against pneumococcal disease.  Clearly this is not the case, and several explanations have 185 

been proposed.  Vaccine-induced antipneumococcal antibodies wane over time, and require booster 186 

vaccines in order to maintain protective levels. Perhaps colonization-induced antibodies may require 187 

boosting by regular episodes of colonization (36), and this is too infrequent in elderly populations for 188 

boosting to occur.  Otherwise, the defect in antibody-mediated immunity lies either with the B cells 189 

responsible for secreting the antibodies, or with the antibodies themselves.  Taking a wider view, T 190 

cell control of B cell responses and antibody secretion could also be implicated (41), as could 191 

alteration in neutrophil function with age (54); however, in the interests of space, we will confine 192 

our attention to B cells and antibodies.   193 

B cell populations are altered in older people 194 

IgM memory B cells, which function in a T cell-independent manner, are a key component of 195 

antipneumococcal defenses (45). A study comparing healthy elderly volunteers with younger adults 196 

found that IgM memory B cells are less abundant in the elderly (55).  In addition, aged IgM memory 197 

B cells were determined to be functionally inferior, with a reduced capacity for antibody secretion 198 
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and plasma cell differentiation.  Pneumococcal polysaccharide vaccination of the elderly volunteers 199 

led to some improvement in IgM levels and IgM memory B cell percentages, but not to the same 200 

degree as in younger subjects.  B1 cells are another potential culprit; these cells are responsible for 201 

producing naturally-acquired anti-CPS antibodies (while T cell-dependent adaptive antibodies are 202 

generated by B2 cells). Levels of B1 cells are reduced in the elderly (reviewed in (56)).  This is an 203 

emerging field, and there is a dearth of human studies relevant to this topic outside of the context of 204 

vaccination—we will explore this in a later section.   205 

Antibodies decline and lose functional efficacy with age.   206 

Figure 2 shows a schematic of anti-CPS antibody levels and function at different ages relative to 207 

rates of pneumococcal colonization and disease.  Population-based studies have shown that natural 208 

anti-CPS IgG and IgM levels fall with age (42, 57, 58).  Antibody function, i.e. opsonic activity, can 209 

vary markedly between individuals; populations with high rates of pneumococcal colonization and 210 

disease have higher serum opsonic activity than lower-risk populations, even when matched for age 211 

and antibody level (59).  For this reason, opsonophagocytic killing activity is accepted as a better 212 

correlate of protection than antibody levels (60). It is therefore of greater importance that the 213 

naturally-acquired anti-CPS antibodies of older people have less opsonic activity than those of young 214 

people.  In one study, the concentration of natural serotype-specific IgG required for 50% opsonic 215 

killing was up to twice as high in an unvaccinated elderly population when compared with a young 216 

population—differences in IgG function between young and old were even more substantial than 217 

differences in concentrations (54).  Similar, though less pronounced differences were seen for IgM. 218 

The authors noted that serotype-specific IgM concentrations and opsonic activity were poorly 219 

correlated, unlike those of IgG. When the decline in antibody level and function are combined, this 220 

strongly suggests that antibody defects are responsible for (or at least contribute towards) the age-221 

related increase in vulnerability to pneumococcus.   222 
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Impaired opsonic functionality relative to antibody levels is seen in immunosuppression secondary 223 

to a wide variety of etiologies.  Although not directly comparable to the elderly, it is notable that 224 

anti-CPS IgG levels in HIV-infected individuals (who have high rates of pneumococcal colonization as 225 

well as disease) have been shown to be higher than those of HIV-uninfected subjects, but with 226 

reduced opsonic activity (61).   227 

An observational study provides some clinical context and supports the hypothesis that reduced 228 

opsonic functionality in anti-CPS antibodies is a risk factor for pneumococcal disease in the elderly. 229 

Sera from patients in the acute and convalescent stages of various types of pneumococcal disease 230 

were compared with age-matched controls (62).  Only 27% of subjects with pneumococcal disease 231 

had IgG to their infecting serotype at time of presentation (compared to 37% of controls and 42% of 232 

colonized subjects).  Furthermore, acute antibodies from infected subjects had significantly lower 233 

opsonic activity than those of controls or colonized subjects and were less protective via passive 234 

transfer in a lethal murine challenge model (20% survival vs 100%).  Sixty-two percent of 235 

convalescent sera had detectable IgG following pneumococcal disease, which demonstrated good 236 

function in >50% of patients.  Important limitations of this study include substantial loss to follow-up 237 

between the acute and convalescent phases, no reporting of ages, and no pre-disease antibody 238 

levels, the last of which means we cannot rule out the possibility of antibody sequestration in 239 

diseased tissues as an explanation for low circulating levels.   240 

Most of the more detailed studies of antibody functionality in the elderly have been conducted in 241 

the context of vaccination. Vaccination is an obvious strategy to restore waning natural anti-CPS 242 

immunity in the elderly.   243 

Vaccines against pneumococcal disease: an overview 244 

The pneumococcal polysaccharide vaccine (PPV) was the first licensed vaccine against the 245 

pneumococcus; PPV23 denotes the current 23-valent formulation.  The pneumococcal protein-246 

conjugated vaccine (PCV) has superior immunogenicity and efficacy in children; the most recent 247 
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formulation is the 13-valent PCV13.  Childhood vaccination programs generate herd protection by 248 

reducing colonization and thus halting transmission at a population level (63).  However, serotype 249 

replacement has abrogated much of this benefit in many settings (64, 65).  Even without significant 250 

levels of serotype replacement, vaccine type disease remains common in older people after 251 

childhood vaccination programs are established (66), and residual non-vaccine-type disease will 252 

persist as a public health problem (5).   253 

In the USA, current recommendations for adults aged over 65 years advise vaccination with PCV13 254 

followed by PPV23 (67).  In the UK, PPV23 is recommended in older adults, but the addition of 255 

PCV13 was not deemed to be cost-effective, and the use of PPV23 is to be kept under review (68).  256 

Recommendations in other Western European countries vary considerably (69).   257 

Current pneumococcal vaccination strategies provide poor protection in older adults 258 

The discrepancies in national vaccination policies stem from the poor (and disputed) efficacy of 259 

these vaccines in older people.  A Cochrane review in 2013 concluded that PPV23 effectively 260 

prevents pneumococcal bacteremia and meningitis, including in the elderly (70). It has minimal 261 

effect at the mucosal level, and thus has not been shown to reduce rates of colonization.  The 262 

Cochrane review found no effect of PPV23 on rates of (non-bacteremic) pneumococcal CAP or all-263 

cause pneumonia, partially due to the substantial heterogeneity of studies that were included.  264 

Nonetheless, some individual studies—including both observational studies and well-conducted 265 

randomized controlled trials (RCTs)—have found PPV23 to be efficacious against pneumococcal 266 

pneumonia.  For example, one double-blind RCT in elderly Japanese nursing home residents (a 267 

population expected to have a high incidence of pneumonia, and therefore better positioned to 268 

detect a vaccine effect) found a 62% relative risk reduction of pneumococcal pneumonia, and a 39% 269 

relative risk reduction of all-cause pneumonia with PPV23 (71).  When data from this study was 270 

pooled with others for the Cochrane meta-analysis, the effect was no longer significant; however, 271 

this does not exclude the possibility of a small protective effect against pneumococcal pneumonia 272 
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from PPV23, which would be clinically significant in a high-risk population.  An important limitation 273 

of the Cochrane review is that the many of the studies it included were carried out in a general adult 274 

population, with limited data available for age-specific subgroup analyses.   275 

An important study of PPV23 in people aged ≥ 65 years has been published since the Cochrane 276 

review (72).  This study was observational in nature, but employed a test-negative design: this 277 

reduces several biases and has been found to be similar to RCTs in providing estimates of vaccine 278 

effectiveness for seasonal influenza vaccines (73).  The study, carried out in Japan, found that the 279 

effectiveness of PPV23 was 27·4% against all pneumococcal CAP and 33·5% against CAP caused by 280 

the 23 vaccine serotypes (72).  Effectiveness was not demonstrated against all-cause pneumonia or 281 

mortality.  Furthermore, it was notable that this effect was only statistically significant for subjects 282 

who had been vaccinated within the previous two years.   283 

Conjugated vaccines, while covering fewer serotypes, protect against colonization in children and 284 

young adults (74, 75).  In addition to efficacy against vaccine-type bacteremia and meningitis, PCV13 285 

has been shown to reduce rates of vaccine-type CAP in a single large RCT in older adults (CAPiTA) 286 

(76).   However, with vaccine efficacy of 45.6%, this vaccine did not show complete protection 287 

against vaccine-type disease. PCV13 efficacy declined with increasing age: In a post-hoc analysis, 288 

overall vaccine efficacy against vaccine-type CAP was 65% in 65-year-old subjects but only 40% in 75-289 

year-olds (77). Furthermore, a concomitant increase in non-vaccine type disease was noted, 290 

resulting in no effect against pneumococcal pneumonia in general, and all-cause mortality was 291 

unaffected (76).   292 

Pneumococcal vaccines are immunogenic in older people 293 

In a study of 74 elderly subjects, dialysis patients and transplant recipients (i.e. without young 294 

healthy controls), PPV23 was found to improve anti-CPS IgG levels against three selected vaccine 295 

serotypes (6, 14 and 23) and not only to improve opsonic activity, but to strengthen the correlation 296 

between IgG levels and opsonic activity, suggesting that vaccine-induced antibodies are more potent 297 
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than naturally acquired antibodies (78).  A study of 219 adults aged ≥70 years found that PCV7 was 298 

more immunogenic (as measured by concentration and function of post-vaccine anti-CPS IgG) than 299 

PPV23 for all but one of the PCV7 serotypes (79). However, a larger study (n = 599) of adults aged 300 

50—80 years found that PCV7 and PPV23 were equally immunogenic (as defined by IgG 301 

concentrations) at one month and one year following vaccination (58).  No functional tests were 302 

performed.  The reasons for the discrepant results between these two studies remains unclear.  A 303 

randomized study of nursing home residents aged ≥80 years found that both PPV23 and PCV7 were 304 

immunogenic in this population, with the conjugate vaccine resulting in higher IgG levels and 305 

opsonic activity for some serotypes, and both vaccines equally immunogenic for others (80).  The 306 

effects of single-dose versus boosted vaccination, in various combinations, have been assessed in a 307 

number of studies but with conflicting results (reviewed in (81)).   308 

The immune responses to PPV23 across an elderly population are heterogeneous. One study has 309 

suggested that a four-fold increase in IgG concentration from baseline following vaccination is 310 

protective against recurrent pneumococcal CAP in the elderly (82).  This study had a number of 311 

limitations (including low rates of confirmed pneumococcal etiology in cases of CAP) and has not 312 

been replicated.   313 

The differential effects of the two vaccines on B cells have been studied extensively.  In a cohort of 314 

348 subjects aged 50—70 years, the antibody responses were similar to previous studies: PCV7 lead 315 

to greater anti-CPS IgG concentrations than PPV23 for some but not all serotypes—four out of seven 316 

in this case (83).  However, serotype-specific memory B cell concentrations increased for all seven 317 

serotypes following PCV7 but decreased following PPV23 (84).  This is consistent with the T-318 

dependent immunogenicity of PCV7.  Importantly, repeated doses of unconjugated polysaccharide 319 

vaccines do not result in immune boosting—rather, the antibody response is inferior to that 320 

following primary vaccination (hyporesponsiveness) (85).  Memory B cell depletion has been 321 

implicated in this phenomenon (84), which can be avoided by spacing vaccine administrations by at 322 
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least five years (86).  It is unclear whether repeated natural exposure to pneumococcal antigens is 323 

associated with hyporesponsiveness, but this intriguing hypothesis has been proposed as an 324 

additional mechanism of pneumococcal immunodeficiency in the elderly (84) and is an important 325 

topic for future research.   326 

The above studies based all analyses on blood samples taken up to one month post-vaccination.  327 

Another study randomized 252 subjects aged 50—80 years to vaccination with either single-dose 328 

PPV23 or PCV7, or PCV boosted with either PPV23 or repeat PCV7, and followed them for two years 329 

(87).  Surprisingly, there was no significant difference in the quantity of circulating serotype-specific 330 

memory B cells at two years between the four groups.  Two-year levels of serotype-specific memory 331 

and plasma cells were closely correlated with baseline serotype-specific IgG levels, and not with the 332 

IgG levels from 7 or 28 days post-vaccination.  The authors concluded that pre-existing natural anti-333 

pneumococcal immunity was a more important driver of the post-vaccine immune response than 334 

the type or schedule of vaccine administered.  No functional assays were carried out, and there were 335 

no young adult control subjects, but this remains an important study.  It is unclear why these authors 336 

found no difference in memory B cell concentrations between PPV and PCV-vaccinated subjects 337 

while other authors found a dramatic difference (84), but different experimental methodologies and 338 

sampling timepoints between the various studies are possible explanations.     339 

Although some authors have found durable memory B cell responses following either PPV or PCV, 340 

clinical and antibody-based studies are less reassuring.  PPV-induced antibody levels decline in 341 

elderly people over five years (86); while they may not decline to the pre-vaccination baseline, 342 

clinical data consistently show reduced protective efficacy over time, suggesting that this decline is 343 

relevant and clinically significant (72, 88).  Similar declines in opsonic function over time were seen 344 

in older adults who received PCV13 (89).  The immunological properties of PCV13 (T-cell-dependent 345 

immunity, leading to lasting immunological memory), suggest that any decline in efficacy would be 346 

of a lesser magnitude than that of PPV23; however, immunosenescence may well interfere with this.  347 
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In the CAPiTA trial of PCV13 in over-65s, conducted over four years, clinical efficacy did not appear 348 

to decline over time (76), although efficacy was lower in the oldest participants (77).  This suggests 349 

that there an age-related component to the clinical protective response following primary 350 

vaccination with PCV13. A longer period of follow-up would be required to determine the duration 351 

of protection in the elderly, but conjugate vaccines do appear to confer longer clinical protection 352 

than polysaccharide vaccines.  353 

Pneumococcal vaccination is more immunogenic in young people than in elderly people 354 

One study compared anti-CPS antibody levels in 58 volunteers aged >65 years and 44 controls aged 355 

<45 years, 28 days after they had received PPV23 (no pre-vaccination levels were taken) (90).  For 356 

the majority of serotypes, antibody levels did not differ significantly between the two groups.  357 

However, opsonic titers against all but one serotype (18C) were markedly higher in the younger 358 

subjects.  Antibody potency (opsonization titer divided by the antibody concentration) was at least 359 

two-fold higher for all serotypes in younger subjects than in elderly subjects, while the amount of 360 

antibody needed to achieve a 1:8 opsonization index (a putative protective level) in young subjects 361 

was less than half of that in the elderly subjects.  Thus, while uncontrolled studies had shown an 362 

improved antipneumococcal immune response following vaccination in elderly people, this is far less 363 

impressive than the immune response generated by the same vaccine in healthy young people.   364 

We are unaware of any direct comparison studies of the immunogenicity of PCV in older and 365 

younger people.  Murine studies have explored this question, but the results were markedly 366 

different from with what would be expected in human subjects based on the state of current 367 

knowledge, and will therefore not be discussed here (91).   368 

Anti-CPS IgM responses are markedly deficient in older people 369 

In one study, the authors acquired sera from 45 healthy elderly subjects and 55 healthy young 370 

controls, all of whom had been vaccinated four weeks previously with PPV23, and tested them 371 
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against three representative serotypes: 14, 18C and 23F (92).  In keeping with previous studies, 372 

absolute anti-CPS IgG levels were similar between both groups, but the younger adults had higher 373 

opsonic activity and potency than the older subjects (albeit not achieving statistical significance for 374 

serotype 18C).  Young adults commonly demonstrated high levels of opsonic activity even with low 375 

levels of antibody (i.e. the correlation between antibody levels and opsonic activity was poor), 376 

whereas in the elderly antibody levels and activity were tightly correlated.  IgM made a 377 

disproportionately significant contribution to opsonic activity: when IgM was removed from the 378 

young subjects’ samples, their opsonic activity was decreased, with stronger correlation between 379 

their IgG levels and opsonic function.  When all serum samples were depleted of IgM and 380 

reanalyzed, the opsonic activity of the elderly sera did not decline and the differences in opsonic 381 

activity between old and young subjects were no longer statistically significant.  The authors 382 

concluded that reduced functionality of IgM rather than IgG was responsible for the reduced opsonic 383 

capacity of elderly subjects when compared with younger subjects.   384 

The kinetics of IgM could partially explain the above findings: unlike IgG, post-vaccination IgM levels 385 

rise more slowly, and to a lower peak, in elderly subjects compared with younger subjects (93). All 386 

samples in the above study were taken quite soon after vaccination.   Little is known regarding the 387 

duration of IgM responses in the elderly beyond 28 days post-vaccination, and thus the relevance of 388 

this laboratory-based study to long-term clinical protection is not certain.  However, additional 389 

research has shown that the underlying IgM B cell responses to vaccination, in addition to IgM 390 

activity itself, are also diminished in the elderly.   391 

A study comparing fourteen elderly subjects with young controls examined the immune response 392 

against two of the PPV23 serotypes (14 and 23F) and found that serotype 14-specific IgM did not rise 393 

significantly following vaccination in the elderly (though anti-23F IgM did) (94).  Opsonic activity 394 

improved following vaccination in the elderly, and this was correlated with IgG levels but not with 395 

IgM levels, and was significantly lower than the OPA of young vaccine recipients, consistent with 396 
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previous studies.  Flow cytometric analysis showed differences between young and elderly subjects 397 

in their post-vaccination B cell phenotypes: both absolute and relative numbers of CD27+IgM+ (IgM 398 

memory) B cells were reduced in the elderly.  The serotype-specific immune response in the elderly 399 

was dominated by switched memory B cells (CD27+IgM−).  This difference in B cell populations 400 

explained the poor IgM response in the elderly, and may provide a key insight into the underlying 401 

reasons for poor vaccine-induced clinical protection in this population, but the small numbers (of 402 

both subjects and serotypes examined) are an important limitation of this study.   403 

Switched memory B cells comprise part of a T-cell-dependent immune response while IgM memory 404 

B cells are T-independent (45).  Regulatory T cell populations are reduced in the elderly (95); this has 405 

been implicated in altered inflammatory responses and susceptibility to pneumonia in the elderly 406 

(reviewed in (41)).  Therefore, alterations in T-dependent immunity coupled with a reduction in T-407 

independent IgM memory B cells leaves elderly people vulnerable on two fronts.   408 

IgM defects are unlikely to be the sole reason for the increased susceptibility of elderly people to 409 

pneumococcal disease.  However, by virtue of its pentameric structure, IgM would be expected to 410 

agglutinate and opsonize more efficiently than IgG, and thus even small defects in IgM levels or 411 

function would be expected to have a disproportionate impact.  IgM is also key to activating the 412 

complement cascade in response to pneumococcus (46).  While the IgM response to PCV has not 413 

been widely studied in the elderly, it is key to the immune response to conjugated vaccines in 414 

children (96).  Furthermore, PCV-induced IgM antibodies appear to confer cross-protection against 415 

some non-vaccine serotypes in children (97)—this has not been demonstrated in the elderly, but 416 

could represent another domain in which IgM is of key importance.  For now, the above data must 417 

be regarded as hypothesis-generating rather than conclusive, but they are intriguing nonetheless.   418 

Antibodies have mucosal as well as systemic activity 419 
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It is generally reported that IgM and IgA are the principal antibodies present at mucosal surfaces (98, 420 

99), although the relative contributions of different globulin fractions to total antibody levels varies 421 

markedly between different organ systems (100).  IgA-mediated defense against pneumococcus is 422 

limited, as all pneumococci synthesize an efficient IgA1 protease, abrogating its protective effect 423 

(48).  In the final part of this review, we will briefly explore the nature of mucosal anti-pneumococcal 424 

immunity and its relationship with age.   425 

There is a degree of overlap between the mucosal and systemic humoral immune systems, and each 426 

is capable of influencing the other (99).  Antigens from the nasal mucosal surface are presented to 427 

nasopharyngeal-associated lymphoid tissue (NALT), leading to both local and systemic immune 428 

responses. Germinal centers in NALT are responsible for generating B cells that secrete IgA and IgM 429 

at the mucosal surface. Furthermore, systemic antibodies can be transported from blood to mucosal 430 

surfaces.     431 

Systemic exposure to pneumococcal antigens via vaccination can lead to mucosal protection 432 

One study found that PPV leads to an increase in levels of all classes of anti-CPS in secretions 433 

(specifically saliva and tears; nasal secretions were not studied) (101). Notably, the fold increases in 434 

salivary IgG (4.5-fold) and IgM (4.0-fold) were more pronounced than that of IgA (2.0-fold).  435 

However, the functional and clinical effects of these antibodies have not been explored.   436 

In young adults, systemic immunization with PCV13 leads to high serum concentrations of anti-437 

pneumococcal IgG, which spills over into the nasal mucosal compartment and can, by virtue of its 438 

agglutinating properties, prevent the development of pneumococcal colonization (49).  This is likely 439 

to be the mechanism for the reduction in pneumococcal colonization following infant vaccination.   440 

Mucosal exposure to pneumococcal antigens can generate both systemic and local responses 441 
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As outlined earlier, the upper respiratory mucosa represents humans’ first point of contact with the 442 

pneumococcus.  Transient pneumococcal exposure (in a human challenge model where subjects 443 

were inoculated but did not become colonized) resulted in the generation of mucosal anti-protein 444 

antibodies but not anti-CPS antibodies, and no change in systemic antibody levels (102).  Prolonged 445 

exposure via colonization leads to increases in functional local and systemic anti-CPS antibodies (36).   446 

Without vaccination, antipneumococcal antibody levels at respiratory mucosal surfaces are too low 447 

to prevent colonization. However, “priming” by experimental pneumococcal colonization is 448 

protective against subsequent colonization up to one year later (36)—whether this is due specifically 449 

to mucosal antibodies, serum antibodies (à la vaccination), T-cell immunity or a combination of 450 

these remains undetermined.   451 

In addition to inducing mucosal and systemic antipneumococcal antibodies, human pneumococcal 452 

colonization leads to an increase in the number of pneumococcal-specific memory CD4+ IL-17A+ T 453 

cells (Th-17 cells) (103).  When stimulated by pneumococci in vitro, IL-17A secreted by these Th-17 454 

cells enhanced the phagocytic killing of pneumococci by alveolar macrophages.  Importantly, this Th-455 

17 increase is seen in both peripheral blood and in the lung itself, thus providing evidence of traffic 456 

of acquired immune memory from the upper to the lower respiratory tract.  However, an alternative 457 

hypothesis is that microaspiration of pneumococci during colonization directly induces a local T cell 458 

infiltration and differentiation within the lungs.   459 

In summary, pneumococci are capable of stimulating a specific immune response at the mucosal 460 

surface in addition to generating systemic immunity.  The multifaceted mucosal immune response 461 

includes both specific antibodies and memory T-cells, and a response in the upper respiratory tract 462 

may be echoed in the lower respiratory tract.  High concentrations of anti-CPS antibodies at the 463 

nasopharyngeal surface can prevent pneumococcal acquisition.  A mucosal vaccine against 464 

pneumococcus could be a promising strategy to provide protection for the vulnerable elderly 465 

population.   466 
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Mucosal anti-pneumococcal immunity is affected by aging 467 

Detailed studies of mucosal immunosenescence in general have only been undertaken in mice: it 468 

appears that nasal immune function deteriorates with age, but at a similar rate to systemic 469 

immunity, whereas intestinal immunity mucosal “ages” at a faster rate (104).  Murine studies have 470 

demonstrated impaired innate antipneumococcal nasal mucosal immunity with increasing age, 471 

primarily stemming from macrophage dysfunction (105).  Nasal antibodies have not been studied in 472 

elderly humans, but salivary antipneumococcal antibodies have been shown to decrease in both 473 

concentration and rate of secretion with age (106).  We are currently recruiting a cohort of older 474 

adults who will undergo experimental human pneumococcal inoculation (ISRCTN ID 10948363) in 475 

order to inform our understanding of colonization dynamics, natural antibody generation and 476 

nasopharyngeal mucosal immune responses in this population.   477 

Murine studies of adjuvanted mucosal pneumococcal vaccines have shown promise 478 

Studies of mucosal vaccination strategies against pneumococcus have only been undertaken in 479 

murine models (reviewed in (107)) and examined both protein antigens and CPS.  The most 480 

intriguing findings from these studies have been the effect of novel adjuvants on restoring the 481 

immune response in aged mice to both protein and polysaccharide antigens.  Addition of CpG 482 

oligodeoxynucleotides (CpG-ODN) was found to improve the systemic and mucosal antibody 483 

response to conjugated pneumococcal serotype 9V CPS administered nasally to young mice (108).  484 

CpG-ODN enhances antibody production through stimulation of type 1 helper T cells; the underlying 485 

mechanism of this remains uncertain (109).  This same adjuvant restored the antibody response of 486 

aged mice to conjugated serotype 14 CPS administered systemically (110).  For nasally-administered 487 

pneumococcal surface protein A (PspA), a dual adjuvant strategy of CpG-ODN and plasmid-488 

expressing Flt3 ligand was required to induce similar antibody levels (serum and mucosal IgG and 489 

IgA) in young and old mice (111).   This strategy also enhanced PspA-specific CD4+ T-cell responses in 490 

old mice and was protective against nasopharyngeal colonization in these mice.   491 
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It must be emphasized that mouse IgA, having a different configuration to human IgA, is less 492 

susceptible to cleavage by pneumococcal IgA protease.  Thus, if the above findings are to have 493 

applicability for human vaccination, it will be essential to demonstrate either that antibodies are a 494 

dispensable component of the mucosal immune response, or that other immunoglobulins—such as 495 

secretory IgM and IgG—are sufficient for protection in humans.  If the relative dysfunction of anti-496 

CPS IgM in elderly humans is indeed of clinical significance, then this may prove to be the Achilles’ 497 

heel of this vaccination strategy, unless an adjuvant can be identified that can restore the function of 498 

IgM in the elderly.  With this caveat in mind, an appropriately-adjuvanted mucosal vaccine could still 499 

have enormous potential for reducing the burden of pneumococcal disease in the elderly.   500 

Alternative antibody targets 501 

This review has focused on anti-CPS antibodies.  These antibodies are induced by natural exposure 502 

to pneumococcus and are also the antigens employed in all currently-licensed pneumococcal 503 

vaccines.  Furthermore, there is a substantial body of literature comparing anti-CPS immunity in 504 

young and elderly adults.  However, the pneumococcus also expresses a variety of surface proteins 505 

which are conserved across different serotypes, many of which have been proposed as vaccine 506 

candidates (112) and indeed have been explored in mucosal vaccines as outlined above.  Anti-507 

protein immune responses have been demonstrated following colonization (36) and may contribute 508 

to naturally-acquired protection against colonization (34) although their mechanistic significance has 509 

not been definitively established (113).  In children, studies are conflicting regarding whether anti-510 

protein antibodies confer protection or serve as a marker of exposure and increased risk of disease 511 

(114, 115).    Anti-protein antibody levels are reduced in the elderly (42).  Anti-protein antibody 512 

levels rise following pneumococcal disease in older adults (116), and there is a suggestion that their 513 

functionality may not be adversely affected by aging, though these findings remain preliminary 514 

(German E et al, unpublished data).  Apart from these, and the above-mentioned murine studies of 515 
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mucosal anti-protein immunity, we are unaware of any substantial body of work exploring the 516 

nature of aging and anti-protein immunity, and this topic must be prioritized in future research.  517 

Conclusion 518 

Impaired naturally-acquired CPS immunity leaves elderly people vulnerable to pneumococcal 519 

disease. The same factors responsible for this reduction in naturally-acquired immunity also result in 520 

suboptimal functional antibody responses to current pneumococcal vaccines.  PCV13 has overcome 521 

some, but by no means all of the immunological limitations of PPV23.  Reduced antibody 522 

functionality combined with limited serotype coverage means that pneumococcal vaccination in the 523 

elderly does not deliver as substantial a benefit as would be expected.   524 

If anti-CPS antibodies are to remain the mediator of protection, then improvements in the 525 

functionality of aged antibodies—particularly IgM—will need to be induced.  A mucosal vaccine, with 526 

an appropriate adjuvant, would be an attractive strategy.  Vaccination strategies seeking to exploit 527 

non-capsular antigens or T cell-mediated immunity have shown a degree of promise in early-phase 528 

studies in young adults, but have yet to achieve their full potential (117).  Careful studies of anti-529 

protein immunity in the elderly would guide the exploration of such a vaccination strategy in older 530 

adults.  Future studies should investigate the dynamics of colonization and mechanisms of naturally-531 

acquired immunity in the elderly in greater detail, as well as exploring the nature of respiratory 532 

mucosal immunity in the elderly, in order to better inform vaccine development for this growing and 533 

vulnerable population.   534 
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Figure 1 541 

Anti-capsular antibodies can be acquired naturally (following pneumococcal exposure, e.g. 542 

colonization, or through pneumococcal disease) or via vaccination. They facilitate pneumococcal 543 

killing via opsonisation. In addition, they can prevent the development of colonization in the 544 

future—this has been shown to be mediated via agglutination in the case of antibodies induced by 545 

protein-conjugated pneumococcal vaccines.   546 

Figure 2 547 

Schematic of pneumococcal disease rates, pneumococcal colonization rates and pneumococcal 548 

antibody activity in different age groups.  Pneumococcal colonization and disease rates are high in 549 

young children.  Naturally-acquired pneumococcal capsular polysaccharide (anti-CPS) antibody levels 550 

rise with recurrent exposure.  Young adults have high levels of naturally-acquired antibodies, 551 

occasional episodes of colonization and low rates of disease. In the elderly, antibody levels are low 552 

and functional activity is even lower, colonization is infrequent and rates of pneumococcal disease 553 

increase.  554 
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Taďle ϭ: Eǆaŵples of studies atteŵptiŶg to defiŶe the rate of pŶeuŵoĐoĐĐal ĐoloŶizatioŶ iŶ older people ďǇ Đulture-ďased aŶd/or ŵoleĐular ŵethods 
First author 

;refereŶĐeͿ 

Year CouŶtry Nuŵďer saŵpled Age ;yearsͿ Site 

saŵpled

AŶalysis Rate of deteĐtioŶ of 

pŶeuŵoĐoĐĐi, Ŷ ;%Ϳ 

BeĐker-

Dreps ;ϭϱͿ 

 

ϮϬϭϱ USA ϮϭϬ ϴϭ.ϰ ;ϲ.ϯͿ* NP ClassiĐal ŵiĐroďiologǇ ϰ ;ϭ.ϵ%Ϳ 

Alŵeida ;ϭϲͿ 

 

ϮϬϭϰ Portugal ϯ,ϯϲϭ ϳϰ.ϱϲ ;ϴ.ϮͿ* NP ClassiĐal ŵiĐroďiologǇ ǁith ŵultipleǆ 
PCR ĐoŶfirŵatioŶ of Đulture-positiǀe 
speĐiŵeŶs 

ϲϭ ;ϭ.ϴ%Ϳ 

OP ϭϱ ;Ϭ.ϰ%Ϳ 

Oǀerall  ϳϲ ;Ϯ.ϯ%Ϳ 

FlaŵaiŶg 

;ϭϳͿ 

 

ϮϬϭϮ Belgiuŵ ϱϬϯ ϴϬ.ϯ ;ϭϬ.ϬͿ* NP 

 

ClassiĐal ŵiĐroďiologǇ ;a suďset ǁere 
also tested ǁith lytA PCR—see 
puďlished paper for full detailsͿ 

Ϯϭ ;ϰ.Ϯ%Ϳ 

Esposito ;ϭϴͿ 

 

ϮϬϭϲ ItalǇ ϰϭϳ ϳϯ.ϵϳ ;ϲ.ϲϲͿ* OP PCR ϰϭ ;ϵ.ϴ%Ϳ 

AŶsaldi ;ϭϵͿ 

 

ϮϬϭϯ ItalǇ Ϯϴϯ NR NP Culture-eŶriĐhed PCR ϱϯ ;ϭϴ.ϳ%Ϳ 

VaŶ DeurseŶ 

;ϮϬͿ 

 

ϮϬϭϲ NetherlaŶds ϯϯϬ ϳϮ.ϳ ;ϲϴ.ϳ—

ϳϵ.ϬͿ† 

NP ClassiĐal ŵiĐroďiologǇ ϭϲ ;ϱ%Ϳ

PCR ϯϮ ;ϭϬ%Ϳ 

OP ClassiĐal ŵiĐroďiologǇ ϭϲ ;ϱ%Ϳ 

PCR ϱϴ ;ϭϴ%Ϳ

Oǀerall   ϳϱ ;Ϯϯ%Ϳ 

KroŶe ;ϮϭͿ 

 

ϮϬϭϱ NetherlaŶds ϮϳϬ** ϲϵ ;NRͿ* NP Culture-eŶriĐhed PCR ϭϯ ;ϱ%Ϳ 

OP ϯϭ ;ϭϭ%Ϳ 

Saliǀa ϳϲ ;Ϯϴ%Ϳ 

Oǀerall ϵϭ ;ϯϰ%Ϳ

NP: NasopharǇŶgeal; NR: Not reported; OP: OropharǇŶgeal; PCR: PolǇŵerase ĐhaiŶ reaĐtioŶ 
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Taďle ϭ: Eǆaŵples of studies atteŵptiŶg to defiŶe the rate of pŶeuŵoĐoĐĐal ĐoloŶizatioŶ iŶ older people ďǇ Đulture-ďased aŶd/or ŵoleĐular ŵethods 
* MeaŶ ;SDͿ 
† MediaŶ ;IQRͿ 
**ϭϯϱ suďjeĐts, saŵpled ďoth pre aŶd post iŶflueŶza-like illŶess. At a partiĐipaŶt leǀel, ϲϱ/ϭϯϱ ;ϰϴ%Ϳ tested positiǀe oŶ at least oŶe oĐĐasioŶ.   
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Taďle Ϯ: SuŵŵarǇ of ĐliŶiĐal aŶd laďoratorǇ ŵeasureŵeŶts of aŶti-pŶeuŵoĐoĐĐal iŵŵuŶitǇ iŶ ǇouŶg aŶd old adults 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CPS, Đapsular polǇsaĐĐharide; PCV, pŶeuŵoĐoĐĐal ĐoŶjugate ǀaĐĐiŶe; PPV, pŶeuŵoĐoĐĐal polǇsaĐĐharide ǀaĐĐiŶe.   
 

 Healthy youŶg adults Older adults 
MuĐosal ĐoloŶizatioŶ ;Đulture-
ĐoŶfirŵedͿ 

OĐĐurs iŶ up to ϭϬ% at aŶǇ oŶe 
tiŵe 

OĐĐurs iŶ <ϱ% 

ColoŶizatioŶ-assoĐiated iŵŵuŶe 
ďoostiŶg 

Has ďeeŶ deŵoŶstrated Has Ŷot ďeeŶ deŵoŶstrated 

CirĐulatiŶg Ŷatural aŶti-CPS aŶtiďody 
titres 

Roďust DeĐliŶes ǁith age 

CirĐulatiŶg Ŷatural aŶti-CPS aŶtiďody 
opsoŶophagoĐytiĐ aĐtiǀity 

Roďust DeĐliŶes profouŶdlǇ ǁith age 

AŶti-CPS aŶtiďody titres folloǁiŶg 
ǀaĐĐiŶatioŶ  

Roďust Roďust 

AŶti-CPS aŶtiďody opsoŶophagoĐytiĐ 
aĐtiǀity folloǁiŶg ǀaĐĐiŶatioŶ 

Roďust DeĐliŶes ǁith age 

Meŵory B Đell respoŶses to ǀaĐĐiŶatioŶ CoŶfliĐtiŶg results ďetǁeeŶ differeŶt studies; ŵeŵorǇ B Đell respoŶses ŵaǇ 
ďe superior iŶ ǇouŶger adults; hǇporespoŶsiǀeŶess to ŵultiple doses of 
uŶĐoŶjugated polǇsaĐĐharide seeŶ iŶ all age groups 

CliŶiĐal effiĐaĐy of PPV agaiŶst ŶoŶ-
ďaĐtereŵiĐ pŶeuŵoĐoĐĐal pŶeuŵoŶia 

Proďaďle Possiďle 

CliŶiĐal effiĐaĐy of PPV agaiŶst 
pŶeuŵoĐoĐĐal ďaĐtereŵia/ŵeŶiŶgitis 

UŶdisputed UŶdisputed 

CliŶiĐal effiĐaĐy of PCV agaiŶst ŶoŶ-
ďaĐtereŵiĐ pŶeuŵoĐoĐĐal pŶeuŵoŶia 

Presuŵed ďut Ŷot speĐifiĐallǇ 
studied iŶ ǇouŶg adults 

DeŵoŶstrated ďut iŶĐoŵplete, heŶĐe 
puďliĐ health ďeŶefit disputed 

CliŶiĐal effiĐaĐy of PCV agaiŶst 
pŶeuŵoĐoĐĐal ďaĐtereŵia/ŵeŶiŶgitis 

Presuŵed ďut Ŷot speĐifiĐallǇ 
studied iŶ ǇouŶg adults 

UŶdisputed, ďut liŵited serotǇpe Đoǀerage 
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