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Summary 1 

Maternal immunization offers much hope to substantially reduce morbidity and mortality 2 

from infectious diseases after birth. The success of tetanus, influenza and pertussis 3 

immunization during pregnancy has led to consideration of additional maternal immunization 4 

strategies to prevent Group B Streptococcus (GBS) and respiratory syncytial virus (RSV) 5 

infections, among others. However, there remain multiple gaps in our knowledge regarding 6 

the immunobiology of maternal immunization that prevent optimal design and application of 7 

this successful public health intervention. An innovative landscape analysis was therefore 8 

undertaken to identify research priorities. Key topics were delineated through review of the 9 

published literature, consultation with vaccine developers and regulatory agencies, and a 10 

collaborative workshop gathering experts across several current maternal immunization 11 

initiatives - GBS, RSV, pertussis, and influenza. Finally, a global online survey prioritized 12 

the identified knowledge gaps based on expert opinion regarding their importance and 13 

relevance. This article presents the results of this worldwide landscape analysis and discusses 14 

the identified research gaps.  15 

  16 
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Introduction 1 

Failure to improve survival in neonates by 2035 from the current status is estimated to lead to 2 

116 million preventable stillbirths or neonatal deaths, 99 million survivors with disability, 3 

and millions more with a lifelong increased risk for non-communicable diseases (1). The 4 

underlying causes for the 2.6 million stillbirths per year are largely unknown, but 5 

approximately 20% of the 2.9 million annual neonatal deaths are thought to be due to 6 

infection (1). The transfer of antibodies from pregnant women to their offspring is profoundly 7 

important for the health and survival of neonates and young infants, in particular by reducing 8 

the risk of severe infections. Unfortunately, not all pregnant women have protective levels of 9 

antibodies against pathogens affecting their offspring. The strategy of immunizing pregnant 10 

women to enhance protection of young infants is rapidly gaining support from both the public 11 

and health professionals alike (2). Contributors to this momentum include the global 12 

reduction in neonatal tetanus as a result of maternal immunization, the benefits of seasonal 13 

and pandemic influenza immunization for both mother and infant, and the positive impact of 14 

immunization during pregnancy on recent pertussis outbreaks. These results are also 15 

stimulating commercial development of new vaccines against additional threats such as group 16 

B Streptococcus (GBS) and respiratory syncytial virus (RSV).  17 

Recognizing the need to enhance the science of maternal immunization, the Bill and Melinda 18 

Gates Foundation (BMGF) commissioned the authors to conduct a landscape analysis of the 19 

immunobiology underpinning successful vaccination during pregnancy. The scope of the 20 

review included all relevant immunobiological issues in general terms and as applied to 21 

immunization against pertussis, influenza, GBS, and RSV specifically. The analysis also 22 

aimed to identify differences that might be encountered among pregnant women in low and 23 
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middle income countries (LMICs) compared with high income countries (HICs) that may 1 

affect the success of maternal immunization programs. An innovative approach was used to 2 

rapidly identify and prioritize the current knowledge gaps in order to inform future studies. 3 

This article describes the methodology and the results of this effort and discusses the 4 

identified research gaps in immunobiology of maternal immunization that are generalizable 5 

across pathogens. The research gaps specific to individual pathogens are discussed in two 6 

companion articles. Other crucially important aspects of maternal immunization—safety, 7 

public perception, and integration into existing global immunization programs—are outside 8 

the scope of the project and will not be discussed here but are discussed in recent publication 9 

summarizing the outcome of a series of meetings sponsored by the National Institute of 10 

Health (3).  11 

 12 

Landscape Review Process and Knowledge Gap Prioritization 13 

To best capture the current state of knowledge, an innovative multi-stage review process was 14 

undertaken. A detailed description of the methodology used and of the results of the analysis 15 

is provided as Supplemental Materials. Briefly, an international team of 10 recognized 16 

experts undertook a scoping review of the published English language literature since 2000. 17 

The experts summarized the state of knowledge pertaining to their assigned area, including 18 

their assessments of the gaps in understanding the biology of the immunization processes. 19 

The team met at a collaborative workshop in Vancouver to share their assessments with 26 20 

additional international experts who commented critically on the presentations (videos from 21 

this meeting are available upon request from corresponding authors). Over 100 knowledge 22 

gaps were identified through this process, attesting to the under-development of the 23 
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underlying science.  To ensure that sufficiently broad deliberation was achieved and issues 1 

affecting translation addressed, further consultations were held with leaders of maternal 2 

vaccine development programs at 3 major vaccine companies and representatives of 2 major 3 

regulatory agencies (the US Food and Drug Administration and the European Medicines 4 

Agency) who freely shared their insights into the knowledge gaps and challenges. 5 

 6 

To prioritize the identified knowledge gaps, topics considered most relevant during the 7 

collaborative workshop were included in an online survey completed by nearly 200 “content 8 

experts” from the global maternal immunization community. Respondents rated the 9 

importance of each knowledge gap; the results were remarkably consistent among 10 

respondents, including industry representatives, academic researchers, and national 11 

immunization policy makers. The top 20 knowledge gaps are listed in Table 1; each was rated 12 

≥4 out of 5 (high to very high importance). To prepare the present and companion reviews, 13 

the authors integrated and summarized the information gathered from each of the above steps.  14 

 15 
 16 
General Considerations Regarding Maternal Immunization Strategies 17 

When considering the 4 disease targets for maternal immunization included in the landscape 18 

analysis, it is striking that no two are alike (Table 2), and that different strategies will likely 19 

be needed for each disease. All of which may make the production of a combined vaccine 20 

challenging. In order to focus on the immunobiology of maternal immunization, contextual 21 

differences, such as maternal disease risk, infant disease burden, global epidemiology, and 22 

microbial diversity will not be discussed further in this article. The common goal among 23 

maternal vaccination programs is temporary protection of the young infant against severe 24 
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illness and death by ensuring sufficient and timely transfer of protective antibodies from the 1 

mother. This passive protection should persist until the infant is no longer at a high risk of 2 

diseases (e.g. until 3 months of age for GBS disease) or until protection can be achieved by 3 

active infant immunization (e.g. pertussis). Protection of the infant may also be achieved 4 

indirectly by reducing carriage and/or disease in the mother, which subsequently reduces 5 

transmission of pathogens to the infant (e.g. GBS, pertussis). Whether or not protection of the 6 

mother against disease is also required is another important factor in determining the timing 7 

of maternal immunization. In the case of influenza, for example, it may be that immunization 8 

early during pregnancy would be favoured to protect both the pregnant woman and neonate. 9 

Finally, there may be additional benefits of pre-pregnancy immunization, to prevent 10 

infections which may have harmful effects on the developing fetus. It is important to note that 11 

a substantial limitation in our understanding of optimal maternal immunization for any target 12 

is the lack of defined correlates of protection for young infants. Without a validated measure 13 

of protection it will be difficult to compare results of studies in different settings or to 14 

improve vaccines or immunization regimens using serologic criteria. 15 

Immunization during pregnancy relies on the capacity of the pregnant woman to mount 16 

appropriate primary or secondary antibody responses, depending on whether the pathogen has 17 

been encountered prior to pregnancy. The notion that pregnancy is associated with the 18 

induction of a number of immunoregulatory mechanisms that are essential for the survival of 19 

the fetus suggests that antibody responses to vaccines may be different in pregnant compared 20 

with non-pregnant women. Vaccine responses may be further influenced by complications 21 

affecting pregnant women, such as chronic infections. Optimal protection of the young infant 22 

is considered to rely on the effective transfer of maternal immunity through the placenta and 23 
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the persistence of this passive immunity for the duration of infant exposure to the particular 1 

pathogen. Additional protection may be provided by transfer of immunity via breast milk. 2 

However, the relative contributions of breast milk and serum antibodies to infant protection 3 

will be difficult to define but important to understand, especially for infants born prematurely 4 

with limited transplacental transfer of antibodies. These passively transferred maternal 5 

immune factors can further influence active immunity induced in the infant by natural 6 

infection or immunization. Sixty-eight knowledge gaps with regards to the impact of 7 

pregnancy on vaccine responses, the transfer of maternal immunity to the infant, and on 8 

infant immunity were identified following the collaborative workshop (Supplemental 9 

Material).  The top 10 of these knowledge gaps were considered most relevant in the on-line 10 

survey are presented in Table 1.  11 

 12 

Impact of pregnancy on vaccine responses 13 

Studies indicate that pregnancy influences B cells and antigen-presenting cells (APCs); the 14 

potential impact on follicular helper T cells has not been assessed at all. 15 

Pregnancy and B lymphocytes 16 

Estrogen and pregnancy reduce B cell lymphopoiesis in mice (4). Reduction in circulating B 17 

cells numbers have also been shown in pregnant women but the potential impact on antibody 18 

responses to primary immunization is unknown (5–7). Few studies have suggested an impact 19 

of pregnancy on memory B cell subsets but no consistent picture has yet emerged (8–10). In 20 

addition, the potential impact of pregnancy on other B cell subsets, including transitional or 21 

marginal zone B cells, remains to be assessed. In populations living in LMICs, chronic 22 

exposure to microbial antigens such as Plasmodium falciparum induces high frequencies of 23 
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circulating atypical memory B cells (8,9). As these memory cells have a reduced capacity to 1 

produce immunoglobulins, their increased frequency may limit responses to recall 2 

immunization in both pregnant and non-pregnant individuals living in LMICs.  3 

Pregnancy and immunoglobulins  4 

Studies regarding the influence of hormones on B cell functions support the notion that 5 

pregnancy may impact the production of immunoglobulins. Estrogen increases the production 6 

of IgG by human B cells (11).  In addition, activated human B cells upregulate the expression 7 

of the prolactin receptor and prolactin further decreases the threshold of B cell activation 8 

(12). In mice, estrogen also upregulates the expression of the activation-induced deaminase, 9 

the enzyme that initiates somatic hypermutation and class switch recombination of 10 

immunoglobulins (13). On the other hand, serum IgG levels have been found to be lower in 11 

pregnant than in non-pregnant women in both LMIC and HIC settings (14,15). The 12 

mechanism involved is unclear, but could, at least partly, be due to hemodilution. Pregnancy 13 

is also associated with modifications in IgG glycosylation(16).  IgG are glycoproteins 14 

carrying N-glycans at both the Fc and Fab segments which modulate their effector functions 15 

(17). In pregnancy, total IgG have increased sialylation and decreased N-acetylglucosamine 16 

bisection of both Fc and Fab fragments and increased galactosylation of Fc fragments (16). 17 

Although the functional consequences of Fab fragment glycosylation remain unclear, 18 

sialylation and galactosylation of Fc fragments have been associated with decreased 19 

inflammation and were suggested to be involved in the remission of rheumatoid arthritis 20 

associated with pregnancy (18,19). The potential implications of the anti-inflammatory 21 

properties of maternal IgG on immune homeostasis and anti-microbial defenses in the fetus 22 

and newborn have not been determined.  Surprisingly, IgG of different antigen specificity 23 
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have different glycosylation profiles and this profile is modified following recent antigen 1 

exposure (20). Moreover, IgG glycosylation patterns are different in populations living in 2 

HICs versus LMICs (20). Studies are needed to determine the impact of pregnancy of the 3 

glycosylation and effector functions of vaccine-induced IgG.  4 

Pregnancy and antigen-presenting cells 5 

Pregnancy is associated with changes in numbers and phenotype of APCs. The number of 6 

myeloid dendritic cells (mDCs) increases in the first trimester of pregnancy and decreases as 7 

pregnancy progresses to reach similar counts in the third trimester as in non-pregnant women 8 

(21,22). On the other hand, the number of plasmacytoid (pDCs) is reduced during the third 9 

trimester of pregnancy (23). mDC and pDC were shown to express higher levels of Toll-like 10 

receptors in pregnant compared with non-pregnant women (24). A number of differences 11 

exist between APC from females and males that are induced by sex hormones and could 12 

therefore be relevant to pregnancy (25). Modifications of APC are likely to be important for 13 

successful pregnancy but the potential impact on vaccine responses have not been 14 

determined.  15 

Pregnancy and vaccine response 16 

The impact of pregnancy and sex hormones on B cells and APC suggests a possible influence 17 

on antibody responses to vaccines. This potential is indirectly supported by the observation 18 

that the magnitude of antibody responses to many vaccines is often higher in females than in 19 

males (25). Most studies of pregnant women that demonstrated potent vaccine 20 

immunogenicity, however, did not include a comparison with non-pregnant women (26–29). 21 

Few controlled studies have been conducted that generally involved only small study 22 

populations. Some studies reported similar responses to seasonal influenza vaccines in 23 
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pregnant and non-pregnant women whereas others detected differences in titers or 1 

seroconversion rates (30–34). Factors responsible for the discrepancies between studies may 2 

include differences in tested vaccines and participant characteristics. Two controlled studies 3 

conducted in HICs showed similar antibody responses to Tdap immunization in pregnant and 4 

non-pregnant women while two other studies in LMICs reported no impact of pregnancy on 5 

the response to tetanus immunization (35–38). The immunogenicity of a conjugated GBS 6 

vaccine was recently studied in South Africa (39). Although the responses were not compared 7 

between pregnant and non-pregnant women, the vaccine was immunogenic in both. Whether 8 

the gestational stage of pregnancy affects responses to vaccines has not been extensively 9 

studied. Similar antibody responses to seasonal and pandemic influenza vaccination were 10 

observed throughout pregnancy in two studies while a trend towards higher seroconversion 11 

rates with a seasonal influenza vaccine was seen during the third trimester in one study 12 

(27,31,40). The impact of pregnancy on the quality of antibody response to vaccines remains 13 

largely uncharacterized. Conflicting results on the avidity of antibodies following pertussis 14 

immunization during early compared with late in pregnancy have been obtained in relatively 15 

small scale studies (41,42).  16 

The persistence of antibodies following maternal immunization will influence the optimal 17 

timing of immunization and the requirement to repeat immunization during consecutive 18 

pregnancies; however, relatively little information on this topic is available. Antibody decay 19 

following immunization with adjuvanted pandemic influenza vaccine was similar in pregnant 20 

and non-pregnant women (33). Pertussis immunization is currently recommended during the 21 

second or early third trimester of pregnancy to achieve sufficiently high titers of antibodies 22 

close to delivery (http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6207a4.htm). This 23 
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recommendation is challenged by a recent study showing higher titers of cord blood 1 

antibodies following pertussis immunization during the second compared with the third 2 

trimester of pregnancy, suggesting cumulative transfer of antibodies (43).  3 

Innate immune responses following maternal immunization have not been explored. One 4 

study reported similar plasma levels of inflammatory cytokines in pregnant and non-pregnant 5 

women following seasonal influenza immunization. This is in line with the similar or even 6 

lower reactogenicity observed in pregnant women following influenza immunization (44,45). 7 

 8 

Influence of maternal factors on vaccine responses  9 

Most studies reported no significant effect of maternal age, parity, socioeconomic status or 10 

body weight on antibody response to vaccines during pregnancy (46–48). But parity was 11 

associated with reduced antibody responses to H. influenzae type b conjugate vaccine in The 12 

Gambia and with higher responses to pertussis toxin in Belgium (49,50). This finding may be 13 

particularly important in LMICs where high order multiparity is more common. Few studies 14 

suggested a limited impact of nutrition on vaccine responses during pregnancy (51,52). 15 

Whether obesity affects immune response to vaccination in pregnancy is poorly understood 16 

as very obese women (BMI >30) are typically excluded from clinical trials. Relatively little 17 

information is available regarding the possible differences in vaccine immunogenicity 18 

between LMIC and HIC resulting from health conditions of the mother. One study reported 19 

no impact of P. falciparum parasitemia at the time of immunization on antibody response to 20 

tetanus toxoid (35). However, HIV infection impairs responses to vaccines. In South Africa, 21 

pregnant women with HIV infection have lower seroconversion rates after seasonal influenza 22 

vaccination compared with uninfected pregnant women but antibody half live and vaccine 23 
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efficacy are comparable between the two groups (53,54). HIV infection was also associated 1 

with lower immunogenicity of a glycoconjugate GBS vaccine in pregnant women in South 2 

Africa (55). The impact of helminth infection on vaccine responses during pregnancy has also 3 

not been systematically analyzed (56).  4 

Summary 5 

Overall, studies indicate that antibody responses to recall immunization are comparable 6 

between pregnant and non-pregnant women. Whether primary responses to new vaccines will 7 

be impacted by pregnancy is still unknown. Limited data suggest that pregnancy might 8 

impact avidity maturation, class switch, and glycosylation of vaccine-induced antibodies. 9 

With the exception of HIV infection, maternal factors influencing responses to vaccines have 10 

not been clearly identified.  11 

 12 

Transfer of maternal immunity through the placenta 13 

IgG transfer and preterm birth 14 

IgG is the only antibody which is directly transferred across the placenta (57). Recent studies 15 

indicate that other maternal Ig can be transported to the fetus when complexed with IgG (58). 16 

IgG are actively transported through the placenta by the neonatal Fc receptor (FcRn), and 17 

possibly by additional receptors that have not yet been identified (59,60). The FcRn is 18 

expressed by syncytiotrophoblasts covering the surface of the chorionic villi and transports 19 

IgG by transcytosis into the fetal circulation. Although the FcRn is expressed and functional 20 

in the placenta from the first trimester, most of the antibody transfer occurs after 28 weeks 21 

gestation (61,62). Preterm birth is therefore an important factor limiting the transfer of 22 
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maternal immunity through the placenta and may affect the transport of IgG1 more than IgG2 1 

(63–66).  2 

Preterm birth occurs in 5% to 18% of pregnancies globally and is a leading contributor to 3 

infant morbidity and mortality. In a recent systematic analysis, over 60% of all preterm births 4 

were estimated to occur in sub-Saharan Africa and South Asia (over 9 million of 5 

approximately 15 million births per year globally) (67).  At 28-33 weeks gestation, fetal-6 

maternal antibody ratios are typically 0.5-0.6, compared with t1.0 at term. Thus transfer of 7 

maternal antibody could therefore afford some potential protection even in prematurely born 8 

newborns if their levels were elevated by prior immunization (66).  9 

Factors influencing IgG transfer 10 

The rate of IgG transfer through the placenta is influenced by several factors including IgG 11 

subclass, antigen-specificity, and chronic maternal infections. IgG subclasses are transcytosed 12 

at different rates, with IgG1 being most actively transferred, followed by IgG4, IgG3, and 13 

IgG2 (59,68,69). IgG3 allotypes have different affinity for FcRn and this results in 14 

differential transfer ratios (69). It is puzzling that antibodies of different antigen specificities 15 

are transported at different rates across the placenta, resulting in different maternal:cord 16 

blood antibody ratios (70–72). Reported cord blood:maternal ratios range as high as 1.9 for 17 

pertussis to as low as 0.7 for GBS, with influenza ranging from between at 0.7 to 1.0 18 

depending on the study (26,53,73–75). These differences may be partly related to the 19 

differences in IgG subclass proportions, as protein antigens generally induce IgG1 and IgG3 20 

subclasses while polysaccharide antigens induce mainly IgG2 antibodies, but this hypothesis 21 

has not been systematically examined (57,72).  Whether or not the structure of maternal IgG 22 

influences placental transfer beyond subclasses has not been clearly established. Few studies 23 
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have suggested that high avidity antibodies may be transferred preferentially across the 1 

placenta (76,77). Historical studies also suggested a preferential transfer of 2 

hypergalactosylated IgG but this notion is not supported by a more recent study based on 3 

more advanced technologies showing no impact of Fc galactosylation on transfer (78,79).  4 

Chronic maternal infections and hypergammaglobulinemia have a profound impact on 5 

maternal antibody transfer (66). Reduced transfer of IgG is observed in women with 6 

hypergammaglobulinemia, a phenomenon that may be related to the saturation of FcRn (80–7 

82). Hypergammaglobulinemia and the denudation of syncytiotrophoblasts from chorionic 8 

villi could also be involved in the reduced transfer of IgG associated with placental malaria 9 

(66,81). A recent study in Papua New Guinea indicated an association between reduced 10 

transfer of respiratory syncytial virus (RSV)-specific IgG with hypergammaglobulinemia but 11 

not with placental malaria itself (83). Maternal HIV infection also results in a reduction of 12 

maternal IgG transfer (82,84–86). Intriguingly, the impact of chronic maternal infections and 13 

hypergammaglobulinemia appear to depend on the subclass and antigen-specificity of IgG. In 14 

a study in South Africa, maternal HIV infection was associated with reduced transfer of 15 

naturally acquired GBS-specific IgG1 but not IgG2 (85). In a study in The Gambia, maternal 16 

hypergammaglobulinemia was found to be associated with impaired transfer of total IgG1 17 

and IgG2, but not IgG3 and IgG4, and with a reduced transfer of IgG against pathogen but 18 

not vaccine antigens (81).  19 

Summary 20 

Transfer of maternal antibodies through the placenta mostly occurs after 28 weeks gestation 21 

and is limited by preterm delivery and by chronic maternal infections. Maternal 22 

immunization could compensate for this reduced transfer but the timing of maternal 23 



 

 16 

immunization and vaccine formulations will have to be optimized to achieve this objective. 1 

The basis for the variable maternal antibody transfer according to their antigen specificity 2 

remains poorly understood. Further studies are needed to determine the role of IgG subclass 3 

or other structural characteristics in this variability in maternal transport.  4 

 5 

Transfer of maternal immunity through breastfeeding 6 

The importance of breast milk in post-natal life is highlighted by the strong correlation 7 

between breastfeeding and the profound reduction of risks of infection and infection-related 8 

mortality in infancy (87,88). However, only one study assessed the role of breastfeeding in 9 

protection against an infectious pathogen following maternal immunization. In Bangladesh, 10 

exclusive breastfeeding was associated with fewer episodes of respiratory illness with fever 11 

in children born to mothers immunized against influenza during pregnancy (89). Prevention 12 

of infectious diseases by breastfeeding is thought to be due to the strengthening of 13 

gastrointestinal and respiratory mucosal immunity by: (1) improving the function of the 14 

epithelial barrier through breastmilk high content of growth factors; (2) transferring 15 

antimicrobial factors such as lactoferrin and lysozyme; and (3) transferring microbial antigen-16 

specific immunity (Figure 1). Maternal immunization may thus modulate antigen-specific 17 

immune factors in breast milk and promote antigen-specific immune responses in infants. 18 

Breast milk IgA 19 

Breast milk secretory IgA (sIgA) antibodies are specific for an array of common intestinal 20 

and respiratory pathogens because the selective migration of B cells originating from the 21 

mucosal membranes to the mammary gland (90). Higher levels of sIgA should therefore be 22 

induced by mucosal as compared with systemic immunization, as observed following HIV 23 



 

 17 

immunization of lactating Rhesus macaques (91). The antimicrobial properties of sIgA 1 

depend on: (1) the inhibition of pathogen adherence to and invasion of mucosal epithelia; (2) 2 

the neutralization of pathogens and toxins; (3) the transfer of antigens across the mucosal 3 

barrier and the stimulation of low level inflammation (reviewed in (92)). The latter 4 

mechanism has been mainly described in mice. Few studies in humans have demonstrated the 5 

transport of milk IgA into the circulation of breastfed mature and premature newborns 6 

(90,93,94). In LMIC where prematurity and gut mucosal inflammation are frequent, IgA 7 

transport to neonatal circulation may be increased and prolonged and could therefore be 8 

particularly beneficial. On the other hand, breast milk IgA may have a negative impact on the 9 

response to mucosal vaccines, but this finding remains controversial (95,96). 10 

A number of studies showed increased levels of antigen-specific IgA in breast milk following 11 

maternal immunization against influenza, pertusis, RSV, Streptococcus pneumoniae and 12 

Neisseria meningitidis (reviewed in (97)). The amount of breast milk and magnitude of 13 

secretory IgA responses against a consensus HIV envelope protein were recently associated 14 

with the reduced risk of postnatal transmission of HIV in Malawi. This observation highlights 15 

the need for development of maternal vaccination strategies increasing HIV-1 envelope-16 

specific breast milk IgA to reduce mother-to-child HIV transmission (98). Importantly, 17 

maternal conditions that are known to negatively impact transplacental transfer of IgG do not 18 

affect IgA transfer through breast milk.  Prematurity increases the transfer of growth and 19 

immune factors, particularly IgA, in colostrum and milk (99,100). Furthermore, breast milk 20 

concentration of total and pathogen-specific IgA is not affected by maternal HIV infection or 21 

by malnutrition (101–104).  22 

Breast milk IgG 23 
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Breast milk IgG originate from serum through FcRn transport and from milk resident B 1 

lymphocytes (105). Total breast milk IgG concentration is about 10% of IgA concentration 2 

but it tends to increase with duration of breastfeeding (100,106,107). Increased 3 

concentrations of antigen-specific IgG are detected in breast milk following immunization 4 

against RSV and pneumococcus and following natural infection with GBS, rotavirus, and 5 

HIV (96,108,109). Evidence of a protective role of breast milk IgG was demonstrated in 6 

studies on HIV infection, where IgG had higher neutralizing activity than IgA, mediated 7 

antibody-dependent cellular cytotoxicity, and were inversely correlated with the risk of HIV 8 

transmission (109). Breast milk IgG were also inversely correlated with cytomegalovirus 9 

(HCMV) load, suggesting a protective role against HCMV transmission (110). However, the 10 

role of breast milk IgG in the defense against other pathogens has not been studied. Mouse 11 

experiments indicate that breast milk IgG can cross the gut barrier through FcRn and can 12 

thereby promote the transport of IgG-antigen immune complexes and stimulate immune 13 

response to antigens and pathogens (60,111–114). Whether this process occurs in humans is 14 

unknown. 15 

Breast milk leucocytes 16 

Breast milk contains neutrophils, macrophages, and lymphocytes (115). Common infections 17 

increase the number of total leucocytes in breast milk but whether similar changes occur post-18 

immunization is unknown (116). Breast milk B lymphocytes are IgG producing memory 19 

cells. Their antigen-specificity was demonstrated in the context of HIV infection (105). 20 

Similarly, HIV-specific CD4 and CD8 T lymphocytes were detected in breast milk and may 21 

contribute to virus control through inflammatory cytokines and cytotoxicity (117,118). 22 
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Studies suggest that breast milk CD4 T cells may be transferred to human neonates and 1 

induce transient specific cellular immunity (93,119,120). 2 

Transfer of microbial antigens through breast milk 3 

Although pathogens can be detected in breast milk following maternal infection, transmission 4 

to the offspring is not commonly observed, with notable exceptions including HIV, HCMV, 5 

and HTLV-1 (121). The evidence suggests that breast milk immunity may prevent pathogen 6 

transmission. In addition, studies indicate that exposure to pathogens through breast milk 7 

induces immune responses in infants independently of transmission. Exposure to HIV-8 

containing breast milk is associated with the induction of mucosal IgG and IgA responses and 9 

with systemic cell-mediated immune responses in uninfected infants (102,122). Similarly, 10 

Vibrio cholera can be transferred through breast milk and induce either disease or 11 

colonization associated with specific IgG responses in infants (123). These observations 12 

suggest that breastfeeding can promote immunity to pathogens in infants by transmitting 13 

pathogens that are attenuated by maternal immune responses and/or transfer of pathogen 14 

antigens. Studies indicate that a similar process occurs following immunization of lactating 15 

women with the live attenuated rubella vaccine (reviewed in (124)). Mouse studies have 16 

shown that the intrinsic adjuvant properties of antigens, the level of IgG and vitamin A in 17 

breast milk are critical factors in the induction of effector immune responses in the offspring 18 

(125).  19 

Summary 20 

There is strong evidence that breast milk is essential for mucosal immunity in infants and that 21 

maternal vaccination increases antigen-specific immune effectors in breast milk. Mouse and 22 

human studies further suggest that the transfer of microbes through breast milk may promote 23 
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active immunization in infants. Breast milk transfer of immunity by immunized mothers may 1 

be particularly relevant in LMIC where transplacental transfer of immunity is reduced by 2 

chronic maternal infections and the high rate of pre-term delivery. However, there currently 3 

exists little data linking breast milk immunity induced by vaccines and infant protection.   4 

 5 

Maternal immunization and infant immunity  6 

Following transfer across the placenta, maternal antibodies are expected to protect the infant 7 

from disease. However, a certain level of antibody (the presumed correlate of protection) has 8 

to be reached to provide clinical protection and this level needs to be maintained until the 9 

infant is no longer at risk, or is protected by active immunization. How long maternal 10 

antibodies persist above the protective levels in the infant is a function of the concentration of 11 

the antibody in the newborn at birth and the antibody half-life (T1/2). Thus, the transplacental 12 

transfer and decay kinetics of maternal IgG in the infant are key determinants of the duration 13 

of protection. However, high levels of maternal antibodies present at the time of infant 14 

vaccination may also interfere with the immune response of the infant to the respective 15 

vaccine. Lastly, maternal immunization can have effects on the fetus and newborn infant 16 

beyond passive protection.  17 

Prevention of infection and disease 18 

The distribution of serum antibodies beyond the bloodstream of the neonate/infant is not well 19 

defined, but could limit what is achievable in terms of mucosal protection. For example, very 20 

little IgG is detectable in saliva of young infants until the teeth erupt (126), making sterilizing 21 

immunity against respiratory pathogens unlikely. A more readily achievable objective would 22 

then be the minimization of invasive disease severity rather than prevention of portal of entry 23 
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infection/colonization.  This limitation is illustrated by the failure of various preparations of 1 

pertussis immune globulin to prevent colonization (and subsequent invasive infection) in 2 

humans and animal models (127–129). The recently observed effectiveness of maternal 3 

pertussis immunization in preventing infant disease represents an important advancement 4 

(130). If the benefit is largely attributable to minimization of disease severity such encounters 5 

could result in passive-active immunity, with active immunity following attenuated natural 6 

infection (131).  7 

Maternal antibody decay in infants 8 

The T1/2 of IgG differs by subclass and is not a fixed entity but is directly proportional to the 9 

total IgG concentration; this is called the concentration-catabolism effect, where IgG 10 

catabolism is accelerated in subjects with increased IgG levels and conversely, reduced in 11 

subjects with a low serum IgG concentration (132). The molecular mechanisms underlying 12 

the differences in T1/2 of the various IgG subclasses as well as the concentration-catabolism 13 

effect center around FcRn (59,60). Subclass and structural modifications of IgG have 14 

profound impact on the interaction with FcRn, and thus T1/2. For example, IgG3 allotypes 15 

have different affinity for the FcRn and this results in different T1/2 (69). Also, aglycosylated 16 

human IgG1 has a significantly shorter T1/2 (62 h) than the glycosylated form (153 h) (132). 17 

As indicated above, glycosylation of maternal antibodies is modified during pregnancy 18 

(16,133), but how this relates to T1/2 in the infant is currently not known. Furthermore, studies 19 

suggest that the T1/2 of IgG in infants varies depending on the antigen-specificity of the 20 

antibodies as well as between populations. For example, reported T1/2 in the infant of 21 

maternal antibodies specific for pertussis antigens is ~30-40 days, for tetanus ~50 days, but 22 

for GBS ~60 days (29,134,135). T1/2 of maternal antibodies of a given specificity can also 23 
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vary substantially between populations; whether this variability involves differences in IgG 1 

subclass or other structural differences has not been delineated (136–138). 2 

Interference with infant immunization  3 

The presence of maternal antibodies to a particular vaccine antigen has been reported to 4 

reduce antibody generation following vaccination of the infant with the same antigen 5 

(reviewed in (139–141)). This is called interference. Maternal antibodies not only affect 6 

levels of antibodies produced by the infant, but also can influence their quality (strength of 7 

antigen binding or avidity) (141,142). Priming of T cell responses to vaccines does not appear 8 

to be affected by passive antibodies and this probably contributes to the good response to 9 

booster doses (139,140). The key factors influencing interference are antigen-specific 10 

maternal antibody titers at time of infant immunization, as well as infant vaccine antigen-11 

content (including dose). For pertussis, maternally derived antibodies have been shown to 12 

interfere with antibody responses with whole-cell vaccines, but less so when acellular 13 

vaccines were used in the infant (37,50,143–147). Whether the improved response to 14 

acellular vs. whole-cell vaccine among those with higher antecedent PT titers is due to higher 15 

antigen load in the acellular product or to the absence of other components of the whole cell 16 

vaccine lacking in the acellular product has not been determined (148). Given that the current 17 

lead candidates for a maternal GBS vaccine are TT- or CRM197-conjugate polysaccharide 18 

vaccines, it is worth noting that infants born to mothers with high anti-TT titers immunized 19 

with Hib-T-conjugates have reduced anti-GBS responses but infants immunized with HbOC 20 

(CRM197) showed no interference (149–151). Although several mechanisms have been 21 

proposed, the molecular and cellular basis of the interference remains incompletely 22 

understood (139,140). 23 
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Influence of maternal immunization on infant beyond passive immunity 1 

Following influenza (TIV) vaccination during pregnancy, anti-HA and anti-matrix protein 2 

IgM antibodies could be detected in 38.5% and 40.0%, respectively, of cord blood specimens 3 

(152). Given that IgM does not cross the placenta, this would be indicative of an active 4 

adaptive B cell response in the fetus. This was further corroborated by the detection of HA-5 

specific T cell responses in some newborns of immunized women using synthetic peptide-6 

HLA multimers. Similarly, earlier studies of tetanus vaccination during pregnancy reported 7 

detection of anti-toxoid IgM in sera of some infants (153,154). Furthermore, given that 8 

vaccines can have immune modulatory effects in postnatal life beyond initiating antigen-9 

specific adaptive responses, i.e. non-specific effects (NSE) (155), it is conceivable that 10 

immunization during pregnancy could also have NSE not only in the mother, but also in the 11 

fetus and/or newborn. To our knowledge, this has not been systematically investigated. 12 

However, MF59-adjuvanted influenza vaccination during pregnancy led to an altered 13 

cytokine production profile in the nasal mucosa of 4 week old infants contrasting infants from 14 

vaccinated vs. unvaccinated mothers (156). The clinical relevance of either of these 15 

‘unexpected’ findings (active in utero immune response; non-specific effects on the newborn 16 

after maternal immunization) is currently not clear. 17 

Summary 18 

Immunobiological parameters such as correlates of protection based on passively acquired 19 

antibody levels and half-life of the antibody are key determinants of the efficacy of maternal 20 

immunization. However, little is known about either aspect. Higher maternal antibody levels 21 

in the infant can interfere with the infant’s response to immunization; neither the mechanisms 22 

involved nor the relevance of this for protection have been determined. Finally, maternal 23 
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immunization may also prime immune responses in the fetus and thereby influence responses 1 

after birth.  2 

 3 

Concluding remarks 4 

The passive transfer of maternal immunity is considered central to anti-microbial defenses in 5 

early life (Figure 2). The proposed mechanisms center around active transport of maternal 6 

IgG through the placenta providing systemic immunity during the first months after birth 7 

until the infant actively acquires immunity through exposure to pathogens or vaccines. The 8 

immune components of breast milk can provide longer-term immunity at the mucosal level 9 

and could also contribute to the development of infant immunity at the systemic level. 10 

Although maternal immunization is an effective strategy to increase anti-microbial immunity 11 

in early life, many knowledge gaps remain in our understanding of vaccine responses during 12 

pregnancy, the transfer and persistence of maternal immunity in infants, and the interactions 13 

between maternal antibodies and the infant immune system. This landscape analysis 14 

prioritized gaps that are of particular relevance to the development of new vaccines for 15 

pregnant women and to the implementation of maternal immunization worldwide (Table 1). 16 

Filling those gaps offers the potential to further improve this important public health 17 

intervention. This will require immunological studies of existing vaccines administered to 18 

pregnant women and the inclusion of immunological endpoints in the clinical studies of 19 

vaccines that are under development.  20 

 21 

  22 



 

 25 

Contributors Statement 1 

AM, DWS and TRK developed and managed the landscape analysis and synthesized the 2 

information. AM, VV, LP and TRK led the literature review on the immunobiology of 3 

maternal immunization. MG and GB provided major administrative support and participated 4 

in the synthesis of the information. AM, MS, ND, VV, LP, CEJ, SAH, KME, PH, PO, DWS 5 

and TRK contributed to the literature review and synthesis. AM, MS, VV, MG, DWS and 6 

TRK drafted the initial manuscript and all authors contributed to the final version of the 7 

manuscript.  8 

Declaration of interests 9 

AM, DWS and TRK report that their institutions received funding from the Bill and Melinda 10 

Gates Foundation to support this project. AM is a Research Director of the Fonds de la 11 

Recherche Scientifque (F.R.S-FNRS), Belgium. MS was a co-investigator on investigator-12 

initiated research grants from Pfizer unrelated to this study. VV is supported by funding from 13 

the The University of Sophia-Antipolis and from the Institut National de la Santé et de la 14 

Recherche Santé (INSERM). SAH has served on ad hoc advisory boards for Sanofi Pasteur, 15 

GlaxoSmithKline, the Bill and Melinda Gates Foundation, and PATH. TRK is supported in 16 

part by a Career Award in the Biomedical Sciences from the Burroughs Wellcome Fund, and 17 

a Michael Smith Foundation for Health Research Career Investigator Award. The funders had 18 

no role in determining content of the manuscript, writing of the report or decision to submit 19 

for publication.  20 

  21 



 

 26 

Acknowledgments 1 

We thank Véronique Flamand, Kinga Smolen and Fabienne Willems for their help in the 2 

landscape analysis. We are grateful to Ajoke Sobanjo-ter Meulen for advice and direction 3 

during the project. Excellent administrative support was provided by Kim Marty and 4 

Simonetta Leduc of the Vaccine Evaluation Centre in Vancouver. 5 



 

 27 

References 

1.  Lawn JE, Blencowe H, Oza S, You D, Lee AC, Waiswa P, et al. Every Newborn: 

progress, priorities, and potential beyond survival. Lancet. 2014 Jul 12;384(9938):189–205.  

2.  Laenen J, Roelants M, Devlieger R, Vandermeulen C. Influenza and pertussis 

vaccination coverage in pregnant women. Vaccine. 2015 Apr 27;33(18):2125–31.  

3.  Beigi RH, Fortner KB, Munoz FM, Roberts J, Gordon JL, Han HH, et al. Maternal 

immunization: opportunities for scientific advancement. Clin Infect Dis Off Publ Infect Dis 

Soc Am. 2014 Dec 15;59 Suppl 7:S408–14.  

4.  Medina KL, Kincade PW. Pregnancy-related steroids are potential negative regulators 

of B lymphopoiesis. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5382–6.  

5.  Mahmoud F, Abul H, Omu A, Al-Rayes S, Haines D, Whaley K. Pregnancy-

associated changes in peripheral blood lymphocyte subpopulations in normal Kuwaiti 

women. Gynecol Obstet Invest. 2000;52(4):232–6.  

6.  Zimmer JP, Garza C, Butte NF, Goldman AS. Maternal Blood B-Cell (CD19+) 

Percentages and Serum Immunoglobulin Concentrations Correlate with Breast-feeding 

Behavior and Serum Prolactin Concentration. Am J Reprod Immunol. 1998;40(1):57–62.  

7.  Matthiesen L, Berg G, Ernerudh J, Håkansson L. Lymphocyte subsets and mitogen 

stimulation of blood lymphocytes in preeclampsia. Am J Reprod Immunol N Y N 1989. 1999 

Mar;41(3):192–203.  

8.  Ampomah P, Stevenson L, Ofori MF, Barfod L, Hviid L. Kinetics of B cell responses 

to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally 

exposed to malaria parasites. J Immunol Baltim Md 1950. 2014 Jun 1;192(11):5236–44.  

9.  Requena P, Campo JJ, Umbers AJ, Ome M, Wangnapi R, Barrios D, et al. Pregnancy 



 

 28 

and malaria exposure are associated with changes in the B cell pool and in plasma eotaxin 

levels. J Immunol Baltim Md 1950. 2014 Sep 15;193(6):2971–83.  

10.  Dauby N, Kummert C, Lecomte S, Liesnard C, Delforge M-L, Donner C, et al. 

Primary human cytomegalovirus infection induces the expansion of virus-specific activated 

and atypical memory B cells. J Infect Dis. 2014;210(8):1275–85.  

11.  Kanda N, Tamaki K. Estrogen enhances immunoglobulin production by human 

PBMCs. J Allergy Clin Immunol. 1999;103(2):282–8.  

12.  Correale J, Farez MF, Ysrraelit MC. Role of prolactin in B cell regulation in multiple 

sclerosis. J Neuroimmunol. 2014 Apr 15;269(1-2):76–86.  

13.  Pauklin S, Sernández IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK. Estrogen 

directly activates AID transcription and function. J Exp Med. 2009 Jan 16;206(1):99–111.  

14.  McGregor IA, Rowe DS, Wilson ME, Billewicz WZ. Plasma immunoglobulin 

concentrations in an African (Gambian) community in relation to season, malaria and other 

infections and pregnancy. Clin Exp Immunol. 1970 Jul;7(1):51–74.  

15.  Amino N, Tanizawa O, Miyai K, Tanaka F, Hayashi C, Kawashima M, et al. Changes 

of serum immunoglobulins IgG, IgA, IgM, and IgE during pregnancy. Obstet Gynecol. 1978 

Oct;52(4):415–20.  

16.  Bondt A, Rombouts Y, Selman MHJ, Hensbergen PJ, Reiding KR, Hazes JMW, et al. 

Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-

throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics 

MCP. 2014 Nov;13(11):3029–39.  

17.  Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, et al. Type I 

and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014 



 

 29 

Aug;15(8):707–16.  

18.  Bondt A, Selman MHJ, Deelder AM, Hazes JMW, Willemsen SP, Wuhrer M, et al. 

Association between galactosylation of immunoglobulin G and improvement of rheumatoid 

arthritis during pregnancy is independent of sialylation. J Proteome Res. 2013 Oct 

4;12(10):4522–31.  

19.  Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, et al. Natural 

variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin 

Invest. 2013 May;123(5):2183–92.  

20.  Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW, et al. 

Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination. PLoS Pathog. 2016 

Mar;12(3):e1005456.  

21.  Yoshimura T, Inaba M, Sugiura K, Nakajima T, Ito T, Nakamura K, et al. Analyses of 

dendritic cell subsets in pregnancy. Am J Reprod Immunol N Y N 1989. 2003 

Aug;50(2):137–45.  

22.  Della Bella S, Giannelli S, Cozzi V, Signorelli V, Cappelletti M, Cetin I, et al. 

Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy. 

Clin Exp Immunol. 2011 May;164(2):180–92.  

23.  Ueda Y, Hagihara M, Okamoto A, Higuchi A, Tanabe A, Hirabayashi K, et al. 

Frequencies of dendritic cells (myeloid DC and plasmacytoid DC) and their ratio reduced in 

pregnant women: comparison with umbilical cord blood and normal healthy adults. Hum 

Immunol. 2003 Dec;64(12):1144–51.  

24.  Young BC, Stanic AK, Panda B, Rueda BR, Panda A. Longitudinal expression of 

Toll-like receptors on dendritic cells in uncomplicated pregnancy and postpartum. Am J 



 

 30 

Obstet Gynecol. 2014 May;210(5):445.e1–6.  

25.  Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 

2016 Aug 22;  

26.  Healy CM, Rench MA, Baker CJ. Importance of timing of maternal combined 

tetanus, diphtheria, and acellular pertussis (Tdap) immunization and protection of young 

infants. Clin Infect Dis. 2013 Feb;56(4):539–44.  

27.  Sperling RS, Engel SM, Wallenstein S, Kraus TA, Garrido J, Singh T, et al. 

Immunogenicity of trivalent inactivated influenza vaccination received during pregnancy or 

postpartum. Obstet Gynecol. 2012 Mar;119(3):631–9.  

28.  Gupta I, Ratho RK. Immunogenicity and safety of two schedules of Hepatitis B 

vaccination during pregnancy. J Obstet Gynaecol Res. 2003 Apr;29(2):84–6.  

29.  Baker CJ, Rench MA, McInnes P. Immunization of pregnant women with group B 

streptococcal type III capsular polysaccharide-tetanus toxoid conjugate vaccine. Vaccine. 

2003 Jul 28;21(24):3468–72.  

30.  Hulka JF. EFFECTIVENESS OF POLYVALENT INFLUENZA VACCINE IN 

PREGNANCY. REPORT OF A CONTROLLED STUDY DURING AN OUTBREAK OF 

ASIAN INFLUENZA. Obstet Gynecol. 1964 Jun;23:830–7.  

31.  Murray DL, Imagawa DT, Okada DM, St Geme JW. Antibody response to 

monovalent A/New Jersey/8/76 influenza vaccine in pregnant women. J Clin Microbiol. 1979 

Aug;10(2):184–7.  

32.  Schlaudecker EP, McNeal MM, Dodd CN, Ranz JB, Steinhoff MC. Pregnancy 

modifies the antibody response to trivalent influenza immunization. J Infect Dis. 2012 Dec 

1;206(11):1670–3.  



 

 31 

33.  Bischoff AL, Følsgaard NV, Carson CG, Stokholm J, Pedersen L, Holmberg M, et al. 

Altered response to A(H1N1)pnd09 vaccination in pregnant women: a single blinded 

randomized controlled trial. PloS One. 2013;8(4):e56700.  

34.  Kay AW, Bayless NL, Fukuyama J, Aziz N, Dekker CL, Mackey S, et al. Pregnancy 

Does Not Attenuate the Antibody or Plasmablast Response to Inactivated Influenza Vaccine. 

J Infect Dis. 2015 Sep 15;212(6):861–70.  

35.  Brabin BJ, Nagel J, Hagenaars AM, Ruitenberg E, van Tilborgh AM. The influence of 

malaria and gestation on the immune response to one and two doses of adsorbed tetanus 

toxoid in pregnancy. Bull World Health Organ. 1984;62(6):919–30.  

36.  Hardegree MC, Barile MF, Pittman M, Schofield FD, Maclennan R, Kelly A. 

Immunization against neonatal tetanus in New Guinea. Bull World Health Organ. 

1970;43(3):439–51.  

37.  Munoz FM, Bond NH, Maccato M, Pinell P, Hammill HA, Swamy GK, et al. Safety 

and immunogenicity of tetanus diphtheria and acellular pertussis (Tdap) immunization during 

pregnancy in mothers and infants: a randomized clinical trial. JAMA. 2014 May 

7;311(17):1760–9.  

38.  Huygen K, Cabore RN, Maertens K, Van Damme P, Leuridan E. Humoral and cell 

mediated immune responses to a pertussis containing vaccine in pregnant and nonpregnant 

women. Vaccine. 2015 Aug 7;33(33):4117–23.  

39.  Madhi SA, Cutland CL, Jose L, Koen A, Govender N, Wittke F, et al. Safety and 

immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in 

healthy women and their infants: a randomised phase 1b/2 trial. Lancet Infect Dis. 2016 

Aug;16(8):923–34.  



 

 32 

40.  Ohfuji S, Fukushima W, Deguchi M, Kawabata K, Yoshida H, Hatayama H, et al. 

Immunogenicity of a monovalent 2009 influenza A (H1N1) vaccine among pregnant women: 

lowered antibody response by prior seasonal vaccination. J Infect Dis. 2011 May 

1;203(9):1301–8.  

41.  Abu Raya B, Bamberger E, Almog M, Peri R, Srugo I, Kessel A. Immunization of 

pregnant women against pertussis: The effect of timing on antibody avidity. Vaccine. 2015 

Apr 15;33(16):1948–52.  

42.  Maertens K, Hoang THT, Caboré RN, Leuridan E. Avidity of maternal pertussis 

antibodies after vaccination during pregnancy. Vaccine. 2015 Oct 13;33(42):5489.  

43.  Eberhardt CS, Blanchard-Rohner G, Lemaître B, Boukrid M, Combescure C, 

Othenin-Girard V, et al. Maternal immunization earlier in pregnancy maximizes antibody 

transfer and expected infant seropositivity against pertussis. Clin Infect Dis Off Publ Infect 

Dis Soc Am. 2016 Jan 20;  

44.  Christian LM, Porter K, Karlsson E, Schultz-Cherry S, Iams JD. Serum 

proinflammatory cytokine responses to influenza virus vaccine among women during 

pregnancy versus non-pregnancy. Am J Reprod Immunol N Y N 1989. 2013 Jul;70(1):45–53.  

45.  Regan AK, Tracey L, Blyth CC, Mak DB, Richmond PC, Shellam G, et al. A 

prospective cohort study comparing the reactogenicity of trivalent influenza vaccine in 

pregnant and non-pregnant women. BMC Pregnancy Childbirth. 2015;15:61.  

46.  Gandhi M, Devaraj S, Sangi-Haghpeykar H, Mastrobattista J. The effect of body mass 

index on post-vaccination maternal and neonatal pertussis antibody levels. J Reprod 

Immunol. 2015 Nov;112:34–7.  

47.  Jones CE, Naidoo S, De Beer C, Esser M, Kampmann B, Hesseling AC. Maternal 



 

 33 

HIV infection and antibody responses against vaccine-preventable diseases in uninfected 

infants. JAMA. 2011 Feb 9;305(6):576–84.  

48.  van den Berg JP, Westerbeek EA, Berbers GA, van Gageldonk PG, van der Klis FR, 

van Elburg RM. Transplacental transport of IgG antibodies specific for pertussis, diphtheria, 

tetanus, haemophilus influenzae type b, and Neisseria meningitidis serogroup C is lower in 

preterm compared with term infants. Pediatr Infect J. 2010 Sep;29(9):801–5.  

49.  Mulholland K, Suara RO, Siber G, Roberton D, Jaffar S, N’Jie J, et al. Maternal 

immunization with Haemophilus influenzae type b polysaccharide-tetanus protein conjugate 

vaccine in The Gambia. JAMA. 1996 Apr 17;275(15):1182–8.  

50.  Maertens K, Caboré RN, Huygen K, Hens N, Van Damme P, Leuridan E. Pertussis 

vaccination during pregnancy in Belgium: Results of a prospective controlled cohort study. 

Vaccine. 2016 Jan 2;34(1):142–50.  

51.  Cavalcante RS, Kopelman BI, Costa-Carvalho BT. Placental transfer of Haemophilus 

influenzae type b antibodies in malnourished pregnant women. Braz J Infect Dis. 2008 

Feb;12(1):47–51.  

52.  Siddiqua TJ, Ahmad SM, Ahsan KB, Rashid M, Roy A, Rahman SM, et al. Vitamin 

B12 supplementation during pregnancy and postpartum improves B12 status of both mothers 

and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh. 

Eur J Nutr. 2016 Feb;55(1):281–93.  

53.  Madhi SA, Cutland CL, Kuwanda L, Weinberg A, Hugo A, Jones S, et al. Influenza 

vaccination of pregnant women and protection of their infants. N Engl J Med. 2014 Sep 

4;371(10):918–31.  

54.  Nunes MC, Cutland CL, Dighero B, Bate J, Jones S, Hugo A, et al. Kinetics of 



 

 34 

Hemagglutination-Inhibiting Antibodies Following Maternal Influenza Vaccination Among 

Mothers With and Those Without HIV Infection and Their Infants. J Infect Dis. 2015 Dec 

15;212(12):1976–87.  

55.  Heyderman RS, Madhi SA, French N, Cutland C, Ngwira B, Kayambo D, et al. 

Group B streptococcus vaccination in pregnant women with or without HIV in Africa: a non-

randomised phase 2, open-label, multicentre trial. Lancet Infect Dis. 2016 May;16(5):546–55.  

56.  McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin 

Microbiol Rev. 2012 Oct;25(4):585–608.  

57.  Simister NE. Placental transport of immunoglobulin G. Vaccine. 2003 Jul 

28;21(24):3365–9.  

58.  Bundhoo A, Paveglio S, Rafti E, Dhongade A, Blumberg RS, Matson AP. Evidence 

that FcRn mediates the transplacental passage of maternal IgE in the form of IgG anti-

IgE/IgE immune complexes. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2015 

Jun;45(6):1085–98.  

59.  Stapleton NM, Einarsdóttir HK, Stemerding AM, Vidarsson G. The multiple facets of 

FcRn in immunity. Immunol Rev. 2015 Nov;268(1):253–68.  

60.  Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev 

Immunol. 2007 Sep;7(9):715–25.  

61.  Firan M, Bawdon R, Radu C, Ober RJ, Eaken D, Antohe F, et al. The MHC class I-

related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin 

in humans. Int Immunol. 2001 Aug;13(8):993–1002.  

62.  Malek A, Sager R, Kuhn P, Nicolaides KH, Schneider H. Evolution of maternofetal 

transport of immunoglobulins during human pregnancy. Am J Reprod Immunol. 1996 



 

 35 

Nov;36(5):248–55.  

63.  Heininger U, Riffelmann M, Leineweber B, Wirsing von Koenig CH. Maternally 

derived antibodies against Bordetella pertussis antigens pertussis toxin and filamentous 

hemagglutinin in preterm and full term newborns. Pediatr Infect J. 2009 May;28(5):443–5.  

64.  van den Berg JP, Westerbeek EA, van der Klis FR, Berbers GA, van Elburg RM. 

Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early 

Hum Dev. 2011 Feb;87(2):67–72.  

65.  van den Berg JP, Westerbeek EAM, Smits GP, van der Klis FRM, Berbers GAM, van 

Elburg RM. Lower transplacental antibody transport for measles, mumps, rubella and 

varicella zoster in very preterm infants. PloS One. 2014;9(4):e94714.  

66.  Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG 

placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 

2012;2012:985646.  

67.  Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. 

National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time 

trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012 

Jun 9;379(9832):2162–72.  

68.  Garty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of 

immunoglobulin G subclasses. Clin Diagn Lab Immunol. 1994 Nov;1(6):667–9.  

69.  Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to 

effector functions. Front Immunol. 2014;5:520.  

70.  de Voer RM, van der Klis FR, Nooitgedagt JE, Versteegh FG, van Huisseling JC, van 

Rooijen DM, et al. Seroprevalence and placental transportation of maternal antibodies 



 

 36 

specific for Neisseria meningitidis serogroup C, Haemophilus influenzae type B, diphtheria, 

tetanus, and pertussis. Clin Infect Dis. 2009 Jul 1;49(1):58–64.  

71.  Leineweber B, Grote V, Schaad UB, Heininger U. Transplacentally acquired 

immunoglobulin G antibodies against measles, mumps, rubella and varicella-zoster virus in 

preterm and full term newborns. Pediatr Infect J. 2004 Apr;23(4):361–3.  

72.  Munoz FM, Englund JA, Cheesman CC, Maccato ML, Pinell PM, Nahm MH, et al. 

Maternal immunization with pneumococcal polysaccharide vaccine in the third trimester of 

gestation. Vaccine. 2001 Dec 12;20(5-6):826–37.  

73.  Lin F-YC, Weisman LE, Azimi PH, Philips JB, Clark P, Regan J, et al. Level of 

maternal IgG anti-group B streptococcus type III antibody correlated with protection of 

neonates against early-onset disease caused by this pathogen. J Infect Dis. 2004 Sep 

1;190(5):928–34.  

74.  Baker CJ, Carey VJ, Rench MA, Edwards MS, Hillier SL, Kasper DL, et al. Maternal 

antibody at delivery protects neonates from early onset group B streptococcal disease. J Infect 

Dis. 2014 Mar 1;209(5):781–8.  

75.  Steinhoff MC, Omer SB, Roy E, Arifeen SE, Raqib R, Altaye M, et al. Influenza 

immunization in pregnancy--antibody responses in mothers and infants. N Engl J Med. 2010 

Apr 29;362(17):1644–6.  

76.  Avanzini MA, Pignatti P, Chirico G, Gasparoni A, Jalil F, Hanson LA. Placental 

transfer favours high avidity IgG antibodies. Acta Paediatr. 1998 Feb;87(2):180–5.  

77.  Sennhauser FH, Balloch A, Macdonald RA, Shelton MJ, Roberton DM. Maternofetal 

transfer of IgG anti-Escherichia coli antibodies with enhanced avidity and opsonic activity in 

very premature neonates. Pediatr Res. 1990 Apr;27(4 Pt 1):365–71.  



 

 37 

78.  Williams PJ, Arkwright PD, Rudd P, Scragg IG, Edge CJ, Wormald MR, et al. Short 

communication: selective placental transport of maternal IgG to the fetus. Placenta. 1995 

Dec;16(8):749–56.  

79.  Einarsdottir HK, Selman MHJ, Kapur R, Scherjon S, Koeleman CAM, Deelder AM, 

et al. Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. 

Glycoconj J. 2013 Feb;30(2):147–57.  

80.  Hartter HK, Oyedele OI, Dietz K, Kreis S, Hoffman JP, Muller CP. Placental transfer 

and decay of maternally acquired antimeasles antibodies in Nigerian children. Pediatr Infect 

J. 2000 Jul;19(7):635–41.  

81.  Okoko BJ, Wesumperuma LH, Ota MO, Pinder M, Banya W, Gomez SF, et al. The 

influence of placental malaria infection and maternal hypergammaglobulinemia on 

transplacental transfer of antibodies and IgG subclasses in a rural West African population. J 

Infect Dis. 2001 Sep 1;184(5):627–32.  

82.  Cumberland P, Shulman CE, Maple PAC, Bulmer JN, Dorman EK, Kawuondo K, et 

al. Maternal HIV infection and placental malaria reduce transplacental antibody transfer and 

tetanus antibody levels in newborns in Kenya. J Infect Dis. 2007 Aug 15;196(4):550–7.  

83.  Atwell JE, Thumar B, Robinson LJ, Tobby R, Yambo P, Ome-Kaius M, et al. Impact 

of Placental Malaria and Hypergammaglobulinemia on Transplacental Transfer of 

Respiratory Syncytial Virus Antibody in Papua New Guinea. J Infect Dis. 2016 Feb 

1;213(3):423–31.  

84.  Dangor Z, Kwatra G, Izu A, Adrian P, van Niekerk N, Cutland CL, et al. HIV-1 Is 

Associated With Lower Group B Streptococcus Capsular and Surface-Protein IgG Antibody 

Levels and Reduced Transplacental Antibody Transfer in Pregnant Women. J Infect Dis. 



 

 38 

2015 Aug 1;212(3):453–62.  

85.  Le Doare K, Taylor S, Allen L, Gorringe A, Heath PT, Kampmann B, et al. Placental 

transfer of anti-group B Streptococcus immunoglobulin G antibody subclasses from HIV-

infected and uninfected women to their uninfected infants. AIDS Lond Engl. 2016 Jan 

28;30(3):471–5.  

86.  Abu-Raya B, Smolen KK, Willems F, Kollmann TR, Marchant A. Transfer of 

Maternal Antimicrobial Immunity to HIV-Exposed Uninfected Newborns. Front Immunol. 

2016;7:338.  

87.  Bahl R, Frost C, Kirkwood BR, Edmond K, Martines J, Bhandari N, et al. Infant 

feeding patterns and risks of death and hospitalization in the first half of infancy: multicentre 

cohort study. Bull World Health Organ. 2005 Jun;83(6):418–26.  

88.  Victora CG, Bahl R, Barros AJ, França GVA, Horton S, Krasevec J, et al. 

Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. The 

Lancet. 01302016;387:475–90.  

89.  Schlaudecker EP, Steinhoff MC, Omer SB, McNeal MM, Roy E, Arifeen SE, et al. 

IgA and neutralizing antibodies to influenza a virus in human milk: a randomized trial of 

antenatal influenza immunization. PLoS One. 2013;8(8):e70867.  

90.  Brandtzaeg P. Mucosal immunity: integration between mother and the breast-fed 

infant. Vaccine. 2003 Jul 28;21(24):3382–8.  

91.  Fouda GG, Amos JD, Wilks AB, Pollara J, Ray CA, Chand A, et al. Mucosal 

immunization of lactating female rhesus monkeys with a transmitted/founder HIV-1 envelope 

induces strong Env-specific IgA antibody responses in breast milk. J Virol. 2013 

Jun;87(12):6986–99.  



 

 39 

92.  Corthesy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front 

Immunol. 2013;4:185.  

93.  Ogra SS, Weintraub D, Ogra PL. Immunologic aspects of human colostrum and milk. 

III. Fate and absorption of cellular and soluble components in the gastrointestinal tract of the 

newborn. J Immunol. 1977 Jul;119(1):245–8.  

94.  Vukavic T. Intestinal absorption of IgA in the newborn. J Pediatr Gastroenterol Nutr. 

1983 May;2(2):248–51.  

95.  Moon SS, Wang Y, Shane AL, Nguyen T, Ray P, Dennehy P, et al. Inhibitory effect 

of breast milk on infectivity of live oral rotavirus vaccines. Pediatr Infect J. 2010 

Oct;29(10):919–23.  

96.  Rongsen-Chandola T, Strand TA, Goyal N, Flem E, Rathore SS, Arya A, et al. Effect 

of withholding breastfeeding on the immune response to a live oral rotavirus vaccine in North 

Indian infants. Vaccine. 2014 Aug 11;32 Suppl 1:A134–9.  

97.  Maertens K, De Schutter S, Braeckman T, Baerts L, Van Damme P, De Meester I, et 

al. Breastfeeding after maternal immunisation during pregnancy: providing immunological 

protection to the newborn: a review. Vaccine. 2014 Apr 1;32(16):1786–92.  

98.  Pollara J, McGuire E, Fouda GG, Rountree W, Eudailey J, Overman RG, et al. 

Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of 

Postnatal Mother-to-Child Transmission of HIV-1. J Virol. 2015 Oct;89(19):9952–61.  

99.  Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones 

MG, et al. Premature delivery influences the immunological composition of colostrum and 

transitional and mature human milk. J Nutr. 2011 Jun;141(6):1181–7.  

100.  Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. 



 

 40 

Pediatr Clin North Am. 2013 Feb;60(1):49–74.  

101.  Shapiro RL, Lockman S, Kim S, Smeaton L, Rahkola JT, Thior I, et al. Infant 

morbidity, mortality, and breast milk immunologic profiles among breast-feeding HIV-

infected and HIV-uninfected women in Botswana. J Infect Dis. 2007 Aug 15;196(4):562–9.  

102.  Moussa S, Jenabian MA, Gody JC, Leal J, Gresenguet G, Le Faou A, et al. Adaptive 

HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children 

exposed to HIV via breast-feeding. PLoS One. 2013;8(5):e63408.  

103.  Brussow H, Barclay D, Sidoti J, Rey S, Blondel A, Dirren H, et al. Effect of 

malnutrition on serum and milk antibodies in Zairian women. Clin Diagn Lab Immunol. 1996 

Jan;3(1):37–41.  

104.  Islam SK, Ahmed L, Khan MN, Huque S, Begum A, Yunus AB. Immune components 

(IgA, IgM, IgG, immune cells) of colostrum of Bangladeshi mothers. Pediatr Int. 2006 

Dec;48(6):543–8.  

105.  Tuaillon E, Valea D, Becquart P, Al Tabaa Y, Meda N, Bollore K, et al. Human milk-

derived B cells: a highly activated switched memory cell population primed to secrete 

antibodies. J Immunol. 2009 Jun 1;182(11):7155–62.  

106.  Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. 

Nutrients. 2011 Apr;3(4):442–74.  

107.  Gao X, McMahon RJ, Woo JG, Davidson BS, Morrow AL, Zhang Q. Temporal 

changes in milk proteomes reveal developing milk functions. J Proteome Res. 2012 Jul 

6;11(7):3897–907.  

108.  Edwards MS, Munoz FM, Baker CJ. Antibodies to type III group B streptococcal 

polysaccharide in breast milk. Pediatr Infect J. 2004 Oct;23(10):961–3.  



 

 41 

109.  Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific 

antibodies capable of ADCC are common in breastmilk and are associated with reduced risk 

of transmission in women with high viral loads. PLoS Pathog. 2012;8(6):e1002739.  

110.  Ehlinger EP, Webster EM, Kang HH, Cangialose A, Simmons AC, Barbas KH, et al. 

Maternal cytomegalovirus-specific immune responses and symptomatic postnatal 

cytomegalovirus transmission in very low-birth-weight preterm infants. J Infect Dis. 2011 

Dec 1;204(11):1672–82.  

111.  Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, et 

al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery 

of antigens to mucosal dendritic cells. Immunity. 2004 Jun;20(6):769–83.  

112.  Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN, Claypool SM, et al. 

Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin 

Invest. 2006 Aug;116(8):2142–51.  

113.  Harris NL, Spoerri I, Schopfer JF, Nembrini C, Merky P, Massacand J, et al. 

Mechanisms of neonatal mucosal antibody protection. J Immunol. 2006 Nov 1;177(9):6256–

62.  

114.  Baker K, Qiao S-W, Kuo T, Kobayashi K, Yoshida M, Lencer WI, et al. Immune and 

non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol. 

2009 Jul;31(2):223–36.  

115.  Wirt DP, Adkins LT, Palkowetz KH, Schmalstieg FC, Goldman AS. Activated and 

memory T lymphocytes in human milk. Cytometry. 1992;13(3):282–90.  

116.  Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J 

Hum Lact. 2013 May;29(2):171–82.  



 

 42 

117.  Wilks AB, Christian EC, Seaman MS, Sircar P, Carville A, Gomez CE, et al. Robust 

vaccine-elicited cellular immune responses in breast milk following systemic simian 

immunodeficiency virus DNA prime and live virus vector boost vaccination of lactating 

rhesus monkeys. J Immunol. 2010 Dec 1;185(11):7097–106.  

118.  Mahlokozera T, Kang HH, Goonetilleke N, Stacey AR, Lovingood RV, Denny TN, et 

al. The magnitude and kinetics of the mucosal HIV-specific CD8+ T lymphocyte response 

and virus RNA load in breast milk. PLoS One. 2011;6(8):e23735.  

119.  Mohr JA. The possible induction and-or acquisition of cellular hypersensitivity 

associated with ingestion of colostrum. J Pediatr. 1973 Jun;82(6):1062–4.  

120.  Schlesinger JJ, Covelli HD. Evidence for transmission of lymphocyte responses to 

tuberculin by breast-feeding. Lancet. 1977 Sep 10;2(8037):529–32.  

121.  Lawrence RM, Lawrence RA. Breast milk and infection. Clin Perinatol. 2004 

Sep;31(3):501–28.  

122.  John-Stewart GC, Mbori-Ngacha D, Payne BL, Farquhar C, Richardson BA, Emery 

S, et al. HV-1-specific cytotoxic T lymphocytes and breast milk HIV-1 transmission. J Infect 

Dis. 2009 Mar 15;199(6):889–98.  

123.  Qureshi K, Molbak K, Sandstrom A, Kofoed PE, Rodrigues A, Dias F, et al. Breast 

milk reduces the risk of illness in children of mothers with cholera: observations from an 

epidemic of cholera in Guinea-Bissau. Pediatr Infect J. 2006 Dec;25(12):1163–6.  

124.  Alain S, Dommergues MA, Jacquard AC, Caulin E, Launay O. State of the art: Could 

nursing mothers be vaccinated with attenuated live virus vaccine? Vaccine. 2012 Jul 

13;30(33):4921–6.  

125.  Verhasselt V. Is infant immunization by breastfeeding possible? Philos Trans R Soc 



 

 43 

Lond B Biol Sci [Internet]. 2015 Jun 19;370(1671). Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/25964452 

126.  Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. Immunoglobulins 

in saliva of preterm and full-term infants. Oral Microbiol Immunol. 2003 Apr;18(2):72–8.  

127.  Morris D, McDonald JC. Failure of hyperimmune gamma globulin to prevent 

whooping cough. Arch Child. 1957 Jun;32(163):236–9.  

128.  Kirimanjeswara GS, Mann PB, Harvill ET. Role of antibodies in immunity to 

Bordetella infections. Infect Immun. 2003 Apr;71(4):1719–24.  

129.  Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against 

disease but fail to prevent infection and transmission in a nonhuman primate model. Proc 

Natl Acad Sci U A. 2014 Jan 14;111(2):787–92.  

130.  Dabrera G, Amirthalingam G, Andrews N, Campbell H, Ribeiro S, Kara E, et al. A 

case-control study to estimate the effectiveness of maternal pertussis vaccination in 

protecting newborn infants in England and Wales, 2012-2013. Clin Infect Dis. 2015 Feb 

1;60(3):333–7.  

131.  Zinkernagel RM. Maternal antibodies, childhood infections, and autoimmune 

diseases. N Engl J Med. 2001 Nov 1;345(18):1331–5.  

132.  Ghetie V, Ward ES. Transcytosis and catabolism of antibody. Immunol Res. 

2002;25(2):97–113.  

133.  Gutierrez G, Gentile T, Miranda S, Margni RA. Asymmetric antibodies: a protective 

arm in pregnancy. Chem Immunol Allergy. 2005;89:158–68.  

134.  Sarvas H, Seppälä I, Kurikka S, Siegberg R, Mäkelä O. Half-life of the maternal IgG1 

allotype in infants. J Clin Immunol. 1993 Mar;13(2):145–51.  



 

 44 

135.  Healy CM, Munoz FM, Rench MA, Halasa NB, Edwards KM, Baker CJ. Prevalence 

of pertussis antibodies in maternal delivery, cord, and infant serum. J Infect Dis. 2004 Jul 

15;190(2):335–40.  

136.  Caceres VM, Strebel PM, Sutter RW. Factors determining prevalence of maternal 

antibody to measles virus throughout infancy: a review. Clin Infect Dis. 2000 Jul;31(1):110–

9.  

137.  Ochola R, Sande C, Fegan G, Scott PD, Medley GF, Cane PA, et al. The level and 

duration of RSV-specific maternal IgG in infants in Kilifi Kenya. PLoS One. 

2009;4(12):e8088.  

138.  Chu HY, Steinhoff MC, Magaret A, Zaman K, Roy E, Langdon G, et al. Respiratory 

syncytial virus transplacental antibody transfer and kinetics in mother-infant pairs in 

Bangladesh. J Infect Dis. 2014 Nov 15;210(10):1582–9.  

139.  Siegrist CA. Mechanisms by which maternal antibodies influence infant vaccine 

responses: review of hypotheses and definition of main determinants. Vaccine. 2003 Jul 

28;21(24):3406–12.  

140.  Niewiesk S. Maternal antibodies: clinical significance, mechanism of interference 

with immune responses, and possible vaccination strategies. Front Immunol. 2014;5:446.  

141.  Faucette AN, Unger BL, Gonik B, Chen K. Maternal vaccination: moving the science 

forward. Hum Reprod Update. 2015 Feb;21(1):119–35.  

142.  Nair N, Gans H, Lew-Yasukawa L, Long-Wagar AC, Arvin A, Griffin DE. Age-

dependent differences in IgG isotype and avidity induced by measles vaccine received during 

the first year of life. J Infect Dis. 2007 Nov 1;196(9):1339–45.  

143.  Van Savage J, Decker MD, Edwards KM, Sell SH, Karzon DT. Natural history of 



 

 45 

pertussis antibody in the infant and effect on vaccine response. J Infect Dis. 1990 

Mar;161(3):487–92.  

144.  Englund JA, Anderson EL, Reed GF, Decker MD, Edwards KM, Pichichero ME, et 

al. The effect of maternal antibody on the serologic response and the incidence of adverse 

reactions after primary immunization with acellular and whole-cell pertussis vaccines 

combined with diphtheria and tetanus toxoids. Pediatrics. 1995 Sep;96(3 Pt 2):580–4.  

145.  Mooi FR, de Greeff SC. The case for maternal vaccination against pertussis. Lancet 

Infect Dis. 2007 Sep;7(9):614–24.  

146.  Ladhani SN, Andrews NJ, Southern J, Jones CE, Amirthalingam G, Waight PA, et al. 

Antibody Responses After Primary Immunization in Infants Born to Women Receiving a 

Pertussis-containing Vaccine During Pregnancy: Single Arm Observational Study With a 

Historical Comparator. Clin Infect Dis. 2015 Dec 1;61(11):1637–44.  

147.  Hoang HTT, Leuridan E, Maertens K, Nguyen TD, Hens N, Vu NH, et al. Pertussis 

vaccination during pregnancy in Vietnam: Results of a randomized controlled trial Pertussis 

vaccination during pregnancy. Vaccine. 2016 Jan 2;34(1):151–9.  

148.  Edwards KM. Pertussis: an important target for maternal immunization. Vaccine. 

2003 Jul 28;21(24):3483–6.  

149.  Barington T, Gyhrs A, Kristensen K, Heilmann C. Opposite effects of actively and 

passively acquired immunity to the carrier on responses of human infants to a Haemophilus 

influenzae type b conjugate vaccine. Infect Immun. 1994 Jan;62(1):9–14.  

150.  Englund JA, Glezen WP, Turner C, Harvey J, Thompson C, Siber GR. Transplacental 

antibody transfer following maternal immunization with polysaccharide and conjugate 

Haemophilus influenzae type b vaccines. J Infect Dis. 1995 Jan;171(1):99–105.  



 

 46 

151.  Kurikka S, Olander RM, Eskola J, Käyhty H. Passively acquired anti-tetanus and anti-

Haemophilus antibodies and the response to Haemophilus influenzae type b-tetanus toxoid 

conjugate vaccine in infancy. Pediatr Infect Dis J. 1996 Jun;15(6):530–5.  

152.  Rastogi D, Wang C, Mao X, Lendor C, Rothman PB, Miller RL. Antigen-specific 

immune responses to influenza vaccine in utero. J Clin Invest. 2007 Jun;117(6):1637–46.  

153.  Vanderbeeken Y, Sarfati M, Bose R, Delespesse G. In utero immunization of the fetus 

to tetanus by maternal vaccination during pregnancy. Am J Reprod Immunol Microbiol. 1985 

Jun;8(2):39–42.  

154.  Gill TJ 3rd, Repetti CF, Metlay LA, Rabin BS, Taylor FH, Thompson DS, et al. 

Transplacental immunization of the human fetus to tetanus by immunization of the mother. J 

Clin Invest. 1983 Sep;72(3):987–96.  

155.  Aaby P, Kollmann TR, Benn CS. Nonspecific effects of neonatal and infant 

vaccination: public-health, immunological and conceptual challenges. Nat Immunol. 2014 

Oct;15(10):895–9.  

156.  Bischoff AL, Folsgaard NV, Vissing NH, Birch S, Brix S, Bisgaard H. Airway 

Mucosal Immune-Suppression in Neonates of Mothers Receiving A(H1N1)pnd09 

Vaccination During Pregnancy. Pediatr Infect J. 2014 Sep 16;  

 



 

 47 

Table 1.  Global Experts Survey: Top 20 Knowledge Gaps  

 Likert Rating score*  

(maximum score 5.0) 

1. Immunization During Pregnancy 

 a) Impact of the type of vaccine antigen on maternal responses 

 b) Impact of health conditions on maternal immune responses 

 

4.1 

4.2 

2. Transplacental Transfer of Antibodies 

 a) Impact of timing of vaccination during pregnancy on net transfer 

 b) Impact of antigen type on maternal responses and transferability 

 c) Impact of pregnancy complications on antibody transfer  

 

4.4 

4.1 

4.0 

3. Protection of fetus and newborn infant 

 a) Impact of maternal immunization regimen on cord titers 

 b) Impact of maternal immunization regimen on infant responses 

 c) Clinical relevance of interference with active immunization 

 d) Impact of maternal antibodies on effector and memory B cell responses of infants 

 e) Modulation of breast milk immune components by immunization 

 

4.3 

4.3 

4.3 

4.0 

4.2 

4. Pertussis vaccination 

 a) Correlates of protection against colonization, disease, death 

 b) Requirement for multiple pertussis antigens, role of P toxin 

 c) Reactogenicity of repeated doses of Tdap in sequential pregnancies 

 

4.4 

4.2 

4.0 

5. Group B streptococcal vaccine 

 a) Correlates of protection against colonization, disease, outcomes 

 b) Serotype specific immunogenicity, transfer and protection 

 c) Impact of serotype on correlates of protection 

 d) Effect of carrier proteins on responses of infants to vaccination 

 

4.5 

4.3 

4.0 

4.0 

6. Respiratory syncytial virus vaccine 

 a) Correlates of protection against infant disease, death 

 

4.6 



 

 48 

 b) Protection against lower respiratory infection, disease 

 c) Impact of pre-existing immunity on maternal responses 

4.6 

4.0 

*Rating score 4 = high importance, 5 = very high importance, on a 5 point Likert scale 



 

 49 

Table 2. Maternal Immunization Landscape: No Two Programs are Alike 

Consideration  Pertussis  Influenza  GBS  RSV  

Maternal disease risk  +  +++  ++  +  

Infant mortality  ++  +  +++  ++  

Infant disease frequency  + (cyclic1)  ++  +  +++  

Disease seasonality  9  9  8  9  

Microbial diversity  +  ++  ++  +  

Licensed vaccine available 9  9  8  8  

Maternal booster response expected2 9  Quasi3  Not assumed  9  

Passive protection of infant  9  9  9  9  

Maternal:cord Ab ratio  1.1-1.9  0.7-1.0  0.7-0.8  1.0  

Antibody half-life (days)  36-40  40-50  30-44  36-79  

Infant vaccination  9  t6 months  8  (9)4  

Correlate of protection  8  Quasi5  8  8  

Functional immunoassay  8  9  ?6  9  

Competing control option  8  8  97  98  

1Increased disease incidence usually occurs every 3-4 years 
2Via previous vaccination and/or infection 
3Prior vaccination and/or infection will lead to partial protection due to virus evolution 
4Monoclonal antibody administered to high risk infants during RSV season 
5Correlates of protection based on hemagglutinin inhibition assay or microneutralization titers 
have not been validated in young infants and are not based on maternal immunization 
6Bacterial killing in an opsonophagocytic assay has been suggested as a possible correlate of 
protection 
7Intrapartum antibiotic prophylaxis has reduced the incidence of early onset GBS neonatal 
sepsis 
8Monoclonal antibodies administered to high risk infants during RSV season reduces rates of 
hospital admission 
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Supplemental material.  
 
An innovative approach to determine research priorities in maternal 
immunization through international collaboration 
 

The lead investigators (A.M. D.W.S., T.R.K.) 
enlisted an international team of domain 
experts (Supplemental Panel 1) to share 
the review tasks. This 10-member team 
designed and conducted the landscape 
analysis (Supplemental Figure 1), dividing 
it among themselves according to their area 
of expertise. This strategy allowed the 
review process to advance quickly despite 
the large number of publications to be 
reviewed. The individual experts had the 
advantage of substantial familiarity with 
their assigned areas, enabling rapid 
identification of the key literature.  The 
immunobiology review was divided into 
several parts (Domain/area, see 
Supplemental Panel 1) as diverse expertise 
was required. Likewise, the reviews of 
pertussis, influenza, GBS and RSV vaccines 
were undertaken by individual domain 
experts, with help from local colleagues. 
 
Overview 
The first step consisted of a scoping review 
of the literature to evaluate current 
knowledge of the immunobiology of 
maternal immunization as well as the source 
and type of studies available.  A written 
summary of the key findings of the scoping 
review was prepared by each domain expert. 
The reviews followed an agreed standard 
structure, which eased the synthesis of 
results and facilitated comparisons between 
the various areas of interest. Each 
contributor then presented their summary 
during a workshop held in Vancouver, 
Canada. The format of the workshop and the 
presentations allowed generous time for 

discussions and questions to maximize input from additional expert delegates. Informed by 
contributions from the workshop attendees and prior consultations with industry and regulatory 

Supplemental Panel 1. Definitions 
Planning team: The principal authors and an 
organizational team put in place to support the 
workshop and the online survey. 
Domain/area: Gaps in maternal immunization 
research are broad and include general and disease-
specific issues. We divided these issues into domains 
(also referred to as areas); e.g. pregnancy, neonates, 
or pertussis issues. 
Domain/content experts: Contributing 
authors/experts specializing in one of the domains 
of research regarding maternal immunization. 
Landscape analysis: The process of describing and 
interpreting the landscape of an area. Applied to our 
task (‘determine research priorities in maternal 
immunization’), this process is to describe, classify 
and quantify the importance of knowledge gaps 
regarding the immune biology of maternal 
immunization as well as the network of cross-cutting 
themes connecting these knowledge gaps. 
Scoping review: A scoping study (also referred here 
as “review”) approach allow rapid mapping of 
concepts that support a research area (1); it gathers 
the main sources and types of evidence available. 
This differs from a systematic review where 
literature is identified, selected, and appraised with 
the goal of collecting and analyzing data from all 
studies on a given topic. 
Attendees/participants: Recognized experts in 
various domains of research invited to the 
workshop. The participants played an essential role 
by providing critical opinions and perspectives on all 
data regarding maternal immunization. 
Knowledge gaps: Insufficient evidence in an area of 
maternal immunization relevant to vaccine 
development and translation, including low and 
middle income country settings. 
Survey: An online platform created for ranking the 
identified knowledge gaps to create an actionable 
short list. 

Supplemental materials
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agency representatives and 
the experts of the BMGF, the 
authors identified >100 
research gaps. This attested 
to the lack of knowledge 
around the science of 
maternal immunization. 
However, the list needed to 
be shortened to be practical. 
Priority was placed on gaps 
that were deemed most 
relevant to advance vaccine 
development, including 
aspects key for effective 
maternal immunization 
programs in LMICs. In total, 
45 knowledge gaps were 
selected for inclusion in an 
online survey completed by 
nearly 200 experts from 
around the globe. The survey 
ultimately identified 20 
research gaps ranked as 
very/highly important.  
 
Scoping review 
A scoping study is a type of 
review used to “rapidly” map 
the key concepts of a 
research area and the main 

sources and types of evidences available to support them (1). We utilized a scoping review to 
identify research gaps relating to the immunobiology of maternal immunization. This strategy 
was designed to identify all relevant sources of the published literature. Therefore, the initial 
search “terms/queries” did not contain strict limitations. Contrary to a formal literature review, 
the remainder of the scoping process was not linear but iterative, requiring thoughtful 
assessment by the domain expert at each stage. The experts reviewed published literature 
already available to them and extracted, from the references, related work that had not been 
known to them beforehand. Formal literature searches complemented and expanded the 
assessment of relevant literature and revealed what was missed or recent. Using this approach, 
the experts were able to rapidly assemble and assess the pertinent literature on which to base 
their individual summaries. 
 
The following paragraphs describe the stages (or “steps’) for conducting a scoping review for the 
purpose of identifying research gaps: 1) decide on the broader question to be asked initially, 2) 
identify all relevant studies that fall into this broad topic, 3) select studies to include in a focused 
review, 4) record data about selected articles, and 5) summarize and report the results (1).  

Supplemental Panel 2. Criteria used to select articles for review. 
The following encompasses criteria used for all domain review, i.e.: 
Vaccinology and cross-talk, Breast milk, Placenta, Pregnancy, Neonates, 
GBS, Influenza, Pertussis, RSV. 
Study aim 
Study that evaluate the impact of a biological/immunological 
mechanism on maternal vaccination (domain specific) 
Type of article 
Original or Review articles 
Study population 
Humans (applied for initial search only) 
Date of publication (see note) 
Since 01-Jan-2000 until 01-March-2015 (applied for initial search only) 
Source of citation 
Identified via search as outlined in Appendix 1 for each domain 
Source of citation 
Relevant references identified in articles from original search 
Source of citation 
Known articles already contained within personal collection, or advised 
by other members of Consortium 
Language 
English 
Thesis 
PhD theses or other academic non peer-reviewed documents 
Note: Included articles since 1996 for GBS and articles since 1985 for 
Pertussis. 
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Our overarching research question was: What is known about the underlying biology and 
immunology impacting maternal immunization for prevention of infectious diseases in early life 
in general and relating to RSV, influenza, GBS, or pertussis in particular?  
 
To identify relevant studies, each term in the question became a keyword and the source for 
relevant MeSH associations. Searches were performed using the following tools: Pubmed, 
Medline, Excerpta Medica dataBASE (EMBASE), Cumulative Index to Nursing and Allied Health 
Literature (CINAHL), and hand-searching of key journals, networks, organizations, and 
conferences. For reproducibility, the terms used in the various literature searches were recorded 
by each expert (Supplemental Table 1). As the searches were in progress, an exchange of search 
terms via a shared Dropbox (Dropbox.com, Dropbox Inc.) folder helped harmonize the process.  
 
To select studies for their summary, each expert identified specific selection criteria. At the 
screening stage, selection was based on the expert’s familiarity with the literature identified. A 
record of criteria used can be found in Supplemental Panel 2 (the criteria were used for all 
domain review, i.e.: Vaccinology and cross-talk, Breast milk, Placenta, Pregnancy, Neonates, GBS, 
Influenza, Pertussis, and RSV). Articles of potential interest to a specific topic that were not 
accessible to the expert were recorded in a separate database. All the remaining articles were 
read in detail by each topic expert in order to make the final decision to include them in the 
review. The final article selection was made available to all authors via shared Dropbox folders. 
Results from the selection process, in terms of the number of articles remaining after each step, 
are shown in Supplemental Table 2. Detailed recording of each included article helped to 
summarize and categorize the articles and improved traceability and transparency of the review 
process. General and specific information was recorded for the final list of selected articles. We 
recorded the following parameters when they were available, relevant, or applicable: authors, 
year of publication, study location, population studied (mother during pregnancy, infants, etc...), 
type of study (randomized controlled trial, retrospective, etc...), bibliographic source, sample type, 
number of samples (N), aim of study, methodology, outcome measures, and key findings. Given 
the variety in publication styles and formats in addition to constraints in obtaining some of the 
information, it was sometimes not feasible to extract all information from all studies. Where 
applicable, categories were created to facilitate the dissection of the review process by each topic 
(Supplemental Table 3). 

Expert reviews 
Each expert summarized the data accumulated in the scoping review in a written report. These 
reports concluded with summaries of the key knowledge gaps as well as the domain expert’s own 
recommendations on how to address the research gaps. To harmonize the reviews amongst the 
experts, we established a review template; this also facilitated the amalgamation of all the 
reviews into a final summary report. The efficiency of the review process also benefited from 
regular teleconference calls and emails among the experts, support teams, and the lead authors.  
 
Each review included the following sections: 

x Introduction: Placed the specific topic area in context and highlighted progress, 
challenges, and prospects. 

x Search: Provided details of the literature search (such as Supplemental Table 2). 
x Results: Divided according to categories created during the scoping process (such 

as Supplemental Table 3). 
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x Summary of gaps: Analyzed the data collected and identified under-represented or 
missing categories of research, type of research, or the extent of research evidence 
within a category. 

Consultations and Workshop 
To ensure that completed reports would include the views of key stakeholders outside of 
academia which included vaccine producers and vaccine regulators, the lead authors visited or 
interviewed project leaders at major vaccine companies active in this field. Additionally, they met 
with officials of regulatory agencies of the United States of America (Food and Drug 
Administration (FDA)) and the European Union (European Medicines Agency (EMA)), who have 
had direct experience with maternal immunization issues and programs. Each of these meetings 
presented an opportunity to explore knowledge gaps from different angles. 
 
All 10 experts synthesized their key information in presentations to fellow authors and 26 
invited international experts at a Consultative Workshop held in Vancouver, Canada in May 2015.  
The workshop planning committee strived to include several invited experts from each domain 
and across the spectrum of professional affiliations (academics, public health, etc.).  Each author 
nominated invitees whose work featured prominently in their selected literature.  
 
The consultative workshop participants were: Carol Baker, Houston, TX; Kang Chen, Ann 
Arbor, MI; James Crowe, Nashville, TN; Morven Edwards, Houston, TX; Adrian Erlebacher, New 
York, NY; Hayley Gans, Stanford, CA; Chrissie Jones, London, UK; Beate Kampman, The Gambia; 
Ruth Karron, Baltimore, MD; Mark Loeb, Hamilton, ON; Richard Lo-Man, Paris; Antoine Malek, 
Bern, Switzerland; Peter McIntyre, Syndney, AU; Kingston Mills, Dublin, Ireland; Thomas Moran, 
New York, NY; Flor Munoz, Houston, TX; Stefan Niewiesk, Columbus, OH; Marta Nunes, 
Johannesburg, S Africa; Sarah Rowland-Jones, Oxford, UK; Craig Rubens, Seattle, WA; Mark 
Steinhoff, Cincinnati, OH; Geeta Swamy, Durham, NC; Pierre Van Damme, Antwerp, Belgium; 
Marietta Vasquez, Guilford, CT; Sing Sing Way, Cincinnati, OH; Dapeng Zhou, Shanghai, China;  
Sharon Berquist, Peter Dull, Hani Kim, Lynda Stuart, Ajoke Ter Meulen, Niteen Wairagkar, Chris 
Wilson, Chris Karp, Keith Klugman, Bill and Melinda Gates Foundation, Seattle, WA. 
 
Knowledge gaps and global survey 
All research gaps identified during the workshop were noted. In total, 108 gaps were identified, 
attesting to the limited science underpinning maternal immunization. The full, unsorted list of 
gaps is shown in Appendix 1. From the full list of knowledge gaps, 45 were selected by attendees 
of the workshop for further critical appraisal by the global community of experts on maternal 
immunization. The gaps selected for inclusion in the survey were the ones likely to have more 
immediate impact on the development of vaccines and programs for maternal immunization 
and/or to represent key issues for lower and middle income countries. The 45 selected gaps are 
shown in Supplemental Figure 2. 
 
An online survey was developed to prioritize the 45 selected gaps into a shorter, more actionable 
list. The survey was hosted by FluidSurveys at the University of British Columbia. This unique 
consultative process was intended to include most academic researchers who had published in 
the field in the last 5 years, as well as a wide range of industry experts and national immunization 
policy-makers. Expertise of invitees was wide-ranging and included immunology, vaccine trials, 
microbiology, epidemiology, and social sciences. Primary affiliations of invitees included 
universities, governments, industry, and non-government organizations (see demographics of 
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survey respondents in Supplemental Table 4). These individuals were approached via e-mail 
with a request to complete a confidential online questionnaire. The first survey invitation was 
sent on July 3rd, 2015; a second was sent between July 6th and 30th, 2015. At least two reminders 
were sent to non-responders at one week intervals. The survey closed in mid-August. For each of 
the 45 listed knowledge gaps, respondents were asked to rate the importance of the item using a 
5-point Likert scale. Respondents could opt out of rating the importance of a gap if they lacked 
sufficient knowledge to do so. After rating the importance of a gap, respondents were asked to 
also rate the relevance of the item to each of the several considerations: 

x population diversity:, i.e. maternal and infant variables (genetic, environmental, 
population health, etc) influencing responses 

x vaccine formulation: including antigen choice, dosage, dosing schedule, etc 
x vaccine efficacy: such as the effect of host variables on achievable protection 
x vaccine safety: for both mother and infant 
x programmatic considerations: such as factors affecting program delivery or acceptance 

rates 

These ratings also used a 5-point Likert scale. Not all considerations were necessarily relevant to 
each survey item but listing all of them aided format consistency. Of the 410 experts reached by 
email, 194 (47%) submitted evaluable responses (an excellent response rate for a mid-summer 
survey of substantial length; median time of 22 minutes). Two-thirds indicated involvement in 
maternal immunization research within the previous 2 years (Supplemental Table 4). The 45 
gaps were ranked in descending order of their rated importance. A number of gaps shared the 
same importance score in which case the ranking sequence was based on the order in which the 
item appeared in the survey (Supplemental Figure 2). The scores were calculated for all 
respondents and also compared between those with and without special expertise in that specific 
area. The results were remarkably consistent among respondents, including between 
respondents from industry and other backgrounds. Twenty knowledge gaps emerged as most 
important, all having mean scores between 4 and 5 (high to very high importance). These gaps 
are discussed in detail in the individual reviews accompanying this article and as part of the 
series “Landscape review of maternal immunization”. 
 
The reviews produced by the experts in the context of the landscape analysis were included in 
the final report to the BMGF. The publication of a series of articles in The Lancet Infectious 
Diseases broadened the dissemination of our results such as to reach medically trained 
professional worldwide. The series contains shorter versions of each domain expert’s review and 
included the major results of the survey for each domain.  
 
Notably, the review process, from convening the expert reviewers to writing the final report, was 
completed within 6 months.  
 
Discussion 
To evaluate the needs of new or emerging areas of research, granting agencies periodically seek 
advice to determine the "state of the art", identify knowledge gaps, and plan future directions. 
Advice-seeking takes many forms, including commissioned literature reviews, expert advisory 
panels and workshops as well as consensus-seeking meetings. Each approach has advantages 
and disadvantages. Literature reviews are a common starting point but can take considerable 
time to complete. Expert panels and workshops can produce useful guidance more quickly but 
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risks incompleteness and attendee biases. Consensus-seeking meetings may also be influenced 
by the expertise and personalities of the invited participants. 
 
Evaluating the scientific foundation of maternal immunization posed unique challenges that we 
attempted overcome in innovative ways. Since the knowledge base is widely distributed among 
diverse specialties, we chose to engage 10 expert reviewers, each familiar with a particular 
aspect of this science. Dividing the literature review was to speed its completion, as would 
reliance on experts already familiar with their area. Using a scoping approach to select only 
literature relevant to the immunobiologic focus of our review also sped up the review process 
and synthesis of information. Reviewers were coached through these processes to maximize 
procedural uniformity. Most relished the opportunity to ensure mastery of their subject area and 
to learn from the other reviewers in the process. 
 
The workshop meeting that we held was typical of expert workshops except each presenter had 
completed a formal review and synthesis of the assigned literature. Presentations were enriched 
by insights from separate in-depth discussions with regulators and manufacturers, who may 
have otherwise been more reluctant to speak at open meetings. The audience of invited experts 
discussed the presentations, adding their insights. This worked well: over 100 knowledge gaps 
were identified to be distributed across the spectrum of the science. 
 
To be actionable, the list of gaps needed to be shortened and prioritized. We selected 45 for 
further consideration based on their direct relevance to vaccine development or program 
refinement. Our method of consensus-seeking on priorities was to invite the global community of 
maternal immunization-oriented researchers, policy-makers and manufacturers to rank the 
importance of each of these 45 gaps, using an online survey. Nearly 200 responded, representing 
about half of the identified world's experts on this topic. Such broad input reduced the risk of 
personal biases in the results. Importantly, rating scores were remarkably similar between self-
reported experts and non-experts on specific items in the survey (e.g. maternal immunology) and 
between industry and other respondents. Twenty gaps were rated most important - a sufficiently 
small number to be considered for future studies. Given that future studies will be conducted 
around the globe, obtaining endorsement of research priorities by the global research 
community represents a significant strength of our review process, although we do not know if 
non-responders' views would have differed or if rankings would have differed had fewer gaps 
been included for consideration. 
 
Lastly, it is noteworthy that the whole review process was completed in just less than 6 months, 
making it feasible to include all or portions of the method in future exercises to identify research 
priorities. 
 
Conclusion 
The unique approach developed here to rapidly conduct a landscape analysis was deemed 
successful based on i) the wide range of topics covered (immune response to vaccination during 
pregnancy; placental biology relevant to maternal immunization; maternal immunization and 
breastfeeding; fate and function of maternal antibodies in the fetus, newborn and infant; 
pertussis; GBS; RSV; influenza); ii) range of experts consulted (industry, regulators, academics, 
decisions makers, funders); and iii) consensus of the global community of experts in the field on a 
short list of actionable research priorities. The final report was provided to BMGF to help shape 
their future investments in maternal immunization research. Lastly, this effort also brought 
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together, for the first time, experts across a wide range of disciplines relevant to maternal 
immunization. This unique amalgamation of individuals sharing a common interest and passion 
led to the natural and spontaneous formation of a global consortium of volunteers focused on 
advancing effective and safe maternal immunization. This consortium endorsed the landscape 
approach to maternal immunization and the unique processes used to produce the final report as 
described here. 
 
 
Reference 
1. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Social 
Research Methodology. 2005; 8: 19-3 
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Supplemental Figure 1. Steps of the landscape review process. The first step was a 
scoping review of the literature to rapidly evaluate published data regarding maternal 
vaccination, summarized by each domain expert. To gain input from a wider range of 
stakeholders, maternal vaccine developers at 3 major vaccine companies (CO) and 
representatives from 2 key regulatory agencies (FDA, EMA) were consulted. Each domain 
expert’s summary was presented to additional experts at a workshop, leading to 
identification of > 100 research gaps. Of these, 45 gaps considered most relevant for 
advancing vaccine development were included in an online survey. Nearly 200 global experts 
responded to the survey and ranked 20 gaps as most important for inclusion in future 
research. 
 



9 
 

 
 
 

 
 
 
 
 
  

3.9

4.0

4.6

4.6

3.9

4.0

3.8

3.8

3.7

4.0

4.5

4.3

3.6

4.0

3.8

3.8

4.2

3.2

3.2

3.6

4.4

3.5

3.8

3.8

3.9

4.3

3.9

4.0

3.6

4.3

3.7

4.4

3.7

3.6

3.9

4.0

4.1

3.7

4.4

3.8

3.8

3.9

4.2

4.1

3.7

2.0 2.5 3.0 3.5 4.0 4.5 5.0

45. Trans-placental transfer and decay of maternal IgG following natural infection versus …
44. Impact of pre-existing immunity on immune responses to maternal immunization.

43. Protection against lower respiratory tract infection and disease in infants.

42. Correlates of protection against infant infection, disease or death

41. Correlate of protection against maternal infection or disease.

40. Interference with immune responses to carrier proteins in infants.

39. Potential for pre-pregnancy immunization.

38. Serotype specific or cross-reactive pre-existing immunity.

37. Colonization as source and booster of pre-existing immunity

36. Impact of strain on correlate of protection.

35. Correlate of protection against maternal/infant colonization, early/late onset, …
34. Serotype specific immunogenicity, placental transfer and persistence.

33. Immunogenicity, efficacy and safety of whole cell pertussis vaccine in pregnancy.

32. Reactogenicity / immunogenicity of repeated doses of Tdap in subsequent pregnancies.

31. Influence of immunizing with a different pertussis vaccine in pregnancy vs. infancy

30. Diversity and interaction of the immune responses against individual pertussis antigens.

29. Requirement of multiple antigens and role of pertussis toxin in protection.

28. Need for pregnant non-human primate model

27. Need for human challenge model

26. Specialization of changes in the characteristics of pertussis bacteria

25. Correlates of protection against colonization, infection, disease or death

24. Impact of pregnancy complications 

23. Maternal Immunization regimen (vaccine formulation, timing, etc).

22. Modulation of immune components in breast milk by maternal immunization

21. Mechanism of vaccine interference by maternal antibodies.

20. Clinical relevance of vaccine interference by maternal antibodies.

19. Impact on effector and memory T cell responses in the infant.

18. Impact on effector and memory B cell responses in the infant

17. Impact of maternal IgG structure and function, concentration

16. Impact of maternal immunization regimen (vaccine formulation, timing, dose, etc.).

15. Impact of maternal IgG structure and function on decay kinetics in infant.

14. Impact of maternal immunization regimen (vaccine formulation, timing, dose, etc).

13. Impact of pregnancy complications

12. In-utero modulation of non-specific immune responses.

11. In-utero modulation of vaccine antigen specific immune responses.

10. Impact of pregnancy complications

9. Impact of vaccine antigen (protein, polysaccharide, dose)

8. Regulation of the expression and function of the placental IgG receptor FcRn.

7. Impact of timing of vaccination in pregnancy in relation to time of delivery.

6. Impact of concomitant vaccine administration during pregnancy.

5. Impact of pregnancy on vaccine-induced memory B cells.

4. Impact of pregnancy on the structure and function and kinetics of antibodies induced by …
3. Impact of specific underlying conditions on immune responses to vaccines during pregnancy.

2. Impact of type of vaccine antigen on the immune response of pregnant women immunized …
1. Impact of natural infection versus immunization before pregnancy on the immune response …

R
SV

G
B

S
P

e
rt

u
ss

is

B
re

as
t M

ilk
 

tr
an

sf
e

r o
f 

Im
m

u
n

it
y

Fe
tu

s 
an

d
 In

fa
n

t

Tr
an

sp
la

ce
n

ta
l 

tr
an

sf
e

r o
f 

Im
m

u
n

it
y

P
re

gn
an

t W
o

m
e

n

1=Not important; 2=Low importance; 3=Somewhat important; 4=High importance; 5=Very high importance

Average Importance Score by Domain (1=Low Importance; 5=Very High Importance)
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Gaps identified. 
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Supplemental Table 1.  Search strategy for literature review 
  

 
  

  Vaccinology and cross-talk   
  # Terms   
  1 cord blood immunoglobulins   
  2 passive immunity   
  3 immunoglobulins, passive   
  4 placental immunoglobulin transfer   
  5 neonatal immunoglobulins   
  6 immunity, mothers   
  7 Immunity, newborns   
  8 maternal antibodies   
  9 waning immunity   
  10 pregnancy, vaccination   
  11 vaccine   
  12 vaccination   
  13 immunisation   
  14 immunization   
  15 #11 or #12 or #13 or #14   
  16 pregnancy   
  17 maternal   
  18 #16 or #17   
  19 infant   
  20 neonate   
  21 newborn   
  22 #19 or #20 or #21   
  23 #15 and #18 and #22   
        
  Breast milk   

  

1 

("mothers"[MeSH Terms] OR "mothers"[All Fields] OR "maternal"[All Fields]) AND 
("immunisation"[All Fields] OR "vaccination"[MeSH Terms] OR "vaccination"[All 
Fields] OR "immunization"[All Fields] OR "immunization"[MeSH Terms]) AND 
("milk, human"[MeSH Terms] OR ("milk"[All Fields] AND "human"[All Fields]) OR 
"human milk"[All Fields] OR ("breast"[All Fields] AND "milk"[All Fields]) OR 
"breast milk"[All Fields] OR "colostrum"[MeSH Terms]) AND English[lang]   

        
  Placenta     

  
1 

exp mothers/ or maternal-fetal exchange/ or prenatal nutritional physiological 
phenomena/ or exp pregnancy, high-risk/ or exp pregnancy outcome/ or exp 
parturition/   

  2 (maternal or mother$ or pregnancy).mp   
  3 #1 or #2   

  4 exp immunity/ or vaccination/ or immunomodulation/ or immunotherapy/ or exp 
immunization/   
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  5 (immunization or immunisation) or vaccination or vaccine$.mp   
  6 transfer adj3 (immunization or immunisation)   
  7 exp vaccines/   
  8 vaccine$ or combined vaccine$.mp   
  9 exp serology/   
  10 maternal-fetal exchange$ or passive transfer or serology or antibody transfer.mp   
  11 (transfer adj3 (maternal or mother)).mp   
  12 #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11   
  13 exp Infant, Newborn/   
  14 (neonate$ or newborn$).mp   
  15 #13 or #14   

  16 exp Placenta Accreta/ or exp Placenta, Retained/ or exp Placenta/ or exp Placenta 
Previa/ or exp Placenta Diseases/ or  placentation/    

  17 placenta or placentation or afterbirth.mp   
  18 #16 or #17   

  

19 

immune system phenomena/ or antibody affinity/ or antibody diversity/ or 
antibody specificity/ or binding sites, antibody/ or exp dose-response 
relationship, immunologic/ or exp immune system processes/ or exp 
immunogenetic phenomena/ or exp lymphoid tissue/   

  20 antibod$ isotype$ or immunoglobulin$.mp   

  21 exp antigens/ or exp microbiological processes/ or exp microbiota/ or  exp 
maternal nutritional physiological phenomena/ or exp Breast Feeding/   

  22 pathogen or pathogens or prenatal nutrition or maternal nutrition.mp   
  23 #19 or #20 or #21 or#22   

  

24 

biological transport, active/ or facilitated diffusion/ or protein transport/ or 
secretory pathway/ or exp Receptors, Immunologic/ or endocytosis/ or exp 
transcytosis/ or exp Immunoglobulin Fragments/ or exp Absorption, 
Physiological/   

  25 (biological transport or Fc receptor$ or endocytosis).mp   
  26 exp Infectious Disease Transmission, Vertical/ or exp risk factors/   
  27 mother to child transmission.mp   
  28 #24 or #25 or##26 or #27   
  29 (((((#3 and #12) and #15) and #18) and #23) and #28)   
        
  Pregnancy   

  
B cells & TFH biology in human or mice pregnancy and its potential impact on vaccine 
responses during pregnancy   

  1 "B-Lymphocytes"[Mesh]   
  2 "Pregnancy"[Mesh] and "Humans"[Mesh]   
  3 "Pregnancy"[Mesh] and "Mice"[Mesh]   
  4 1 AND 2   
  5 1 AND 3   
  6 "immunoglobulins"[mesh] AND "glycosylation"[mesh]   
  7 2 AND 6   
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  8 3 AND 6   
  9 "Estrogens"[Mesh] OR  "Progesterone"[mesh]   
  10 9 AND 1 AND 2   
  11 9 AND 1 AND 3   

  12 CD40 Ligand"[Mesh] OR "Inducible T-Cell Co-Stimulator Protein"[Mesh] 
"interleukin-21"[Supplementary Concept]   

  13 12 AND 2   
  14 12 AND 3   

  15 Immunoglobulin G"[Mesh] OR Immunoglobulin G/immunology"[Mesh] OR 
Immunoglobulin Isotypes"[Mesh]   

  16 "vaccination"[mesh]  OR "immunization"[Mesh]   
  17 15 AND 16 AND 2 (limit to clinical trials)   
  18 15 AND 16 AND 3   
  Innate immunity, pregnancy and vaccines   
  1 "Dendritic Cells"[Mesh]   
  2 "Monocytes"[Mesh]   
  3 "Immunity, innate"[Mesh]   
  4 Pregnancy"[Mesh]   
  5 "Humans"[Mesh] OR "Mice"[Mesh]   
  6 "Placenta"[Mesh]   
  7 (1 OR 2 OR 3) AND 4 AND 5 NOT 6   

  8 "Immunization"[Mesh]) OR "Vaccination"[Mesh]) OR "Vaccines"[Mesh] or 
"Adjuvant"[Mesh]   

  9 "interleukins"[Mesh]   
  10 (1 OR 2 OR 3 OR 9) AND 8 AND 4 AND 5   
  Clinical conditions in pregnancy & response to vaccines   

  
1 

(((("Pregnancy"[Mesh]) AND ("Vaccination"[Mesh] OR "Immunization"[Mesh] OR 
"Vaccines"[Mesh]) AND ("B-Lymphocytes"[Mesh] OR "Antibodies"[Mesh]) AND 
"Humans"[Mesh])))   

  2 Pre-eclampsia   
  3 Eclampsia   
  4 Diabetes   
  5 Obesity   
  6 Autoimmunity   
  7 Malnutrition   
  8 Asthma   
  9 Chronic hepatitis   
  10 Hepatitis B   
  11 Tuberculosis   
  12 Malaria   
  13 Hypergammaglobulinemia   
  14 Nutrition   
  15 1 AND 2   
  16 1 AND 3   



13 
 

  17 1 AND 4   
  18 1 AND 5   
  19 1 AND 6   
  20 1 AND 7   
  21 1 AND 8   
  22 1 AND 9   
  23 1 AND 10   
  24 1 AND 11   
  25 1 AND 12   
  26 1 AND 13   
  27 1 AND 14   
        
  Neonates   
  1 exp mothers/ or exp pregnancy/   
  2 (maternal or mother$ or pregnancy).mp.   
  3 1 or 2   

  4 exp immunity/ or vaccination/ or exp immunization/ or exp vaccines/ or 
maternal-fetal exchange/   

  

5 

(immunization or immunisation or vaccination or vaccine$ or combined vaccine$ 
or maternal-fetal exchange$ or passive transfer or antibody transfer).mp. 
[mp=title, abstract, original title, name of substance word, subject heading word, 
keyword heading word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier]   

  

6 

(transfer adj3 (immunization or immunisation)).mp. [mp=title, abstract, original 
title, name of substance word, subject heading word, keyword heading word, 
protocol supplementary concept word, rare disease supplementary concept word, 
unique identifier]   

  7 4 or 5 or 6   
  8 exp Infant, Newborn/   
  9 (neonate$ or newborn$).mp.   
  10 8 or 9   

  
11 

exp antibody-producing cells/ or exp antigen-presenting cells/ or exp leukocytes/ 
or exp inflammation/ or exp cytokines/ or exp Immunoproteins/ or exp 
Inflammation Mediators/   

  

12 

(immune response or cytokine$ or antibodies).mp. [mp=title, abstract, original 
title, name of substance word, subject heading word, keyword heading word, 
protocol supplementary concept word, rare disease supplementary concept word, 
unique identifier]   

  13 11 or 12   

  
14 

exp immune system phenomena/ or exp antigens/ or exp Absorption, 
Physiological/ or biological transport/ or exp Receptors, Immunologic/ or 
endocytosis/ or exp transcytosis/ or exp Immunoglobulin Fragments/   
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15 

("antibody isotype" or immunoglobulin$ or "antibody interference" or "antibody 
subclass" or "antibody half-life" or "antibody decayor antibody transport" or "Fc 
receptor").mp. [mp=title, abstract, original title, name of substance word, subject 
heading word, keyword heading word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier]   

  16 14 or 15   
  17 3 and 7   
  18 10 and 17   
  19 13 and 18   
  20 16 and 19   
  21 limit 20 to english language   
  22 limit 21 to yr="2010 -Current"   
        
  GBS     
  1 Maternal-Fetal Exchange/   
  2 Histocompatibility, Maternal-Fetal/   
  3 Maternal Serum Screening Tests/   
  4 Maternal Nutritional Physiological Phenomena/   
  5 immunity, maternally-acquired/   
  6 mothers/   
  7 (maternal or mother*).mp.   
  8 1 or 2 or 3 or 4 or 5 or 6 or 7   
  9 exp Vaccination/   
  10 immunization/   
  11 vaccination*.mp.   
  12 (immunization or immunisation).mp.   
  13 immunostimulation.mp.   
  14 (transfer adj3 (immunization or immunisation)).mp.   
  15 9 or 10 or 11 or 12 or 13 or 14   
  16 8 and 15   
  17 immunity, Innate/   
  18 innate immunity.mp.   
  19 Infant, Newborn/   
  20 (newborn$ or infant$).mp.   
  21 19 or 20   
  22 immune response.mp.   
  23 17 or 18 or 22   
  24 21 and 23   
  25 16 and 24   
  26 Group B streptococcus.mp.   
  27 Streptococcus agalactiae/   
  28 Streptococcal Infections/   
  29 26 or 27 or 28   
  30 25 and 29   
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  31 16 and 21 and 29   
        
  Influenza     

  
1 

exp mothers/ or maternal-fetal exchange/ or placentation/ or prenatal nutritional 
physiological phenomena/ or exp pregnancy, high-risk/ or exp pregnancy 
outcome/ or exp parturition/   

  2 (maternal or mother$ or pregnancy).mp.   
  3 1 or 2 [Part1 Maternal]   

  4 exp immunity/ or vaccination/ or immunomodulation/ or immunotherapy/ or exp 
immunization/   

  

5 

(immunization or immunisation or vaccination or vaccine$).mp. [mp=title, 
abstract, original title, name of substance word, subject heading word, keyword 
heading word, protocol supplementary concept word, rare disease supplementary 
concept word, unique identifier]   

  

6 

(transfer adj3 (immunization or immunisation)).mp. [mp=title, abstract, original 
title, name of substance word, subject heading word, keyword heading word, 
protocol supplementary concept word, rare disease supplementary concept word, 
unique identifier]   

  7 exp vaccines/   

  

8 

(vaccine$ or combined vaccine$).mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, keyword heading word, protocol 
supplementary concept word, rare disease supplementary concept word, unique 
identifier]   

  9 exp serology/   

  

10 

(maternal-fetal exchange$ or passive transfer or serology or antibody 
transfer).mp. [mp=title, abstract, original title, name of substance word, subject 
heading word, keyword heading word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier]   

  11 (transfer adj3 (maternal or mother)).mp.   
  12 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 [Part2 Immunization]   
  13 exp Infant, Newborn/   
  14 (neonate$ or newborn$).mp.   
  15 13 or 14 [Part3 Neonatal]   
  16 exp Influenza, Human/   
  17 (influenza or influenza B or influenza virus).mp.   
  18 16 or 17 [Part4 Influenza]   

  

19 

immune system phenomena/ or antibody affinity/ or antibody diversity/ or 
antibody specificity/ or binding sites, antibody/ or exp dose-response 
relationship, immunologic/ or exp immune system processes/ or exp 
immunogenetic phenomena/ or exp lymphoid tissue/ or exp Placenta/   

  

20 

(antibod$ isotype$ or immunoglobulin$).mp. [mp=title, abstract, original title, 
name of substance word, subject heading word, keyword heading word, protocol 
supplementary concept word, rare disease supplementary concept word, unique 
identifier]   

  21 exp antigens/ or exp microbiological processes/ or exp microbiota/   
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22 

(pathogen or pathogens).mp. [mp=title, abstract, original title, name of substance 
word, subject heading word, keyword heading word, protocol supplementary 
concept word, rare disease supplementary concept word, unique identifier]   

  23 19 or 20 or 21 or 22 [Part5 Immunobiological]   
  31 3 and 12 [Part 1+2]   
  32 31 and 15 [Part (1+2)+3]   
  33 32 and 18 [Part (1+2+3)+4]   
  34 33 and 23 [Part (1+2+3+4)+5]   
  35 limit 34 to (english language and yr="2000 -Current")   
        
  Pertussis   

  1 mothers[Mesh] or Pregnancy[Mesh] or mothers[All Fields]  or maternal[All Fields]  
or pregnancy[All Fields]    

  

2 

Immune System Phenomena[Mesh] or "vaccination"[All Fields]  or 
"Vaccines"[Mesh] or "combined vaccine"[All Fields]  or "Serology"[Mesh]  or  
"maternal-fetal exchange"[All Fields] or "passive transfer"[All Fields]  or 
"serology"[All Fields or "antibody transfer"[All Fields]  or "Receptors, 
Immunologic"[Mesh]  or "models, animal"[MeSH Terms]  or "immune system 
phenomena"[MeSH Terms]  or "immune system phenomena"[All Fields]  or 
"antibody affinity"[MeSH Terms]  or "antibody affinity"[All Fields]  or "antibody 
diversity"[MeSH Terms]  or "antibody diversity"[All Fields]  or "binding sites, 
antibody"[MeSH Terms]  or "antibody binding sites"[All Fields]  or "immune 
system processes"[MeSH Terms]  or "immune system processes"[All Fields]  or 
"immunogenetic phenomena"[MeSH Terms]  or "immunogenetic phenomena"[All 
Fields]  or "lymphoid tissue"[MeSH Terms]  or "lymphoid tissue"[All Fields]  or 
"antigens"[MeSH Terms]  or "antigens"[All Fields]  or "microbiological 
processes"[MeSH Terms]  or "microbiological processes"[All Fields]  or 
"immunoglobulins"[All Fields]  or "immunoglobulin"[All Fields]     

  3 #1 and #2   
  4 "Infant, Newborn"[Mesh]  or "neonate"[All Fields]  or "neonates"[All Fields]     
  5 #3 and #4   

  

6 

or "Infant, Newborn"[Mesh]  or "neonate"[All F "Whooping Cough"[Mesh]  or 
"Virulence Factors, Bordetella"[Mesh]  or "Defensins"[Mesh]  or "Host-Pathogen 
Interactions"[Mesh]  or "Fimbriae, Bacterial"[Mesh]  or "Fimbriae Proteins"[Mesh]  
or "whooping cough"[All Fields]  or "Pertussis toxin"[All Fields]  or "defensins"[All 
Fields]  or "Host-Pathogen Interactions"[All Fields]  or "Filamentous 
hemagglutinin"[All Fields]  or "pertactin"[All Fields]  or "fimbriae"[All Fields] 
ields]  or "neonates"[All Fields]     

  7 #5 and #6   
        
  RSV     
  1 Search maternal or mother* or pregnancy   
  2 Search "parturition"[mesh]   
  3 Search "prenatal nutritional physiological phenomena"[mesh]   
  4 Search "placentation"[mesh]   
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  5 Search "mothers"[mesh]   
  6 Search "pregnancy"[mesh]   
  7 Search "maternal-fetal exchange/immunology"[mesh]   
  8 Search "maternal-fetal exchange"[mesh]   
  9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8   
  10 Search (antibod* OR immunoglobulin*)   
  11 Search immune response   
  12 Search "immunity, mucosal"[mesh]   
  13 Search "immunity, innate"[mesh]   
  14 Search "neutralization tests"[mesh]   
  15 Search "lung/ immunology"[mesh]   
  16 Search "immunity, maternally acquired"[mesh]   
  17 Search "immunity, cellular"[mesh]   
  18 Search "immunity, active"[mesh]   
  19 Search "Cytokines"[mesh]   
  20 Search "CD8 positive t lymphocytes"[mesh]   
  21 Search "CD4 positive t lymphocytes"[mesh]   
  22 Search "antibody specificity"[mesh]   
  23 Search "immunization, passive"[mesh]   
  24 Search "immunoglobulins"[mesh]   
  25 Search "antibodies"[mesh]   

  26 #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR 
#20 OR #21 OR #22 OR #23 OR #24 OR #25   

  27 Search RSV   
  28 Search respiratory syncytial virus   
  29 Search "respiratory syncytial virus infections"[mesh]   
  30 Search "respiratory syncytial virus vaccines"[mesh]   
  31 Search "respiratory syncytial virus, human"[mesh]   
  32 Search "respiratory syncytial viruses"[mesh]   
  33 #27 OR #28 OR #29 OR #30 OR #31 OR #32   
  34 #9 AND #26 AND #33   
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Supplemental Table 2. Results from the literature search and selection process (Number 
of articles) 
 

 
 
 
  

Steps (in processing order) Va
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RS
V

Initial search 2859 311 108 3808 547 110 54 189 282
General exclusion criteria: language, 
publication date, etc 349 162 78 248 547 30 54 105 129

Full text reviewed after abstract screening 211 68 78 119 179 30 54 49 57
Additional references added from citations, 
personal collection, as advised by other 
members of consortium*

20 28 26 108 33 27

Articles used for final report 53 88 28 86 115 138 32 48 84
*Blank space denotes information not available.
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  Supplemental Table 3. Conceptual categories created during the review process by 
each topic area (reported when applicable) 
 

  

    

  Vaccinology and cross-talk     
    Categories     
        
  1 Response to immunization in pregnancy   
  2 Placental transfer of antibodies   
  3 Neonatal issues relating to maternal immunization   
  4 Infant protection   
  5 Infant immunization in the context of maternal immunization/maternal antibodies   
  6 Enhancing vaccine programme development   
  7 Public involvement   
          
  Pertussis     
    Categories     
    Sub-theme   
  1 Protective Antigens:     
      PT   
      FHA   
      PRN   
      Agglutinogens   
  2 Mechanism of immunity: antibody response placental transfer kinetics:   
      PT   
      FHA   
      PRN   
      FIM   
      ACT   
      Agglutinogens   
  3 Mechanism of immunity: Impact of timing of vaccination during pregnancy:   

      antibody half life post-
partum   

      prematurity vs. term   

      antibody levels during 
pregnancy   

  4 Mechanism of immunity: Effect on active immunization of infant:   

      presence or absence of 
interference   

  5 Breast milk:     

      transfer of antibody to breast 
milk   

      activity of breast milk against 
B. pertussis   

  6 Whole cell vs. acellular pertussis vaccine:     
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      whole cell vs acellular   
          
  RSV       
    Categories     
        

  1 Does maternal antibody protect infants against RSV infection and, if so, for how 
long?   

  2 Is infant protection due to maternal antibody, or might other factors explain the 
association?   

  3 What are the relative contributions of breast milk and transplacental antibody 
transfer?   

  4 What is the most relevant and appropriate antibody to measure, and how?    
  5 What do animal models tell us?   

  6 Could maternal antibody interfere with infant immune responses to RSV vaccines 
or infection?   

  7 What gaps in knowledge are there?   
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Supplemental Table 4. Demographic characteristics of the survey respondents. 
 

Primary Affiliation 
Researche
r 
N=123 

Decision 
maker N=10 

Research 
Support 
N=8 

Other 
expert 
N=53 

Total 
N=194 

University 97 3 4 18 122 
Government 13 4 2 16 35 
Industry 4 2 1 6 13 
NGO 8 1 1 10 20 
Other & None 
provided 1 0 0 3 4 

    Consider themselves an expert (multiple selections are 
allowed)   

Influenza 62 5 2 29 98 
Pertussis 52 7 1 30 90 
RSV 53 4 0 23 80 
GBS 25 1 3 12 41 
Placental biology 6 0 1 1 8 
Breast milk biology 9 1 0 3 13 
Maternal 
immunology 26 0 1 11 32 

Neonatal 
immunology 35 3 1 14 53 

      Primary Specialization 
Immunologist 32 2 3 5 42 
Clinician 29 5 2 15 51 
Clinical Trial 26 0 0 9 35 
Microbiologist 7 1 1 5 15 
Epidemiologist 23 2 2 15 42 
Social Scientist 3 0 0 0 3 
Program Manager 
/Administrator 2 0 0 2 4 

Other 1 0 0 1 2 
 

In the last 2 years, were you involved 
in Yes (%) No (%) Total (%) 

Maternal Immunization Research? 129 (66%) 65 (34%) 194 (100%) 
Basic Science/immunology based? 52 (40%) 77 (60%) 129 (100%) 
Clinical Trials? 70 (54%) 59 (46%) 129 (100%) 
Programmatic Study/evaluation? 48 (37%) 81 (63%) 129 (100%) 
Social Science? 15 (12%) 114 (88%) 129 (100%) 
Policy? 24 (19%) 105 (81%) 129 (100%) 
Other? 1 (1%) 128 (99%) 129 (100%) 
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Appendix 1. 108 knowledge gaps identified during search, presentations, and discussion sessions. 
 
Overall highlights of the gaps: 

1. Need clinical disease definitions for future studies 
2. Global disease burden 
3. Current situation of advisory groups leapfrogged regulators:  

x e.g. current Tdap recommendations expedient but with possible handicap for controlled 
studies in pregnant women 

4. Ecological evidence:  
x e.g. opportunity to use actual experience as part of credible evidence 

5. Advocacy group for maternal immunization:  
x e.g. mediator/connector between industry, regulators, funders, academics public health 

6. We need qualified (standardized) assays  

Pregnant women 
1. Most vaccines will target pathogens against which pregnant women have pre-existing immunity.  

Rate the importance and feasibility of filling the following knowledge gaps: 
 

x Enhancement or suppression of vaccine responses by pre-existing immunity  
x Impact of natural infection versus vaccination before pregnancy on the quality and boost-

ability of pre-existing immunity 
x Impact of type of antigen (protein, polysaccharide) on the quality and boost-ability of pre-

existing immunity 
 

2. Pregnant women can be a reservoir of pathogens. Rate the importance and feasibility of filling the 
following knowledge gaps: 
 

x Impact of pregnancy on pathogen reservoir 
x Impact of vaccination before or during pregnancy on pathogen reservoir 

 
3. Maternal characteristics, health and infections during pregnancy may impact immune responses 

to vaccines. Rate the importance and feasibility of filling the following knowledge gaps: 

x Impact of the global burden of infectious pathogens in low, middle and high income 
countries on immune responses to vaccines during pregnancy 

x Impact of specific pathogens (HIV, malaria, chronic hepatitis, helminthiasis,..) on 
immune responses to vaccines during pregnancy 

x Impact of immune dysregulation (hypergammaglobulinemia, immune cell 
exhaustion, autoimmunity,..) on immune responses to vaccines during pregnancy 

x Impact of age or parity on immune responses to vaccines during pregnancy 
x Impact of nutrition on immune responses to vaccines during pregnancy 

4. Pregnancy may impact immune responses to vaccines. Rate the importance and feasibility of 
filling the following knowledge gaps: 

x Impact of pregnancy on the structure and function of antibodies induced by 
vaccines 

x Impact of pregnancy on the decay of antibodies induced by vaccines 
x Impact of pregnancy on vaccine-induced memory B cells 
x Impact of pregnancy on innate immune responses and inflammation induced by 

vaccines  
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x Impact of timing of vaccination during pregnancy on immune responses to 
vaccines  

5. The induction of protective immune responses during pregnancy may require the use of adjuvants.  
Rate the importance and feasibility of filling the following knowledge gaps: 

 
x Impact of adjuvants on adaptive immune responses to vaccines during pregnancy 
x Impact of adjuvants on innate/inflammatory responses during pregnancy 

Transplacental transfer of immunity 
1. Several factors may influence the trans-placental transfer of IgG.  Rate the importance and 

feasibility of filling the following knowledge gaps regarding the trans-placental transfer of IgG: 
 

x Impact of timing of vaccination during pregnancy  
x Impact of vaccine antigen (protein, polysaccharide)  
x Impact of vaccine antigen dose  
x Impact of antigen priming (vaccine or pathogen) before pregnancy  
x Impact of adjuvants  
x Impact of maternal IgG structure 
x Impact of hypergammaglobulinemia 
x Impact of pathogens other than HIV or malaria 
x Impact of pregnancy complications (preeclampsia, preterm labor, infections, premature 

delivery..) 
 

2. Maternal IgG are transported by the neonatal Fc receptor (FcRn) through the placenta.  Rate the 
importance and feasibility of filling the following knowledge gaps: 

 
x Regulation of the expression of the FcRn by syncitiotrophoblasts 
x Factors impairing the development of the placenta 
x Impact of pathogens on the development and function of the placenta 
x Impact of the placental microbiome on its development and function 
x Transport of antigen-IgG complexes through the placenta  

Fetus and infant 
1. Maternal immunization may impact the fetal immune system.  Rate the importance and feasibility 

of filling the following knowledge gaps: 
 

x In-utero priming or suppression of vaccine antigen specific immune responses 
x In-utero priming or suppression of non-specific immune responses 

 
2. Maternal antibodies provide protective immunity in the infant.  Rate the importance and 

feasibility of filling the following knowledge gaps: 
 

x Distribution of maternal antibodies in the infant (systemic, mucosa,..) 
x Role of maternal antibodies in the defence against respiratory pathogens 
x Potential induction of active immunity in the infant by attenuation of natural infection 

(passive-active immunization) 
 

3. Several factors may influence the decay of maternal IgG in infants.  Rate the importance and 
feasibility of filling the following knowledge gaps regarding IgG decay: 
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x Impact of environment (low versus middle or high income countries)  
x Impact of maternal infections (HIV, malaria,..) 
x Impact of prematurity 
x Impact of timing of immunization in the mother 
x Impact of antigen used to immunize the mother (protein, polysaccharide)  
x Impact of adjuvants used to immunize the mother 
x Impact of antigen priming (vaccine or pathogen) before pregnancy  
x Impact of IgG structure and function  

 
4. Maternal antibodies may interfere with vaccine responses in infants.  Rate the importance and 

feasibility of filling the following knowledge gaps regarding vaccine interference: 
 

x Impact of antigen used to immunize the mother (protein, polysaccharide)  
x Impact of adjuvants used to immunize the mother 
x Impact of antigen priming (vaccine or pathogen) before pregnancy  
x Impact of maternal IgG concentration 
x Impact of maternal IgG structure and function 
x Impact on effector and memory B cell responses 
x Impact on effector and memory T cell responses 
x Clinical relevance of vaccine interference by maternal antibodies 
x Mechanism of vaccine interference by maternal antibodies 
x Animal models of vaccine interference by maternal antibodies 

Breast milk transfer of immunity 
1. Breastfeeding provides protective immunity in the infant.  Rate the importance and feasibility of 

filling the following knowledge gaps: 
 

x Impact of breastfeeding on immunity at the systemic versus mucosal levels 
x Potential induction of active immunity in the infant by attenuation of natural infection 

(passive-active immunization) 
x Components of breast milk providing protection in infants 
x Regulation of immune components in breast milk 
x Measurement of breast milk components in vaccine trials 

 
2. Several factors may influence the transfer of immunity through breast milk.  Rate the importance 

and feasibility of filling the following knowledge gaps regarding breast milk transfer of immunity: 
 

x Impact of maternal immunization  
x Impact of timing of immunization in the mother 
x Impact of antigen used to immunize the mother (protein, polysaccharide)  
x Impact of adjuvants used to immunize the mother 
x Impact of antigen priming (vaccine or pathogen) before pregnancy 
x Impact of environment (low versus middle or high income countries)  
x Impact of maternal infections (HIV, malaria,..) 
x Impact of prematurity 

Pertussis 
1. Correlates of protection would help the implementation of maternal immunization against 

pertussis and the evaluation of vaccine candidates.  Rate the importance and feasibility of filling 
the following knowledge gaps regarding correlates of protection: 
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x Correlate of protection against colonization, infection, disease or death  
x Role of T lymphocytes in protective immunity against pertussis 
x Role of soluble factors (cytokines,..) in serum or breast milk 
x Role of changes in the characteristics of pertussis 
x Need for human challenge model 
x Need for pregnant non-human primate model 

2. Different pertussis vaccine components and vaccines may have different immunogenicity and 
efficacy in pregnant women. Rate the importance and feasibility of filling the following knowledge 
gaps: 
 

x Requirement of multiple antigens and role of pertussis toxin in protection 
x Diversity of the immune responses against individual pertussis antigens 
x Interactions between immune responses to individual pertussis vaccine antigens 
x Influence of immunizing with a different pertussis vaccine in pregnancy and in infancy 
x “Reactogenicity” of repeated doses of Tdap in subsequent pregnancies 
x Immunogenicity, effectiveness and safety of whole cell pertussis vaccine in pregnancy  

Influenza 
1. Correlates of protection may help the implementation of maternal immunization against influenza.  

Rate the importance and feasibility of filling the following knowledge gaps: 

x Correlate of protection against maternal infection or disease 
x Correlate of protection against infant infection, disease or death  
x Impact of maternal HIV infection on correlate of protection against infection or 

disease 

2. Influenza infection during pregnancy may have several impacts on the infants.  Rate the 
importance and feasibility of filling the following knowledge gaps: 

 
x Mother to infant transmission of influenza 
x Prevention of adverse fetal outcomes of maternal influenza infection (low birth weight, 

prematurity,..) by maternal immunization 
x Correlate of protection against adverse fetal outcomes induced by maternal influenza 

infection 
x Impact of maternal infection on infant susceptibility to disease 

 
3. Several factors may impact the immunogenicity of influenza vaccines during pregnancy.  Rate the 

importance and feasibility of filling the following knowledge gaps: 
 

x Immunogenicity of different influenza virus strains  
x Impact of concomitant influenza and pertussis vaccination 
x Primary immune responses to pandemic influenza vaccines during pregnancy 

Group B streptococcus 
1. Correlates of protection would help the evaluation of candidates for maternal immunization 

against GBS.  Rate the importance and feasibility of filling the following knowledge gaps regarding 
correlates of protection: 

x Correlate of protection against maternal colonization 
x Correlate of protection against infant early or late onset infection, disease or death  
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x Correlate of protection in breast milk  
x Impact of maternal immunization on other infant outcomes than sepsis 
x Impact of strain virulence on correlate of protection 
x Optimal assay to define correlate of protection 
x Role of maternal IgG isotype 

2. Pre-existing immunity may impact the immunogenicity of maternal immunization against GBS.  
Rate the importance and feasibility of filling the following knowledge gaps:  
 

x Impact of carriage on pre-existing immunity 
x Serotype specific or cross-reactive pre-existing immunity 
x Potential for pre-pregnancy immunization 
x Impact of pre-existing immunity against carrier proteins  

 
3. Conjugate vaccines are potential candidates for maternal immunization against GBS. Rate the 

importance and feasibility of filling the following knowledge gaps: 
 

x Serotype specific immunogenicity 
x Immunogenicity of two dose schedules 
x Interference with immune responses to carrier proteins in infants 

Respiratory syncytial virus 
 

1. Correlates of protection would help the evaluation of candidates for maternal immunization 
against RSV.  Rate the importance and feasibility of filling the following knowledge gaps: 

x Correlate of protection against maternal infection or disease 
x Correlate of protection against infant infection, disease or death  
x Protection against lower respiratory tract infection and disease in infants 

2. Infection with RSV is universal and induces incomplete immunity.  Rate the importance and 
feasibility of filling the following knowledge gaps:  
 

x Impact of pre-existing immunity on immune responses to maternal immunization 
x Trans-placental transfer and decay of maternal IgG following natural infection versus 

maternal immunization 

 
 
 
 


