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Abstract 

Knowledge of the elastic wave velocities of hydrate-bearing sediments is important 

for geophysical exploration and resource evaluation. Methane gas migration processes 

play an important role in geological hydrate accumulation systems, whether on the 

seafloor or in terrestrial permafrost regions, and their impact on elastic wave 

velocities in sediments needs further study. Hence, a high pressure laboratory 

apparatus was developed to simulate natural continuous vertical methane gas 

migration through sediments. Hydrate saturation (Sh) and ultrasonic P- and S-wave 

velocities (Vp & Vs) were measured synchronously by time domain reflectometry 

(TDR) and by ultrasonic transmission methods respectively during gas hydrate 

formation in sediment. The results were compared to previously published laboratory 

data obtained in a static closed system. This indicated that the velocities of 

hydrate-bearing sediments in vertical gas migration systems are slightly lower than 
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those in closed systems during hydrate formation. While velocities increase at a 

constant rate with hydrate saturation in the closed system, P-wave velocities show a 

fast-slow-fast variation with increasing hydrate saturation in the vertical gas migration 

system. The observed velocities are well described by an effective medium velocity 

model, from which changing hydrate morphology was inferred to cause the 

fast-slow-fast velocity response in the gas migration system. Hydrate forms firstly at 

the grain contacts as cement, then grows within the pore space (floating), then finally 

grows into contact with the pore walls again. We conclude that hydrate morphology is 

the key factor that influences the elastic wave velocity response of methane gas 

hydrates formation in vertical gas migration systems. 

Keywords: Gas hydrates; Vertical gas migration system; Elastic wave velocity; 

Hydrate saturation; Hydrate morphology 

1. Introduction 

Very large volumes of methane could be present in hydrate accumulations on the 

deep seafloor and in permafrost regions according to Milkov and Sassen (2003). As 

such, gas hydrates have been identified as a very important potential energy resource 

in the 21
st
 century (Collett, 2014; Chong et al., 2015). Geophysical exploration 

techniques are widely used for natural gas hydrate exploration and resource evaluation 

(Shipley et al., 1979; Holbrook et al., 1996, 2002; Careione and Gei, 2004) because 

gas hydrates show higher P and S wave velocities than the sediment/rock pore fluid, 

typically brine (Stoll, 1974; Tueholke, 1977; Holbrook et al., 1996; Michael, 2003; 

Waite et al., 2009; Pecher et al., 2010). Since gas hydrates are unstable at room 

temperatures and pressures, it is rare for both hydrate saturation (Sh) and elastic wave 

velocities of hydrate-bearing sediments to be measured on core samples recovered in 

the field, without specialist pressurized coring technologies. To quantify the gas 

hydrate saturation, and to infer other physical properties of gas hydrate–bearing 

sediments, a study on the relationship between the gas hydrate saturation and the 

elastic wave velocities is essential. Simulating natural gas hydrate formation processes 

in sediments in the laboratory is an effective approach to study elastic wave velocity 

variations during hydrate formation (e.g. Winters et al., 2007), and can also be used to 
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verify rock physics models (e.g. Hu et al., 2010c) needed to interpret field seismic 

data. 

To date, experimental studies have been conducted on the elastic wave 

characteristics of methane hydrate reservoirs under static conditions mostly. Winters 

et al. (2007) studied how gas hydrate influence ultrasonic velocities of different types 

of sediments, which contains natural samples, synthesized frozen samples and 

hydrate-bearing sediments. Priest et al. (2005, 2009) studied methane hydrate effects 

on seismic velocity under static "excess gas", "excess water" and "dissolved gas" 

conditions. Hu et al. (2008, 2010b, 2012, 2014a) used ultrasonic method and Time 

Domain Reflectometry (TDR) techniques to measure real-time hydrate saturation and 

both Vp and Vs in rocks and sediments, including sediment samples from the South 

China Sea. These studies led to two important findings: (1) gas hydrate morphology 

has a significant impact on the elastic wave velocities of hydrate reservoirs; for 

example, the elastic wave velocity change is most obvious when hydrate cements sand 

grains; (2) hydrate morphology varies according to the nature of the gas supply; for 

example, hydrates formed from free gas usually cement sediments, while hydrates 

formed from dissolved gas tend to float, suspended in the pore fluid (Winters et al., 

2007). Biogenic methane production in the hydrate stability zone is generally not 

sufficient to form the observed amounts of hydrate in hydrate reservoirs, so deep 

methane supplies below the hydrate stability zone are inferred. Gas migration is likely 

to be a very significant component of gas hydrate systems (Collett, 2014) and is 

worthy of detailed study in the laboratory. 

Laboratory experimental techniques suitable for simulating vertical gas 

migration system present the following technical challenges: (1) the gas flow needs to 

be controlled in order to simulate the natural environment; (2) water in the sediment 

pore space is easily removed by gas flow; (3) the gas migration channels can become 

blocked by hydrate formation. In addition, as the acoustic attenuation is significantly 

large in gas bubble system, it’s a challenge to obtain both P- and S- wave 

characteristics in this system. 

Although some researchers have simulated hydrate formation in a dynamic 
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system, only a few experiments have focused on elastic wave properties, and hydrate 

saturation was not measured directly during the hydrate formation process. Kwon et al. 

(2009) conducted CO2 hydrate formation experiments with injecting gas and water 

mixture from the bottom of the apparatus; the results show that the P- wave velocity 

increase from 1656 m/s to 1737 m/s at the start of hydrate formation, and the P- wave 

velocity finally reach 2725 m/s. However, as there is no measured hydrate saturation 

(Sh), Sh was just estimated by comparing the observations to several rock physics 

velocity models. Liu et al. (2013) used a vertical migration mode for gas supply 

during CH4-CO2 displacement reaction; the results showed that P wave velocity 

decreased continually during the replacement of CH4 with CO2; but no hydrate 

saturation data was measured. Su et al. (2012) developed a seeping system using a 

large scale simulation device to consider three kinds of gas supply modes for hydrate 

formation. The hydrate saturation was calculated from the electrical resistivity 

measurements. Although there was acoustic detection designed in the experiment, 

there was no acoustic data reported. Similarly, Wang et al. (2007) and Guan et al. 

(2012) also developed a leakage system simulator to form hydrate under subsea 

vertical gas migration conditions, but with no acoustic measurements to date. Eaton et 

al. (2007) developed the FISH (Flexible Integrated Study of Hydrates) experimental 

apparatus to simulate the real marine environment; water was injected from the top of 

the sample and gas was injected from below. Acoustic velocities were obtained after 

hydrate had formed, but no acoustic data were collected during hydrate formation.  

In this study, we designed a special high pressure apparatus to study the response 

of elastic wave velocities and hydrate saturation to gas hydrate formation under 

vertical gas migration conditions. Several novel aspects were incorporated into an 

existing experimental system: the pressure control system, the microporous sintered 

plate, the waterproof sand and the heating plate are applied in the system to ensure gas 

migrates vertically, and during which hydrate can form smoothly. During the 

experimental process, the combination of ultrasonic technique and TDR was used to 

obtain real time ultrasonic wave data and gas hydrate saturation simultaneously. The 

experimental data was subsequently used to establish the relationship between the 
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velocities and hydrate saturation under vertical gas migration, and present helpful 

information for interpreting elastic wave phenomenon in gas migrating reservoirs. 

2. Experimental Equipment and Materials 

The experimental system consists of four units: a high pressure cell, a 

temperature control system, a pressure control system for gas supply and a computer 

control system (Figure 1). Two microporous sintered plates were used to divide the 

high pressure cell space into three parts: an upper gas cell, a lower gas cell, and a 

space used to hold sediments (where hydrate was formed). The thickness of cell wall 

is 12 mm and the sealing cap is 38 mm, the inner diameter of the cell is 200 mm. The 

gas supply system consists of a CH4 cylinder, a high pressure gas pipeline, a pressure 

transducer (precision, ±0.1 MPa) and a gas compressor. Pressure in the cell is 

measured by a pressure sensor mounted on the gas supply line, and the measuring 

range is 0~35 MPa with precision of ± 0.1 MPa. The cell is placed in a cold air bath to 

control its temperature. The temperature range is -30°C~ room temperature (precision, 

±0.5°C). 

 

Figure 1. Gas hydrates geophysical simulation equipment for a vertical gas migration 

system (TESCOM means Tescom electrically controlled pneumatic valve) 

    The computer control system consists of a computer, a Programmable Logic 

Controller (PLC), Pt100 temperature sensors, pressure sensors, TDR probe and 
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ultrasonic transducers. The TDR test system consists of a signal generator, two needle 

probes, test tube and a computer. The type of TDR signal generator is TDR100 which 

is produced by American Campbell Scientific company. TDR is used to measure 

water content, the probe length is 0.16 m with precision of ± (2%~2.5%) (Wright et 

a1., 2002). P wave and S wave signals were collected by transmission using two 

transducers placed at both sides of the sediment samples. 

The unconsolidated sediment sample used in this experiment is sieved natural 

sand with grain sizes of 0.425~0.85 mm, its porosity is 39%. During methane hydrate 

formation, sodium dodecyl sulfate (SDS) solution (300 ppm) is used to enhance the 

formation speed. 

3. Measuring Methods 

3.1. Hydrate Saturation Measurements 

Hydrate saturation was measured by TDR. The propagation velocity of the 

electromagnetic wave in the samples was different due to the different dielectric 

constant (Dalton et al.,1984), from which we can obtain a TDR waveform and then 

calculate the water content / hydrate saturation (see equations 3 and 4 below) (Wright 

et al., 2002). A TDR100 unit and a pair of TDR probes were used in the experiment. 

The TDR technology was initially used by Wright et al. (2002) to determine hydrate 

saturation, and was developed and frequently used in our laboratory since 2004 (e.g. 

Hu et al., 2010a, 2012, 2014a). Their result suggested that the measurement accuracy 

of water content is ±2~2.5%. And the temperature (20~0.5°C) and pressure 

(1~7MPa) have small influences on water content measurements according to our 

tests (Ye et al., 2008). The error of water content caused by temperature is ±1.6% 

(water content, ±0.73%), and the error of water content caused by pressure is ±0.5% 

(water content, ±0.23%). Based on the TDR data obtained in the experiments, the 

water content (V) of the sample was calculated by Wright’s empirical equation 

(Wright et al., 2002). Subsequently, hydrate saturation was calculated by the equation 

Sh=(φ-V)/ φ×100%, where φ is the porosity of the sample. 

3.2. Wave Velocities Measurements 

Ultrasonic methods were used to measure the wave velocities of hydrate-bearing 
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sediment. P-wave and S-wave velocities were measured by ultrasonic transmission 

methods, two transducers (112 KHz frequency) were placed on each side of the 

sediment sample. A CompuScope card from Gage Corporation in Canada digitized the 

signals. The CompuScope 14100 is 14 bit 50 MS/s dual channel waveform digitizer 

card and data transfer rates from the CompuScope memory to PC memory is 80 MB/s, 

so the CompuScope card may cause few errors in velocity estimation. However, the 

error of velocity estimation is mainly from picking the traveltimes of the 

compressional and shear wave. The velocities are calculated by Vp=L/(t1-t0) and 

Vs=L/(t2-t0), where L is the sample length and t0 is the inherent traveltime of the 

transducers, t1 and t2 are the traveltimes of the compressional and shear wave, 

respectively. Four different lengths of standardized polyoxymethylene (POM) rods 

were used to calibrate the t0 of the transducers. The calibrate of the ultrasonic 

transducers is introduced in supplementary materials (S2). 

The measurements of Vp, Vs and water saturation (hydrate saturation) are 

independent, and the probes arranged inside the reaction vessel do not interfere with 

each other. The traveltimes of the P- and S- waves are picked based on the software, 

and then the velocities of the P- and S- waves are calculated as following: 
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Where L is the distance between the ultrasonic probes, t0p and t0s are the inherent 

traveltime of the transducers, tp and ts are the traveltimes of the P- and S- waves, 

respectively. 

For hydrate-bearing sediments, the empirical formula of Wright et al. (2002) is 

mainly used: 

32 0.0021399Κ0.14615Κ6Κ4.506072561.9677  1θ v       (3) 

Here, θV represent the water content, K represent the dielectric constant. 

And the hydrate saturation can be calculated by the porosity (φ) and water 
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content (V) of the samples: 

    %100 hS                         (4) 

4. Novel Aspects of the Vertical Gas Migration System 

As mentioned above, it is difficult to form hydrate in gas migration system. 

Three main problems need to be solved to achieve the vertical gas migration system. 

4.1. The Pressure Control of Vertical Gas Migration 

The key point in the pressure control system is the appropriate pressure range 

between the inlet P1 and the outlet P2. The pressure is considered to be appropriate if 

ΔP (ΔP = P1-P2) can make gas migrate through the sediment slowly from bottom to 

top and not take away the water from the sediment. The appropriate pressure ΔP is set 

up to 0.3 MPa according to several tests. 

 

Figure 2. Vertical gas migration system in apparatus 

4.2. The Application of Microporous Sintered Plate and Waterproof Sand 

Water in the sediments should not be taken away by gas flow or leak out. The 

microporous sintered plate (Figure 2) can let gas go through and prevent water from 

moving in the sediments. In order to prevent water from flowing across the 

microporous sintered plate which is between the sediments and the lower gas cell, 

waterproof sands are made and put under the sediments. Waterproof sands are made 

from common sands whose surface is covered with waterproof material. 

Several tests were taken to examine the waterproof sand. As shown in table 1, 

tests use four 25ml cylinders (diameter 1.5cm) which numbered 1, 2, 3, 4 respectively. 
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The four cylinders are filled with different grain sizes of sands. The four cylinders are 

placed horizontally on the desktop, adding water to the same height after the water 

level dropped down according to the permeation, and then left them for 24 hours. As 

waterproof sands are not placed in No.1 and No.2, sands in the two cylinders have 

been completely wet. Conversely, bottom sands in No.3 and No.4 are still dry as 

waterproof sands in the upper layers (Figure 3). Thus waterproof sand can prevent 

water well, it can let the gas pass and leave the water in the sediment . 

Table 1. Distribution of sands and water in the cylinder 

number lower layer(a) middle layer(b) upper layer(c) top layer(d) 

1 
0.125-0.18mm 

common sand 

0.15-0.35mm 

common sand 

0.125-0.18mm 

common sand 
water 

2 
0.125-0.18mm 

common sand 

0.125-0.18mm 

common sand 

0.125-0.18mm 

common sand 
water 

3 
0.125-0.18mm 

common sand 

0.063-0.09mm 

waterproof sand 

0.125-0.18mm 

common sand 
water 

4 
0.125-0.18mm 

common sand 

0.15-0.35mm 

waterproof sand 

0.125-0.18mm 

common sand 
water 

 

Figure 3. Contrast the waterproof effect between waterproof sand and common sand 

4.3. The Application of Heating Plate 

As the gas migration channel could be blocked by forming hydrate in the lower 

sintered plate, we design a heating plate (Figure 2) under the lower gas cell to solve 

the problem. The heating plate will heat the apparatus wall around the lower gas cell, 

when gases move across the sintered plate into sediments, the microporous sintered 

plate will have a slightly higher temperature than the hydrate formation temperature, 
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so hydrate can hardly form in the bottom and the gas channel could not be blocked. 

5. Hydrate Formation Process and Results 

The process of elastic wave studies on gas hydrate in vertical gas migration 

system is as follows: 

(1) Putting the inner barrel, ultrasonic probe, TDR probes, Pt100 probes and 

sintered plate into the apparatus. 

(2) Putting a layer of waterproof sands at the bottom of the apparatus with a 

thickness of about 3 cm. And then adding the common sand upon the waterproof 

sands with 85% water saturation (300 ppm SDS solution + dried common sands with 

grain size of 0.425 - 0.85 mm ).  

(3) Compacting the common sands in the apparatus and covering the sediments 

space with microporous sintered plate. 

(4) Increasing the system pressure with a desired pressure at 6 MPa. The upper 

and lower gas cell pressure become stable after the boost process, then setting the 

pressure difference with 0.3 Mpa, the inlet valve is kept open during the hydrate 

formation process. 

(5) Putting the apparatus in the air bath cooling system, turn on the incubator and 

set the temperature at 2°C. Open the heating plate under the lower gas cell. 

(6) Turn off cooling system when the saturation of hydrate is no longer rising, 

and then close the heating plate and the inlet valve of the apparatus, gas hydrate begin 

to dissociate as the temperature increase. 

Experiments on gas hydrate formation in vertical gas migration system have been 

conducted for six runs, the first two runs of the experiments did not use the heating 

plate while the later four runs used. Taking the second and the fourth run as examples 

to describe hydrate formation and dissociation process.  
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Figure 4. The change of temperature, pressure, saturation with hydrate formation and 

dissociation (the second run, the fourth run) 

The initial pressure in the apparatus is 6 MPa as shown in figure 4. At 0 ~ 3 h, 

the temperature continued to decrease from 15.17°C to 7°C with no hydrate formed in 

the sediments. The pressures in the upper and lower gas cell (P2, P1) are stable at 6 

MPa. And then the hydrate began to form as the temperature decreasing. In the second 

run (not use heating plate) the lower gas cell pressure P1 was still able to remain at 6.1 

MPa due to the continued gas supply, while the upper gas cell pressure P1 began to 

decrease. The decreasing of the pressure P2 maybe caused by the following reasons: 

the CH4 gas was consumed as hydrate began to form; the temperature was decreasing; 

the gas migration channel was blocked as the hydrate formed, so the upper gas cell 

could not obtain enough gas. However, in the fourth run experiment (use heating plate) 
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the lower gas cell pressure P2 and the upper gas cell pressure P1 did not change much. 

The temperature, the upper and lower pressure and the hydrate saturation were 

maintained for a period of time (the second run at 26 - 32 h, the fourth run at 26 - 48 h) 

and found no further changes, which indicates that the hydrate formation process had 

finished. After the maximum hydrate saturation, although we kept the condition for 

hours, but the hydrate formation is so slowly that we cannot detect change in 

laboratory, perhaps hydrate formation can go on if time is enough (such as in the 

geological time scale). After the hydrate formation ended, turn off the incubator and 

the heating plate, the temperature will increase to the room temperature and the 

hydrate began to dissociate. In the second run the unicom control valve was opened 

by a manual operation, the upper pressure P2 and lower pressure P1 soon maintained at 

3.6 MPa, at this time the hydrate dissociated quickly due to the decreasing of the 

pressure and the increasing of the temperature. The pressure increased to 6 MPa as the 

hydrate dissociated, excess gases will exhaust via the back pressure valve and at last 

the pressure P1 and P2 maintained at 6 MPa. As the temperature continued to increase, 

the hydrate dissociated completely in the end of the experiment. 

Table 2. Experimental data of the fourth run 

Time/h T/℃ Upper gas 

cell pressure 

P2/Mpa 

Lower gas 

cell pressure 

P1/Mpa 

Hydrate 

saturation 

(Sh)/% 

Vs(m/s) Vp(m/s) 

0 16.82  6.02  6.11  0.00  712.37  1721.82  

1 13.34  6.05  6.11  0.00  714.55  1735.58  

2 9.65  6.06  6.13  0.00  812.48  1807.64  

3 7.57  6.02  6.11  5.64  819.98  1852.87  

4 7.14  6.05  6.11  12.79  823.60  1861.68  

5 6.85  6.03  6.10  15.26  822.23  1938.95  

6 6.75  5.98  6.10  15.26  826.11  1946.88  

7 6.71  5.97  6.10  20.34  852.98  1948.45  

8 7.20  6.01  6.13  28.26  859.62  2003.63  

9 7.02  5.99  6.12  33.72  863.33  2018.66  

10 7.11  6.02  6.12  33.72  861.47  2049.68  

11 6.60  6.03  6.11  36.49  862.26  2053.19  

12 6.20  6.04  6.12  42.12  862.02  2048.32  

13 6.16  6.05  6.13  53.53  935.95  2226.43  

14 6.84  6.06  6.12  56.40  962.93  2225.23  

15 7.11  6.08  6.12  59.25  1026.86  2243.44  
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16 7.08  6.09  6.12  64.91  1026.86  2246.30  

17 6.72  6.10  6.12  64.91  1026.86  2246.30  

18 5.75  6.10  6.12  64.91  1026.86  2365.37  

19 4.88  6.10  6.13  64.91  1031.38  2365.37  

20 4.38  6.11  6.12  64.91  1163.27  2365.37  

21 3.99  6.08  6.12  64.91  1159.25  2417.28  

22 3.79  6.08  6.12  64.91  1165.39  2417.28  

23 3.58  5.98  6.13  64.91  1183.98  2470.65  

24 3.43  5.92  6.14  64.91  1159.25  2470.65  

25 3.31  5.91  6.14  64.91  1171.39  2498.67  

26 3.25  5.92  6.14  67.71  1165.39  2498.67  

27 3.25  6.03  6.13  67.71  1161.74  2498.67  

28 3.24  6.06  6.12  67.71  1145.25  2498.67  

29 3.23  6.08  6.12  67.71  1183.98  2555.74  

30 3.23  6.09  6.13  67.71  1188.97  2523.72  

35 3.06  5.91  6.14  67.71  1182.79  2582.89  

40 3.13  6.07  6.11  67.71  1184.18  2549.27  

45 3.17  6.08  6.12  67.71  1158.87  2519.21  

47 3.14  6.06  6.11  67.71  1158.87  2519.21  

49 3.06  5.93  6.12  64.91  1164.81  2496.90  

50 3.99  5.93  6.18  62.09  1160.02  2435.65  

51 6.29  5.93  6.29  59.25  1136.27  2378.14  

52 7.91  6.02  6.12  56.40  1087.38  2240.58  

53 8.50  6.01  6.12  56.40  959.90  2204.16  

54 8.71  6.02  6.12  53.53  958.08  2195.92  

55 8.82  6.01  6.11  50.67  876.59  2127.66  

56 8.88  6.02  6.12  44.96  863.92  1953.18  

57 9.00  6.01  6.12  44.96  787.75  1924.39  

58 9.09  6.01  6.12  42.12  782.85  1916.02  

59 9.18  6.01  6.12  42.12  762.04  1910.83  

60 9.33  6.01  6.12  33.72  762.78  1906.18  

61 9.44  6.02  6.12  33.72  765.18  1907.73  

62 9.64  6.02  6.12  28.26  762.86  1894.91  

63 9.86  6.02  6.12  20.34  759.08  1881.76  

64 10.15  6.02  6.12  15.26  758.51  1856.97  

65 10.51  6.03  6.12  12.79  740.82  1841.45  

66 10.98  6.02  6.11  10.37  740.82  1841.45  

67 11.49  6.02  6.11  7.98  724.01  1796.87  

68 11.98  6.03  6.11  5.64  724.97  1796.87  

69 12.62  6.03  6.11  3.34  724.97  1796.87  

70 13.15  6.03  6.11  1.08  726.39  1768.47  

75 15.62  5.99  6.08  0.64  724.97  1782.78  

80 16.10  5.99  6.08  0.64  688.98  1715.95  

As shown in figure 5 (the original data of the fourth run are shown in Table 2), 
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the acquired temperature and pressure data, the wave velocities and the hydrate 

saturation data can all reflect the process of gas hydrate formation and subsequent 

dissociation. At the beginning of hydrate formation the temperature had an abnormal 

rise due to the exothermic process, at the same time the corresponding hydrate 

saturation increased rapidly, reflecting the hydrate formed severely. The wave 

velocities increased as the hydrate increased the bulk modulus and shear modulus of 

sediments and decreased the density.  

 

Figure 5. The change of temperature, pressure, saturation and acoustic velocity (the 

fourth run) 

6. Discussion 

6.1. Velocity Characteristics in a Vertical Gas Migration System 

The experimental system meets the gas hydrate formation condition as it has a 

suitable temperature and pressure, sufficient pore space and water, and it also has a 

vertical gas migration system to simulate the real hydrate accumulation environment. 

The results of the six run experiments showed that the changes of velocities 

agree well with the change of hydrate saturation, indicating that the experiment has 

good reproducibility. Here, we take the fourth experimental run as an example to 

describe the behavior of ultrasonic velocities during hydrate formation and 

dissociation (Figure. 5). The results showed that at the beginning of the hydrate 
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formation, the velocities of hydrate-bearing sediments had a rapid increase as the 

hydrate saturation increased, then the velocities increased slowly, and finally the 

velocities increased rapidly again when the hydrate saturation reached 60%. At the 

initial stage of dissociation, the velocities decreased quickly, then the velocities 

decreased slowly with the decreased hydrate saturation. At the beginning of the 

experiiment the compressional wave velocity and shear wave velocity are 1702m/s 

and 712m/s, respectively. The saturation of the hydrate can reach 67% when the 

hydrate formed completely, and the compressional wave velocity and shear wave 

velocity increased to 2580m/s and 1184m/s. 

The relationship between the ultrasonic velocities of hydrate-bearing sediments 

and hydrate saturation has been established based on the experimental data, as shown 

in figure 6 and figure 7. When hydrate saturation is lower than 50%, Vp and Vs in the 

hydrate formation process is bigger than that in the hydrate dissociation process at the 

same hydrate saturation. This result matches well the observed relationship between 

the ultrasonic velocities and hydrate saturation in sediments inside a closed system by 

Hu et al. (2012). The elastic velocities of the sediment frame are easily influenced by 

the morphology of hydrate, hydrates cement the sediment grains during hydrate 

formation and increase the contact area between the grains, so the velocities of the 

sediment increase sharply (Priest et al., 2005), and then hydrates continue to cement 

the sediment grains, or form in the pore fluid. We may infer that if hydrates dissociate 

at grain contacts first, the process may destroy the cementation between the grains, so 

the dissociation process would lead to a lower velocity compared to the hydrate 

formation process. The results show that velocities increase at a constant rate with 

hydrate saturation when the heating plate is not used (the second run). However, when 

we use the heating plate (the fourth run), the velocities have a very small initial 

increase with hydrate saturation between 0 - 20%, while the velocities increase slower 

for hydrate saturations between 20% - 60%, and when the saturation is higher than 

60%, the velocities increase faster again. Overall, the increasing velocities show a 

fast-slow-fast process with increasing hydrate saturation. 
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Figure 6. Variation in P- and S-wave velocities with hydrate saturation during hydrate 

formation and dissociation (fourth run) 

6.2. Comparison of Velocity Characteristics between the Vertical Gas Migration 

and the Closed Systems 

The velocities acquired in this study are different from the results of Hu et al. 

(2012) which were obtained in sediments (grain size 0.09 - 0.125mm) under closed 

conditions and other data in the reference (Figure 7). The results show that the 

obtained P-wave velocity at a saturation lower than 20% consistent with the result 

given by Ren et al. (2010), indicating that the distribution modes of hydrate may be 

cementing modes in both of the two experiments. The obtained P- and S- wave 

velocities at the same saturation are lower than those measured by Priest et al. (2005), 

the synthesized hydrate specimens are harder , so they have higher P- and S- wave 

velocities. Here, the velocities of the hydrate-bearing sediments increase at a constant 

speed, similar to the first two runs in this vertical migration system study (Figure 7, 

second run). As noted above, in the latter four runs the velocities increase faster in the 

initial stage, even though they increase more slowly than Hu et al. (2012) data, then 

the velocities plateau with hydrate formation, when the hydrate saturation reached to 

60%, the velocities increase faster again. On the one hand, the change of the velocity 

may be influenced by the morphology of the hydrate during hydrate formation. In the 

coarser sand used in this study, hydrates cement firstly the sand grains and hence have 
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a greater impact on velocity, and then hydrate forms in the pore fluid with a less 

impact on velocity. In the finer sand used in the study of Hu et al. (2012), the hydrate 

may cement grains and easily bridge across the pore space, and both of these modes 

have a greater impact on velocity. On the other hand, as we know, in the system of gas 

migration into gas hydrate-bearing sediments in field, the hydrate stability zone has 

high velocities, and the low-velocity zone is free gas-charged (Bunz and Mienert, 

2004; Crutchley et al., 2015). And in the hydrocarbon leakage system, the 

low-velocity gas-charged zones always represent the leakage process (Løseth et al., 

2009). In our study, as the gas continuously migrate into the sediment, the presence of 

the flowing gas in sediments may decrease velocities, so the P-wave velocities 

increase slower in the last four runs. That is, the last four runs, the presence of free gas 

affects P-wave velocity until a lot of hydrates are formed when velocities start to rise 

to the values observed by Hu et al. (2012) (although the current data only extend to Sh 

= 67% as opposed to 100% for Hu et al.). 

The results show that both in a closed system (Figure 7; Hu et al., 2012) and in a 

vertical gas migration system (this study), elastic wave velocities in hydrate-bearing 

sediments increase with hydrate saturation. However, the velocity increases are 

affected by different processes in the two systems. In the closed system, velocities 

show a stable increasing trend with more subtle rate stage changes. In the vertical gas 

migration system, the P-wave velocities increase slower in the later four runs (Figure 

7). As hydrates grow in the sediments, hydrates in “floating” mode will eventually 

start to contact, or bridge between the grains; hence, when hydrate saturation reaches 

to a certain value, the velocities start to increase faster again when hydrate contributes 

to the elastic stiffness of the sediments frame. This is the case for the latter four runs 

when hydrates saturation reached to 60%. So during the process of hydrate formation, 

P-wave vecolities in a vertical gas migration system are smaller than in the closed 

system, the increasing P-wave velocities show a fast-slow-fast process with hydrate 

saturation, while the increasing trend of S-wave velocities changes little. The hydrate 

formation characteristics are different between the vertical gas migration system and 

the closed system.  
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Figure 7. Contrast in the relationship between hydrate saturation and elastic wave 

velocities for a closed system (Hu et al.) and a vertical gas migration system (this 

study) 

6.3. The Morphology of Hydrate During the Hydrate Formation Process 

The above results show that the nature of the gas supply influences hydrate 

morphology to an extent that affects elastic wave velocities. The methane gas moves 

across the sediments continuously during the experiments in this study. According to 

the pressure ΔP and the parameters of the apparatus, we may calculate the methane 

gas flux generally. The range of ΔP is 0.01 - 0.26 MPa, and the methane gas flux 

across the sediment samples may between 0.12 - 3.05 mol/(m
2·s). 

In order to explain the observed velocity changes better, the effective medium 

theory (EMT) of Dvorkin et al. (1999) and Helgerud et al. (1999) was used to 

calculate velocities of gas hydrate-bearing sediments with different idealized hydrate 

morphologies (see Appendix). Here, hydrate morphology is represented by three kinds 

of EMT model: pore-filling hydrate; grain contacting hydrate; and grain cementing 

hydrate. In Model A, hydrates are considered to be part of the pore fluids; in model B, 

hydrates are considered to be part of the sediment frame; in model C, the porosity is 

decreased as in model B, and the change of the bulk modulus and shear modulus 

should be amended based on cementation theory by Dvorkin et al.(1993). We use 

these models to infer the distribution of hydrates in our experimental sediment 

samples. Figures 8 and 9 compare results between the models and the measurements. 
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At the beginning of the hydrate formation, the measured results (the latter four 

runs) have a similar trend with the velocities calculated from EMT-C (cementing 

hydrate), and the measured results do not match well with the EMT models until the 

hydrate saturation up to 20%. And when the hydrate saturation is between 20% to 

60%, the measured results (the latter four runs) are similar with the calculated results 

of the EMT-A. As we known, P-wave velocity is greatly affected by the free gas, but 

the presence of free gas did not change the S-wave velocity (Riedel et al., 2014). The 

decrease in Vp/Vs ratio is more obvious than any change in either P- or S-wave 

velocity alone. Vp/Vs exhibit tends to be smaller with hydrate saturation. Since the 

compressional wave velocity and shear wave velocity increase with hydrate saturation, 

so the Vp/Vs ratio show that the increasing rate of the Vs is larger than Vp. In the initial 

and last stage of hydrate formation, Vp/Vs is similar with the calculated results of the 

EMT-C, Vp/Vs range is between the EMT-C and the EMT-A during hydrate formation 

process (Figure 9), while the measured data have the similar trend with the calculated 

results. 

 

Figure 8. Measured Vs and the calculated Vs from the effective medium theory 

(EMT-A = pore-filling hydrate; EMT-B = grain contacting hydrate; EMT-C = 

cementing hydrate) 
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Figure 9. Measured Vp/Vs and the calculated Vp/Vs from the effective medium theory 

(EMT-A = pore-filling hydrate; EMT-B = grain contacting hydrate; EMT-C = 

cementing hydrate) 

In summary, our previous laboratory studies have observed effects on elastic 

wave velocities due to changing methane hydrate morphology during hydrate 

formation. We have observed the in-situ pore scale distribution of gas hydrate directly 

based on the x-ray computerized tomography (X-CT). The results show that hydrates 

mainly cement sediment grains in the initial stage of formation, and contact (bridge) 

grains or float in the pore fluid in the intermediate stage, and finally hydrates cement 

grains again in the last stage (Hu et al., 2014b). Hydrates have various growth patterns 

with different hydrate saturation, the sediment stiffness can be increased by a small 

amount of hydrate (Dai et al., 2012). Priest et al. (2009) reported that hydrates 

preferentially formed at grain contacts when hydrate was formed under excess gas 

conditions. Sultaniya et al. (2015) also found that, using the excess gas method, 

hydrates initially formed at grain contacts and also dissociated at grain contacts first. 

According to our new experimental data, comparison to effective medium models, 

and with reference to previous research, we can draw conclusion about changing 

hydrate morphology during formation in our experiments (Figure 10).  

At the beginning of the reaction, the hydrate saturation is small and the wave 

velocities increase fast, hydrates preferentially form at grain contacts by cementation 
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and on the surface of gas bubbles (Figure 10b), and the sediment grains will be 

bonded by the hydrate shell that is formed. Then the wave velocities increase slowly 

with hydrate satuation, and as shown in figure 8 and 9, the measured results are a little 

smaller than the floating model, maybe this is affected by the existence of the gas flow.  

The hydrate formation process is difficult than that in the closed system as gas 

bubbles migrate through the system. The hydrates mainly formed inside the pore fluid 

(floating hydrate) in this stage (Figure 10c). Then as hydrate saturation increases, the 

floating hydrate comes into contact with the sediment grains and hence stiffens the 

sediment frame with the increasing hydrate saturation (Figure 10d), so the wave 

velocities increase faster. This is not a linear relationship between wave velocity and 

hydrate saturation during formation. As gas migrates continuously in the system, there 

will be always a gas flow channel in the sample though in the end of hydrate 

formation (Figure 10d). During hydrate dissociation, hydrates first dissociate at the 

grain contacts, because sand has a higher thermal conductivity than methane or 

hydrate (Cortes et al., 2009), and this will destroy the integrity of the hydrate 

cemented frame. Therefore, wave velocities decrease rapidly at the beginning of 

dissociation, and then velocities reduce more slowly as hydrates continue to 

dissociate.  
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Figure 10. Conceptual model for hydrate growth in this experiment. (a) Before 

hydrate formation, (b) Hydrate nucleated first on the surface of gas bubble and at 

grain contacts, (c) Further hydrate formation grew across the entire sample (mainly in 

the pore fluid), (d) The end of hydrate formation (with gas flow channel in the 

sample). S is solid grain. W is water phase. H is hydrate phase. G is gas phase. 

7. Conclusions 

In this study we implemented novel methods to simulate a hydrate formation 

process under vertical gas migration. Several new aspects were needed to achieve the 

desired results: the introduction of a microporous sintered plate, waterproof sand, a 

heating plate, and a special pressure control system. Experiments were carried on to 

simulate hydrate formation under vertical gas migrations with real-time monitoring of 

temperature, pressure, P- and S-wave velocity and hydrate saturation (by TDR). We 

compared the velocity results to similar velocity data previously acquired in a closed 

system. 

The results showed that Vp and Vs are higher during hydrate formation than 

during hydrate dissociation for the same hydrate saturation. During hydrate formation, 
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P-wave velocities in a vertical gas migration system are lower than those in a closed 

system. While velocities increase at a relatively constant rate with hydrate saturation 

in the closed system, P-wave velocities show a fast-slow-fast response to hydrate 

saturation in the vertical gas migration system. In this study, P-wave velocities 

increase faster with hydrate saturation between 0 - 20%, they increase more slowly 

between 20 - 60% hydrate saturation, and then increase faster again above hydrate 

saturations of 60%. S-wave velocities have the similar increasing tend with the closed 

system. 

By comparison of our velocity observations to effective medium models for 

different idealized hydrate morphologies, we infer that hydrates preferentially form at 

grain contacts and on the surface of gas bubbles at the beginning of hydrate formation, 

then hydrates form in the pore fluid (floating hydrate), and lastly hydrates grown into 

contact with the sediment grains again as they fill up the pore spaces. During hydrate 

dissociation, hydrates firstly dissociate at grain contacts, thus weakening the frame 

elastic moduli and rapidly lowering velocities. 

 

Appendix A 

Effective Medium Theory 

Effective medium theory is propose by Helgerud (1999) and Dvorkin (1999), 

mainly for unconsolidated sediments with high porosity. Ecker (2001) proposed three 

kinds of microscopic models for hydrate-bearing sediments, and three formulas are 

given according to the three models in the effective medium theory. In Model A, 

hydrates are considered to be part of the pore fluids; in model B, hydrates are 

considered to be part of the sediment frame, and two effects are produced, it not only 

decreases the porosity, but also change the bulk modulus and shear modulus of the 

matrix; in model C, the porosity is decreased as in model B, and the change of the 

bulk modulus and shear modulus should be to be amended based on cementation 

theory by Dvorkin et al.(1993). The calculation of the three models are as follows: 

Model A of the effective medium theory 

The formula of P wave velocity Vp and the bulk density ρb are given as follows: 
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Where, Ksat and Gsat are the bulk modulus and shear modulus of the effective medium, 

respectively; ρs and ρf are the bulk density in rock solid and fluid phases. Both of the 

densities can be calculated by arithmetic mean of density based on the volume 

percentage of the components, φc is the critical porosity, and generally take 0.36 ~ 

0.40 (Nur et al., 1995). When sediments are filling of fluids with the bulk modulus Kf, 

according to Gassmann equation, the bulk modulus and shear modulus of the 

sediments can be given by the following formulas: 
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where Kma and Kf are bulk modulus of the matrix and the pore fluid, respectively. Kdry 

and Gdry are bulk modulus and shear modulus of the dry rock. In mode A, hydrates 

formed in the pores, thus Kf is given as follows: 
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Where Sh and Kh are hydrate saturation in pore space and the bulk modulus of hydrate, 

Kw is the bulk modulus of water. The formulas of Kdry and Gdry are given as follows: 
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where P is effective pressure, Kma and Gma are bulk modulus and shear modulus of the 

matrix, v is Poisson’s ratio of the rock matrix, and

)()(. 3
3

2
50 mamamama GKGKυ  ; n is the average number of contact grains 

in bulk unit, generally take 8~9.5. 

Model B of the effective medium theory 

hydrate is considered to be part of the matrix in Model B, it not only decreases the 

porosity, but also change the bulk modulus and shear modulus of the matrix. 

Therefore, based on the model A, the sediment porosity need to be amended,

)( hr Sφφ  1 . At the same time, hydrate should be taken as a mineral component 

in the formula to calculate the Kma and Gma. In addition, water is the only pore fluid in 

the sediment. Since the hydrate decreases the porosity, we should pay attention to the 

porosity φr and φc when calculate Kdry and Gdry, select the appropriate formula in 

formula (A-6) and (A-7). 

We can account for the distribution dependant effects of gas on the sediment’s elastic 

properties by modifying the calculation of the sediment’s saturated bulk modulus 

(Ksat). If we consider the effects of gas, the bulk modulus of pore fluid (Kf) is given as 

follows: 
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Where Kw and Kg are the bulk modulus of water and gas, and Sw is the water 

saturation. 

Model C of the effective medium theory 

in model C, the porosity is decreased as in model B, and the change of the bulk 

modulus and shear modulus should be to be amended based on cementation theory by 

Dvorkin et al. (1993). Thus, the calculation of φr, Kma, Gma, Kf and ρf are as same as in 

model B, Kdry and Gdry are given as the following formula: 
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where Sn and Sτ are parameters which have positive correlation with cemented 

pressure and the amount of hydrate, the formulas are as follows: 
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Where, Gh and vh are shear modulus and Poisson's ratio of hydrate, α is the radius 

ratio of cemented particles and sedimentparticles after hydrate cemented sediments 

particles. 
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where m is the number of mineral constituents (hydrate acts as a mineral); fi is the 

volumetric fraction of the i-th constituent in the matrix; and Ki and Gi are the bulk and 

shear moduli of the i-th constituent, respectively. 

Appendix B 

mineral composition and physical parameters of unconsolidated sediments 

(Helgerud et al., 1999; Dvorkin et al., 1999) 

Mineral Content(%) ρ(g/cm
3
) K(Gpa) G(Gpa) 

Magnetite 1.94 5.21 161 91.4 

Amphibole 1.10 3.12 87 43 

Epidote 0.55 3.4 106.2 61.2 

Quartz 38.95 2.65 36.6 45 

Feldspar 57.46 2.62 76 26 

Water  1.032 2.5 0 

Pure Hydrate  0.9 5.6 2.4 

Gas  0.235 0.1 0 

 

Notation 

Vp Compressional wave velocity, m s
-1

. 

Vs Shear wave velocity, m s
-1

. 

Sh Hydrate saturation in pore space; 0≤Sh≤1, corresponding to 0% to 

100% of pore space. 

Sw Water saturation 

φ Fractional porosity of the sample. 

φc The critical porosity. 

φr The amended porosity in Model B and C. 

P Pressure, MPa. 

T Temperature of inner of the sample, °C. 

K Bulk modulus, GPa. 
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G Shear modulus, GPa. 

ρb Bulk density, g cm
-3

. 

ρs Bulk density in rock phase, g cm
-3

. 

ρf Bulk density fluid phase, g cm
-3

. 

Kma Bulk modulus of matrix, GPa. 

Gma Shear modulus of matrix, GPa. 

Ksat Bulk modulus of the effective medium, GPa. 

Gsat Shear modulus of the effective medium, GPa. 

Kdry Bulk modulus of the dry rock, GPa. 

Gdry Shear modulus of the dry rock, GPa. 

Kf Bulk modulus of pore fluid, GPa. 

Kh Bulk modulus of hydrate, GPa. 

Kw Bulk modulus of water, GPa. 

Kg Bulk modulus of gas, GPa. 

Gh Shear modulus of hydrate, GPa. 

v Poisson's ratio of the rock matrix. 

m The number of mineral constituents in matrix. 

fi The volumetric fraction of the i-th constituent in matrix. 

Ki, Gi Bulk moduli and shear moduli of the i-th constituent, respectively. 
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