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Abstract 

A key difficulty in ocean acidification (OA) research is to predict its impact after 

physiological, phenotypic and genotypic adaptation has had time to take place. Observational 

datasets can be a useful tool in addressing this issue. During a cruise in June-July 2011, 

measurements of upper-ocean biogeochemical variables, climatically active gases and 

plankton community composition were collected from northwestern European seas. We used 

various multivariate statistical techniques to assess the relative influences of carbonate 

chemistry and other environmental factors on these response variables. We found that the 

spatial patterns in plankton communities were driven more by nutrient availability and 

physical variables than by carbonate chemistry. The best subset of variables able to account 

for phytoplankton community structure was the euphotic zone depth, silicic acid availability, 

Page 1 of 43 ICES Journal of Marine Science
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/82918665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

mixed layer average irradiance and nitrate concentration (59% of variance explained). The 

spatial variations in phytoplankton and coccolithophores species composition were both found 

to be more strongly associated with nutrients and physical variables than carbonate chemistry, 

with the latter only explaining 14% and 9% of the variance, respectively. The plankton 

community composition and contribution of calcifying organisms was not observed to change 

under lower calcite saturation state (Ω) conditions, although no regions of undersaturation (Ω 

< 1) were encountered during the cruise. Carbonate chemistry played a more prominent, but 

still secondary, role in determining dinoflagellate and diatom assemblage composition (20% 

and 13% of total variance explained, respectively). Nutrient and physical variables also 

explained more of the spatial variations of most climatically-active gases and selected 

biogeochemical response variables, although some also appeared to be influenced by 

carbonate chemistry. This observational study has demonstrated that ocean acidification 

research needs to be set in context with other environmental forcing variables to fully 

appreciate the primary, or indeed secondary, role that increasing fCO2 has on biological 

communities and associated biogeochemical rates. 
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1. Introduction 

The ongoing increase in seawater CO2 and reduction in seawater pH associated with the 

uptake of fossil fuel-derived CO2 from the atmosphere (often termed ocean acidification 

[OA]) will have many direct and indirect effects on the chemistry and biology of the ocean 
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(Shi et al., 2010). Coastal economies, including those along the coast of northwest Europe, are 

often dependent on calcium carbonate-producing organisms, such as shellfish (e.g., cockles, 

mussels, and oysters). It has been observed that in some areas elsewhere in the world these 

fisheries are collapsing due to changing carbonate chemistry composition (Dickson, 2010; 

Callaway et al., 2012). For at least nine years, the US and Mexico West Coast shellfish 

industry has observed high larval mortality in hatcheries and poor larval recruitment success 

for some species in the wild, especially during periods of strong deep-water upwelling 

(Cooley and Doney, 2009; Dickson, 2010). 

Previous work on OA has also suggested that impacts are not limited to seafloor 

organisms, but can also affect organisms and biogeochemical processes in open water away 

from the coast. There is no clear agreement, heavily debated on either side, whether 

planktonic calcifying organisms are negatively or positively impacted. Coccolithophores are 

an example of calcifying organisms that have shown relatively mixed responses from OA 

(Riebesell et al., 2000; Iglesias-Rodriguez et al., 2008; Langer et al., 2009; Bach et al., 2015). 

Other marine phytoplankton (e.g., diatoms) have also been shown to change their elemental 

composition (C/N/P) in response to changing CO2 concentration, but again these changes are 

species-specific and sometimes opposite responses are obtained in different studies (Engel et 

al., 2005; Schulz et al., 2008). It has been proposed that increasing levels of fCO2 in the 

surface ocean will lead to accumulation of dissolved organic carbon (DOC) and transparent 

exopolymer particles (TEP), with important implications for the functioning of the marine 

carbon cycle (MacGilchrist et al. (2014) and references therein). 

Primary production also has the potential to be affected by OA. For example, during a 

summer 2014 cruise on the northwest European Shelf (the same cruise as is the subject of this 

paper), considerable variability in carbon-fixation dynamics (such as growth rates and the 

contribution from small cells) in manipulation experiments were observed (Richier et al., 
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2014). It was also found that the net production of particulate organic carbon (POC) was 

strongly correlated with net changes in CO2 level. 

During the same bioassay experiments as in Richier et al. (2014), an association was 

found between higher nitrous oxide (N2O) concentrations and lower temperatures, which was 

attributed to increased gas solubility (Clark et al., 2014). Furthermore, a consistent increase in 

dimethyl sulfide (DMS) and a decrease in the precursor dimethyl sulfoniopropionate (DMSP) 

in response to high CO2 was also observed (Hopkins and Archer, 2014). However, other 

studies previously observed a decrease in DMS under high CO2 concentrations (Hopkins et 

al., 2010) or no effect of elevated CO2 on concentration of DMSP (Lee et al., 2009). 

 To maximize our understanding of the effects of environmental stressors on complex 

oceanic ecosystems and biogeochemical processes, multivariate statistical approaches are 

required. Multivariate techniques are ideally suited to studies where multiple response 

variables are measured in the same observational or experimental study; they have been used 

extensively for terrestrial ecological studies and fisheries studies, e.g. Beaugrand and Reid 

(2012). These analyses are used to test complex hypotheses about regional differences and 

relationships between variables (Havenhand et al., 2010). Used in this way, observational data 

can inform us of ocean change impacts and complement more targeted and more finely-

detailed experimental research (Collins et al., 2014; Sunday et al., 2014). Some earlier field 

studies have also analyzed linkages between carbonate chemistry and species composition in 

an OA context using multivariate statistics (e.g. Charalampopoulou et al. (2011); 

Charalampopoulou et al. (2016)). Frigstad et al. (2013) reported the need for comprehensive 

studies on all available environmental data (with lots of variables) to determine causal 

relationships. 

The main goal of this paper is to investigate quantitatively the links between natural 

spatial variations in environmental factors and: i) plankton biodiversity and community 
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structure, ii) climatically-active gases and, iii) biogeochemical variables, across the highly 

dynamic environment of the northwest European Shelf waters. Trying to identify which 

combination of environmental variables drives biogeochemical variables is difficult due to the 

complexity of responses, interactions, and spatial variability. Here, we used a multivariate 

statistical approach to address this problem and identify statistically the strongest 

combinations of environmental variables associated with the response variables. In doing so, 

we were able to determine which response variables were most influenced by changes in sea 

surface carbonate chemistry gradients. As such, this study represents a large and 

comprehensive addition to the literature on OA impacts on the surface ocean, as deduced from 

observational data. 

 

2. Methods 

Samples were collected between June– July 2011 during the RRS Discovery research 

cruise (D366) in northwest European Shelf waters (Fig. 1), as part of the UK ocean 

acidification (UKOA) research programme. The data reported in this study came from 

multiple measurements collected within the mixed layer. Several previous papers describing 

results of experimental and observational work on this cruise have been published in a 2014 

special issue (Tyrrell and Achterberg, 2014). Here we present an overarching statistical 

analysis of the observational data. Across the cruise more than 20 environmental variables 

(physical, nutrients and carbonate chemistry), >120 plankton species abundance 

measurements and 22 other response variables (biogeochemical variables and climatically-

active gases) were collected at 64 stations (some of them were visited twice) (Fig. 1). All data 

included in the paper are available from the British Oceanographic Data Centre (Ribas-Ribas 

et al., 2014a). 
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2.1. Environmental data 

Temperature and salinity were taken directly from the calibrated CTD data. Analyses of 

nitrate and nitrite (NOx), phosphate (PO4), and silicic acid (Si(OH)4) were undertaken using a 

segmented flow auto-analyser (Skalar San+) following methods described by Kirkwood 

(1989). Excess nitrate relative to phosphate (N*) was calculated as NO3 - (PO4 x 16) and 

excess silicic acid relative to nitrate (Si*) was calculated as Si(OH)4 - NOx (Poulton et al., 

2014). Analysis of high quality seawater carbonate chemistry measurements are detailed in 

Ribas-Ribas et al. (2014b). 

Mixed layer depths (MLD) were calculated as the shallowest depth at which the 

density difference (∆σt) with the surface waters was more than ∆σt = 0.05 kg m
-3

. This 

threshold has been previously used on the eastern European continental shelf (Hickman et al., 

2012). Daily incident irradiance (Ed
0-

), in terms of photosynthetically active radiation (PAR), 

was integrated from dawn to dusk from the PAR sensor on the RSS Discovery. The euphotic 

zone depth (Zeup) was defined as the depth at which irradiance was 1% of near-surface 

values, with an optical depth of 4.6 (Kirk, 1994). Kd was calculated for pre-dawn casts using 

the same method as Charalampopoulou et al. (2011); regression analysis between turbidity 

(measured using a turbidity sensor on the CTD frame) and Kd (r
2
 = 0.493; p < 0.001) values 

calculated for daytime stations were used to predict Kd for pre-dawn casts. The mixed layer 

average irradiance (Ed
ML

) was calculated following Kirk (1994) using a combination of Ed
0-

, 

Kd, and MLD as in Equation 1: 

Ed
ML

 (mol PAR m
-2

 d
-1

) = Ed
0-

 (1 – exp
-Kz

) / Kz     (Eq. 1) 

where Kz = Kd ˙ MLD. The variable Ed
ML

 describes the mean light experienced by a particle 

being mixed from the surface to the base of the mixed layer. A two day average was used as 
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this accounts for incidental light and recent light history. This is especially important for 

morning measurements, where light data from the sampling day is most representative of the 

time after sampling. 

In all, 19 environmental variables were measured at the same stations where the 

phytoplankton variables were measured (Table 1). Prior to statistical analysis, 

multicollinearity of the environmental variables within each environmental group (nutrients, 

carbonate chemistry, and hydrographical variables) and overall (all groups combined) were 

determined using Pearson’s product moment correlations. For pairs of collinear variables 

(ρ > 0.95; e.g. dissolved inorganic carbon/total alkalinity (DIC/AT)), we checked the analysis 

with both variables to examine if they both produced the same statistical outcome and then, if 

they did, one of the variables was removed from the subsequent analysis. 

If the explanatory variables had a skewed distribution they were transformed 

appropriately (Quinn and Keough, 2002). All variables were normalized (subtracting the 

mean and dividing by the standard deviation for each variable) prior to being constructed into 

a resemblance matrix using Euclidean distance (Equation 2): 

� = �∑ (��� − ��
)
�          (Eq. 2) 

where ��� and	��
 result from the pre-treatment transformation and subsequent normalisation. 

 

2.2. Phytoplankton data 

Methods for coccolithophore counts are detailed in Poulton et al. (2014). After filtering 

and mounting as permanent slides, coccolithophore cell counts and species identification were 

carried out under cross-polarised light using a Leitz Ortholux microscope (X1000, oil 

immersion). 
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Microplankton community samples collected from the CTD casts were preserved in 2% 

acidic Lugol’s iodine solution and stored in cool, low light conditions. The Utermöhl method 

for quantitative phytoplankton analysis (Edler and Elbrächter, 2010) was used for taxonomic 

identification and quantitative analysis of microplankton greater in cell size than 10 µm. 

Spatial variation in the plankton community was assessed individually for each 

phytoplankton group (diatoms, dinoflagellates, and coccolithophores), as well as for all 

groups combined (with and, in some cases, without unidentified naked dinoflagellates). 

Abundance data for all groups were aggregated to the genus level, and screened to keep taxa 

that appeared in ≥1% of the samples; in each of the plankton groups, taxa were log 

transformed (log[X+1]) to down-weight the contributions of the dominant species prior to 

being constructed into a similarity matrix using the Bray-Curtis similarity coefficient 

(Equation 3): 

�� = 100 �1 − ∑ 	��������
���

∑ (�������)�
���

�        (Eq. 3) 

where ���  represents the entry in the ith row and jth column of the data matrix for the ith 

species in the jth sample and ��� is the count for the ith species in the kth sample. 

To assess if the calcifying plankton group contributed less to the total phytoplankton 

community in regions of low pH/calcite saturation state (Ωcalcite), the total phytoplankton 

abundance data was sub-divided into calcifying and non-calcifying species. Diversity indices 

(total number of individuals [N], total number of species [S], and species richness [H’, the 

Shannon-Wiener Index]) of (i) calcifying and (ii) non-calcifying groups were determined, as 

well as the (iii) ratio of diversity indices between calcifying:non-calcifying groups. The 

Shannon-Wiener Index was determined by (Equation 4): 

�� = 	 ∑(�� . log(��))	         (Eq. 4) 
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where Pi is the proportion of the total count arising from the ith species. 

 

2.3. Response variable data 

Methods used for the analysis of DMS, DMSP, N2O, methane (CH4), POC, particulate 

organic nitrogen (PON), particulate organic phosphorus (POP), TEP, chlorophyll-a (Chl-a) 

biogenic silica (BSi), and dissolved oxygen (DO), can be found in Richier et al. (2014) and 

references therein (see Table 3 in Richier et al. (2014)). Herein, C:N, C:P, N:P are the ratios of 

POC:PON, POC:POP, and PON:POP, respectively. 

 

2.4. Statistical analysis 

Phytoplankton community assemblages sampled across the northwestern European Shelf 

were analysed using multivariate approaches with PRIMER-E v6 (6.1.13) and 

PERMANOVA + (1.0.3). Table 2 summarizes the statistical analyses used in this study. 

2.4.1. Principal components analysis 

A principal component analysis (PCA) was used to visually represent the variation 

across all the environmental forcing variables (physical, carbonate chemistry, and nutrients) 

and to assess if natural groupings found within the data were similar to those found in the 

phytoplankton community assemblage. 

2.4.2. Cluster analysis 

Natural groupings in the environmental data were differentiated using cluster analysis 

of the group average and statistically compared using similarity profile (‘SIMPROF’) 

analysis. Similarity percentages (‘SIMPER’) analysis were then used to determine which 
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variables are characteristic of each environmental cluster, variables which cumulatively 

contribute least to 50% of Euclidean distance (and are therefore most ‘similar’) between 

stations grouped in a cluster; as well as discriminating variables which contribute the most 

toward 50% of total Euclidean distance between pairs of clusters. 

2.4.3. Principal co-ordination analysis 

To visualise the natural groupings of the phytoplankton community, a principle 

coordination analysis (PCO) was employed. PCO is an unconstrained plot where samples are 

projected onto a best fitting plane, by which the axes aim to capture as much variability from 

the (Bray Curtis or Euclidian distance) resemblance matrix as possible. 

2.4.4. Analysis of similarities 

Analysis of similarities (ANOSIM) was carried out to determine whether the 

phytoplankton assemblages varied between a priori specified groups of stations that are 

characterized by differing environmental characteristics, determined independent of the 

phytoplankton analysis. 

The global value of R varies between 1 and -1; values greater than 0 indicate greater 

variation between groups than within group, where 1 would indicate all stations within a 

group are more similar to each other than to any station from another group. Global R and 

associated significance values were used initially to determine whether significant differences 

were present (p < 0.05); pairwise comparisons were investigated further for combinations 

with lower p values (≤ 0.1) and higher R statistics (≥ 0.4) (Clark et al., 2014). Subsequent 

SIMPER analysis was then used to examine the discriminating species (those contributing to 

50% of dissimilarities (Bray-Curtis) between clusters) in each pairwise comparison, which 

were then compared to the corresponding environmental variables. 

2.4.5. Mantel Test 
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To assess if the spatial variations in plankton groups were related to carbonate 

chemistry gradients rather than other environmental factors, all three environmental forcing 

groups (nutrients, carbonate chemistry, and hydrographical variables) were separately, and in 

combination, correlated to the plankton groups using a non-parametric Mantel Test (RELATE 

analysis). The measure of agreement between the matrices was assessed with Spearman’s 

rank correlation coefficient (rho) with permutations to test the null hypothesis of no 

agreement in the multivariate patterns between the two independently derived resemblance 

matrixes. 

Significant correlations were analysed further using BEST analysis (BVstep, 999 

permutations) to determine a subset of variables within the environmental group that best 

matched the biotic pattern in the phytoplankton group. BEST analysis performs a 

permutation-based multivariate analysis of biotic-abiotic relationships to link the patterns in 

the response variables to those in the environmental variables. The BEST analysis finds which 

subset of environmental variables produce the highest Spearman’s rank correlation between a 

Bray-Curtis similarity matrix (responses) and Euclidean distance matrix (environmental). The 

permutation test indicates the probability of achieving this correlation by chance, therefore 

providing a significance test for the correlation. 

To gauge if the community structure of the phytoplankton were related to carbonate 

chemistry gradients rather than other environmental factors, the analysis as described above 

was repeated but each CTD station was first standardised to the total number of individuals 

within each sample. A distance-based linear model (DISTLM) was used to model the 

relationship between the environmental forcing variable group (nutrients, carbonate 

chemistry, and hydrographical variables) and the phytoplankton abundance. Marginal tests 

were used to assess the (i) relative influence of each independent environmental variable, and 

(ii) each forcing variable group on the phytoplankton assemblage using R
2
 selection criteria. 
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Sequential testing in a step-wise model was then used to assess the best subset of forcing 

variables (overall and within each environmental group) that can be used to model the 

variability within the phytoplankton community. The modified Akaike Information Criterion 

(AICC) selection criterion was used for the step-wise model due to its capability of handling a 

small number of samples relative to the number of predictor variables available. The distance 

based linear model was repeated for the three sub-groups within the phytoplankton: 

coccolithophores, diatoms, and dinoflagellates. 

RELATE analysis was also used to correlate the multivariate response of the diversity 

indices across the three environmental variable groups. As the diversity indices were 

measured on different scales, they were normalised prior to being constructed into a 

resemblance matrix using Euclidean distance. Significant correlations were analysed further 

for individual diversity indices using BEST analysis to isolate a sub-set of carbonate variables 

that best matched the biotic data. 

2.4.6.  Multiple linear regression model (LM) and generalized linear model 

(GLM) 

Correlations between the independent explanatory/response variables (Table 1) and the 

response variables (climatically-active gases and biogeochemical variables) were analysed 

across the northwestern European Shelf using either Pearson’s correlation coefficient (ρ) or 

rho, dependant on the heterogeneity of the response variables. Significance (p < 0.05) of the 

correlations between the response variables and the independent explanatory variables was 

generated using permutations (9,999 permutations). The combination of forcing variables 

(carbonate chemistry, nutrient, and physical variables combined) that had the greatest 

influence on the response variables was assessed using step-wise multiple linear regressions. 

If the response variable maintained homogeneity of variance and a normal distribution, a 

multiple linear regression model (LM) was used. If the distribution of the response variable 
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was skewed, a generalized linear model (GLM) was obtained. The significance of the 

coefficients within each of the models was analysed using either analysis of variance (for the 

LM) or the Wald Test (for the GLM), and significant differences from the null model were 

assessed using the F- statistic (for the LM) and the Chi-squared statistic (for the GLM). Prior 

to analysis, multicollinearity between the explanatory variables was assessed using Pearson’s 

correlation. Variables with a correlation > 0.95 were removed. Redundant variables (those 

that maintained a high collinearity with another variable) were substituted into the regression 

analysis in a stepwise fashion to assess their overall influence on the significance. Model 

inference and goodness of fit was assessed with AICc, and either residual deviance of 

variance using R
2
 (for LM) or log-likelihood ratios (for GLM). Model validation was assessed 

by comparing the residual variance/ deviance against the fitted values. Spatial autocorrelation 

was visually assessed through variograms and all residuals were compared to explanatory 

variables and assessed for patterns. 

 

3. Results 

3.1. Environmental forcing and response variables 

PCA grouped most environmental variables into either physical (more related to PC2-

Env) or carbonate chemistry and nutrients (PC1-Env). Response variables were mostly 

grouped into climatically active gases (PC1-Res) and biogeochemical variables (PC2-Res). 

The range of environmental variability encountered across the D366 cruise is detailed in 

Table 1 (see also Tyrrell and Achterberg (2014)). The PCA of all environmental variables 

combined captured 57.3% of the spatial variability across the first two principle components 

(Fig. 2A). The first principle component accounts for 33.8% of the variability within the data 

and correlated strongly (Pearson’s correlation, ρ > 0.8 or ρ <-0.8) to the MLD, Si(OH)4, fCO2, 

and HCO3
-
 and negatively with saturation states. The second principle component accounts 
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for 23.5% of the variability within the data and correlated positively with salinity and AT and 

negatively to temperature and fCO2 (ρ <-0.77). The PCA of response variables combined 

captures 48.2% of the spatial variability across the first two principle components (Fig. 2B). 

The first principle component correlated strongly with POC and PON and the second 

principle component correlated positively with POP and negatively with the ratio of C:P. 

Cluster and subsequent SIMPROF analysis of environmental variables highlighted 12 

significantly different clusters at the 5% significance level (Fig. 3A). The clusters were then 

located geographically (Fig. 3B). This showed a large degree of heterogeneity in 

environmental variables; however, some of the environmental clusters were strongly 

geographically separate, allowing the identification of several important geographic regions: 

South of Cornwall (cluster ‘l’), open Atlantic (cluster ‘f’ and ‘g’ (both together)), 

Skagerrak/Norwegian coast (cluster ‘b’), or with coastal influence (cluster ‘c’ and ‘e’) which 

receive large freshwater inputs from the English, Belgian, Dutch, German, and Danish coasts. 

3.1.1. Climatically-active gases 

Analysis of correlations between the climatically-active gases and environmental forcing 

variables revealed that one or more carbonate chemistry variables significantly influenced 

DMS, DMSP, and N2O concentrations, but had no influence on CH4 (supplementary material, 

Fig. 1S). Multiple linear step-wise regression found temperature was the main forcing 

variable influencing the concentration of N2O across the northwestern European Shelf 

(supplementary material, Table 1S). For this climatically-active gas, an increase in 

temperature results in a decline in its concentration. Methane concentration was most 

influenced by MLD and PO4, with an increase in MLD associated with lower CH4 

concentration, whilst an increase in PO4 increased CH4 concentration. DMS and DMSP 

concentration were influenced by the carbonate chemistry gradients in concert with other 

environmental variables. Salinity, Zeup, and fCO2 had the greatest influence on DMS 
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concentration, with the increase in both salinity and fCO2 causing declines in DMS 

concentration, whilst Zeup increased concentration. Salinity, N*, NO3, Si(OH)4, Zeup, and 

fCO2 had the greatest influence on DMSP concentration, explaining 80% of the deviance 

within the data. Increases in salinity, N*, and Si(OH)4 positively influenced the concentration 

of DMSP, whilst fCO2, NO3, and Zeup had a negative association. 

3.1.2. Biogeochemical variables 

Correlations between environmental forcing variables and biogeochemical variables 

revealed that the carbonate chemistry gradients were only related to the elemental 

stoichiometry (C:N and C:P) (supplementary material, Fig. 2S). Multiple linear step-wise 

regressions found that the variables within the physical and nutrient forcing groups had a 

greater influence on the biogeochemical variables than did the carbonate chemistry variables 

(supplementary material, Table 1S). N* and Ed
ML

 had the greatest influence on POC, with 

both variables increasing its concentration. Zeup, MLD, seafloor depth, salinity, and Si* had 

the greatest influence on PON, while MLD and HCO3
-
 had the greatest influence on POP. 

Elemental stoichiometry of C:N was influenced by the combination of temperature, HCO3
-
, 

and fCO2.
 
Increased temperature and HCO3

-
 concentration increased the C:N elemental 

stoichiometry, whilst increases in fCO2 decreased the ratio. C:P stoichiometry was influenced 

by DIC and Si*, with both variables declining the ratio with their increased concentration, and 

the N:P ratio was most influenced by temperature, N*, and Si(OH)4. 

POP, C:P, and C:N were significantly influenced by HCO3
-
, DIC, and fCO2. It was found 

that POC was strongly correlated with DIC. All biogeochemical variables except C:P were 

significantly influenced by hydrographic variables (mainly temperature, MLD, and salinity). 

Nutrients were significantly correlated to all biogeochemical variables except POP and C:N. 

In our study with natural variation, C:P and C:N are negatively correlated with carbonate 

chemistry whereas N:P showed no influence of any carbonate chemistry variable. 
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Independently, one or more of the carbonate chemistry variables influenced the 

concentrations of TEP, chlorophyll-a, and dissolved oxygen (DO) (supplementary material, 

Fig. 3S). Multiple linear step-wise regressions found the combination of seafloor depth, 

salinity, N* and DIC had the greatest effect on TEP concentration, with DIC having a negative 

association with TEP concentration (supplementary material, Table 1S). The combination of 

Ed
ML

, temperature, salinity and fCO2 had the greatest influence on the concentration of DO. 

An increase in fCO2, temperature and salinity concentrations resulted in a decrease in 

concentration of DO, whilst Ed
ML

 had a positive influence on its concentration. Temperature, 

Zeup, NO3, DIC, AT and fCO2 had the greatest influence on chlorophyll-a, all together 

accounting for 68% of the deviance within the data. For biogenic silica, Zeup, seafloor depth, 

temperature and Si(OH)4 had the greatest influence, together explaining 50% of the deviance 

within the data. 

Saturation states of aragonite (Ωaragonite) and calcite (Ωcalcite) are statistically different 

between regions (Fig. 4A). For example, the Irish Sea (clusters ‘a’ and ‘i’ in Fig. 3) had the 

lowest values and was statistically different from all of the other regions. The Skagerrak also 

had low Ωcalcite and Ωaragonite values and was statistically different from all the other regions. 

Generally, the Atlantic sector was similar to the Celtic Sea. In the Bay of Biscay we found the 

highest values, statistically separate from the entire study region. The English Channel and 

Norwegian coast were not statistically distinct from one another. However, the phytoplankton 

community structure was not influenced by regions of low pH/ Ωcalcite. The multivariate 

response of the species diversity indices (S, N, and H’) in calcifying groups, non-calcifying 

groups, and the ratio between calcifying: non-calcifying groups was not found to correlate to 

the carbonate chemistry gradients in the northwest European shelves (Fig. 4B). 

 

3.2. Phytoplankton community 
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The phytoplankton community composition, either as a whole or segregated into separate 

taxonomic groups, did not correlate to the spatial patterns in carbonate chemistry gradients. 

However, the multivariate pattern of the phytoplankton community assemblage did correlate 

significantly to the variation in nutrient pools (rho = 0.237, p = 0.021), and BEST analysis 

found that PO4, N*, and Si* had the greatest correlation to the phytoplankton community 

structure (rho = 0.268, p = 0.039). Only the diatom community composition was found to 

significantly correlate to the nutrient environmental forcing variables (rho = 0.304, p = 0.001), 

which BEST analysis matched to the concentrations of NO3 and Si(OH)4 (rho = 0.333, 

p = 0.001). Combining all environmental forcing variables together, H
+
, Si(OH)4, and NO3, 

were found to best explain the patterns in the multivariate diatom abundance data (rho = 

0.341, p = 0.005). 

ANOSIM revealed no significant difference in the phytoplankton community 

composition (R = 0.13, p = 0.085) between natural environmental clusters (see section 3.1, 

Fig. 3A). However, following the removal of unidentified naked dinoflagellates, ANOSIM 

did reveal some significant differences in the phytoplankton community composition 

(R = 0.211, p = 0.014) between natural environmental clusters (Fig. 3A), driven by variation 

in a number of species including coccolithophores (E. huxleyi), dinoflagellates (Gymnodinium 

spp. and Noctiluca spp.), and diatoms (Rhizosolenia spp., Dactyliosolen spp., and Guinardia 

spp.). Interestingly, ANOSIM revealed no significant difference in the phytoplankton group 

totals (R = 0.109, p = 0.113) between natural environmental clusters. 

There were 9 natural groups found in the community structure of the phytoplankton 

data (graph not shown). These 9 groups were predominantly split on the basis of unidentified 

naked dinoflagellate community abundance. However, this group skewed the data due to it 

representing a large taxonomic clade, while all other groups were individual species 

aggregated to genus. Therefore additional analyses were made with naked dinoflagellates 
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removed. Their removal resulted in 2 distinct groupings within the phytoplankton community 

(Fig. 5A), which were distinguished by the dominance of the dinoflagellate Gymnodinium 

spp. in Group A (contributing to 78% similarity between samples within this group) and the 

coccolithophore E. huxleyi in Group B (contributing to 61% similarity between samples 

within this group). 

Coccolithophores formed 7 natural groupings within the community (Fig. 5B). The 

dominance of E. huxleyi caused the greatest differences between the groups, with E. huxleyi 

dominating 100% of the samples in group F and none of the samples in group A. 

Gephyrocapsa muellerae and Syracosphaera marginaporata were also discriminating species. 

E. huxleyi was an important discriminating species between many clusters, largely explained 

by high dominance in clusters ‘b’, ‘j’, and ‘l’ and comparatively lower dominance in cluster 

‘g’ (Fig. 3A). There is slight evidence of an association between increased E. huxleyi 

dominance and some carbonate chemistry variables, with decreased AT and CO3
2-

 being 

discriminating variables in 40% and 20% of the pairwise comparisons, respectively. Physical 

parameter groupings were more strongly linked to E. huxleyi dominance, with shallower 

MLD and decreased salinity both being discriminating variables in 60% of comparisons each, 

associated with increased dominance. Increased E. huxleyi dominance was also linked to 

increased temperature and seafloor depth in a single comparison (20%) each. Increased E. 

huxleyi dominance also showed relatively clear links to nutrients, with low phosphate also 

being a discriminating variable in 60 % of pairwise comparisons, and lower nitrate in an 

additional comparison. Additionally, when analysing coccolithophores independently, E. 

huxleyi dominance was more closely linked to shallow MLD, high irradiance, and lower 

salinity (see also Poulton et al. (2014)). 

Excluding the unidentified naked dinoflagellates, the dinoflagellate group formed 5 

natural groupings within the community structure (Fig. 5C). Group A and B was dominated 
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by Gymnodinium spp. (contributing to 78% similarity between samples within this group) and 

Noctiluca spp. (contributing to 72% similarity between samples within this group), 

respectively. A combination of Ceratium spp., Scrippsiella spp., Katodinium spp., and 

Gymnodinium spp. dominated the community structure of dinoflagellate group E (contributing 

to 73% similarity between samples within this group), whilst group C and D only had one 

CTD sample within their cluster. ANOSIM revealed no significant difference in the 

dinoflagellate community composition (R = 0.012, p = 0.415) between natural environmental 

clusters determined in the cluster analysis (Fig. 3A). However, following removal of the 

unidentified naked dinoflagellates, there is evidence of a relationship between the 

dinoflagellate community composition and environmental variables: ANOSIM revealed some 

significant differences in the dinoflagellate (excluding unidentified naked dinoflagellates) 

community composition (R = 0.188, p = 0.02) between natural environmental clusters 

(Fig. 3A). 

In both the ANOSIM and conceptual model analyses, dinoflagellate assemblage 

composition was most closely linked to carbonate chemistry and the physical variables. These 

explained 20 and 21%, respectively, of variability in the dinoflagellate assemblage 

composition, with DIC/HCO3
-
 being the best overall subset of variables involved. 

Diatoms formed 4 natural groupings within the community structure data (Fig. 5D). 

Group A had only one sample, which was segregated from the other significant clusters due to 

the dominance of Corethron spp. within this CTD sample. For instance, Corethron had high 

dominance (42 %) in cluster ‘h’ but was very low/absent in ‘b’, ‘j’, and ‘l’. Groups B, C, and 

D were dominated by Rhizosolenia spp., Guinardia spp., and Coscinodiscus spp., 

respectively. When analysing diatoms independently, ANOSIM revealed significant 

differences in the diatom community composition (R = 0.226, p = 0.009) between natural 

environmental clusters (Section 3.1, Fig. 3A). We identify Rhizosolenia spp. as a key diatom 
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species, responsible for separating several different clusters either due to its high dominance 

(~65 %) in cluster ‘b’ or its low dominance (<5%) in ‘h’, ‘c’, and ‘g’ (Fig. 3A). The species 

that contribute to group separation were further investigated in section 4.2 to help identify 

which environmental parameters were behind these distributions. 

We summarize how the variance in phytoplankton community composition in the 

northwest European Shelf in summer 2011 related to forcing factors in Fig. 6. All 

environmental forcing variables combined accounted for 59% of the variation within the 

phytoplankton community (Fig. 6A). The best overall subset of variables to predict the 

variation in the phytoplankton were Si(OH)4 and N*, which together account for 15% of the 

variation. The nutrient group explained the greatest proportion of variance within the 

phytoplankton abundance when the environmental variables were subdivided into groups. The 

combination of all environmental forcing variables accounted for 41, 62, and 58% of the 

variability within the separate plankton groups for coccolithophore, diatom, and dinoflagellate 

community structure, respectively (Fig. 6B-D). The best subset of variables to describe the 

variation in the diatom community assemblage were NO3, Si(OH)4, and CO3
2-

, which together 

accounted for 24% of the variation (Fig. 6D). 

 

4. Discussion 

We conducted a very large measurement campaign across a heterogeneous region within 

which environmental conditions varied considerably. We then undertook a rigorous statistical 

analysis of the data. Looking over the entirety of our results, it is apparent that while many 

potential response variables were apparently unrelated to carbonate chemistry, others were 

related to carbonate chemistry. For those response variables that correlated with carbonate 

chemistry, OA may well affect them. Where no correlations were found, it does not 

necessarily mean that those response variables will not be affected at all by OA. Other 
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possible causes of a lack of correlation include: i) OA impacts exist but are too small to have 

been detected by our approach, ii) OA will impact the variables, but not within the range of 

carbonate chemistry encountered during our cruise, iii) OA will impact these response 

variables, but not under the specific environmental conditions encountered during our cruise 

(for instance only at higher temperatures than are found around the British Isles), and iv) OA 

will impact these response variables, but only when a different set of biological species are 

present (for instance only when the phytoplankton assemblage is dominated by 

picophytoplankton, as did not on our cruise). The evidence we compiled and analysed does 

not support a strong impact of OA on most variables but conversely does not rule it out. 

We did not find any saturation state values as low (0.8) as in the US Pacific Northwest 

coast (Feely et al., 2008), where the oyster hatcheries are reported to be failing (Cooley and 

Doney, 2009; Dickson, 2010). However, the carbonate chemistry of the surface ocean is 

rapidly changing with OA. When interpreting the results of our analyses, it is important to be 

aware of the range of carbonate chemistry variation we measured on our cruise. For instance, 

during our cruise we sampled surface waters that varied in fCO2 between 264 and 411 µatm, 

in pH between 8.03 and 8.20, and in aragonite saturation state between 2.1 and 3.0 (Ribas-

Ribas et al., 2014b). The northwest European Shelf seas in summer could become 

undersaturated in aragonite (<1) with a fCO2 in equilibrium with an atmosphere of 1150 µatm 

(considering alkalinity constant and equal to an absorption of anthropogenic CO2 of 180 µmol 

kg
-1

). In winter, taking into account the lowest temperature reported by Bozec et al. (2006) of 

5.1°C the under-saturation would be reached at 750 µatm, which is less than double of actual 

levels. In terms of the general progression of OA, it will take 84 ± 24 years for the fCO2 of 

surface seawater to increase by 147 µatm (the range of variation on our cruise), according to 

the average rate of increase measured at the major time-series sites in the global ocean (Bates 

et al., 2014). Likewise, the ranges of variability we encountered in pH and Ωaragonite 
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correspond to 98 ± 25 and 106 ± 19 years respectively of OA impacts at current rates 

according to the time-series measurements (Bates et al., 2014). These considerations lead to 

some limitations in the likely applicability of our results, if they turn out not to apply outside 

the range of environmental variability from which they were derived. For instance, for the 

study region around the British Isles, if OA continues at current rates then by the year 2142 

(125 years from now) the carbonate chemistry of the whole region will no longer overlap at 

all with the range of environmental variation that we experienced and the inferences from our 

analyses might then no longer apply. 

We demonstrate that observational data can inform us on ocean change impacts and 

complements experimental research. It is vital to systematically link responses seen in 

laboratory studies to changes seen in natural populations so that we can detect and understand 

changes to marine phytoplankton in changing oceans (Collins et al., 2014). Experimental 

research has certain shortcomings: i) a general inability to address the possibility of adaptation 

to the imposed change (Sunday et al., 2014); ii) a tendency to simplify both the abiotic and 

biotic features of the natural environment (Collins et al., 2014), for example, many laboratory 

studies change only a single environmental factor (usually fCO2), whereas numerous 

simultaneous environmental changes occur naturally; iii) ignorance of the recent life history 

of phytoplankton population, which will affect the strength and effectiveness of natural 

selection (Collins et al., 2014). For example, species in environments historically exposed to 

unpredictable changes of fCO2 might have greater adaptability than those in a more 

predictable fCO2 regime (Sunday et al., 2014). 

 

4.1. Climatically-active gases and biogeochemical variables 

CH4 and N2O were not found to be significantly correlated with carbonate chemistry, 

whereas DMS and DMSP were statistically influenced by fCO2. A consistent increase in DMS 
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and decrease in DMSP in response to high CO2 was observed in mesocosm studies during the 

same cruise (Hopkins and Archer, 2014). However, other studies have observed a decrease in 

DMS under high CO2 concentrations (Hopkins et al., 2010) or no effect on concentration of 

DMSP in elevated CO2 (Lee et al., 2009). We observed in these variables a strong agreement 

between observational data and results of bioassay experiments conducted on the same cruise, 

but more studies are needed to fully elucidate the response of DMS/DMSP to increased CO2. 

Hydrographic variables and nutrients had significant effects on all the climatically-active 

gases studied. Clark et al. (2014) found a loose association between N2O and temperature at 

the stations where they measured N2O production rates. In contrast, we found a strong 

statistical association; maybe because of the higher range of variability and greater number of 

stations (all CTD stations) included in our analysis. This association between higher N2O 

concentration and lower temperature is most likely caused by increased gas solubility (Clark 

et al., 2014). 

DIC and fCO2 explained a significant amount of variation in TEP, chlorophyll-a, and 

dissolved oxygen (DO), but not in biogenic silica. Hydrography and nutrients are important 

variables in explaining the biogeochemical variables. Several studies have examined the 

relationship between TEP and fCO2 in experimental manipulation studies (Engel, 2002; 

MacGilchrist et al., 2014) or model studies (Schneider et al., 2004); all of them concluded that 

rising CO2 will enhance TEP concentration and therefore that TEP would be expected to 

positively correlate with DIC. Our findings contradict those of manipulation studies, with TEP 

negatively correlated with DIC (p-value < 0.001). How the experiments were acidified may 

have influenced their results, because AT and not DIC or pH are responsible for the changes 

(Passow, 2012). However, multiple linear regression in natural conditions highlight DIC and 

not AT as a main factor of change (supplementary material). Notably, Richier et al. (2014) also 

found that net production of POC was strongly correlated with net changes in DIC. 
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Dissolved oxygen appeared to be influenced by carbonate chemistry when in conjunction 

with other forcing variables; DO was seen to have lower values under elevated fCO2. 

Dissolved oxygen and chlorophyll-a are the linking point of our two separate analyses of 

phytoplankton and response variables, reflecting the complexity, variability, and co-variation 

of the system. Thus, for example, our observations related DO with temperature, light, and 

fCO2 but clearly temperature affects DO concentration via solubility. Equally, chlorophyll-a is 

also influenced by light availability, while the light environment will also be affected by 

chlorophyll-a in terms of its attenuation in the water column. 

 

4.2. Phytoplankton community 

In combining all parts of the analysis, it is apparent that the spatial variation in total 

phytoplankton community was most closely linked to the variation in physical and nutrient 

variables, rather than carbonate chemistry during summer 2011. 

Throughout most of the region, E. huxleyi characterized the phytoplankton 

community, with only a few stations, including a number of those in the Celtic Sea, lacking 

this species (see also Poulton et al. (2014)). Both in relation to the phytoplankton community 

as a whole and within the coccolithophore community, the relative dominance of E. huxleyi 

was largely linked to physical variables; MLD, Ed
ML

, salinity, and Zeup, as well as the 

nutrient variables; particularly PO4 concentrations and the relative availability of nitrate to 

phosphate (N*). These patterns are in general agreement with much of the literature: 

coccolithophore blooms are often promoted by the onset of surface stratification, associated 

with high irradiance and temperatures (Tyrrell and Merico, 2004). Ed
ML

 and pH explained 

much of the variation in coccolithophore distribution and community composition in a study 

from the North Sea to the Norwegian Sea (Charalampopoulou et al., 2011). We hypothesise 

that this is because E. huxleyi is more tolerant of high light irradiances compared to other 
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species; however, there is scant laboratory data to fully explore this. Adaptations to high light 

irradiances are thought to be an important factor supporting coccolithophore dominance in 

highly stratified surface waters during summer (Nanninga and Tyrrell, 1996). Studies on E. 

huxleyi have indicated that light saturation occurs at much higher irradiances, and that there 

has been no evidence of photo-inhibition, even at very high irradiances which have inhibitory 

effects on other phytoplankton groups (Rost and Riebesell, 2004). 

While this was clear when analysing coccolithophores independently, links between 

irradiance and E. huxleyi dominance within the total phytoplankton community were less 

clear. In one of the comparisons, increased dominance is seen in the Skagerrak (cluster ‘b’) 

associated with lower Ed
ML

 and phosphate, and higher temperature and seafloor depth. 

However, we note that the Skagerrak and Norwegian coast also had a shallow MLD and that 

incident irradiance here was particularly low. This observation could have been due to the 

persistence of E. huxleyi cells grown prior to measurements, when incident irradiance and 

consequently Ed
ML

 may have been greater. 

 Young et al. (2014) examined coccoliths from the same cruise on the northeast 

European Shelf and concluded that the main differences between coccolithophore 

assemblages were between oceanic and neritic communities, i.e. whether the environmental 

location was on the shelf or in deep water. This was not entirely reflected in our analysis of 

the coccolithophore community, with increased seafloor depth also linked to higher E. huxleyi 

dominance. However this observation was largely due to the very high dominance in the 

Skagerrak region, which featured an extremely shallow and warm surface mixed layer, yet 

deep seafloor depth. Other regions with notably high E. huxleyi dominance were typically 

shelf waters while a more mixed assemblage was found offshore (Poulton et al., 2014). Semi-

enclosed shelf waters typically had greater riverine input leading to lower salinities, which 

would also strengthen the stratification of the water column, as seen in the Skagerrak. 
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Some of the dinoflagellates in the acidic Lugol's samples were likely to be 

heterotrophic, especially the small (<20 µm) unidentified ones. The photoautotrophic 

dinoflagellates require CO2 for carbon fixation. However, the concentration of dissolved CO2 

in seawater is relatively low and hence autotrophs require it to be concentrated within the cell 

via carbon concentrating mechanisms (CCMs). These CCMs vary widely among taxa, with a 

range of mechanisms and efficiencies (Giordano et al., 2005). Consequently, increases in fCO2 

may be beneficial to some phytoplankton, though the extent of this will differ according to 

methods of carbon acquisition (Riebesell and Tortell, 2011). This could provide some 

explanation for the observed links between carbonate chemistry and the species composition 

of both diatom and dinoflagellate assemblages. Most phytoplankton have highly efficient 

CCMs and are typically not CO2 limited at current fCO2 (Doney et al., 2009), but those with 

less efficient CCMs, or that rely on passive diffusion of CO2, are likely to benefit from 

increases in CO2. Alternatively, elevated CO2 concentration could reduce the energy required 

for CCMs, which in turn, could be allocated to other cellular processes (Riebesell and Tortell, 

2011). Additionally, phytoplankton regulate cellular pH levels, and the ability to cope with 

increased concentration of H
+
 has generally been shown to scale with size; large (>50 µm) 

celled phytoplankton experience greater natural variation in H
+
 concentration and are 

consequently better adapted to this (Richier et al., 2014). Different sizes of phytoplankton 

could explain some species specific responses: small phytoplankton (<50 µm) are more 

greatly affected by proton concentration fluctuations due to bigger surface area to volume 

ratios than larger phytoplankton (Richier et al., 2014). 

The typical temporal patterns in diatom community structure in the North Atlantic Ocean 

and northwest European Shelf seas have been well documented (Lange et al., 1992; Leterme 

et al., 2005); strong and clear links can be seen between nutrients and physical structure of the 

water column and diatom dominance in features such as the spring bloom. It could be 
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expected that similar links would be observed spatially. Dissolved nutrient concentrations, 

particularly silicic acid, and their relative proportions (Si*) were found to be important 

variables to explain variation in the total phytoplankton, both in the BEST analysis and in the 

conceptual model. This could be indicative of the influence of diatoms on the total 

community; these are the only group which have a requirement for silicic acid, and where 

present diatoms can be strong competitors for nutrients (Egge and Aksnes, 1992). Though no 

single diatoms species was a major feature (such as E. huxleyi or Gymnodinium spp.), as a 

whole diatoms were a modest proportion of the community and could potentially influence 

overall community dynamics. 

Physical and nutrient variables also had a strong influence on the species structure of the 

diatom assemblage. Diatom size, nutrient requirement, and nutrient acquisition vary widely 

amongst different species. High dominance was largely associated with more acidic 

conditions and a shallower, warmer, and nutrient depleted mixed layer. Rhizosolenia spp. 

regularly occur during the later stages of diatom blooms and are able to persist well into 

summer stratified and nutrient depleted conditions (Villareal, 1987). Meanwhile some species 

had greater dominance in conditions more typically associated with diatom blooms, such as a 

deeper, cooler, and more nutrient rich mixed layer. 

Interestingly, each of the analyses pointed to some link between diatoms and carbonate 

chemistry and the ANOSIM analysis indicated potential species-specific responses to 

carbonate chemistry conditions. Rhizosolenia spp. were seen to cope well with more acidic 

conditions, which reflects some previous studies (Sommer et al., 2015). In contrast, Corethron 

spp. were typically found in less acidic environments. This could reflect the past productivity 

of the environment: low pH will indicate bloom and high abundances in some areas whereas 

high pH will be indicative of post-bloom and low abundances in other areas. 
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5. Conclusions 

We used observational data from a cruise to investigate controls on the spatial patterns of 

phytoplankton species and other response variables. When considering all of our results 

together, the spatial variations in total phytoplankton assemblage were found to be more 

strongly associated with variations in nutrient and/or physical variables than with carbonate 

chemistry gradients. The plankton community abundance, contribution of calcifying 

organisms, and composition did not change greatly between higher Ωcalcite and lower Ωcalcite 

conditions. However, carbonate chemistry, alongside physical and nutrient variables, is 

calculated to play a more prominent role in determining dinoflagellate and diatom assemblage 

compositions. 

Climatically-active gases and biogeochemical variables showed some influence of 

carbonate chemistry variables; however nutrients and hydrography appear to be more 

important in explaining their spatial variations. 

 We report results for boreal summer when phytoplankton communities were 

dominated by dinoflagellates (Poulton et al., 2014), with the coccolithophore community 

dominated by E. huxleyi, whilst diatoms were in low abundances. Future studies should focus 

on seasonal variability when the phytoplankton community changes and temperature and 

other environmental variables will play an important role in producing variations in saturation 

states. Although we did not observe saturation states low enough that they could affect 

calcifying organism, caution should be taken as winter studies or regions affected by 

upwelling could experience much lower saturation states. 

At this stage of OA research, it is essential to carry out micro/mesocosm studies 

alongside observational studies and to use multivariate statistics to understand the complex 

interactions within the data. 
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Groups Environmental variables Units Minimum Maximum Average  ±SD 

Physical 

Sea floor depth (SFD) m 38.5 4758.4 417.0 ± 1093.7 

Temperature (Temp) ° C 10.3 16.2 13.6 ± 1.2 

Salinity (Sal) dimensionless 28.7 35.8 34.5 ± 1.6 

Mixed layer depth (MLD) m 2.0 131.0 27.1 ± 24.0 

Euphotic zone depth (Zeup) m 15.5 58.0 27.3 ± 8.1 

Mixed-layer average irradiance (EdML)    mol PAR m-2 d-1
  1.7 31.0 11.8 ± 7.2 

Carbonate 

chemistry 

Dissolved inorganic carbon (DIC) µmol kg
-1

 1920.8 2133.6 2079.1 ± 39.7 

Total Alkalinity (AT) µmol kg
-1

 2121.9 2352.0 2312.8 ± 47.8 
†
Fugacity of carbon dioxide (fCO2 ) µatm 274.0 395.7 347.9 ± 27.0 

†
Bicarbonate (HCO3

-
) µmol kg

-1
 1760.8 1963.6 1897.9 ± 38.4 

†
Carbonate (CO3

2-
) µmol kg

-1
 136.7 191.8 167.6 ± 12.4 

†Calcite saturation state (Ωcalcite) dimensionless 3.3 4.5 4.0 ± 0.3 

 
†Aragonite saturation state (Ωaragonite) dimensionless 2.1 2.9 2.6 ± 0.2 

 
†H+ µmol kg-1 6.5092E-09 8.8975E-09 8E-09 ± 5E-10 

Nutrients 

Nitrate and Nitrite (NO3) µmol L
-1

 0.10 4.61 0.76 ± 1.11 

Silicic acid (Si(OH)4) µmol L-1 0.10 3.63 1.02 ± 0.90 

Phosphate (PO4) µmol L
-1

 0.02 0.38 0.07 ± 0.07 

Si* dimensionless -1.67 2.25 0.26 ± 0.83 

N* dimensionless -2.84 3.67 -0.32 ± 1.00 

 

Table 1. The range of environmental variables over the NW European shelf cruise, categorised into forcing variable groups. 
† 

denotes calculated from dissolved inorganic 

carbon and total alkalinity. 

 

Page 36 of 43ICES Journal of Marine Science



Statistical test/methods Abbreviation 

Principal components analysis PCA 

Cluster + Similarity Percentages Cluster +SIMPER 

Principal co-ordination analysis PCO 

Analysis of similarities ANOSIM 

Mantel Test  RELATE analysis 

Distance-based linear model DISTLM 

Multiple linear regression model LM 

Generalized linear model GLM 

 

Table 2. List of statistical test and methods used as outlined in detail in Section 2.4 
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Figure 6. Schematic summarizing how the variance in phytoplankton community composition on the north-
west European shelf is open between different forcing factors (hydrography, nutrients, carbonate 

chemistry): (A) total phytoplankton (without unidentified naked dinoflagellates), (B) coccolithophores, (C) 
dinoflagellates (without unidentified naked dinoflagellates) and (D) diatom community structure across the 
NW European shelf. Those environmental variables that are underlined within each group denote the subset 

of variables within each forcing group that explain the most variance of the community structure. Bold 
variables denote the best overall subset of variables across the 3 groups to explain the variance within the 

community structure.  
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