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 32 

Abstract 33 

 34 

For spatial crop and agro-systems modelling, there is often a discrepancy between the scale 35 

of measured driving data and the target resolution. Spatial data aggregation is often 36 

necessary, which affects the uncertainty of the simulation results. Previous studies have 37 

shown that climate data aggregation has little effect on simulation of phenological stages, 38 

but effects on net primary production (NPP) might still be expected through changing the 39 
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length of the growing season and the period of grain filling. This study investigates the impact 40 

of spatial climate data aggregation on NPP simulation results, applying eleven different 41 

models for the same study region (~34000 km2), situated in Western Germany. To isolate 42 

effects of climate, soil data and management were assumed to be constant over the entire 43 

study area and over the entire study period of 29 years. Two crops, winter wheat and silage 44 

maize, were tested as monocultures. The results show only small impacts of climate data 45 

aggregation on averages over the entire simulation period and study region. Maximum 46 

differences between the five scales in the range of 1 to 100 km grid cells show changes of 47 

0.4 – 7.8 % and 0.0 - 4.8 % for wheat and maize, respectively, whereas the  simulated 48 

potential NPP averages of the models show a wide range (1.9 - 4.2 g C m-2 d-1 and 2.7 - 6.1 49 

g C m-2 d-1 for wheat and maize, respectively). The impact of the spatial aggregation was 50 

also tested for shorter periods to test if impacts over shorter periods level out over longer 51 

periods, which shows larger impacts for single years (up to 9.4 % for wheat and up to 13.6 52 

% for maize). An analysis of extreme weather conditions shows an aggregation effect to the 53 

vulnerability up to 12.8 % and 15.5 % between the different resolutions for wheat and maize, 54 

respectively. Simulations of NPP averages over larger areas (e.g. regional scale) and longer 55 

time periods (several years) are relatively insensitive to climate data aggregation, but the 56 

scale of climate data is more relevant for impacts on annual averages of NPP or if the period 57 

is strongly affected or dominated by drought stress. There should be an awareness of the 58 

higher uncertainty for the NPP values if data are not available in a high resolution. On the 59 

other side, the results suggest that there is no need to simulate in high resolution for long 60 

term regional NPP averages based on the simplified assumptions (soil and management 61 

constant in time and space) used in this study.  62 

 63 

Keywords: net primary production, NPP, scaling, extreme events, crop modelling, climate, 64 

data aggregation  65 
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 66 

1 Introduction 67 

 68 

Net primary production (NPP) is a crucial ecosystem variable characterising the condition of 69 

an ecosystem (Pan et al, 2014) and it is sensitivity to climate change. Spatial NPP is difficult 70 

to measure and often biased and uncertain (Pan et al., 2014), because measurements show 71 

several limitations (indirect determination, spatially and temporally limited). Spatial 72 

modelling is an important tool for interpolation and extrapolation of measurements or for 73 

providing spatial distributed projections for regional (Reich et al., 1999; Zaehle et al., 2006; 74 

Bandaru et al., 2013; Liu et al, 2015), continental (Ciais et al., 2010) or global scale 75 

(Hemming et al., 2013; Friend et al., 2014). The regional scale is relevant for policy makers 76 

to analyse adaptation and mitigation strategies, but NPP data for this scale are often derived 77 

by extrapolating measured information from the site scale to a region by applying models 78 

developed at site scale (Zhang et al., 2015). This model-based up-scaling requires a balance 79 

between accuracy and simulation time. 80 

Spatial modelling of NPP relies on spatially distributed input and driving data like weather 81 

data and information on soil, land use and management characteristics. Depending on 82 

environmental parameters, ecosystem characteristics and the chosen resolution, the 83 

impacts of extrapolation or interpolation may be great or small since there is e.g. a higher 84 

uncertainty for high relief areas compared to relatively flat areas as shown by Pierce and 85 

Running (1995). For this reason, estimates of error and uncertainty arising from data 86 

aggregation across scales needs to be quantified.  87 

Several studies have highlighted the impact of data aggregation on simulation results (Cale 88 

et al., 1983; Rastetter et al., 1992; Ewert et al., 2015; Zhao et al., 2015). De Wit et al. (2005) 89 

and Hoffmann et al. (2015) investigated the impact of climate data aggregation on crop 90 

yields. While de Wit et al. (2005) varied precipitation and solar radiation only on the 91 
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resolutions 10 km and 50 km, Hoffmann et al. (2015) differentiated between five different 92 

resolutions between 1 and 100 km and also considered aggregation effects of temperature 93 

for 13 models. Both studies found only slight impacts of data aggregation on simulated yield 94 

over longer time periods at a regional scale. Van Bussel et al. (2011) investigated the 95 

impacts of climate aggregation on croplands and focused on phenological stages rather than 96 

primary production, but they also found minor effects on simulated average values. The 97 

impacts of climate data aggregation on NPP were tested by Nungesser et al. (1999) and 98 

Pierce and Running (1995), both for American forests. In both studies, the impact was minor 99 

for averages over the entire study area, but showed relevant impacts for smaller areas, 100 

especially areas dominated by strong relief changes (Pierce and Running, 1995). In both 101 

studies, the effects were tested by one model and for two resolutions of 10 and 50 km grid 102 

cells in Nungesser et al. (1999), and 1 km and 110 km in Pierce and Running (1995). The 103 

latter study investigated the effect for different input variables (relief, climate and soil) and 104 

found that climate data aggregation was the dominant variable affecting scale differences of 105 

NPP. They also observed larger scale effects for shorter time periods, which could be an 106 

indication of extreme weather events that average out over larger areas or longer time 107 

periods. Overall, regional simulation results over longer periods seem to be little affected by 108 

climate data aggregation. Over longer periods changes of NPP level out and the impact of 109 

extreme events may be not obvious in a long term average, but relevant for shorter periods. 110 

Reichstein et al. (2013) describe the temporal and spatial scale as very important to detect 111 

impacts of extreme weather conditions on the carbon balance and see a risk of miss out 112 

extreme weather conditions by integration of weather data across scales. Impacts of 113 

extreme weather are also depending on the temporal scale, which is not yet tested for 114 

impacts on NPP. However, there is a lack of studies determining the effect on NPP 115 

simulations of croplands, and no study to date has analysed the relevance of extreme events 116 

during climate data aggregation.  117 
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Therefore, the objective of this paper is to quantify error and uncertainty of NPP simulations 118 

of croplands caused by climate data aggregation across five resolutions (1, 10, 25, 50 and 119 

100 km grid cell side length). This study addresses the three questions i) what are the 120 

impacts on long term NPP averages over the entire region? ii) how does the aggregation 121 

effect change over shorter time periods? iii) is the aggregation effect more pronounced in 122 

years with extreme weather conditions compared to “normal” years? These questions are 123 

answered by using a simulation approach involving eleven different models. Additionally, a 124 

vulnerability analysis helps to identify the impact of climate data aggregation for years with 125 

extreme weather conditions. Thus, we provide the first systematic analysis considering the 126 

impact of spatial weather data aggregation on NPP using five resolutions and 11 different 127 

models.  128 

 129 

2 Methods 130 

 131 

2.1 Aggregation effect 132 

Spatial modelling approaches are containing uncertainty, because uncertainty of input data 133 

and limited data availability requires data aggregation, which also contribute to the 134 

uncertainty. In this study we focused on the impact of data aggregation on uncertainty. 135 

Spatial data base on point measurement, small scale measurements or approaches that 136 

averaging the data already during the measurement process. In the data aggregation these 137 

data sets get interpolated, extrapolated and averaged to provide data in its spatial 138 

distribution. This data aggregation increases the uncertainty of the data sets. Beside the 139 

impacts of data aggregation, the chosen format of the model approach adds uncertainty to 140 

the data, too. Spatial model approaches often using data organized in grid maps, while 141 

natural conditions do not follow any symmetric pattern. Therefore, gridded data already 142 

contain uncertainty, which also varies with changing scale. Our focus in this study is on the 143 
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impact of changing scales of grid map data on simulation results. Because there is a strong 144 

interaction of different processes, we concentrate on the impact of changing weather data 145 

as an important driver for plant growth. As we only compare simulated NPP values, we are 146 

not using the term uncertainty, but aggregation effect (Eaggregation), which can be formulated 147 

as: 148 

𝐸𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑚𝑎𝑥(𝑉𝐴𝐿𝑟𝑒𝑠_1,…𝑉𝐴𝐿𝑟𝑒𝑠_𝑛)−𝑚𝑖𝑛(𝑉𝐴𝐿𝑟𝑒𝑠_1,…𝑉𝐴𝐿𝑟𝑒𝑠_𝑛)

𝑉𝐴𝐿𝑟𝑒𝑠_1
          (1) 149 

 In this study the aggregation effect is defined as the maximum difference between the 150 

simulated NPP averages between the different resolutions and it is quantified by the 151 

difference between maximum NPP average and minimum NPP average of the five 152 

resolutions: 153 

 154 

𝐸𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛,𝑚𝑜𝑑𝑒𝑙 =
𝑚𝑎𝑥(𝑁𝑃𝑃𝑅𝑒𝑠1,𝑚𝑜𝑑𝑒𝑙,…𝑁𝑃𝑃𝑅𝑒𝑠100,𝑚𝑜𝑑𝑒𝑙)−𝑚𝑖𝑛(𝑁𝑃𝑃𝑅𝑒𝑠1,𝑚𝑜𝑑𝑒𝑙,…𝑁𝑃𝑃𝑅𝑒𝑠100,𝑚𝑜𝑑𝑒𝑙)

𝑁𝑃𝑃𝑅𝑒𝑠1,𝑚𝑜𝑑𝑒𝑙
          (2) 155 

 156 

This allows a model specific calculation of the effect and is independent of any trends 157 

towards the coarser resolution. The difference describes the maximum expected bias by 158 

picking one resolution in comparison to the results of another resolution. This calculation is 159 

applicable on different spatial or temporal averages.  160 

The aggregation effect can also applied on ensemble runs, which is possible in two different 161 

ways. Eaggregation can be calculate for the resolution specific averages over all models with 162 

the formulation: 163 

𝐸𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑚𝑎𝑥(𝑁𝑃𝑃𝑅𝑒𝑠1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,…𝑁𝑃𝑃𝑅𝑒𝑠100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)−𝑚𝑖𝑛(𝑁𝑃𝑃𝑅𝑒𝑠1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,…𝑁𝑃𝑃𝑅𝑒𝑠100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑁𝑃𝑃𝑅𝑒𝑠1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
            (3) 164 

This allows the quantification of the aggregation effect for ensemble runs.  165 

 166 

2.2 Study area 167 

The study area is the state North Rhine-Westphalia situated in the West of Germany. The 168 

state is 34084 km2 in size with an elevation from 0 to 843 m above sea level, with lower 169 
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plains in the North West and higher elevations in the South-East. The land-use is dominated 170 

by agriculture (more than 60 % of the area), but in this study the entire area (including the 171 

40 % of forest, urban areas and infrastructure as well as water bodies) was considered to 172 

be cropland. To standardize the simulation runs monocultures of either winter wheat 173 

(Triticum aestivum L.) or silage maize (Zea mays L.) were assumed for the entire area. 174 

The driving daily weather data are provided at five different resolutions (1, 10, 25, 50 and 175 

100 km grid cells), while soil data (typical soil type) and management (good agricultural 176 

practice) were assumed to be constant during the study period and over the entire study 177 

area. The chosen soil type is a sandy loam, which is typical for this region and the 178 

management includes ploughing, sowing, harvest and three (130, 52, 26 kg ha-1) and two 179 

(30, 208 kg ha-1) fertilizer applications during spring for wheat and maize, respectively (for 180 

details see Hoffmann et al., 2015). The models were not calibrated for the study area, but 181 

were adjusted based on 30-year yield averages (1982-2011) of about 8 t ha-1 for winter 182 

wheat and 14 t ha-1 for silage maize. The weather data, presented and discussed by Zhao 183 

et al. (2015) and Hoffmann et al. (2015), show a 30 year average temperature of 9.7 °C, an 184 

average annual precipitation of 899 mm and mean annual global radiation of 3758 MJ m-2 185 

a-1 (1982-2011) with the standard deviations of 1.2 °C, 214.0 mm a-1 and 169.4 MJ m-2 a-1, 186 

respectively. The coldest year was 2004 with an average temperature of 8.9 °C and the 187 

warmest year was 1983 (11.2 °C). The driest year was 2001 with 516.2 mm precipitation. 188 

All coarser resolutions of the weather data were based on the grid cells of the 1 km resolution 189 

for daily time steps. The data show a decrease of temperature (from 9.7 °C to 9.4 °C) and 190 

precipitation (from 899 mm to 824 mm) starting from the 1 km resolutions towards the 191 

coarsest resolution of 100 km. 192 

 193 

2.3 Modelling applications 194 
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There are three different approaches using different model settings to analyse the impact of 195 

different processes contributing to the simulation of NPP. In a first approach, no limitations 196 

to growth factors, other than temperature and radiation, are simulated explicitly (switched 197 

off or compensated in all models). We denote this potential, non-limited growth, potential 198 

NPP or PN. The second approach considers only water-limitation (WN), while the third 199 

approach considers nitrogen and water limitation (NN). The way limitations are switched off 200 

differs between the models. Some models switched off the stress factors, other models 201 

compensated the stress by providing additional water and nutrient applications. 202 

The settings for management are presented by Hoffmann et al. (2015). The sowing date is 203 

fixed for all models, while for harvest only a latest date is suggested (if the phenological 204 

model does not determine maturity before this date, there will be an automatic harvest).  205 

 206 

2.4 Models 207 

Eleven models participated in this study; eight crop models and three biogeochemical 208 

models (Table1). All models provide data on a daily time step (except CENTURY which uses 209 

a monthly time step), consider the complete range of management practices (except AgroC 210 

that does not consider nitrogen limitation) and provide simulations for the two considered 211 

crops, wheat and maize (except COUP that only simulates wheat). The growing season for 212 

the crop models is determined by internal phenological models based on a fixed sowing 213 

date, while the three biogeochemical models CENTURY, DailyDayCent and 214 

LandscapeDNDC and the crop model STICS also used a fixed harvest date (i.e. fixed length 215 

of the growing season).  216 

Five of the models determine NPP based on the radiation use efficiency concept (AgroC, 217 

APSIM, APSIMmod., COUP, LINTUL, STICS), while other models determine NPP based on 218 

the difference between gross primary production and respiration (HERMES, MONICA), 219 
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calculated directly (DailyDayCent) or other approaches (LandscapeDNDC). More details 220 

about the models are provided in Hoffmann et al. (2015). 221 

 222 

Table 1: List of the participating models. 223 

No. Model References 

1 HERMES Kersebaum 2007, 2011 
2 APSIM Keating et al. 2003; Holzworth et al. 2014 
3 COUP Conrad & Fohrer 2009; Jansson & Karlberg 2004 
4 DailyDayCent Del Grosso et al. 2001, 2006; Parton et al. 2001; Yeluripati et al. 

2009 
5 LandscapeDNDC Haas et al. 2012; Kraus et al., 2014 
6 LINTUL Van Ittersum et al. 2003; Shibu et al. 2010 
7 MONICA Nendel et al. 2011 
8 STICS Bergez et al. 2013; Brisson et al. 1998,  2008 
9 APSIMmod Chen et al. 2010; Keating et al. 2003; Wang et al. 2002 
10 CENTURY Parton et al., 1993, 1995 
11 AgroC Herbst et al., 2008 

 224 

 225 

2.5 Evaluation of aggregation effects over different time periods 226 

The simulation results (NPP averages over the entire study area) were averaged over 227 

different periods (1, 5, 10, 15, 20, 25, 29 years) to examine the maximum differences 228 

between the five resolutions as influenced by the different temporal scales. The number of 229 

averages considered varies for the different time periods (29, 6, 3, 2, 2, 2, 1, respectively). 230 

The analysis for the periods 20 and 25 years were applied twice, covering mainly the first 231 

and the last years with some data overlap. The results are presented as the mean 232 

aggregation effect as well as the maximum aggregation effect between the five resolutions. 233 

 234 

2.6 Vulnerability Analysis 235 

Vulnerability and risk are terms that are widely used in different communities and described 236 

in different contexts with different definitions. In this study we use an approach developed 237 

by van Oijen et al. (2014), designed to investigate impacts of extreme weather events on 238 

carbon dynamics. The approach, based on an abiotic definition of extreme periods, 239 
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compares the impacts on a chosen biotic ecosystem variable on the defined “extreme” or 240 

“hazardous” and “not extreme” or “non-hazardous” conditions. Van Oijen et al. (2014) chose 241 

the standardized precipitation evapotranspiration index (SPEI), developed by Vicente-242 

Serrano et al. (2010), as the abiotic factor separating hazardous from non-hazardous 243 

conditions. SPEI is a drought index based on the difference between potential 244 

evapotranspiration and precipitation. If the precipitation exceed the potential 245 

evapotranspiration for the given time period, SPEI shows positive values, while negative 246 

values represent a water deficit based on the calculated difference and indicate a drought 247 

impact. There is no fixed threshold, which defines an extreme drought impact or growth 248 

reducing conditions and SPEI can be calculated for any duration. The index is normalized 249 

and normal distributed. The average is about 0 for the considered period of 1982-2011 with 250 

64 % of the values between -1 and +1 and 19 % below -1 for the 1 km resolution. These 251 

statistics stay the same for all resolutions, with the exception of the number of values in the 252 

-1 to +1 interval, which drops down to 63 % for the 100 km resolution.  The potential 253 

evapotranspiration can be calculated with different approaches, while in this study the 254 

method developed by Thornthwaite (1948) is used. 255 

SPEI is one of the indices that considers both, precipitation and temperature in the 256 

calculation, rather than only precipitation, but is still easy to apply, which makes it an 257 

attractive index to use in this study.. Van Oijen et al. (2014) suggest two thresholds to 258 

separate hazardous from non-hazardous conditions: SPEI < -1 and SPEI < -2. For the actual 259 

study region there is only a small number of SPEI values below -2, so SPEI < -1 was chosen 260 

as the threshold. Following van Oijen et al. (2014), the period to calculate the SPEI is 261 

restricted to half a year. In contrast to the approach of van Oijen et al. (2014), who suggested 262 

the period April-September, the period February – July was used in this study to better reflect 263 

the crop growth period. The system variable used in this study is NPP. 264 
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Vulnerability (V) describes a possible damage/impact on a system and the risk (R) is 265 

described by the product of the probability (P) that a hazardous event (H) occurs and its 266 

impact on the system.  267 

 268 

𝑅 = 𝑃(𝐻) ∙ 𝑉        (2) 269 

 270 

This equation represents the relation between probability, and vulnerability and can be 271 

expressed by using the reduction of the NPP by the hazardous periods, described as risk: 272 

 273 

𝑅 = 𝐸(𝑁𝑃𝑃|𝑛𝑜𝑛 − ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠) − 𝐸(𝑁𝑃𝑃)   (3) 274 

 275 

E(NPP|non-hazardous) is the average value of NPP for all grid cells and years with a SPEI 276 

≥ -1 and E(NPP) is the overall average of NPP (including both, hazardous and non-277 

hazardous conditions). The vulnerability describes the difference of the NPP averages for 278 

the non-hazardous and the hazardous years and grid cells. 279 

 280 

𝑉 = 𝐸(𝑁𝑃𝑃|𝑛𝑜𝑛 − ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠) − 𝐸(𝑁𝑃𝑃|ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠)  (4) 281 

 282 

3 Results 283 

 284 

3.1 NPP differences between the models 285 

The different model simulations of NPP are compared for the 1 km grid resolution, which is 286 

considered to be the “best” result for each model separately and thus used as the baseline. 287 

The results for wheat vary for the different models with mean values for 29 years of 288 

simulation 1.9 - 4.2 g C m-2 d-1, 1.9 - 4.1 g C m-2 d-1
 and 1.8 – 4.1 g C m-2 d-1 NPP for PN, 289 

WN and NN, respectively (Figure 1). The simulation results of STICS and AgorC show the 290 

highest variation over the 29 years, while the results of COUP and LandscapeDNDC vary 291 

only within a narrow range. Some of the models are sensitive to water limitation (e.g. COUP), 292 
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which is reflected by the differences between the PN and the WN approach (Figure 1), other 293 

models show minimal impacts of water limitation (e.g. STICS). The spatial distribution of the 294 

results shows a dependency on elevation (Figure 2). However, the spatial distribution of high 295 

and low NPP values is different between the models. While most models show higher NPP 296 

values for low elevation and lower values in the higher elevations, the other group of models 297 

(AgroC, COUP, LINTUL, APSIM and APSIMmod) show the opposite spatial separation of high 298 

and low NPP values. 299 

The simulated NPP for maize (7.4 - 12.8 g C m-2 d-1, 7.3 - 12.7 g C m-2 d-1 and 7.2 – 10.0 g 300 

C m-2 d-1 for PN, WN and NN, respectively) show higher maximum values than the NPP for 301 

wheat, and indicate an even lower sensitivity to water limitation, which is represented by a 302 

comparison of the simulation results of PN and WN (Figure 3). The extreme NPP values for 303 

APSIMmod and LandscapeDNDC for wheat and maize, respectively, are outside the range 304 

of the other models, but are included in all analyses. 305 

 306 

 307 
 308 
Figure 1: Simulated NPP for winter wheat at 1 km resolution for potential growth (PN), under water 309 

limitation (WN) and under nutrient and water limitation (NN). The models are in the order HERMES 310 

(HE), APSIMmod (A2), COUP (CO), DailyDayCent (DA), LandscapeDNDC (DN), LINTUL (LI), 311 

MONICA (MO), STICS (ST), APSIM (AI), CENTURY (CE) and AgroC (AG).  312 

 313 

 314 
 315 
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 316 
 317 
Figure 2: Spatial distribution of the 29 year averages of NPP for the 11 models assuming wheat 318 

mono-culture for the PN approach.  319 

 320 

 321 
 322 

Figure 3: Simulated NPP values for silage maize at 1 km resolution for potential growth (PN), 323 

under water limitation (WN) and under nutrient and water limitation (NN). The models are in the 324 

orgerHERMES (HE), APSIMmod (A2), DailyDayCent (DA), LandscapeDNDC (DN), LINTUL (LI), 325 

MONICA (MO), STICS (ST), APSIM (AI), CENTURY (CE) and AgroC (AG). 326 

 327 

3.2 Model specific aggregation effect 328 

The aggregation effect as described in equation 1 shows a range for all models of 0.4 – 7.8 329 

% and 0 - 4.8 % for wheat and maize, respectively (Table 2). The analysis of the medians 330 

shows slightly larger aggregation effects with 0.3 – 11.4 % and 0.0 – 10.0 % for wheat and 331 
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maize, respectively (Table 2). There are no obvious trends in the changes of NPP from the 332 

1 km resolution to 100 km resolution, neither for the crops nor for the different models 333 

(Figures 4 and 5). However, the models LandscapeDNDC, MONICA, CENTURY and 334 

DailyDayCent show relatively small changes (< 1.2 %) for both crops, and HERMES for the 335 

wheat simulations, while APSIM, APSIMmod and AgroC show relatively high aggregation 336 

effects (more than 4.8 %) between the different scales. The aggregation effect varies 337 

between the models as does the trend. While APSIMmod, LINTUL, AgroC and APSIM show 338 

increasing NPP values towards coarser resolutions for the wheat simulations, HERMES, 339 

MONICA, CENTURY and DailyDayCent show decreasing NPP. The simulation results of 340 

COUP and STICS show no trend, but a minimum NPP averages for the resolutions of 10 341 

km and 50 km, respectively. The median is affected for some models, especially for the 342 

maize simulations, more than the average values and most models show stronger changes 343 

for WN and NN than for PN (Table 2). The results for maize support the findings of the wheat 344 

simulations, but the scale effect is smaller and effect and trends differ for some models 345 

between the two crops. HERMES and DailyDayCent show minimal differences between the 346 

resolutions, while APSIMmod, LINTUL, MONICA, STICS and APSIM show a decreasing 347 

trend with AgroC and LandscapeDNDC showing an increasing trend towards coarser 348 

resolutions.  349 

The aggregation effect for the model ensemble is calculated for the resolution specific 350 

average over all models (equation 3). The effect is below 0.9 % for wheat and 2.0 % for 351 

maize, which is below all aggregation effects of the individual models. 352 

 353 
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 354 
 355 
Figure 4: Simulated NPP of wheat for the potential growth (PN). These boxplots represent the 356 

variability over 29 NPP averages over the growing season for the five resolutions (1, 10, 25, 50 357 

and 100 km). 358 

 359 

 360 
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Figure 5: Simulated NPP of maize for the potential growth (PN). These boxplots represent the 361 

variability over 29 NPP averages over the growing season for the five resolutions (1, 10, 25, 50 362 

and 100 km). 363 

 364 

Table 2: Relative maximum differences of NPP averages (AVG) and median (MED) between the 365 

five resolutions [%]. The values represent the simulation results of wheat (W) and maize (M) for the 366 

three approaches (PN, WN, NN). All differences are related to the resolution with the lowest NPP 367 

average. The models  are HERMES (HE), APSIMmod (A2), COUP (CO), DailyDayCent (DA), 368 

LandscapeDNDC (DN), LINTUL (LI), MONICA (MO), STICS (ST), APSIM (AI), CENTURY (CE) 369 

and AgroC (AG). Changes of greater 3 % are highlighted by grey boxes. 370 

 371 
 HE A2 CO DA DN LI MO ST AI CE AG 

AVG W PN 0.9 5.0 2.2 1.1 n.s. 4.7 0.8 2.0 4.9 0.9 7.8 
AVG W WN 0.8 4.8 2.2 0.7 0.2 2.4 1.1 1.8 4.8 0.8 7.8 
AVG W NN 0.5 5.4 2.2 0.5 1.6 3.0 1.2 2.0 5.4 0.7 n.s. 
AVG M PN 1.3 2.0 n.s. 0.1 1.3 2.0 2.0 1.5 2.0 0.0 3.2 
AVG M WN 1.3 2.0 n.s. 0.3 1.2 2.5 1.5 2.0 2.0 0.5 3.5 
AVG M NN 4.8 2.0 n.s. 1.2 2.8 1.7 1.5 2.0 2.0 0.6 n.s. 
MED W PN 0.9 4.9 2.2 1.0 n.s. 4.7 0.8 2.0 4.9 0.9 7.8 
MED W WN 1.5 7.8 2.3 1.8 0.3 3.2 2.9 2.1 7.8 1.4 11.4 
MED W NN 0.9 8.8 2.3 1.6 1.0 3.8 3.0 2.3 8.8 1.3 n.s. 
MED M PN 0.7 10.0 n.s. 0.1 2.8 8.7 3.8 3.3 10.0 0.0 3.1 
MED M WN 0.7 10.0 n.s. 0.5 2.7 10.0 3.3 3.7 10.0 0.3 3.9 
MED M NN 4.0 10.0 n.s. 0.7 5.5 8.8 3.3 3.8 10.0 0.3 n.s. 

n.s. not simulated 372 
 373 

3.3 Aggregation effect over different time periods 374 

The impact of scales is also tested for periods shorter than 29 years (Figure 6 and 7). The 375 

simulation results are averaged for each time step (according to the considered period of 1, 376 

5, 10, 15, 20, 25 years) over the entire area (for each resolution separately). While the 377 

maximum aggregation effect is strongest for a single year and does not change greatly for 378 

periods of 10 years or longer, the average aggregation effect stays almost the same, but 379 

decreases for the 29 year period. The effects are the same for all models for both crops 380 

(Figure 6 and 7), but the values differ. 381 
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 382 
Figure 6: The relative differences between the maximum and minimum NPP (wheat PN) between 383 

the resolutions for data averaged over different time periods (annual to 29 year averages). On the 384 

left side the differences are averaged for each period, while the right side shows the maximum 385 

values for each period. 386 

 387 

 388 

Figure 7: The relative differences between the maximum and minimum NPP (maize PN) between 389 

the resolutions for data averaged over different time periods (annual to 29 year averages). On the 390 

left side the differences are averaged for each period, while the right side shows the maximum 391 

values for each period. 392 
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 393 

Table 3: Minimum and maximum average length of the growing season of wheat for each 394 

resolution (overall averages) as determined in the different models. The shortest length represents, 395 

in all cases, the length of the growing season for resolution of 1km and longest growing season 396 

was for all models the resolution of 100 km. 397 

 398 

model min. length [d] max. length [d] change [d] 

HERMES 256.1 257.6 1.5 

APSIMmod 249.9 253.9 4.0 

COUP 239.3 241.7 2.4 

LINTUL 243.9 249.1 5.2 

MONICA 259.5 261.1 1.6 

STICS 236.4 239.0 2.6 

APSIM 254.7 257.1 2.4 

AgroC 238.2 243.3 5.1 

 399 

The NPP values in this study represent NPP during growing season. Length of growing 400 

season varies between the different models and the different years (Table 3), because of 401 

different phenological sub-models and inter-annual variations of temperature. As already 402 

mentioned, the date for the latest possible harvest is fixed and this date is used as actual 403 

harvest by the models CENTURY, DailyDayCent and LandscapeDNDC. The highest 404 

differences between the lengths of the growing season are observed for LINTUL and AgroC, 405 

while there are relative little changes for HERMES and MONICA.  406 

 407 

3.4 Vulnerability analysis 408 

The results of the vulnerability analysis are represented in Figures 8 and 9, showing 409 

vulnerability (grey bars) and the risk (black bars) for each model and resolution. Negative 410 

values indicate a higher NPP average for hazardous conditions than for the non-hazardous 411 

conditions (vulnerability) or a higher NPP for the overall average than for the non-hazardous 412 
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conditions (risk). The analysis shows positive values for vulnerability and risk for all 413 

simulation results of wheat, except for DailyDayCent and the two APSIM models (Figure 8). 414 

The values between the different resolutions vary for the different models. The vulnerability 415 

analysis for the maize simulations shows a negative risk and vulnerability for 416 

LandscapeDNDC, while LINTUL and DailyDayCent vary between the resolutions (Figure 9).  417 

Overall, vulnerability and risk differ for most models depending on the resolution, but there 418 

is no clear trend for increase or decrease of vulnerability or risk towards coarser resolution. 419 

The average risk for wheat simulations is about 0.02 g C m-2 d-1 ± 0.02 g C m-2 d-1, with no 420 

trend between the different resolutions and the average vulnerability of 0.13 g C m-2 d-1 with 421 

a standard deviation of 0.10 g C m-2 d-1 shows also no clear trend.  The differences of 422 

vulnerability between the five resolutions show the maximum difference between 1.6 % for 423 

CENTURY and 12.8 % for LINTUL (maximum difference relative to the average NPP of 424 

resolution of 1 km) for wheat and between 1.1 % (CENTURY) to 15.5 % (MONICA) for 425 

maize. In these calculations the models AgroC, APSIM, APSIMmod and DailyDayCent for 426 

wheat and APSIMmod, LandscapeDNDC and LINTUL for maize are not considered, 427 

because the results of these models indicate no vulnerability to drought under these 428 

conditions. In contrast to wheat, the vulnerability analysis of maize shows mainly negative 429 

values (Figure 9), except for STICS and AgroC (positive values), and DailyDayCent and 430 

LINTUL (varying values). The number of values (cells and years with a SPEI < -1) may affect 431 

the results, but the number of extreme cells (based on SPEI) is within a narrow range of 432 

17.6 – 18.2 % for the different resolutions, so the relative numbers of hazardous cells stays 433 

about the same. 434 

 435 
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 436 
Figure 8: Vulnerability (grey bar) and risk (black bar) for 11 models for water limitation simulation 437 

results of NPP (WN). The results represent the simulation results for wheat for the period 1983-438 

2011. The terms vulnerability and risk are used in the definition by van Oijen et al. (2014) and 439 

describe the impacts of hazardous in comparison to non-hazardous conditions (see also section 440 

2.6). 441 

 442 
 443 

 444 
Figure 9: Vulnerability (grey bar) and risk (black bar) for 10 models simulated for water limitation 445 

considered (WN). The results represent the simulation results for maize for the period 1983-2011. 446 
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The terms vulnerability and risk are used in the definition by van Oijen et al. (2014) and describe 447 

the impacts of hazardous in comparison to non-hazardous conditions (see also section 2.6). 448 

 449 

4 Discussion 450 

 451 

4.1 NPP differences between the models 452 

The simulated potential NPP averages of the growing season for the 1 km resolution range 453 

from 1.8 to 4.1 g C m-2 d-1 and 7.4-12.8 g C m-2 d-1 for wheat and maize, respectively, which 454 

is higher than annual NPP averages of European croplands (550 ± 50 g C m-2 yr-1; Schulze 455 

et al., 2010)and this is expected for crops in the study region. Because the 1 km grid maps 456 

are the highest resolution, we assume these data as the most accurate of the available data 457 

and use these data as baseline, because detailed measurements with crop yields in its 458 

spatial distribution are missing. As mentioned, the results base on simulation runs of 459 

uncalibrated models, but adjusted to proxies for a 30 year average of crop yield. In spatial 460 

modelling data for calibration are rarely available or, if available, often restricted to one or 461 

some point measurements. This makes appropriate calibration for spatial modelling difficult 462 

and adjustment to a 30 year is an appropriate method to set up the model. The two models 463 

with low NPP for wheat (APSIMmod) and high NPP for maize (LandscapeDNDC) are most 464 

likely under- and over-estimates of NPP, because of the lack of calibration. As the results 465 

are not unrealistic for crop yields in central Europe, the results from both models are used 466 

in the analysis. The NPP differs between the models up to 2.3 and 5.4 g C m-2 yr-1 for wheat 467 

and maize, respectively, while the range for yield, the target variable of the model settings, 468 

is with 7.6 to 8.7 t ha-1 and 15.4 to 17.6 t ha-1 for wheat and maize, respectively, smaller 469 

(Hoffmann et al., 2015). As mentioned above, the approaches for calculating NPP are 470 

different and by grouping the models according to these approaches of radiation use 471 

efficiency, difference between GPP and respiration or direct calculation of NPP reduces the 472 
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differences within the groups. The two exceptions for wheat (APSIMmod) and for maize 473 

(LandscapeDNDC) are already mentioned above. This means the model structure affects 474 

the NPP and the differences in the structure induce the wide range of NPP averages.  475 

A comparison between the PN, WN and NN approaches enables water limitation and 476 

nitrogen limitation impacts on NPP to be detected. Nitrogen limitations play a minor role for 477 

the study region, because of sufficient fertilization. As Figure 1 shows, the results of the 478 

COUP model indicate a strong sensitivity to water limitation (26 - 30 % decrease of average 479 

NPP), and LINTUL is also sensitive to water limitation (4.7 - 6.1 % decrease of average 480 

NPP), while the other models only show little sensitivity to drought stress on the overall 481 

averages (all < 2 % difference). The differences of sensitivity between the models do not 482 

show a specific impact on the aggregation affect. Neither the strength of the effect nor the 483 

changes between PN and PW are similar to each other or different to the other models.  484 

The contradicting spatial distribution of high and low NPP values reflect different crop 485 

parameters and phenological sub-models applied in the different models. In contrast to the 486 

NPP, the distribution of yield does not necessarily show a similar spatial pattern in the study 487 

area. These differences between NPP and yield are related to the different impacts of 488 

temperature changes on the simulation of phenological stages, which affects the lengths of 489 

the growing season differently to the length of the grain filling period. There is additional 490 

biomass production of wheat from the extension of the growing season, while the grain filling 491 

period does not necessarily benefit from warmer climatic conditions. The example shows 492 

the results for the year 2003, which was a severe drought period (Ciais et al., 2010) starting 493 

from mid-July and was considered by the calculation of the SPEI in the vulnerability analysis. 494 

The harvest at lower elevation started before the drought period, while the primary 495 

production at higher elevation was affected by the drought. The extension of the growing 496 

season allowed an over-compensation of NPP by a growing season that was 53 days longer, 497 

while the yield values were affected by drought, which could not be compensated for by a 7 498 
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day longer grain filling period. Both day of anthesis and day of maturity are determined based 499 

on temperature sums by the phenological model. For warmer areas, both will be earlier in 500 

the year compared to colder areas during the same period. In contrast, biomass production 501 

benefits from an extension of the growing season, due to additional days of production. 502 

However, the period between anthesis and maturity (both dates are represented by 503 

averages overall years and grid cells per resolution) is up to 5 days shorter when coarser 504 

resolution data are used for all models (Table 3). The models with the higher NPP in the 505 

higher elevated areas show the largest scale effect, which reflects a sensitive reaction of 506 

the phenological models to temperature changes. Van Bussel et al. (2011) reported minimal 507 

scale effects on the phenological stages, but these changes have still larger impacts on 508 

NPP. 509 

 510 

4.2 Model specific aggregation effect 511 

The differences between the resolutions of the wheat NPP simulations show three groups 512 

of models. APSIM, LINTUL, APSIMmod and AgroC show stronger effects (2.4-7.8 %) than 513 

the other models, and HERMES, CENTURY, DailyDayCent and MONICA show minimal 514 

impacts (<1.2 %), while COUP and STICS lie between (1.8-2.2 %). The groups of models 515 

with medium and strong aggregation effects are all models that determine NPP based on 516 

the radiation use efficiency, while the other models use temperature based approaches. 517 

Hoffmann et al. (2015) investigated the aggregation effect on yields for the same set of 518 

models and suggested that the aggregation effect on radiation may not be much higher than 519 

on temperature, but the models might be sensitive to changes in radiation. Despite trends 520 

of decreasing temperature and solar radiation at coarser resolution (Figure 2 and Table 2 in 521 

Hoffmann et al., 2015), some models show increasing potential NPP values (LINTUL, 522 

APSIMmod and AgroC for wheat and DailyDayCent, LandscapeDNDC and AgroC for 523 

maize). These contradictory trends are also related to an extended growing season caused 524 



24 

 

by different approaches for the calculation of the phenological stages. Therefore, decreasing 525 

temperatures affect an extension of the growing season which compensates, or over-526 

compensates, the effect of lower temperatures and radiation on crop growth as already 527 

discussed above. The growing season is extended by 1.5 to 5 days on average at coarser 528 

resolutions for wheat, and 1-2 days on average for maize simulations (Table 3), 529 

accompanied by a temperature decrease of 0.3°C (Hoffmann et al., 2015). As the model 530 

structure differs, the models show a different sensitivity to this effect and differ in their trends 531 

through the different resolutions. These results concur with the findings by van Bussel et al. 532 

(2011), who found only small impacts of climate aggregation on determined phenological 533 

stages. The models APSIMmod, LINTUL and AgroC showed the longest (4-5 days) 534 

extension to the average growing season towards the coarser resolutions, while all other 535 

models showed lower extensions (<2.5 days). The models with the larger aggregation 536 

effects are the same models that show large differences in the length of the growing season. 537 

The findings of the overall aggregation effect on NPP agrees to the findings of Nungesser 538 

et al. (1999), who found a mean uncertainty of < 2 % on NPP by modifying precipitation and 539 

solar radiation for resolutions of 10 and 50 km. The average differences for the wheat NN 540 

approach in this study (1.2 %) is also in this range, but includes a large increase for AgroC 541 

of up to 3.3 %. Pierce and Running (1995) determined an aggregation error of 15 – 30 %, 542 

depending on the time step, while the maximum time period is one year and the higher 543 

values are related to impacts on daily NPP. The relative small aggregation effect agrees 544 

also to the findings of de Wit et al. (2005), who found only small impacts of climate data 545 

aggregation on yield. Hoffmann et al. (2015) analysed the aggregation effect for yield and 546 

found an uncertainty of 0.2 t ha-1 (30 year average, over the entire study area and 547 

considering the simulation results of 13 models), which is about 2.5 % to the determined 548 

yield. A comparison with the maximum aggregation effects on yield for each model shows 549 

4.2 - 8.4 % and 3.6 – 7.6 % for wheat PN and WN, respectively, higher impacts on yield than 550 
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for NPP, but also only small changes of the aggregation effect between the PN and WN 551 

simulations. Despite the high differences of precipitation between the five resolutions, the 552 

aggregation effect do not change strongly for the approaches WN and NN. For most models 553 

the aggregation effect even decrease. This can be explained by the little relevance of 554 

drought and nitrogen limitation for long term averages in the considered region. In regions 555 

with higher drought or nutrient stress the aggregation effect might be higher. The region is 556 

picked to represent an agricultural managed area in central Europe and the results can be 557 

transferred to comparable regions. Regions of other climate conditions (higher drought 558 

stress) or with different management practices (higher nutrient stress) might show different 559 

aggregation effects and further work needs to be done in upcoming studies to get a 560 

conclusive answer on this.  561 

The differences between the aggregation effect for the average and the median NPP reflects 562 

the impacts on the variance. Changes due to aggregation may be more relevant for more 563 

extreme years and show stronger impacts that are levelled out in the average values. It can 564 

be assumed that the extremes are more likely to impact negatively on the NPP values, since 565 

the maximum growth will be restricted. The strongest differences arising from the 566 

aggregation effect on averages and median are detected for models that show a decreasing 567 

aggregation effect towards the coarser resolution. The effect may be compensated by the 568 

general trend of the NPP values for coarser resolutions.  569 

If the simulation runs are used as ensembles, the aggregation effect are relatively low. For 570 

the wheat simulation the aggregation effect is almost as low as the minimal effect on an 571 

individual model run and can be explained by the different trends of the individual simulation 572 

approaches of the different models. In contrast, the simulations on maize show similar trends 573 

from the high resolution to the low resolution for models that show a high aggregation affect, 574 

which is reflected in a higher aggregation effect than for the wheat simulation. However, with 575 

2 % is this effect still small. 576 
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 577 

4.3 Aggregation effect over different time periods  578 

The analysis considered 29 year averages, while the impact of scale increases for shorter 579 

time periods (Figures 6 and 7). The scale effect shows the highest differences for single 580 

years, and stabilises to constant differences or only minor changes for periods of 15 years 581 

and longer. This suggests that the resolution of choice depends on the temporal scale as 582 

well as on the research question. The mean uncertainty for longer periods will be below 4 583 

%. The maximum aggregation effect for single years can be more than 9 % for wheat and 584 

more than 13 % for maize, but will decrease to below 4 % for time periods longer than 10 585 

years. While the largest impact on the aggregation for the maximum differences is from 1 to 586 

5 years, the mean aggregation effect shows the maximum change for the step from 25 to 587 

29 years. The NPP is a non-linear process and is especially affected by extreme events 588 

(Reichstein et al., 2013). Extreme weather conditions have an impact for a short period and 589 

affect often only a year and can be reduced by spatial averaging of the climate data. This 590 

spatial averaging is represented by the higher aggregation effect for the annual data, but 591 

this effect is already compensated by averaging over longer time periods. The impact of the 592 

temporal averages is represented in the two graphs in figure 7, which shows lower impacts 593 

on the averaged short term aggregation effect than on the maximum impact for a year.  594 

Pierce and Running (1995) also found changes of the aggregation effect depending on 595 

temporal scale. They observed decreasing aggregation errors for increasing periods, which 596 

supports our findings. However, their study considers daily to annual time periods and not 597 

period lasting 1 – 29 years. An error of 15 % is in agreement with the maximum values of 598 

the analysis of the annual aggregation effect, which shows a range of 1.6 – 9.4 % for wheat 599 

and 3.4 - 13.6 % for maize. 600 

 601 

4.4 Vulnerability analysis 602 
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The impact of the the simulated phenological stages is already mentioned earlier in context 603 

of other effects, but is also important in the vulnerability analysis through varying the length 604 

of the growing season. Van Oijen et al., 2014 suggested the period from April to September 605 

as the best period to determine the drought index and found minimal impacts by starting this 606 

calculation of the drought index earlier, while we show a strong impact in this study. Van 607 

Oijen et al. (2014) used a biogeochemical model with fixed harvest dates for crop 608 

simulations or considered simulation results of forests and croplands with a fixed length of 609 

the growing season, but the models in this study are mainly crop models with dynamic 610 

growing season length. Therefore, in some years, the growing season ends before any 611 

drought impacts on crop growth occur, as for the year 2003. Van Bussel et al. (2011) 612 

described the scale impact on the modelling of phenological stages as minor, but these 613 

changes can affect other processes as, in this case, the impact of a drought period on 614 

primary production. In this study the relevant period to define hazardous conditions for the 615 

vulnerability analysis is from February to July, which is similar to the length of the growing 616 

season for most, but not all, models. 617 

Not all models show sensitivity to the hazardous conditions defined by the SPEI. For the 618 

model DailyDayCent, the threshold of the SPEI = -1 is not significant in comparison to the 619 

internal drought effects. As the index SPEI is calculated by precipitation and temperature, 620 

there might be a discrepancy in the detection of extreme weather events by the APSIM 621 

models, which use the radiation use efficiency to determine NPP. In contrast to the 622 

vulnerability analysis of wheat, the analysis for maize shows no impact of drought or 623 

negative values for vulnerability, with the exceptions STICS and MONICA, because maize 624 

is a C4 plant and is more drought tolerant (Lopes et al., 2011). The comparison of the WN 625 

and PN simulation runs support the findings of the vulnerability analysis, as most models 626 

show only small differences. Analysis for higher thresholds is not useful for the considered 627 

study area, because the number of grid cells for hazardous conditions becomes too small 628 
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for solid statistics. Regarding the resolution, the results show either all positive or negative 629 

values (HERMES, STICS, CENTURY, APSIMmod, LandscapeDNDC, APSIM, AgroC), or 630 

marginal differences to zero vulnerability (DailyDayCent, LINTUL, MONICA). The number 631 

of extreme weather events is expected to decrease at coarser scales, but the overall 632 

averages show little change between the resolutions. The expected pattern of stronger 633 

impacts of extreme events for finer scales with lower impacts at coarser scales is not seen. 634 

Assuming a threshold from SPEI = -1 to define drought conditions affects the same ratio of 635 

hazardous grid cells for the different resolutions. In contrast to the initial assumption of less 636 

extreme events, the number of grid-cells defined as extreme show the same or even higher 637 

ratio for the coarser resolution. One reason is the temporal scale for the NPP calculation, 638 

which is annual. In the vulnerability analysis the extreme events are defined during the first 639 

half of the year, which includes the drought of 2003 which had negative impacts on cropland 640 

NPP (Ciais et al., 2010), but not all model results are affected by this drought, because of 641 

an earlier harvest. Extreme events, therefore, appear to play a minor role in this area for 642 

long term averages. 643 

The aggregation effect is stronger for the vulnerability than for the NPP averages. Despite 644 

for AgroC and for the wheat simulation results of APSIMmod the aggregation effect for the 645 

vulnerability at least doubles in comparison to the long term averages. The effect might be 646 

influenced by fewer years considered in the vulnerability analysis, but the maximum values 647 

even exceed the effect for annual averages. This shows that especially periods with extreme 648 

weather conditions get stronger affected by the aggregation of climate input data than other 649 

years. Over long term averages these impacts may level out. 650 

 651 

5 Conclusions 652 

 653 
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NPP differs, depending on spatial resolution of climate input data by up to almost 8 % and 654 

5 % for wheat and maize, respectively. For most models, the overall averages are affected 655 

by only 2 % or less, but for shorter time periods (shorter than 15 years), the aggregation 656 

effect may rise for annual NPP to over 9 or over 13 % for wheat and maize, respectively. It 657 

is concluded that a large part of the aggregation effect is related to the changes in 658 

phenology. The aggregation effect affects the vulnerability stronger than long term averages, 659 

which shows the stronger impact of aggregation effects for periods with extreme weather 660 

conditions. A finer spatial resolution of climate input data will not greatly improve simulations 661 

for long term averages of NPP or vulnerability, but for periods shorter than 15 years, or areas 662 

with extreme conditions finer resolution matters and at most differed by 13 % for averages. 663 

The biggest changes are detected for the steps from 1 km to 10 km resolution and from 50 664 

km to 100 km. The current study suggests that long term NPP averages over large areas 665 

(e.g. regional scale) are relatively insensitive to climate data aggregation, whereas data 666 

aggregation would influence average NPP under extreme weather conditions.  Based on 667 

these results there is no need to simulate long term NPP averages for a high resolution, if 668 

soil type and management do not vary in time and space. As this is an unrealistic scenario, 669 

more work is required to investigate the impacts, for heterogenetic soil types and varying 670 

management conditions.  671 
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