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Highlights

• Separation of snowfall-rainfall using MODIS data

• Estimation of evapotranspiration parameter using Budyko
curve concept

• Implementation of a method to assess the separation of5

water storage and evapotranspiration.

• Estimate the water budget closure at high spatial and tem-
poral resolution in prialpne basin

• Combine various component of JGrass-NewAGE system
to close the water budget10

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Estimating the water budget components and their variability in a Pre-Alpine basin with
JGrass-NewAGE
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b Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, UK

c Department of Land and Agroforest Environment, University of Padova, Italy

Abstract

The estimation of water resources at basin scale requires modelling of all components of the hydrological system. Because of
the great uncertainties associated with the estimation of each water cycle component and the large error in budget closure that
results, water budget is rarely carried out explicitly. This paper fills the gap in providing a methodology for obtaining it routinely
at daily and subdaily time scales. In this study, we use various strategies to improve water budget closure in a small basin of
Italian Prealps. The specific objectives are: assessing the predictive performances of different Kriging methods to determine the
most accurate precipitation estimates; using MODIS imagery data to assist in the separation of snowfall and rainfall; combining
the Priestley-Taylor evapotranspiration model with the Budyko hypothesis to estimate at high resolution (in time and space) actual
evapotranspiration (ET); using an appropriate calibration-validation strategy to forecast discharge spatially. For this, 18 years of
spatial time series of precipitation, snow water equivalent, rainfall-runoff and ET at hourly time steps are simulated for the Posina
River basin (Northeast Italy) using the JGrass-NewAGE system. Among the interpolation methods considered, local detrended
kriging is seen to give the best performances in forecasting precipitation distribution. However, detrended Kriging gives better
results in simulating discharges. The parameters optimized at the basin outlet over a five-year period show acceptable performances
during the validation period at the outlet and at interior points of the basin. The use of the Budyko hypothesis to guide the ET
estimation shows encouraging results, with less uncertainty than the values reported in literature. Aggregating at a long temporal
scale, the mean annual water budget for the Posina River basin is about 1269 ± 372 mm (76.4%) runoff, 503.5 ± 35.5 mm (30%)
evapotranspiration, and −50 ± 129 mm (-4.2%) basin storage from basin precipitation of 1730 ± 344 mm. The highest interannual
variability is shown for precipitation, followed by discharge. Evapotranspiration shows less interannual variability and is less
dependent on precipitation.

Keywords: Water Budget, Precipitation, Evapotranspiration, rainfall-runoff, storage, JGrass-NewAGE system

1. Introduction

Estimating the terrestrial water balance is one of the main
scopes of hydrology (Eagleson, 1994). Nevertheless, the as-
sessment of all the terms of the water budget equation is only
rarely pursued. Different techniques and approaches are used15

to obtain results at various spatial and temporal scales. At the
smallest scale (from single trees to a square kilometers catch-
ments) the budget can be assessed with detailed measures which
include various estimations of evapotranspiration with modern
anemometry, sapflow estimation, groundwater levels determi-20

nation, and, a variety of models (Dean et al., 2016; Graf et al.,
2014; Fang et al., 2015; Obojes et al., 2015; Wilson et al., 2001).
Due to the natural heterogeneity of evapotranspiration and stor-
age, water budget closure studies using in-situ observations are
restricted at experimental plots (Mazur et al., 2011; Högström,25

1968; Scott, 2010). Models, in this case, often include the more
modern process-based ones, which usually are data demanding

∗Corresponding author: wuletawu979@gmail.com

and computationally intensive but produce very detailed results
at hourly or sub-hourly time scales (Fatichi et al., 2016b).

At large, continental or global scale (from tens of thousand30

to millions of square kilometers), measurements are obtained
by various remote sensing platforms (Wang et al., 2014a; Sa-
hoo et al., 2011), and water budget estimations exploit atmo-
spheric reanalysis efforts (Pan and Wood, 2006; Sheffield et al.,
2009) and use the so called macro-scale hydrological models35

(Bierkens et al., 2015). Many available models present in lit-
erature (e.g LISFLOOD (Van Der Knijff et al., 2010), mHM
(Samaniego et al., 2010), VIC (Liang et al., 1994), SWAT
(Arnold et al., 1998)) could potentially be used for this scope,
but in practice most studies are limited to the use of VIC model40

(Liang et al., 1994). Generally large-scale analyses have very
coarse resolution. One notable exception is Maxwell and Con-
don (2016), but it is based on a limited description of the spatial
heterogeneity of models parameters.

At intermediate scales (i.e. from few square kilometers to45

some ten thousands of square kilometers), the water budget is
performed by using a variety of models and measurements, as
shown in the Table 1. Table 1 is the synthesis (one fifth) of
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Table 1: A selection of papers estimating the water budget at spatial scale from 1 to 105 km2. This comes from a large selection of papers dealing
with all the spatial scales. To enter in this selection the requirement is that all the components of the hydrological budget are estimated and the
water budget closure evaluated.

Study Method (model) Spatial Scale [km2] Resolution (time span) Location
Arnold and Allen (1996) Modeling with SWAT 122-248 Annual (1951-1957) Illinois, U.S.
Batelaan and De Smedt (2007) Modeling with WetSpass 694-1677 Monthly to Yearly Belgium
Bertoldi et al. (2006) Modeling with GEOtop 9 and 603 Hourly Trento, Italy; Oklahoma, U.S.
Claessens et al. (2006) Modelling 404 Monthly to Yearly (1930-2000) Ipswich River basin
Hingerl et al. (2016) Modeling with GEOtop 55 Hourly Germany
Huntington and Niswonger (2012) Modeling with GSFlow 54 Daily Nevada, U.S.
Jothityangkoon et al. (2001) Modelling 2545 Monthly and daily Semiarid western Australia
Mitchell et al. (2003) Empirical formulas 27 Daily (1978-1996) Curtin Catchment, Camberra, Aus-

tralia
Ogden et al. (2013) Modeling 36-175 Daily (2009-2012) Panama
Schaake et al. (1996) Modelling 176-2344 Daily to monthly Oklahoma, Mississippi, North Car-

olina, U.S.
Tomasella et al. (2008) Micrometeorologial tower, ground

measurements, neutron probe
6.58 Monthly (2001-2004) Amazonian micro-catchment close

to Manaus (BZ)
Yang et al. (2007) Budyko curve 272 - 94800 Annual Tibetan Plateau, River Haihe,

Gansu Province
Zhang et al. (2008) Budyko curve 5- 2000 Mean Annual, monthly, daily Various catchments in Australia

a larger literary review presented in the supplementary mate-
rial. A couple of the papers in the Table use the Budyko curve50

concept (Zhang et al., 2008; Yang et al., 2007). Other two
use the GEOtop model (Bertoldi et al., 2006; Hingerl et al.,
2016), and are supported by measurement campaign and/or fa-
cilities which are not commonly available. Two are focused
on the groundwater-surface water interactions (Batelaan and55

De Smedt, 2007; Huntington and Niswonger, 2012). In the
remaining group of papers, the most common approach is the
use of a rainfall-runoff model and evapotranspiration estimates
based on variations of the Penman-Monteith equation (Mon-
teith et al., 1965). The quantity and the quality of ground mea-60

surements varies from the interpolation of coarse meteorolog-
ical data (Claessens et al., 2006) to accurate ad-hoc field cam-
paign (Ogden et al., 2013). The temporal scale of the estimates
are equal or longer than a day.

Methodologies for determining routinely the water budget65

terms at hourly and subdaily time scale, based on the availabil-
ity of a limited set of ground measures, i.e. rainfall, temperature
and discharge in a few locations, are clearly not commonly de-
veloped. In this paper we describe a method to fill this gap.
We use a non computational demanding modelling framework,70

called JGrass-NewAGE (Formetta et al., 2014b). The frame-
work offers not only the hydrological modeling components (as
described below) but also innovative tools such as automatic
calibration methods for parameters estimation, and a geograph-
ical information system for input-output data visualization.75

Generally, the water budget for an appropriate control vol-
ume is:

∂S k(t)
∂t

= Jk(t) +

n∑

i

(Iki(t)) − ETk(t) − Qk(t) (1)

where S [L3] represents the total water storage of the basin, J
[L3 T−1] is precipitation, ET [L3 T−1] is evapotranspiration, and
Q [L3 T−1] is runoff (surface and groundwater). Iki represents
input fluxes to the k-th hydrologic response unit (HRU) coming
from the set of n(k) HRUs connected to it, these fluxes are of80

the same nature as Q. A HRU represents a part of the basin

that can be treated as a single unit (see section 3.1). In Eq.(1)
the inputs are precipitation data, J(t), but these must be split
into rainfall and snowfall, and I(t). The outputs are evapotran-
spiration, ET , and discharges, Q. Any budget term can be fur-85

ther subdivided, by separating it in parts, for instance discharge
could be separated in surface, subsurface and groundwater dis-
charge, modelled with various conceptualisations (Clark et al.,
2008), which can be the result of a heuristic process of selection
(Fenicia et al., 2008).90

We take for granted that total precipitation amount can be es-
timated according to the procedures presented in Garen and
Marks (2005); Tobin et al. (2011); Abera (2016). However,
we innovate their methods, which have become obsolete in part
as computing techniques have progressed (see section 3.2) and95

use some tools appropriately developed in the JGrass-NewAGE
system (Formetta et al., 2014b). Furthermore, we review the
choice of the best kriging interpolation method and characterise
the rainfall estimation errors. We also discuss how different
methods of precipitation interpolation affect the final discharges100

simulation and the whole budget.
One issue about which many papers are reticent is the separa-

tion of rainfall and snowfall. Some interesting efforts present in
literature are the psychrometric energy balance (e.g Steinacker,
1983; Harder and Pomeroy, 2013, 2014; Ye et al., 2013) and105

variations of the phase separation method proposed by the U.S.
Corps of Engineers (Army, 1956; Rohrer, 1989). Other solu-
tions can be found in meteorological models like ARPS (Xue
et al., 2000, 2001) and WRF (Dudhia et al., 2005; Caldwell
et al., 2009). In all of the above methods and procedures there110

are parameters to calibrate, which is problematic when there are
no or few snow related observations. This paper searches for an
alternative, obtained by using easily available, remote-sensing
data and the modular structure of JGrass-NewAGE (NewAge).

Here we use discharge measurements at three stations to cali-115

brate and validate discharge estimation of the whole basin using
a hydrological model. These measurements can be used to cal-
ibrate a suitable hydrological model that can in turn be used to
predict discharges for any period without data.

In contrast, the other two components of the budget (i.e. ET120

3
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Figure 1: The location of the Posina basin in Northeast Italy (a) and elevations, locations of rain gauges and hydrometer stations (two of the
hydrometers are at the outlet: one at the main outlet and the other in the river channel ID 13), and subbasin-channel partitions used in the
simulation (b).

and dS/dt) are usually not available. The best approach to es-
timate ET at high spatial and temporal resolution is based on
models that use knowledge of the physical process. However,
these models, such as Penman-Monteith (Monteith et al., 1965),
require more meteorological data than usually available in most125

basins, such as radiation, temperature, wind speed, air pressure,
and aerodynamic and canopy resistance. Other simplified mod-
els, such as the Priestley-Taylor equation (Priestley and Taylor,
1972), on the other hand, need less data (i.e. radiation), but
also need measured ET data for parameter calibration, which,130

if derived from literature, introduces very large uncertainties in
the budget (Cristea et al., 2012). In the Methodology part of
this paper, we provide a way to close the water budget in the
absence of ET and water storage measurements based on the
combination of Priestley-Taylor (Priestley and Taylor, 1972)135

and Budyko hypothesis (Budyko, 1978). Our method reduces
uncertainty, but it does not eliminate it. However, relying on
mass conservation, it is possible to investigate the variability of
the estimates and identify their intervals of confidence, which
is overall a gain of knowledge.140

Summarising, the issues dealt with in this paper are: de-
termination of which kriging method generates the best spa-
tial precipitation (and other auxiliary meteorological forcings);
separation of snowfall and rainfall, with the aid of satellite data
when no snow data are available; determination of the Priestley-145

Taylor α coefficient (Priestley and Taylor, 1972) with an appro-
priate hypothesis; and finally, estimate the spatially distributed
water budget of the basin with an evaluation of the errors of
estimates.

The practical tool we use is the NewAGE modelling system150

(Formetta et al., 2014b) detailed below. Some of the operations
performed in the paper are, in fact, facilitated by modular struc-
ture and the various tools that the NewAGE system deploys.
These operations would be quite complicated to carry out with
other more traditional models.155

The paper is organized as follows: first, descriptions of the
study area and the experimental setup are given (section 2); then
the methodologies (section 3) for control volume discretization
(subsection 3.1); followed by comparison of kriging interpo-
lation methods to determine the best one for the spatial char-160

acterization of the input components of the water budget (sub-
section 3.2). Snowfall separation and snow water equivalent
(SWE) estimation procedures are discussed in subsection 3.3.
Methodological descriptions of discharge and evapotranspira-
tion modelling at each HRU are presented in sections 3.4 and165

3.5 respectively. Finally, the results and discussions, and the
conclusions of the study are given in sections 4 and 5, respec-
tively.

2. Study area and input Data

The study area is Posina River basin, a small catchment (116170

km2) located in the Alpine foothills of the Veneto Region in
Italy. The basin outlet is at Stancari (figure 1b). The elevation
difference of the basin is 1820 meters. The climate is charac-
terised as wet, with annual precipitation of 1740 mm and an-
nual runoff of 1000 mm (Norbiato et al., 2008; Francois et al.,175

Submitted). The long-term (30 years, 1986-2016) snowfall-to-
precipitation ratio averages 20% (Francois et al., Submitted),
ranging from 5% to 27% depending on years. There are two

4
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relative maxima for monthly precipitation: one in April (163
mm) and one in October (240 mm). A 20 x 20 metres DEM180

is available for the site. In the Posina area, in and around the
basin, there are 11 meteorological stations and three discharge
gauges (figure 1b). The meteorological stations provide hourly
rainfall and temperature data, and hourly discharge data is col-
lected by means of an ultrasound sensor. The rating curve is185

updated twice per year by using current meters and Doppler
methods for the flow velocity measurements. All of the stations
lack measures of other meteorological forcings such as solar ra-
diation, wind speed, relative humidity, and snow depth (or snow
water equivalent). Precipitation and temperature data used for190

the study cover the period 1994 to 2012. Discharge data from
all three hydrometers are available for the same period. The
first five years of data are used for calibration, and the rest for
validation of the rainfall-runoff component.

3. Methodology195

As stated above, NewAge system (Formetta et al., 2014b)
is used for modelling each component of the water budget.
NewAge offers a set of model components built according to the
Object Modelling System version 3 (OMS3) framework (David
et al., 2013). The components cover most hydrological pro-200

cesses and have been discussed in detail in Formetta et al.
(2011, 2014c, 2013, 2014b), hence, they will not be fully re-
discussed here. In this study, kriging (Formetta, 2013; Abera,
2016), snow melting (Formetta et al., 2014c), shortwave ra-
diation (Formetta et al., 2013), longwave radiation (Formetta205

et al., 2016), Priestly-Taylor evapotranspiration (Priestley and
Taylor, 1972), and the rainfall-runoff (Formetta et al., 2011)
components are used. As calibration tools we use Particle
swarm (Kennedy et al., 1995) and LUCA (Hay et al., 2006).
The following sections provide the methods for modeling each210

term of the water balance as given in Eq.(1), which also corre-
sponds to the workflow of NewAge system applications.

3.1. Watershed partitioning

Our approach uses spatial information at the level of the hy-
drologic response units (HRUs). A HRU represents a part of the215

basin that can be treated as a single unit (control volume) on the
basis of mathematical, physical or computational arguments. In
other words, even if hydrological variables can be calculated at
the pixel level, for instance by exploiting a detailed knowledge
of topography, it is subsequently coarse-grained to get single220

values for any HRU. The rationale of this choice is to reduce
to a minimum level of spatial heterogeneity in the input data
and processes, in an approach similar to those adopted in other
models (Lagacherie et al., 2010; Ascough et al., 2012). In this
paper, the terms, HRU and subbasin are used synonymously for225

the same basin partitioning concept.
More specifically, in NewAGE the basin is partitioned into

hillslopes and channel links. The hillslopes and links are num-
bered according to the Pfafstetter numbering scheme (Formetta
et al., 2014a), which gives an identifier for subbasins and an or-230

der to transverse them in computation (Formetta et al., 2014b;

Abera et al., 2014). This approach gives the modeling solution
of Eq. (1) for any of the units independently, from the most
uphill one to the outlet. Depending on the process, the value of
each term in the equation can depend on some sub-HRU anal-235

ysis. In total, 42 HRUs have been defined for the basin (fig-
ure 1b). To illustrate the variability of hydrological quantities
across the HRUs, a sample of HRUs (four HRUs: 1, 4, 13, and
37) is systematically selected to represent different elevations
(elevation ranges from 656 m to 1616 m) and positions in the240

basin. Hence, further analyses and results at the subbasin scales
are shown at these selected HRU throughout the paper.

3.2. Precipitation Interpolation

The accuracy of the raingauge measurements for the study
basin has been assessed in the frame of several studies (Borga,245

2002; Brocca et al., 2015; Penna et al., 2015), and no system-
atic over/underestimation was reported. In fact, the stations are
used as benchmark for remote sensed estimation of rainfall, ei-
ther by use of weather radar (Borga, 2002) and satellite (Brocca
et al., 2015). Hence, the precipitation data, without system-250

atic bias correction, is interpolated from meteorological stations
to points of interest (centroids of each HRU) using the spatial
interpolation (NewAGE-SI) tools. According to kriging the-
ory (Goovaerts, 1997, 2000; Ly et al., 2011; Basistha et al.,
2008), an experimental semivariogram needs to be fitted with255

the theoretical semivariogram to estimate its nugget, sill and
range, which are kriging model inputs. Four semivariogram
models (exponential, spherical, gaussian, and linear) have been
selected and implemented in the NewAGE-SI, following (Prud-
homme and Reed, 1999) arguments. As methods for geosta-260

tistical interpolation, ordinary kriging (OK) and its local ver-
sion, local ordinary kriging (LOK), are used (Goovaerts, 1997).
Because many studies have found that incorporating elevation
data into the kriging interpolation improves the performances
(Lloyd, 2005; Buytaert et al., 2006; Garen et al., 1994) of their265

models, we also consider detrended kriging (DK) and local de-
trended kriging (LDK) (Phillips et al., 1992).

To understand the effects of choice of semivariogram model
on kriging, and to determine the best kriging solution, we ap-
ply the following procedure for any given time step and using270

all the weather stations except one. Firstly, we select a single
kriging type (e.g. OK) and fit a theoretical semivariogram (e.g.
exponential) with the experimental one by minimizing the er-
rors. This is different from other approaches (e.g. Garen and
Marks (2005)), where kriging parameters were kept fixed a pri-275

ori. The optimisation is done using the particle swarm algo-
rithm (Kennedy et al., 1995; Formetta et al., 2014b) with the
OMS configuration shown in Figure 2a.

Then, measured and estimated precipitation values are com-
pared with goodness-of-fit (GOF) indices (root mean square er-280

ror, correlation coefficient, and mean error)(Appendix B).
Finally, the error of estimate is evaluated for the weather sta-

tion not considered. The procedure is then repeated, alternat-
ing the weather station left out until done for all, for 18 years
of hourly forcings (precipitation and temperature). Each of285

the above steps is repeated for all four krigings and the four

5
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Figure 2: Operational connections of NewAGE components to obtain: a) the spatial interpolation of meteorological data (SI-NewAGE). The
“theoretical semivariograms” component uses the “Particle Swarm algorithm to optimize theoretical semivariogram for each time step. Then,
“Kriging” uses the best semivariogram model and optimal parameters to estimate the meteorological data; b) the “Snow separation” component,
uses MODIS snow products to calibrate the spatial snow accumulation (Eq. 2); c) the estimation of the water budget with the “Priestley-Taylor”
and “Adige” components. Data not obtained by interpolation are provided by a suitable reader. Here LUCA calibration component is included.
Note that the dashed line, connecting the a, b, and c, are not automatic and need human intervention.

semivariogram models available (for a total of sixteen combi-
nations). In addition to the above, we have developed an iter-
ative procedure that automatically selects the best fitting semi-
variogram with optimized parameters by choosing the semivar-290

iogram model with the best performance for each time step.

3.3. Snowfall-rainfall separation and SWE modelling
Precipitation, J(t), at each HRU has to be separated into

rainfall JR and snowfall JS . One option is to use a micro-
meteorological model, in which the separation happens auto-295

matically, as in WRF (Skamarock et al., 2008). However, the
standard procedure in hydrological models is to use simple
mathematical expressions based on temperature (e.g. Garen and
Marks, 2005). Usually, the separation is based on a thresh-
old temperature, TS : when the average HRU temperature is300

less than TS , the precipitation is snow (JS ) otherwise it is rain
(JR). Temperature is interpolated using kriging (as shown in
the complimentary material). In NewAGE, a smoothing of the
threshold is applied as in Kavetski et al. (2006); Formetta et al.
(2014c):305

{
JR(t) = αr ∗

[
J(t)
π
. arctan

( T (t)−Ts(t)
m1

)
+

J(t)
2

]

Js(t) = αs ∗ [J(t) − JR(t)]
(2)

where the term J[mm t−1] is measured precipitation, JR[mm
t−1] is the rainfall, JS [mm t−1] is the snowfall, Ts [oC] is the
threshold temperature, and m1[−] is a parameter controlling the
degree of smoothing. The two coefficients (αr, αs) are adjust-
ing parameters for rain and snow measurement errors (Formetta310

et al., 2014c). αr, αs and m1[−] are dimensionless coefficients
that require calibration. The calibration is very problematic due
to a complete lack of snow data in the Posina basin. In similar
cases, snow parameters are usually calibrated indirectly, using
discharge measurements (e.g. Li et al., 2012; He et al., 2014).315

Instead, we use MODIS snow imagery data (MOD10A1 and
MYD10A1). Both the fractional snow cover (FSc) and albedo
information, which is available globally at a resolution of 500
m (Hall et al., 2006), are used. The first establishes the frac-
tional area covered by snow pixel by pixel, the second is used320

for detecting when fresh snow falls on old snow, causing an
increase in albedo.

Due to the difference in time steps of the NewAge simula-
tion and MODIS data, a manual optimization procedure is used
to determine the parameters of Eq.(2). The objective functions
used are the Accuracy index, AI, and Spearman’s rank correla-
tion coefficient, ρrank. The Accuracy index, AI, is given by:

AI =
Na + Nd

Na + Nb + Nc + Nd
.100 (3)

Where the terms Ni (i ∈ {a, b, c, d}) are the number of pixel
combinations identified by using the confusion matrix given
in Table 2. The optimization procedures, as outlined in fig-325

ure 2b, maximize true positives and true negatives, while min-
imizing false positives and false negatives, therefore increas-
ing the overall accuracy. Specifically, this procedure optimizes
Eq.(2) to estimate snowfall only at locations where MODIS
(MOD10A1 and MYD10A1) shows snow data.330
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Table 2: Confusion matrix based on the four possible results of the
snowfall Js simulation in comparison with the MODIS snow products.
The four possibilities are: true positive (a); false positive (b); false
negative (c); and true negative(d).

MODIS:Yes MODIS:No
Model:Yes a b
Model:No c d

The binary (snow/no snow) data derived from the FSc does
not show snowfall on snowfall. Hence, to include the new
snowfall events on pixels already covered with snow, we used
the FSc values (i.e new HRU area is covered by snow) and snow
albedo. When associated to a precipitation event, an increase in335

snow albedo can be interpreted as fresh snowfall. Hence, the
snow separation equation (Eq.2) is optimized against the FSc
and the snow albedo, using Spearman’s rank correlation coeffi-
cient as follows (Kottegoda and Rosso, 1997):

ρrank = 1 − 6.
∑n

k=1 D2
k

n(n2 − 1)
(4)

where D is the difference between the rank of the MODIS340

data (FSc or snow albedo) and snowfall data, Js, at the Kth pair,
and n is the number of observations.

Spearman’s rank correlation is used because it provides a
means to quantify the monotonic relationship between two vari-
ables with no frequency distribution assumption (nonparamet-345

ric). The higher the value of ρrank, the higher the correlation
between Js and snow albedo. Those parameters producing the
highest ρrank and AI are used to model the hourly time steps of
snowfall for each HRU. In principle, derivation of snow sepa-
ration parameters for each HRU is possible, however, as is per-350

tinent to the overall analysis of other components of the study,
single, global and optimized values of Eq.(2) parameters are
derived in this study.

NewAGE offers possibilities to simulate the snow metamor-
phism by using the radiation budget components also utilised355

for evapotranspiration. However, to keep the modelling sim-
ple, in this paper, we use the degree-day model implemented
in the snow water equivalent (SWE) component as described
in Formetta et al. (2014c). Due to the lack of SWE data, the
model parameters are calibrated using discharge data together360

with the parameters of the ADIGE rainfall-runoff component
(described below), which is in line with a consolidated ap-
proach (e.g. Li et al. (2012); Mou et al. (2008); He et al. (2014)).
However, in our approach we deviate from the cited literature,
given that the snowfall parameters are already calibrated using365

MODIS snow imagery and discharge data are used only for cal-
ibrating the parameters of the degree-day model.

3.4. Runoff Estimation

The NewAGE component that estimates runoff is called
ADIGE (after the second largest river in Italy). It is the as-370

sembly of many Hymod models (Moore, 1985, 2007; Formetta
et al., 2011), one for each HRU, whose outputs are collected at

the appropriate point of the channel network, and routed to the
outlet. The inputs of the ADIGE model are rainfall, evapotran-
spiration, and melting snow. The output is discharge at each375

channel-link. Hymod is a conceptual rainfall-runof model that
separates a quick (shallow) flux from a slower (deeper) one.
The quick flux accounts for surface runoff by using three linear
reservoirs, while the slower flux accounts for subsurface storm
flow with a single linear reservoir (Moore, 1985; Formetta et al.,380

2011; Formetta, 2013). Groundwater is described with further
storage. Essential to the Hymod calculation is the estimation of
the water “losses” by ET, which are modelled as detailed in the
next section. For readers’ convenience, details of Hymod are
presented in the Supplementary material of the paper.385

We conduct two groups of rainfall-runoff simulation experi-
ments. The first is to evaluate the effects of different precipita-
tion data sets, generated using different krigings, on the runoff

calibration and modelling results. The Hymod parameters are
calibrated for various precipitation data sets for a five-year pe-390

riod (1994-1999), using LUCA (Hay et al., 2006) as the opti-
mization tool. The simulation for the period 2000-2012 is used
for validation of the data set, by comparison. Based on the
validation results, the second simulation is set up to estimate
discharge at each link, providing data that are then used for spa-395

tially distributed water budget closure. The objective function
used as standard in this paper is the KGE (Kling et al., 2012)
which was considered more robust than the Nash-Shutcliffe effi-
ciency. However, the goodness of fit was estimated by two other
indicators, Pearsons correlation coefficient and Percentage bias400

(PBIAS), all of which are described in Appendix B. Other sta-
tistical indicators of performances are specified case by case.
The configuration of the OMS-components in the workflow of
Hymod simulation is shown in Figure 2c.

3.5. Evapotranspiration (ET) estimation, and residual storage405

In the specific case study, ET measurements were completely
missing and, therefore, need to be modelled. The following
modification to the Priestley-Taylor (PT) Formula (Priestley
and Taylor, 1972) for each HRU is considered:

ET (t) = α
S (t)
Cmax

∆

∆ + γ
(Rn −G) (5)

where: ET is the actual evapotranspiration [LT−1]; α is the so-
called Priestley-Taylor coefficient; S (t) is the water storage in
the root zone; Cmax the maximum storage of water in the HRU
(a parameter to be calibrated by using measured discharges);
Rn[L2T−1] is net radiation; G [L2L−1] is soil heat flux; ∆ is410

the slope of the Clausius-Clapeyron relation, which is given
as a function of air temperature (Murray, 1967); and γ is the
psychometric constant [in K T−1]. The net radiation is modu-
lated according to the two-radiation component included in the
NewAGE system (Formetta et al., 2013, 2016). The effect of415

cloud climatology and atmospheric absorption were included
through calibration of α to obtain the actual evapotranspiration.
The formula is further simplified by assuming G ∝ Rn, and in-
cluding it in α (Clothier et al., 1982) too.

Temperature is interpolated from the meteorological stations420

to the centroids of each HRU using kriging (i.e LDK). In the
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Figure 3: The figure contains the mean performance values, in terms of RMSE (a), correlation coefficient (b) and mean error (c), of all the
rainfall interpolation methods considered for this study. sph = spherical semivariogram model; gau = gaussian semivariogram; exp = exponential
semivariogram; lin = linear spherical semivariogram. The blue dot in the middle is the mean value, while the length of the line represents the 95%
confidence interval with respect to the mean.

trade-off between accuracy and speed of execution, this sim-
plification has been deemed acceptable, since the HRUs are of
quite small extension (and the internal temperature variability
within HRU has been checked to be less than half a degree Cel-425

sius on average).
The choice of reducing ET with the relative water content

is similar to the one pursued in several studies, e.g. Porpo-
rato et al. (2002) and Rodrı́guez-Iturbe and Porporato (2004).
Cristea et al. (2012) reports that the value of α varies from 0.6430

to 2.4 in previous studies, depending on land cover and site con-
ditions, thus making literature almost useless in determining the
conditions specific to a basin. In our modelling approach, we
estimate α using the water budget (Appendix C), obtaining the
actual evapotranspiration, instead of the potential evapotranspi-435

ration.
The whole process, which involves an iterative procedure be-

tween the PT and runoff estimation, is detailed in Appendix
C. Our procedure assumes that the water storage is null af-
ter a specified number of years, said Budyko’s time, TB, (af-440

ter Budyko (1978)). We actually use two algorithms: the first
neglects soil moisture variability (i.e. S (t)/Cmax ≡ 1) and gen-
erates α from the observed data using Eq C.3; the second uses
variable storages within the HRUs ( Appendix C) and con-
sists in simultaneously optimising the parameters of the ADIGE445

component and requiring that the water storage be null after TB

years.
In the first procedures, if the first year of the simulation im-

plies a negative storage, this is assumed to be present at the
initial time, which, in turn, implies that the α coefficient must450

be recalculated to obtain null storage after TB years. There-
fore the whole procedure is repeated until the initial storage
and estimated ET are consistent. Once ET is estimated with

the above procedure (and with varying TB), the mean α co-
efficient is taken as the most reliable and used. Varying TB,455

obviously implies different estimates of ET , which, however,
remain confined within certain range. We interpret this as be-
ing representative of the epistemic uncertainty of our approach.
Being assessed with this method, ET does not balance Eq (1).

The second algorithm is highly demanding computationally,460

and only a single optimization procedure was actually per-
formed for the years 1995 to 1999, with TB = 5 years, after ob-
serving the trends of dS (t)/dt in the case of the first procedure.
Because in these simulations ET is storage-limited (according
to equation 5) the initial storage is taken to be null.465

In this approach, the uncertainty of the ET estimation has
two components. One comes from the errors of estimation
of the other components. Using the standard theory of er-
rors (Rodell et al., 2004), the standard deviation of ET esti-
mates (σET ) can be derived from rainfall estimation error (σJ ,470

in this case the kriging error), discharge estimation (model) er-
ror ( σQ). The other contribution to the uncertainty of the ET
estimation comes from the error made in estimating α (σα).
As representative of the total mean error, therefore, we use

σET =
√
σ2

J + σ2
Q + σ2

α.475

The primary verification of our ET estimation is its consis-
tency with the rest of the water budget. However, for further
evaluation of the results, at the whole basin scale, we used the
Global Land Evaporation Amsterdam Methodology (GLEAM)
(Miralles et al., 2011a), a global, satellite-based, ET data set.480

The performance of GLEAM is assessed positively in different
studies (McCabe et al., 2016; Miralles et al., 2011b) and it is
available at 0.25o spatial resolution and daily temporal resolu-
tion. For comparison, therefore, we aggregated NewAge ET
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Figure 4: Spatial rainfall variability in an aggregated subbasin approach: (a) variability in the estimated total rainfall (the code number in the
subbasin identifies the subbasin, while the colour shows the total rainfall distribution), (b) comparison of four selected time series of subbasin
rainfall estimates, and (c) further analysis on the kriging estimation error, used to estimate the confidence interval of the estimates for some
selected subbasins. The analysis is based on the event of 16 Oct. 1996.

estimation to daily time scale for the whole basin.485

4. Results and Discussion

The results of the study are presented as follows: first, we
report briefly the results of the performance of kriging analysis
for precipitation; second comes the rainfall-snowfall separation
and estimation of SWE; the third and fourth subsections contain490

the runoff simulation results and the spatio-temporal estimation
of ET and storage respectively; last, following proper temporal
and spatial characterization of all the water budget components,
the results of water budget closure analysis are presented.

4.1. Precipitation estimation, model performances and uncer-495

tainty

The RMSE and correlation coefficient results presented in
figure 3 indicate that the LDK and LOK outperform the other
two kriging groups (DK and OK). For each station, the LDK
and LOK analyses are based only on the nearest five stations.500

Both LDK and LOK show lower RMSE and higher correlation
coefficients following cross-validation analyses (figure 3a). The

idea that DK improves performance is not clearly visible in this
experiment. This may be due to the small number of stations
from which to draw the elevation trend. The results of the mean505

error value are found to be inconsistent with the reports from the
previous two performance indicators. The report shows slight
differences between the semivariogram fittings within a kriging
method (figure 3c). However, comparing across all 16 inter-
polations, the main difference is observed between the kriging510

methods, not between the semivariogram fitting within a single
model (Haberlandt, 2007).

To use the precipitation estimate in conjunction with the
runoff component, we must aggregate it at the subbasin level,
by assuming the precipitation at the centroid of a HRU as rep-515

resentative of the entire subbasin. This operation is repeated
for each time step and, for instance, figure 4 shows the spatial
distribution of precipitation for a time instant event (16 Octo-
ber, 1996). The accumulated event rainfall shows a relevant
spatial distribution difference, which is more than 70 mm (22%520

of the basin total accumulated rainfall) for the particular event
presented in figure 4a. It is evident that rainfall is higher in the
south-western part of the basin (figure 4a). Figure 4b shows
the rainfall variability for four selected subbasins (ID 1, 4, 13,
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Figure 5: The Spatial distribution of MODIS fractional snow cover ex-
tracted from both Terra and Aqua products (A), fractional snow cover
aggregated into the HRUs (B), MODIS snow cover albedo derived
from both Terra and Aqua products (C), snow albedo aggregated into
HRUs (D), and HRU snowfall estimated using the separation algo-
rithms (E) for three days (11-11-2002, 12-11-2002, 02-01-2003).

37) along a limited time-window. As a product of the kriging525

procedure, the time-varying errors in rainfall can be estimated
(figure 4c). In general, the cross-validation results show that
LOK and LDK (particularly LOK) outperform OK and DK.

4.2. Rainfall-snowfall separation and SWE estimations

A sample of MODIS maps and spatial snowfall is shown in530

figure 5. For instance, in the first column of maps (11-11-2002)
both the MODIS FSc and albedo show that the surface is snow
free, although there is precipitation on this particular day. On
the next day (12-11-2002), the MODIS imagery data shows
that, in some parts of the basin, the surface is covered with535

some level of snow. The model separates the precipitation into
snowfall and rainfall and, on this day, the spatial distribution
is consistent with the MODIS data. Note that where MODIS
shows no snow, the model estimates very light snowfall that
could be approximated to zero (figure 5, first column). It is also540

Table 3: ρ1
rank and ρ2

rank are the rank correlation coefficients between the
model snowfall and the MODIS Albedo and FSc, respectively. The
calibration period covers the 2002/2003, 2003/2004,and 2004/2005
snow seasons, while the validation period is for the 2005/2006 snow
season.

Period AI ρ1
rank ρ2

rank
Calibration 60% 0.41 0.52
Validation 45% 0.34 0.37

important to note that after the fresh snowfall that is captured by
MODIS, fresh snow on existing snow surface is depicted by the
increase in FSc/albedo. Figure 5 (third column) shows snowfall
in the middle of the snow season, on 01-02-2003, as depicted
by the FSc and albedo. Clearly, the basin is covered by snow,545

and the model also estimates spatially consistent snowfall.
The accuracy index between the snowfall estimate and the

MODIS snow binary data is 60% during the calibration and
45% during the validation period (table 3). These accuracy val-
ues can also be seen from the perspective of the 85% global ac-550

curacy of the MODIS snow product itself (Parajka et al., 2012).
Hence, the 60% binary mapping accuracy in the calibration pe-
riod can be considered acceptable for the long term water bal-
ance analysis in this study. The rank correlation result of mod-
elled snowfall with MODIS snow albedo and with FSc, main-555

taining the 60% binary accuracy, is 0.41 and 0.52 respectively
(table 3). This correlation value is considered to be of medium
performance (Kottegoda and Rosso, 1997). The performance of
the rank correlation decreases during the validation period. For
many reasons, such as differences between MODIS and model560

time steps and spatial units, the correlation and spatial consis-
tency between MODIS and the snowfall model is not very high.
At basin scale, however, the approach is helpful to maintain
some level of spatial consistency. Looking at the results, the
estimated snowfall values mimic the spatial distribution of the565

FSc and the snow albedo data. Clearly, similar spatial vari-
ability cannot be obtained using only discharge data. Due to
slight decreases in temperature at higher elevation HRUs, there
is more snowfall and higher spatial variability with elevation in
NewAGE estimation. However, the relationship of the MODIS570

snow product with topography is neither linear nor strong. To-
pographical complexities (such as slope, aspect, wind speed,
shading, and vegetation) might be suggested as responsible fac-
tors for this non-linearity.

Finally, the time series of precipitation separated into rain-575

fall and snowfall is obtained for the whole data set. A sample
for the event of 21-22 Feb. 2004 is shown in figure 6 for the
four selected HRUs (1,4,13,37). It is interesting to observe the
variability of the snowfall/rainfall partition from hour to hour
during the same event. The spatial variability in snowfall (or580

snowfall/rainfall ratio) between the different HRUs is also ap-
preciable.

Uncertainty is introduced in snowfall estimates from both the
precipitation and the temperature data. In this study, the best
performing temperature (LDK) and precipitation (DK) estima-585

tion at each HRU is used to predict the snowfall estimate.
The hourly time-series analysis of SWE for some selected
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Figure 7: a) Time series of SWE estimation of 4 years for four sample HRUs (i.e 1, 4, 13,and 37); and b) time series of SWE estimation for HRU
1 (above) along with MODIS snow albedo (middle) and fractional snow cover (bottom)

HRUs is shown in figure 7 a. The 18 years of simulation
shows that snow forms mostly in the period from October to
March/April of the following year. Although, the actual timing590

in the formation period varies across years. The mean annual
snow accumulation on the basin was 192± 88 mm. The an-
nual variability of snow accumulation is appreciable. The win-
ters of 1997/1998, 2000/2001, and 2006/2007 show small snow
accumulations, while the winters of 2003/2004, 2005/2006,595

2008/2009, and 2010/2011 show higher snow accumulations in
the basin. Considering all the winter seasons over the 18 years,
the winter of 2008/2009 has the highest accumulation (515 mm)
and the winter of 2006/2007 the lowest (99.5 mm). The SWE
estimation comparison between HRUs (figure 7a) shows that, as600

expected, the HRUs at higher elevation (HRU 1 and 37) always
have higher estimated values than the HRUs at lower elevations
(HRUs 4 and 13). The plot of SWE against the MODIS FSc and
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snow albedo (figure 7 b) for a single HRU (HRU1) shows some
level of consistency between the SWE dynamics and MODIS605

imagery data. The correlation of SWE values with snow frac-
tional area coverage is high (0.65), while with snow albedo is
low (0.15).

4.3. Streamflow modelling and impacts of rainfall interpola-
tions610

Four precipitation data sets generated using four types of
kriging are used as input for the discharge model. To inves-
tigate the effect of precipitations generated using different krig-
ing methods, all four kriging interpolation data sets are used
to calibrate the rainfall-runoff model, even though LOK was615

actually found to perform better in precipitation reproduction.
The different kriging methods cause different performances in
reproducing runoff (as shown in Table 4 and figure 8). Surpris-
ingly, the result using LOK (relatively the best in reproducing
measured precipitation) is actually the lowest in reproducing620

the observed discharge, with KGE=0.78 during the calibration
period and KGE=0.40 during validation. This is also confirmed
by the Percentage bias (PBIAS) indicator (Appendix B) re-
sults. In general, the simulation results using LDK and DK are
acceptable (Moriasi et al., 2007) in both calibration and valida-625

tion periods, while OK and LOK return very low goodnes-of-fit
(GOF) indices values during the validation period (table 4).

Based on the overall ranking of performances using the KGE
index, the DK interpolation method is found to be the best per-
forming, followed by LDK, OK and LOK respectively. Hence,630

we decide to use DK (instead of LOK) for further discharge
analyses. For the impacts of different kriging generated precip-
itation data sets on long-term runoff estimation, figure 8 shows
that, in general, all the precipitation data sets generate higher
long-term annual runoff than really observed and that simula-635

tions using DK input are relatively better than the others.
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Figure 8: Comparison of long-term mean annual runoff simulations,
using different kriging interpolation precipitation inputs, with ob-
served discharge at basin outlet.

The higher performances of the DK methods would indicate
that this method, even if not visible in the calibration phase,
could actually better capture the physics of the processes. A

Table 4: The model performance statistics of the rainfall-runoff model,
based on the four types of kriging interpolation methods used for input
data. Performances of the model during both the calibration and vali-
dation periods. Percent bias (PBIAS) measures range form −∞ to +∞,
with an optimal value of 0.0. Positive values indicate model underes-
timation bias, and negative values indicate model overestimation bias.
DK*, which is used for the water budget analysis, is based on DK pre-
cipitation and is optimized for both discharge and Budyko assumption
of five years.

Calibration Validation

Methods KGE PBIAS r KGE PBIAS r
OK 0.80 1.80 0.80 0.40 66.8 0.50
LOK 0.78 5.2 0.79 0.35 40.1 0.49
DK 0.85 -0.8 0.85 0.56 14.30 0.68
LDK 0.83 1.30 0.83 0.56 15.50 0.66
DK* 0.71 14.6 0.81 0.63 -14.30 0.82

sample calibration and validation hydrograph from the four pre-640

cipitation data sets is available in the supplementary material.
In the simulations above, the ADIGE and PT models are cou-

pled to optimize for both the discharge and the Budyko assump-
tion of water budget: the performances are reported in table 4
(last row). This simulation is used to simulate discharge at each645

link of the basin. Observed discharges at two interior points,
not used in the calibration process (for their locations see fig-
ure 1b, they drain areas of 22.2 km2 and 38.8 km2 respectively),
are used to evaluate the potential of the model for estimation of
runoff at each link (figure 9). On the basis of all the perfor-650

mance statistics, the calibrated model solution provides accept-
able results at the two interior links (Moriasi et al., 2007). In
fact, a KGE=0.73 and a PBIAS=3.30% at Valoje (ID 201) and
a KGE= 0.62 and a PBIAS=2.50% at Bazzoni (ID 203) are ob-
tained. While there are some studies that show a degradation655

of model performance when applying basin outlet calibration
parameters to interior sites (Moussa et al., 2007; Feyen et al.,
2008; Boscarello et al., 2013), the study of Lerat et al. (2012),
using a large number of basins, has demonstrated that a semi-
distributed rainfall-runoff model using a single site (such as a660

basin outlet) calibration could give acceptable estimates of un-
gauged internal points. Our case seems to confirm the latter
case, but we are not able to discern if this is due to the char-
acteristics of our modelling solutions or, perhaps, to the study
basin size, dimension and location, although size and dimen-665

sion certainly play a role.

4.4. Evapotranspiration estimation and uncertainty

ET is estimated at hourly time steps for each HRU, by op-
timizing PT’s α

′
against water budget steady-state hypothesis

(stationarity). The calibration procedure for parameter α re-670

turns the results shown in Figure 10a.
Varying TB from one year to seventeen years, as described

in section 3.5, the value of PT’s α varies between 0.38 and 0.8,
with the mean ᾱ = 0.56 (figure 10a). This result represents
an aftermath verification of the chosen method. The variability675

of α about the mean, while still large, is one half of the one
found in literature. Besides, the α itself, which here assumes
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a different meaning being related to the actual evapotranspira-
tion and not to the potential one, is at the lower end of values
used in literature (Aminzadeh and Or, 2014; Cristea et al., 2012;680

Cho et al., 2012; Viswanadham et al., 1991; Carmona et al.,
2013). Gradually increasing the number of years for the water
balance closure assumption, the α is highly variable for the first
ten years of simulation, subsequently becoming relatively sta-
ble around the mean for the remaining seven years (figure 10a),685

suggesting that taking the TB ∼ 10 years would be a reasonable
choice.
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Following proper determination of the α values of the PT
equation, the ET of each HRU is estimated with its uncertainty
errors. Figure 10 is a sample of time-series of ET during August690

2005 for four HRUs (1, 4, 13, 37). According to our procedures,

the resulting annual ET ranges from a maximum of 550 mm in
2001/2 to a minimum of 424 mm in 2002/2003. The errors of
estimation can vary as much as 20%. A comparison of time
series (aggregated at three time resolutions i.e. daily, monthly,695

and yearly) of NewAge ET with GLEAM estimates for whole
basin is shown in figure 11 for 6 years (1995-2000). At daily
time step, the correlation and the PBIAS between GLEAM
and modelled ET are 0.82 and -35.7 respectively, whereas at
monthly time step they are 0.9 and -55.5, respectively (fig-700

ure 11). The comparison result shows that NewAGE ET is
more variable than GLEAM ET. GLEAM clearly returns higher
estimated values. From 1995-2000, the maximum annual dif-
ference between the two estimations is about 180 mm in 1997,
while the minimum is 50 mm in 1996. The basin scale differ-705

ence is accumulating and gives a difference of 715 mm after the
six years and is not compatible with the ground measurements,
i.e. precipitation and discharge, we have.

In accordance with the hypothesis of consistency we make,
the relative water storage varies from a negative maximum of710

410 mm to a positive maximum of 87 mm. While the quantita-
tive assessments of both ET and relative storage can be thought
of as imprecise, their overall internal variability cannot cer-
tainly be neglected and must be considered a product of this
modeling effort.715

4.5. Closing the water budget at basin scale

Figure 12 shows the mean estimate of the water budget ob-
tained with the method described in the previous sections and
in the Appendix. The annual water balance is based on the hy-
drological year, in this case from October to September of the720

following year.
The components of the water balance of the basin are esti-

mated for each year and the relative share of each component
can be observed in figure 12. Overall, in the same figure 12, one
can see that years with higher precipitation are accompanied by725

higher Q, which indicates that increases in J tend to contribute
directly to Q with minor effects on S and ET. Q and ET ex-
change their roles over the years and there are clearly years
where Q is larger than ET and others where it is vice-versa,
defining, therefore, a climatic characteristic of the basin.730

The hypothesis that the budget is stationary after TB years im-
plies major interannual variability with both negative and pos-
itive storages. This variability is very pronounced and, in the
catchment under study, ET varies from about 19% to 35%, Q
from 64% to 95% and S from -19% to 5% of the whole yearly735

budget. The negative storage changes, at the particular years,
are most likely attributed to: 1) the amount, seasonal variability
and nature of precipitation and/or 2) high atmospheric demand
causing high evapotranspiration. Essentially this means that
outflow (ET plus Q) is higher than the inflow (J), which is possi-740

ble because storage was accumulated in the previous years. The
main source of variability in the budget is clearly in the rainfall
input as in Fatichi et al. (2016a) and Wang et al. (2014c). ET
tends to be pretty smooth (figure 12), since the main driver of
ET is radiation which is relatively consistent across years. It is745

possible that simulated ET is smoother than in reality, since it
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has been estimated on average by assuming a single PT param-
eter over the whole eighteen years of simulation. However, also
other studies in similar catchments in forested and humid areas
have shown that ET has very low interannual variability (Lewis750

et al., 2000; Yoshiyukiishii and Nakamura, 2004; Oishi et al.,
2010; Möller and Stanhill, 2007).

The great part (88%, R2=0.88) of Q variance is explained by
the variance of J. As mentioned above, the variability in ET is
smaller than other components, and only 38% can be explained755

by J (i.e. R2=0.38). The error of estimation is shown by the
error bars in figure 12, which is highest and lowest for S and
Q, respectively. This is expected because Q is the more reliable
of the measured data sets in the water budget equation at the
basin scale (Wang et al., 2014b). Since the budget was actually760

simulated at hourly time steps and at small units (HRU), plots
analogous to figure 12 can be produced for any hour of any day
of the year and for any HRU of the basin. These can be obtained
with increasing uncertainty with decreasing time steps, due to
the ways in which the ET parameter and storage were assessed.765

As an example, figure 13 shows the monthly budget esti-
mated for the year 2011/2012. It was obtained by using the
interpolated rainfalls (with DK), the simulated discharges, us-
ing the parameter calibrated between 1995-1999, and the PT
calibrated for TB = 5 years. The highest variability is mainly770

in J and S . During the summer, all the components show high
magnitude (high J, high Q). The variability in monthly S is
governed by J, though non-linearly. ET is evidently connected
with the annual cycle of solar radiation. It is highest in June
and July and lowest from November to February, as expected,775

but it is less smooth than in the annual budget. In 2012, from
late spring to August, evapotranspiration is sustained by the wa-
ter storage more than from direct precipitation, indicating that,
without winter rainfalls, the vegetation of the catchment could
have undergone considerable stress in these months.780

To show the variability between HRUs, the monthly means of
the water budget components from the 18 years of simulations
have been analyzed, and the mean monthly estimates for four
months (January, April, July, and October, one from each sea-
son) are presented in figure 14. The result confirms the monthly785

analysis given for the year 2012 (figure 13). The trend in Q fol-
lows the trend in J, but it is not linearly proportional.

5. Conclusions

The water budget of the Posina River basin has been an-
alyzed with the NewAGE system at hourly time-steps, using790

18 years of meteorological data (rainfall and temperature) and
discharge data. The analyses include estimations of the four
components of the water budget (precipitation, discharge, rel-
ative storage, and evapotranspiration) under the hypothesis of
stationarity (i.e. null storage) for one of the years where mea-795

surements are available. NewAGE system components are used
to capture basin behaviour and forecast the water cycle. The
procedure implemented is general and can be transposed to all
basins where the same type of data are available. Whilst pre-
cipitation was measured in twelve locations, part of the work800

was to interpolate the data and analyse when they were liquid
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(rainfall) or solid (snow). To separate snowfall and rainfall, a
new method based on the use of MODIS satellite data was used.
This allowed us to decouple this problem from the one of sim-
ulating discharges. The spatial distribution of precipitation was805

obtained by the use of kriging, almost a standard methodology,
which we improved by using the calibration methods permit-
ted by the NewAGE system: a real time calibration method, in
which the model and parameters of the kriging semiovariogram
are chosen automatically time step by time step.810

To obtain accurate spatial time series of precipitation data
for water budget modeling, the kriging procedure is validated
using cross-validation methods. It emerges that OK and LOK
performed better than DK and LDK in detecting the total mass
of water that fell in the basin.815

The variability of total annual rainfall is high, with the low-
est annual J of 1355 mm in 1995/1996 and greatest of 2700
mm in 2010/2011, with a mean of 1730±344 mm. For use in
the NewAGE ADIGE rainfall-runoff component, precipitation
and temperature data are produced for each HRU. To asses the820

impact of precipitation interpolation and its coarse graining at
hillslope scale, we analyze the discharge forecast by using all
four kriging methods, independently of their performances in
assessing the precipitation volume. As anticipated, the DK and
LDK performances were found to give better results than the825

OK and LOK, reversing the previous results.
The GOF index of the simulated discharge against ob-

served discharge shows that the model performances are ac-
ceptable (especially considering that we are simulating hourly
discharges). Using discharge measures within the basin, it is830

possible to quantify the reliability of internal discharge estima-
tions by assuming the validity of model parameters calibrated at

the furthermost downstream outlet. The model maintains simi-
lar performances at the interior sites, which is probably due to
the small size of the catchment considered. This is indeed a835

good result, which contrasts what obtained several times in past
literature. The inter annual variability in Q is high, with the
minimum annual Q of 1003 mm in 1995/96 and the maximum
of 2072 mm in 2010/2011, with estimated errors of 372 mm.

Finally, the Priestley-Taylor method is used to estimate the840

evapotranspiration components of the water budget and to in-
fer the relative storage of water. To obtain this, the hypothe-
sis of null storage after an assigned number of years, named
Budyko’s time, is used. By moving the null storage hypothesis
time incrementally along the first 17 years of data, we obtain845

different values of the PT α. The variability of α can be in-
terpreted as an estimate of the epistemic errors in ET (to be
accumulated with the uncertainty produced in precipitation and
discharge estimates). We actually use two models of ET , one
using the standard PT formulation, and a second assuming a850

reduction in ET proportional to the water storage in each HRU.
In the first case, over the 17 years, the mean was α =

0.56 ± 0.1, which is considerably lower than what is proposed
by literature (where, however, it is relative to the potential evap-
otranspiration). In the second case, the PT α was considered855

as an optimization parameter to add to the ADIGE component
set. In this case, due to the length of the procedure, just the
case with TB = 5 years was considered, obtaining α = 1.89
(which reconciles with the values found in literature). Remark-
ably, this procedure of simultaneous calibration is made easier860

by the modular structure of the NewAGE system. In both the
cases, the contribution of ET to the water budget and its uncer-
tainty are very high. While ET accounts 19-38% of J, its annual
uncertainty is about 20% (148mm on average). ET is certainly
variable in space and in seasonal time scale but the annual to-865

tals tends to be similar over the years due to constant annual
atmospheric demand.

With all the disclaimers of the case, once setup on a basin,
the NewAGE system can produce data which are of real inter-
est in many practical cases of water management. It represents870

a considerable improvement in the analysis of fluxes of the hy-
drological cycle within catchments where evapotranspiration is
usually evaluated without reference to mass conservation and
the water budget is not clearly closed.

The capabilities of JGrass-NewAge system are not fully ex-875

ploited in this study, but it produces estimates of the above
quantities for any hour and for any subcatchment (HRU), with
errors that depend on where the parameters of the model chain
can be calibrated. This study would benefit of further investiga-
tions on: 1) the effect of basin partitioning level; 2) the use of880

surface energy budget closure; and 3) an effective treatment of
vegetation heterogeneity and dynamics.

Code Availability and reproducibility

To reproduce this paper’s findings:

• Catchment DEM can be found at885

https://zenodo.org/badge/DOI/10.5281/zenodo.215011.svg
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• The source code of JGrass-NewAGE is available on
GitHub at https://github.com/geoframecomponents.

• Documentation of the code and modelling solutions for
practice are at http://geoframe.blogspot.it/890

• The supplementary material and a lot of other
material is posted at the AboutHydrology Blog
(http://abouthydrology.blogspot.it/2015/08/estimating-
hydrological-budgets-with.html).
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He, Z., Parajka, J., Tian, F., Blöschl, G., 2014. Estimating degree-day factors
from modis for snowmelt runoff modeling. Hydrology and Earth System1075

Sciences 18 (12), 4773–4789.
Hingerl, L., Kunstmann, H., Wagner, S., Mauder, M., Bliefernicht, J., Rigon,

R., 2016. Spatiotemporal variability of water and energy fluxes-a case study
for a meso-scale catchment in pre-alpine environment. Hydrological Pro-
cesses.1080
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Parajka, J., Holko, L., Kostka, Z., Blöschl, G., 2012. Modis snow cover map-

ping accuracy in a small mountain catchment–comparison between open and
forest sites. Hydrology and Earth System Sciences 16 (7), 2365–2377.

Penna, D., Meerveld, H., Oliviero, O., Zuecco, G., Assendelft, R.,1190

Dalla Fontana, G., Borga, M., 2015. Seasonal changes in runoff genera-
tion in a small forested mountain catchment. Hydrological Processes 29 (8),
2027–2042.

Phillips, D. L., Dolph, J., Marks, D., 1992. A comparison of geostatistical pro-
cedures for spatial analysis of precipitation in mountainous terrain. Agricul-1195

tural and Forest Meteorology 58 (1), 119–141.
Porporato, A., D?odorico, P., Laio, F., Ridolfi, L., Rodriguez-Iturbe, I.,

2002. Ecohydrology of water-controlled ecosystems. Advances in Water Re-
sources 25 (8), 1335–1348.

Priestley, C., Taylor, R., 1972. On the assessment of surface heat flux and evap-1200

oration using large-scale parameters. Monthly weather review 100 (2), 81–
92.

Prudhomme, C., Reed, D. W., 1999. Mapping extreme rainfall in a mountainous
region using geostatistical techniques: a case study in scotland. International
Journal of Climatology 19 (12), 1337–1356.1205

Rodell, M., Famiglietti, J., Chen, J., Seneviratne, S., Viterbo, P., Holl, S., Wil-
son, C., 2004. Basin scale estimates of evapotranspiration using grace and
other observations. Geophysical Research Letters 31 (20).

Rodrı́guez-Iturbe, I., Porporato, A., 2004. Ecohydrology of water-controlled
ecosystems. Soil Moisture and Plant Dynamics.1210

Rohrer, M., 1989. Determination of the transition air temperature from snow
to rain and intensity of precipitation. In: WMO IASH ETH International
Workshop on Precipitation Measurement. pp. 475–582.

Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., Wood, E. F.,
2011. Reconciling the global terrestrial water budget using satellite remote1215

sensing. Remote Sensing of Environment 115 (8), 1850–1865.
Samaniego, L., Kumar, R., Attinger, S., 2010. Multiscale parameter regional-

ization of a grid-based hydrologic model at the mesoscale. Water Resources
Research 46 (5).

Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., Chen, F., 1996. Simple1220

water balance model for estimating runoff at different spatial and tempo-
ral scales. Journal of Geophysical Research: Atmospheres 101 (D3), 7461–
7475.

Scott, R. L., 2010. Using watershed water balance to evaluate the accuracy of
eddy covariance evaporation measurements for three semiarid ecosystems.1225

Agricultural and Forest Meteorology 150 (2), 219–225.
Sheffield, J., Ferguson, C. R., Troy, T. J., Wood, E. F., McCabe, M. F., 2009.

Closing the terrestrial water budget from satellite remote sensing. Geophys-

ical Research Letters 36 (7).
Singh, J., Knapp, H. V., Arnold, J., Demissie, M., 2005. Hydrological modeling1230

of the iroquois river watershed using hspf and swat1.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang,

X., Wang, W., Powers, J., 2008. A description of the advanced research wrf
version 3, ncar, tech. note, mesoscale and microscale meteorology division.
National Center for Atmospheric Research, Boulder, Colorado, USA.1235

Steinacker, R., 1983. Diagnose und prognose der schneefallgrenze. Wetter und
Leben 35 (81-90), 120.

Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., Rinaldo, A., 2011. Im-
proved interpolation of meteorological forcings for hydrologic applications
in a swiss alpine region. Journal of Hydrology 401 (1), 77–89.1240

Tomasella, J., Hodnett, M. G., Cuartas, L. A., Nobre, A. D., Waterloo, M. J.,
Oliveira, S. M., 2008. The water balance of an amazonian micro-catchment:
the effect of interannual variability of rainfall on hydrological behaviour.
Hydrological Processes 22 (13), 2133–2147.

Van Der Knijff, J., Younis, J., De Roo, A., 2010. Lisflood: a gis-based dis-1245

tributed model for river basin scale water balance and flood simulation. In-
ternational Journal of Geographical Information Science 24 (2), 189–212.

Viswanadham, Y., Silva Filho, V., Andre, R., 1991. The priestley-taylor pa-
rameter α for the amazon forest. Forest Ecology and Management 38 (3),
211–225.1250

Wang, S., Huang, J., Li, J., Rivera, A., McKenney, D. W., Sheffield, J., 2014a.
Assessment of water budget for sixteen large drainage basins in canada.
Journal of Hydrology 512, 1–15.

Wang, S., Huang, J., Yang, D., Pavlic, G., Li, J., 2014b. Long-term water budget
imbalances and error sources for cold region drainage basins. Hydrological1255

Processes.
Wang, S., McKenney, D. W., Shang, J., Li, J., 2014c. A national-scale assess-

ment of long-term water budget closures for canada’s watersheds. Journal of
Geophysical Research: Atmospheres 119 (14), 8712–8725.

Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., Wullschleger,1260

S. D., 2001. A comparison of methods for determining forest evapotranspi-
ration and its components: sap-flow, soil water budget, eddy covariance and
catchment water balance. Agricoltural and Forest Meteorology 106, 153–
168.

Xue, M., Droegemeier, K. K., Wong, V., 2000. The advanced regional predic-1265

tion system (arps)–a multi-scale nonhydrostatic atmospheric simulation and
prediction model. part i: Model dynamics and verification. Meteorology and
atmospheric physics 75 (3-4), 161–193.

Xue, M., Droegemeier, K. K., Wong, V., Shapiro, A., Brewster, K., Carr, F., We-
ber, D., Liu, Y., Wang, D., 2001. The advanced regional prediction system1270

(arps)–a multi-scale nonhydrostatic atmospheric simulation and prediction
tool. part ii: Model physics and applications. Meteorology and atmospheric
physics 76 (3-4), 143–165.

Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., Lei, Z., 2007. Analyzing spatial and
temporal variability of annual water-energy balance in nonhumid regions of1275

china using the budyko hypothesis. Water Resources Research 43 (4).
Ye, H., Cohen, J., Rawlins, M., 2013. Discrimination of solid from liquid pre-

cipitation over northern eurasia using surface atmospheric conditions*. Jour-
nal of Hydrometeorology 14 (4), 1345–1355.

Yoshiyukiishii, Y. K., Nakamura, R., 2004. Water balance of a snowy watershed1280

in hokkaido, japan. Northern Research Basins Water Balance (290), 13.
Zambrano-Bigiarini, M., 2013. hydrogof: Goodness-of-fit functions for com-

parison of simulated and observed hydrological time series. R package ver-
sion 0.3-7.

Zhang, L., Potter, N., Hickel, K., Zhang, Y., Shao, Q., 2008. Water balance1285

modeling over variable time scales based on the budyko framework–model
development and testing. Journal of Hydrology 360 (1), 117–131.

Appendix A. List of Symbols, Acronyms, and Notation

Appendix B. Model performance criteria

The model evaluation statistics used in the paper are the1290

goodness-of-fit (GOF) indices. Theses evaluation statistics are
used for cross-validation of rainfall interpolation in kriging and
rainfall-runoff simulation performances. The GOF indices used
in this paper are defined by the following equations:
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Table A.5
Symbol Name Units
J Precipitation per unit area L
Js Snowfall per unit area L
JR Rainfall per unit area L
HRU Hydrologic response unit -
S (t) Volume of water stored in HRU per unit area LT−1

k Index denoting a HRU -
t Time T
ET Actual evapotranspiration LT−1

Qki incoming discharge to HRU L3T−1

Qk discharge from HRU L3T−1

αr, αs adjusting parameters for rain and snow measurement errors -
m1 snow-separation parameter controlling the degree of smoothing -
Ts Threshold temperature K
T Temperature K
AI Accuracy index %
εrank rank correlation coefficient -
D difference between simulated and observed data -
Cmax maximum water storage capacity of HRU per unit area LT−1

Rn Total net radiation ET−1T−2

G soil heat flux ET−1T−2

α Priestly-Taylor coefficient
Q Discharge L3T−1

∆ the slope of the Clausius-Clapeyron relation KT−1

γ the psychometric constant KT−1

σJ standard deviation of precipitation L
σQ Standard deviation of discharge L
σα′ standard deviation of due to variable α

′
L

σET Standard deviation of ET L
RH(t) Direct runoff L
R(t) Residual runoff L
PT Priestly-Taylor ET model -
OK Ordinary Kriging -
LOK Local ordinary kriging -
DK Detrended Kriging -
LDK Local detrended kringing

1. Mean Error (ME) is calculated as

ME =
1
n

n∑

i=1

Pi − Oi (B.1)

where Pi is the predicted value and Oi is the observed1295

value of the rainfall data at a given time step. The opti-
mal value is 0, and the negative and positive values are
underestimation and overestimation respectively.

2. The Root Mean Square Error (RMSE)(Chu and Shirmo-
hammadi, 2004; Singh et al., 2005). The lower the RMSE
the better the model performance is. It is given by

RMS E =

n∑

i=1

√
1
n

(Pi − Oi)2 (B.2)

The RMSE is a joint measure of bias in the mean and in the
variance, as the square of individual differences between1300

estimated and observed values puts the emphasis on the
errors in outliers or higher differences (Ashraf et al., 1997;
Nalder and Wein, 1998).

3. Pearson correlation coefficient (r): please refer to Moriasi
et al. (2007).1305

4. PBIAS: is a measure of the average tendency of estimated
values to be large or smaller than the corresponding mea-
sured values. A value near to zero indicates high estima-
tion, a positive value indicates overestimation and a nega-
tive value indicates underestimation (Moriasi et al., 2007;

Gupta et al., 1999).

PBIAS =

∑n
i=1(Pi − Oi)∑n

i=1Oi
∗ 100 (B.3)

This value can be used to assess the systematic under/over
estimation of the model.

5. Kling-Gupta efficiency (KGE) has been developed by
Gupta et al. (2009) to provide a diagnostically interesting
decomposition of the Nash-Sutcliffe efficiency. It facili-1310

tates the analysis of the relative importance of the differ-
ent components (correlation, bias and variability) in the
context of hydrological modelling. Kling et al. (2012) has
proposed a revised version of this index. It is given by

KGE = 1 − ED (B.4)

ED =

√
(r − 1)2 + (v − 1)2 + (β − 1)2 (B.5)

where: ED is the Euclidian distance from the ideal point;1315

β is the ratio between the mean simulated and mean ob-
served flows; r is the Pearson product-moment correla-
tion coefficient; and v is the ratio between observed (σo)
and modelled (σs) standard deviations of the time series
and takes account of the relative variability (Zambrano-1320

Bigiarini, 2013).

Appendix C. Evapotranspiration Estimation: Procedure
details

A gross estimation of the evapotranspiration coefficient α
(e.g. Eq. (5) can be obtained directly from data available, under
what we call the Budyko Hypothesis. This hypothesis considers
that water storage oscillates and, after a number of days/years,
which we call Budyko’s time, TB, it is back to the same level it
was at the initial time. This implies that the water budget is not
very far from equilibrium, even in times of climate change. In
this case, considering each HRU or the whole basin as a unique
control volume (as allowed by data), the water budget can be
written, by not considering any dependence on water storage,
as:

S (t) − S (0) =

∫ TB

0
(J(t) − Qm(t) − α ET (t))dt = 0 (C.1)

where Qm(t) is the measured discharge, we define

ET (t) :=
∆

∆ + γ
Rn (C.2)

and where the dependence on water storage has necessarily1325

been neglected (as it would bring into the process the required
knowledge of the parameter Cmax, the maximum allowable stor-
age, a Hymod parameter that is object of calibration).

Therefore, from data only, the maximum we can obtain is:

α̃(TB) =

∫ TB

0
(J(t) − Qm(t))dt
∫ TB

0
ET (t)) dt

(C.3)
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This averaged Priestley-Taylor coefficient is clearly a function
of Budyko’s time, which we do not know, unless we can per-1330

form appropriate groundwater level measurements.
However, through modelling, an estimation of ET dependent

on soil water storage can be obtained. This estimation pro-
cess is not that smooth because the estimation of α is inter-
twined with the process of calibration of ADIGE/Hymod pa-
rameters. ADIGE/Hymod, in fact, requires knowledge of the
storage S g(t), which, in turn, depends on how much water is
withdrawn by evapotranspiration. In this case, the Budyko’s
hypothesis says that:

S g(T )−S g(0) =

∫ TB

0
(J(t)−R(t)−RH(t))−α ET (t)dt = 0 (C.4)

where, RH(t) and R(t) are direct and residual runoff according
to Hymod procedure (supplementary material), and

ET (t) =
S (t)
Cmax

∆

∆ + γ
Rn (C.5)

and implies that we can estimate an average α as:

ᾱ(TB) =

∫ TB

0
(J(t) − R(t) − RH(t))dt

∫ TB

0
ET (t)dt

(C.6)

Therefore, in a set of n years of data, we can generate n values
of α(TB) in the range [1, n] years to setup the model.

In the ADIGE/Hymod calibration phase, knowledge of α is
necessary to update C(t) (supplementary material). Therefore,1335

the calibration procedure must simultaneously estimate ET (i.e.
α) and the runoff parameters. An iterative procedure for this
can be:

• for an assigned TB,

• assign a first trial value for α, say α̂0, as in eq. (C.3) ;1340

• assign a tolerance, ε > 0 for α estimates.

• Estimate through calibration the Hymod parameters,
which are obviously α0 dependent;

• estimate α̂1;

• Repeat the calibration procedure until |α̂m − α̂m−1| < ε,1345

being m the iteration index.

The value of α obtained accounts for variable storage in soil.
It has to be remarked that, depending on available data, α̂ can be
a global or local (to HRU) parameter, while the storage fractions
S (t)/Cmax are always estimated locally for each HRU.1350
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