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Are data collected to support farm management suitable
for monitoring soil indicators at the national scale?
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Summary

Monitoring of topsoil properties (referred to as indicators) at the national scale has been limited in general
to government-funded representative surveys. We consider a cost-effective complementary source of soil
information for monitoring agricultural soil across England and Wales (E&W): soil measurements paid for
by farmers that we refer to as farmers’ data (FD). A potential problem in using FD for soil monitoring is any
unattributable sources of bias, such as the sample design. Farmers may choose to focus their measurements
(purposively) where they perceive a particular problem. Such a source of bias is avoided in the random
sampling adopted by statistically designed surveys, such as the Countryside Survey (CS2007) and LUCAS (Land
Use/Cover Area frame statistical Survey). We used measurements from 143 000 FD soil samples from a single
laboratory to estimate national mean values and confidence intervals of five topsoil indicators (pH, available P
(Olsen), K, Mg and organic matter (OM)) across three combinations of nation (England or Wales) and land use
(arable and horticulture (A&H) or improved grassland (IG)). We computed mean estimates for FD over two time
periods (2004–9 and 2010–2105) and assessed the significance of any change. We compared these estimates
with those from representative national surveys to establish whether there was evidence for bias and whether it
could be explained. Mean estimates of topsoil pH for the FD and the LUCAS survey (same analytical method)
were consistent for both A&H and IG. Although FD estimates of mean Olsen P (OP) concentrations were similar
to previous surveys, we show it is likely that the larger mean OP concentrations observed in the LUCAS survey
compared with FD for arable topsoil in England are partly due to an attributable source of analytical bias. For
such quantifiable sources of bias, it might be possible to adjust estimated mean values from FD. However, FD
might also include sources of unattributable bias, such as the effect of purposive sampling. It is important that
contemporaneous data from surveys with statistically unbiased designs are available so that we can assess whether
unattributable sources exert a significant effect over estimates of mean values computed from FD.

Highlights

• Assessment of farmers’ data (FD) to provide a potentially cost-effective way to monitor topsoil indicators.
• Few studies have compared national-scale estimates of topsoil indicators with survey data from statistically

unbiased designs and FD.
• Bias between mean estimates from national surveys and FD could be accounted for.
• The denser sampling of FD enables mapping of national survey data with greater accuracy.

Introduction

Regulatory authorities often monitor selected topsoil properties
(which they refer to as indicators) because it is an effective way to
detect changes in the capacity of soil to fulfill a range of functions
and to underpin policy development (Defra, 2009). Soil monitoring,
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where sampling and analysis had been undertaken on at least two
occasions, has advanced considerably recently (Arrouays et al.,
2012). To date, the majority of soil monitoring has been funded
by national governments; for example, the Countryside Survey
(CS2007; Emmett et al., 2008) and Representative Soil Sampling
Scheme (RSSS; Oliver et al., 2006) in the UK, and in France
the Réseau de Mesures de la Qualité des Sols (Arrouays et al.,
2001). Larger-scale, Europe-wide monitoring of forest soil has been
carried out by the Biosoil project (de Vos & Cools, 2011). These
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monitoring networks were formulated to be design-unbiased in
estimating mean values of selected soil indicators on the date of
each sampling phase.

In the UK, 13 topsoil properties or indicators (TIs; 12 chemical
measurements plus bulk density) were identified as priorities for
monitoring in Merrington et al. (2006). In another report, Black
et al. (2008) investigated the costs, advantages and disadvantages of
various options for establishing a broad ‘Tier 1’ monitoring network
for selected TIs based on existing data. A stated objective of this
proposed network was to compute unbiased estimates of mean soil
indicator values across the dominant land-use classes at the national
scale so that these properties can be monitored over time. Where
sampling sites are selected by probability sampling, design-based
statistical inference can be adopted (de Gruijter et al., 2006). There
are currently no plans to continue soil monitoring across both
England and Wales (E&W) based on either established or proposed
networks (Environmental Audit Committee, 2016); therefore it is
worthwhile to consider alternative, cost-effective approaches.

Across E&W around 82% of the land is devoted to agricultural
production (Centre for Ecology & Hydrology, 2011). Farmers and
agronomists regularly take samples from fields and pay for chemical
analyses of various topsoil properties, many of which are also in
the list of indicators. In its manual for plant nutrient management,
Defra (2010) recommended that farmers measure available plant
nutrient concentrations such as potassium (K) and phosphorus (P)
every 3–5 years. If these farmers’ data (FD) could be collated at
the national scale, it may be possible to use them to monitor certain
TIs. Farmers’ data are taken purposively according to each farmer’s
needs and not according to a statistical sample design. Therefore,
farmers’ data are subject to sources of bias, some of which we
may know about and others not. Design-based inference cannot
be applied to the farmers’ data because the sampling sites are not
selected by probabilistic sampling. Instead, model-based statistical
analyses can be used, which account for any spatial non-uniformity
in the intensity of sampling using an explicit model of the spatial
correlation of the TI (de Gruijter et al., 2006). When sufficient
observations are available the model-based approach can also be
used to map the variation of TIs across a region and to identify
regions where changes in land management might be required.
However, standard model-based approaches do not account for
preferential sampling where measurements are targeted deliberately
in areas where the TI is thought to be either larger or smaller than
average (Diggle et al., 2010).

Model-based, national-scale estimates of quantities such as mean
values computed from FD might be biased for several reasons.
First, farmers or agronomists may take samples from particular
fields because they perceive a problem that might be related to a
TI value (Simpson, 1983). For example, if crop yields are small in
a given field it might indicate available nutrient concentrations are
below their optimum concentrations. Second, not all TI analyses
may be on all samples collected by farmers. For example, with data
from soil samples collected by French farmers, measurements of
inorganic carbon (IC) concentrations were undertaken on farmers’
soil samples only when the concentrations were likely to be

substantial to reduce the cost of chemical analysis. When the FD
were analysed by a model-based approach to estimate mean values
they were significantly larger than those estimated with data from
the national soil monitoring network (Marchant et al., 2015a). It
is not possible to account for such unattributable sources of bias
in global estimates computed from FD. By contrast, if the bias is
attributable to an analytical method and the magnitude of its effect
can be computed with existing data, it might be possible to modify
estimates of FD mean values to account for it.

The commercial company NRM (Natural Resources Manage-
ment) Laboratories (Bracknell, Berkshire, UK) typically analyses
around 350 000 soil samples for a range of TIs each year for farm-
ers and agronomists, the majority of which are from E&W. Land
use and some farm addresses are often provided with each sample.
In this paper we compare estimates of mean TI values (and confi-
dence intervals) for FD from NRM Laboratories with estimates of
the same TIs from national surveys. The five TIs are: pH, available
P, K and Mg concentrations and organic matter (OM) content. We
make these comparisons for: (i) sampling dates that are as close
to one another as possible (given the available data) and (ii) the
two dominant agricultural land-use classes (arable and horticulture
(A&H) and improved grassland (IG)) across England, and for IG
across Wales. We assess whether the estimated mean values from
the FD are significantly different from other surveys, and identify
potential reasons for this. We also assess the evidence for statisti-
cally significant changes in the TI values over time with the FD.
We present maps to show how FD could help to highlight regions
where topsoil pH might have become suboptimal. We discuss the
implications of our findings for soil monitoring.

Materials and methods

Farmers’ data

Agronomists and farmers in E&W who supply soil material to
NRM Laboratories for chemical analysis typically adopt govern-
ment guidance on soil sampling (Defra, 2010). To prepare soil
samples for analysis, NRM first air-dry the material at 30∘C, then
remove any large lumps of rock and organic material. Next, if the
material is dominated by quartz (a sandy soil) they sieve it through
a 2-mm mesh. If the soil is more fine-grained with hard aggre-
gates, they use a flailing hammer mill to disaggregate the coarse
lumps and this material is then thrown at a sieve mesh, such that
the angle used is equivalent to a sieve of 2 mm. The components
that pass through the mesh are used for analysis. Quality control of
these five TIs is assured by regular analyses of four standard soil
samples (two in each batch) and participation in the the Wagenin-
gen Evaluating Programs for Analytical Laboratories (WEPAL;
www.wepal.nl) international laboratory comparison scheme.

The FD comprised chemical measurements, associated land-use
information, address details and sampling dates from a database
for the years 2004–15 inclusive. We removed any analyses for
which the address details were likely to be insufficient to retrieve
a postcode. For those farm addresses without postcodes, we
used an online geocoding database (www.doogal.co.uk) to extract
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Table 1 Features of the soil survey datasets used in this study

Survey CS 2007 LUCAS NSI resamplinga RSSSb Farmers’ data

Period of sampling 2007 2009 1994–2003 2001 2004–15
Statistical sampling Randomized Multi-stage stratified 5 km regular Randomized Purposive
Inference method Design based Design based Model based Design based Model based
Sampling depths / cm 0–15 0–15 or 20 0–15 0–15 0–15 (arable)

0–7.5 (grassland)
Sampling support Soil core Soil slice 25 bulked cores 25 bulked cores Farm, field scale

20 m square over field composite sample
Indicatorsc pH, P, OM pH, P, K, TOC (OM) Mg pH, P, K, Mg pH, P, K, Mg, OM
Reference Emmett et al. (2008) Tóth et al. (2013) Kirk et al. (2009) Oliver et al. (2006) This study

aNational Soil Inventory.
bRepresentative Soil Sampling Scheme.
cNutrients Olsen P, K and Mg are available concentrations; OM, organic matter; TOC, total organic carbon.

geographical coordinates based on the farm name, its town and its
county. For those farms where postcodes had been recorded in the
database, we used the UK Ordnance Survey database to extract the
coordinates at the centre of each postcode polygon for each farm.
We note that these geographical coordinates include an unknown
error because the location of the farm in many cases will not be at
the centre of the fields from which soil samples were taken. Nev-
ertheless, we consider that the error in most cases would be small
compared with the scale of our geostatistical models fitted with spa-
tial ranges of between 80 and 200 km. We used the land use prior to
soil sampling to allocate each sample to either (i) A&H or (ii) IG or
(iii) to remove it from the database if the land use was neither A&H
nor IG.

Once complete, we had a database of 143 201 soil samples with
national grid coordinates of the farm, not the precise sampling
locations from which each sample was collected. So that we could
make comparisons between (i) the FD and the other national-scale
survey datasets (Table 1) and (ii) FD TIs over time, we split the
FD into two equal time periods (years 2004–9 and 2010–15). We
computed mean values for each of the two agricultural groups over
the first period and considered that it was justifiable to compare
these to both the CS2007 (sampled in 2007) and the LUCAS survey
data (sampled in 2009). The most recent survey for which we could
use data on extractable Mg was the resampling of the National
Soil Inventory (Kirk et al., 2009), with sampling between 1994 and
2003.

In the FD, each farm had many samples in the database for the
same agricultural group and for the same time period. For our
model-based analysis we had only one set of coordinates for each
farm from which many samples were typically collected, and so we
computed a single TI value for each farm. We computed both mean
and median values for each farm for different nation and land-cover
combinations, and compared their frequency distributions and
summary statistics. Both the frequency distributions and summary
statistics for the mean and median values were similar for each
indicator, and because the median is less sensitive to extreme values
(outliers) we used it in our subsequent analyses of the FD. We then
used a spatial overlay to classify each farm location to be within

either England or Wales with polygons of each nation’s borders.
After processing the data we had 20 separate datasets for England
(5 indicators× 2 agricultural groups× 2 time periods) and 10 for
Wales (5 indicators× 1 grassland group× 2 time periods). A small
area of Wales only is under A&H production; therefore we excluded
this from our analysis.

National-scale survey data

We used data from four other national-scale surveys to compare
topsoil indicator values with the FD; selected features of the surveys
are listed in Table 1.

Comparison of analytical methods between farmers’ data
and other surveys

Here we describe salient features of the analytical methods and any
significant differences between the FD and the other three national
surveys. The analytical methods for the RSSS were the same as
for the FD; Oliver et al. (2006) provided estimated mean values of
nutrient TIs across representative farms of E&W for 2001.

Soil pH. In all surveys soil pH is determined in water at a
soil:solution ratio of 1:2.5. In the FD and LUCAS methods,
air-dried soil is used to determine pH, whereas for CS2007 the soil
is field-moist when pH is measured.

Available (Olsen) P. For the FD, NRM Laboratories use the
MAFF (1986) method for Olsen P (OP) measurements, which is
slightly different from the two other surveys (with contemporane-
ous data) in that: (i) it includes addition of polyacrylamide (not
activated charcoal; AC) as a decolourant in the extraction stage,
(ii) there might be small differences in the type of filter paper used
and (iii) the first 10 ml of filtrate is discarded by some laborato-
ries. The LUCAS method (ISO, 1994) includes the addition of 1 g
AC. The CS2007 method does not include addition of a decolourant
(Emmett et al., 2010). In humus-rich soil, OM is dissolved dur-
ing the extraction procedure, which can be addressed by adding a
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decolourant to the solution (either polyacrylamide or AC) during
shaking or after filtration. To investigate whether this methodolog-
ical difference can lead to systematic bias between laboratories we
analysed 24 soil samples with a wide range of OP concentrations
by (i) the method described in the Appendix (AC as a decolourant)
and (ii) the RB427 protocol adopted by NRM Laboratories (MAFF,
1986), which uses polyacrylamide. We made a scatterplot from both
sets of analyses and fitted a regression model by ordinary least
squares to the data to assess the strength of their linear relation and
the magnitude of any systematic bias from the 1:1 line.

Available K. The LUCAS survey method uses ammonium acetate
(pH 7) for extraction of K, whereas both the FD and the RSSS
(Oliver et al., 2006) method use ammonium nitrate.

Organic matter. Both CS2007 and FD use loss-on-ignition (LOI)
to determine the OM content in topsoil; the former method has a
combustion temperature of 375∘C for 16 hours, whereas the latter
temperature is 430∘C for 12 hours. The LUCAS survey measured
organic carbon (%) (ISO, 1995) and we converted this to OM by
multiplying the value by two (Pribyl, 2010).

Statistical analyses: survey comparisons

The different sampling approaches used in the various survey
datasets mean that we must use different statistical approaches to
estimate their global means (and confidence intervals) for TIs at
the national scale. The purposive and grid-based sampling of the
FD and resampling of the National Soil Inventory, respectively,
require a model-based (geostatistical) analysis. The random sam-
pling adopted in CS and LUCAS surveys can be analysed by a
design-based approach.

Model-based analysis. We used ordinary block kriging (de Grui-

jter et al., 2006) to estimate mean values (
∼
Zj) for each land-cover

class (j) and confidence intervals for each topsoil indicator for the
three land-cover and nation combinations. In each case we cre-
ated single polygons over which to make block kriged predictions.
We used ArcGIS (ESRI) to digitize a polygon around the 1-km
squares of either the A&H or IG-dominant broad habitat types of
the Land Cover Map 2007 (Centre for Ecology & Hydrology, 2011)
for E&W. Within each of these three main polygons, we delineated
internal polygons where other broad habitats dominated. This cre-
ated holes to exclude these regions from within each main polygon.
We then used the spsample function from the sp package in R to
create a regular grid of 5000 prediction locations across each main
polygon for block kriging.

Where a variate had a skewness coefficient in the range [−1,1] we
considered it to be sufficient to compute variograms without data
transformation (Webster & Oliver, 2007). If the frequency distribu-
tion was strongly skewed, we applied a Box–Cox transformation
with a lambda value that minimized the magnitude of the skewness
coefficient. During exploratory analyses, we observed no evidence

for strong anisotropy in the FD and so we estimated isotropic var-
iograms of each variate. For those variates with more than 1000
samples we used Matheron’s method of moments to estimate semi-
variances (using the variogram function in the R package gstat;
Pebesma, 2004) at increasing lag intervals and fitted either an expo-
nential or spherical variogram model by least squares approxima-
tion. For variates with fewer than 1000 samples we estimated the
variogram by residual maximum likelihood (REML) with the likfit
function from the geoR package (Diggle & Ribeiro, 2007). For all
variates we used a modified version of the krige0 function (see Sup-
porting Information) in the gstat package to predict by kriging and
used the covariance matrix to estimate the uncertainty. The parame-
ters of all the variogram models fitted to each of the variates (either
with or without transformation of the original data) are reported in
the Supporting Information for this paper.

Predictions of transformed variates will eventually require
back-transformation to their original units. If the inverse of the
transformation is applied to a kriged prediction, the result will be
a biased estimate of the mean in the original units because the
pdf of the untransformed variate is not symmetric (Webster &
Oliver, 2007). There is no simple formula to correct for this bias
when back-transforming the mean across a block (Cressie, 2006).
Therefore, we avoid this problem by simulating 1000 conditional
realizations of the transformed variate on a dense grid that cov-
ers the block evenly. We used a modified version of the krige0
function in the R gstat package to calculate kriged predictions of
the transformed variate at each node of the grid and to calculate
the covariance matrix of the prediction errors. The modifications
ensured that the formula to calculate the covariance matrix was
consistent with those used by Marchant et al. (2009). We simulated
1000 realizations of the prediction errors by the LU approach
(Webster & Oliver, 2007) and then added the predicted values to
produce 1000 simulated realizations of the TI values at each point
on the dense grid that are consistent with the modelled spatial
correlation.

We applied the inverse transform to each element of each
realization and calculated the mean of each realization. We treated
the resulting 1000 mean values as an independent sample of the
block mean. Their mean was our estimate of the block mean.
The 95% confidence interval stretches between the 25th and 975th
largest values of the sample of block means. The use of simulations
rather than block kriging ensures that predictions of the mean will
be unbiased even when the variable has been transformed. This
approach disregards the small component of uncertainty that will
arise because of the difference between the empirical variograms of
the observed variable and of the realized simulations.

Design-based analysis. Within the strata of the CS and LUCAS
surveys, sampling locations were selected independently and with
uniform inclusion probability densities. For CS2007, 45 classes
were established based on a combination of land use, landscape
settings and topographic features. For the LUCAS survey, soil
sampling locations were selected from five main land-use classes
(Tóth et al., 2013). We estimated the spatial mean of the land-cover
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class, ẑj, for the target variable z by:

ẑj =
1
n

n∑
i=1

zi , (1)

where n is the sample size, zi is the value at location i and j is
the land-cover class. To compute a 95% confidence interval around
the mean we first computed the sampling variance of the estimated
mean, V̂

(
ẑj

)
:

V̂
(

ẑj

)
= 1

n (n − 1)

n∑
i=1

(
zi − ẑj

)2
. (2)

We then computed the 95% confidence interval for ẑj as:

ẑj ± 1.96 ·
√

V̂
(

ẑj

)
. (3)

For topsoil indicators with small numbers of samples, computing
the confidence intervals in this way assumes that the sample mean is
approximately normally distributed. Where the frequency distribu-
tion deviated significantly from normality, we transformed the data
before calculating the confidence limits. We then back-transformed
these limits to the original scale.

Change in topsoil indicators: farmers’ data

We selected data for those farms that had analyses for TIs in both
the first (2004–9) and second (2010–15) of two time periods.
We computed the absolute change (values from the second period
minus the first) in indicator values and also the rate of change
(per year) based on the number of years between sampling, and
we plotted histograms of these data for pH and available K, OP
and Mg so that we could observe the range of any change and
whether or not it was centred around zero. To assess the average
change across the block we paired the 1000 simulated values of
the block mean randomly for each time period and calculated
the difference between them. Our estimate of the change is the
mean of these differences. The 95% confidence intervals can be
estimated by sorting the differences and extracting the 25th and
975th largest values. The probability of an increase (or decrease)
in the variate can be estimated from the proportion of differences
that are greater (or less than) zero. This approach disregards any
cross-correlation between the observations for the different time
periods. This correlation could have been considered by estimating
a linear model of coregionalization and then performing cokriging
(Marchant & Lark, 2007). The cross-correlation is likely to cause
the confidence intervals to narrow.

We also used ordinary kriging to create maps of topsoil pH for
the FD for the two time periods (2004–9 and 2010–15) with the
krige0 function. We made predictions on a 1-km grid across a single
polygon that combined the two land-cover combinations (A&H and
IG) for both E&W, but in which there were gaps relating to other
land-use types.

Coregionalization: farmers’ data and survey data

It may be possible to use the more densely sampled FD to create
maps of the national-scale survey data with greater accuracy if
there is strong joint spatial correlation between the two survey
datasets. The strength of their coregionalization can be explored by
computing the cross variogram between two variates (Webster &
Oliver, 2007). We explored the spatial cross-correlation for topsoil
pH between the FD and the LUCAS survey data. We could not
do this for the CS2007 survey data because the coordinates must
remain confidential to CS staff. We extracted the FD for 2007–11
because this date range was within 2 years of the LUCAS survey
samples (2009). Neither the LUCAS nor the FD topsoil pH were
strongly skewed so we used the original (untransformed) data to
compute semivariances at a lag interval of 10 km to a maximum lag
distance of 200 km for the LUCAS survey samples and FD, and
also their cross variogram with the variogram function in the R
package gstat. The sampling sites for the FD and LUCAS surveys
do not coincide and so we computed their pseudo cross variogram
(Webster & Oliver, 2007). We plotted the results to determine the
strength of any spatial coregionalization and fitted a linear model of
coregionalization with the fit.lmc function of the gstat package. If
there is strong coregionalization in the data we could then use the
denser sampling of the FD to reduce the uncertainties in mapped
estimates of the LUCAS data by cokriging (Marchant & Lark,
2007).

Results

Survey comparisons

Figure 1 shows the farm locations of the FD for both A&H and
GR for the two time periods and also where data from farms are
common to both time periods for four TIs (pH, P, K and Mg).
The locations of these farms are distributed widely across both
E&W. The total land area for the three polygons that delineate the
dominant land-cover types (A&H or IG) across either England or
Wales on which the block kriged estimates were made are shown in
Table 2.

Topsoil pH. Table 3 shows the estimates of mean topsoil pH for
the three combinations of nation and land use for three surveys.
Estimates for the LUCAS survey and FD are similar in each case;
these surveys adopted the same analytical method for pH with
air-dried soil in water. The CS2007 mean estimates are larger than
the other surveys in each case by around 0.5 pH units for arable soil
across England, and 0.25–0.4 or 0.14–0.2 units for grassland across
England and Wales, respectively. Part of this difference might arise
from the difference in analytical method for the CS2007 topsoil
samples, which are measured in a field-moist condition. The 95%
confidence intervals for the FD are smaller than for the other surveys
because of the substantially greater number of samples on which
measurements were made.
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Figure 1 Farm locations of the farmers’ data used in this study for four topsoil indicators (pH, Olsen P, available K and available Mg) for two time intervals
(2004–9 (a and c) and 2010–15 (b and d)) and two agricultural groups. The red (arable and horticulture) and blue (grassland) dots are farms with data for both
time intervals. The black (arable and horticulture) and green (grassland) dots show sites with data from one time interval, for the dates shown. Coordinates are
metres on the British National Grid.
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Table 2 The land area (km2) for the three combinations of land cover and
nation over which block kriged estimates were computed for the topsoil
indicators based on polygon delineation of dominant 1-km land cover of
the Centre for Ecology and Hydrology Landcover Map (Centre for Ecology
& Hydrology, 2011)

Land cover and nation Land area / km2

Arable and horticulture, England 88 207
Improved grassland, England 48 954
Improved grassland, Wales 14 008

Table 3 Mean topsoil pH values, 95% confidence intervals (CIs) and n
samples for three national-scale datasets across England and Wales for
arable (and horticulture) or improved grassland

Quantity Arable England Grass England Grass Wales

Mean pH CS2007 7.56 6.51 5.93
% CI CS2007 7.48–7.64 6.41–6.61 5.83–6.03
n CS2007 440 301 147
Mean pH 2004–9 7.00 6.22 5.82
% CI 2004–9 6.97–7.03 6.19–6.25 5.75–5.89
n farms 2004–9 4433 3498 248
Mean pH LUCAS 7.03 6.11 5.73
% CI LUCAS 6.94–7.12 5.97–6.24 5.52–5.96
n LUCAS 260 212 42
Mean pH 2010–15 6.96 6.25 5.83
% CI 2010–15 6.93–6.99 6.22–6.28 5.76–5.89
n farms 2010–15 4061 3722 395

CS2007, Countryside Survey; LUCAS, EU-wide LUCAS survey; 2004–9
and 2010–15 are farmers’ data for year ranges shown.

Olsen P. Figure 3 shows the differences between OP concen-
trations for two analytical methods with the addition of AC or
polyacrylamide as decolourants. There is a clear systematic bias
between the methods. The method in which AC is used has larger
OP concentrations in all but one of the 24 samples than for those
analysed with polyacrylamide. The regression model fitted to the
data has an adjusted R2 value of 0.98, a slope of 1.32 and an inter-
cept of −0.13, which shows there is a consistent bias between the
two methods (Figure 2). On average, the method with AC has OP
concentrations that are 32% larger than the method with polyacry-
lamide.

Table 4 shows the estimates of mean topsoil OP concentrations
for the three combinations of nation and land use for four national
scale surveys. The estimated mean values for A&H soil of England
for both the CS2007 and LUCAS surveys are substantially larger
(between 15.6 and 19.6 mg kg−1) than those of the FD. For the
LUCAS survey, part of this difference probably results from
differences in the analytical methods, one of which is the different
decolourant used in (i) FD (polyacrylamide) and (ii) the LUCAS
surveys (AC). The larger mean OP concentrations observed in the
CS (no decolourant added) than in FD (polyacrylamide added)
might in part result from this difference in analytical method.
However, we cannot state that the decolourant is a cause of the

Figure 2 Scatterplot of Olsen P concentrations (mg kg−1) for 24 topsoil
samples using two analytical methods with small differences in their
protocols. The values plotted on the x-axis are for the RB427 method
(polyacrylamide added as a decolourant) and those values plotted on the
y-axis are for the method that included the addition of 0.05–0.1 g of
activated charcoal as a decolourant.

Table 4 Mean topsoil available (Olsen) P concentrations (mg kg−1), 95%
confidence intervals (CIs) and n samples for soil datasets across England
and Wales for arable (and horticulture) or improved grassland

Quantity Arable England Grass England Grass Wales

Mean CS2007 43.5 26.8 21.8
95% CI CS2007 36.8–50.2 22.5–31.1 16.5–26.6
n CS2007 197 123 47
Mean 2004–9a 27.9 24.8 22.1
95% CI 2004–9 24.1–25.5 24.1–25.5 0.5–23.9
n farms 2004–9 4433 3498 248
Mean LUCAS 47.1 39.9 36.7
95% CI LUCAS 42.2–51.4 34.9–44.4 28.9–43.8
n LUCAS 260 212 42
Mean 2010–15a 27.5 23.6 22.4
95% CI 2010–15 26.7–28.3 22.9–24.4 21.1–23.9
n farms 2010–15 4061 3722 395
Mean RSSS 2001a – 25.9 –
n RSSS 2001 – 676 –

aUsed the same analytical method from RB427 (MAFF, 1986). RSSS,
representative soil sampling scheme 2001, is the mean across all three
combinations of nation and land use (Oliver et al., 2006); 2004–9 and
2010–15 are farmers’ data a for year ranges.

© 2017 British Geological Survey, NERC, European Journal of Soil Science, 68, 235–248



242 B. G. Rawlins et al.

Table 5 Mean topsoil available K concentrations (mg kg−1), confidence
intervals (CIs) and n samples for three soil datasets across England and
Wales for arable (and horticulture) or improved grassland

Quantity Arable England Grass England Grass Wales

Mean K 2004–9a 181 158 138
% CI 2004–9 177–185 153–162 130–147
n farms 2004–9 4433 3498 248
Mean LUCAS 262 239 258
% CI LUCAS 236–283 203–269 162–335
n LUCAS 260 212 42
Mean K 2010–15a 177 157 149
% CI 2010–15 173–182 153–162 139–160
n farms 2010–15 4061 3722 395
Mean RSSS 2001a – 178 –
n sites – 676 –

aSame extractant (ammonium nitrate).
LUCAS, EU-wide LUCAS survey; RSSS, representative soil sampling
scheme 2001 across all three combinations of nation and land use (Oliver
et al., 2006); 2004–9 and 2010–15 are farmers’ data a for year ranges.

Table 6 Mean topsoil available Mg concentrations (mg kg−1), confidence
intervals (CIs) and n samples for three soil surveys across England and
Wales for arable (and horticulture) or improved grassland

Quantity Arable England Grass England Grass Wales

Mean Mg 2004–9 120 144 139
95% CI 2004–9 116–125 140–148 130–149
n farms 2004–9 4433 3498 248
Mean Mg NSI 160 190 140
95% CI NSI 147–173 178–202 129–152
n NSI 709 750 187
Mean Mg 2010–15 123 152 150
95% CI 2010–15 119–128 147–157 140–160
n farms 2010–15 4061 3722 395
Mean RSSS 2001 – 123 –
n sites – 676 –

NSI, National Soil Inventory resampling; RSSS, representative soil sam-
pling scheme 2001 across all three combinations of nation and land use
(Oliver et al., 2006); 2004–9 and 2005–10 are farmers’ data for year ranges.
All surveys use the same analytical method.

bias because we would need to make measurements on the same
soil samples and also control for other differences in the methods
used. The large differences between mean OP concentrations in
arable topsoil across England from LUCAS (47.1 mg kg−1), CS
(43.5 mg kg−1) and FD (27.5–27.9 mg kg−1) might be caused partly
by sampling bias. We cannot estimate accurately the magnitude of
the analytical bias because the quantities of decolourants added
to the extractions were different for each of the methods used,
including the method we adopted in the Appendix. The mean OP
concentration for all three combinations of land use and nation from
the RSSS survey in 2001 (25.9 mg kg−1) is similar to the mean
estimates from the FD (range 22.1–27.9 mg kg−1) over both time
periods. For IG across England the FD and CS2007 mean values

Table 7 Mean topsoil organic matter concentrations (%), confidence inter-
vals (CIs) and n samples for three soil datasets across England and Wales
for arable (and horticulture) or improved grassland

Quantity Arable England Grass England Grass Wales

aMean OM CS2007 5.10 9.72 10.3
95%CI CS2007 4.59–5.50 8.77–10.5 9.1–11.3
n CS2007 440 301 146
bMean OM LUCAS 2009 5.64 13.1 12.2
95% CI LUCAS 5.2–6.0 10.2–13.4 7.8–15.1
n LUCAS 260 212 42
aMean OM 2010–15 4.66 8.65 –
95% CI 2010–15 4.34–4.99 7.87–9.49 –
n farms 2010–15 244 209 18

aLoss-on-ignition (LOI) temperature was 375∘C for CS2007 (for 16 hours)
and 430∘C (12 hours) for farmers’ data.
bComputed as 2× organic carbon concentration determined by combustion
at > 900∘C and detection of carbon (ISO 10694:1995).
CS2007, Countryside Survey; LUCAS, EU-wide LUCAS survey; 2004–9
and 2010–15 are farmers’ data for year range; OM, organic matter.

Table 8 Mean absolute change and its statistical significance for four
topsoil indicators using farmers’ data for the three combinations of land
cover and nation (arable and horticulture (A&H) and improved grassland
(IG)) for either England or Wales between two time periods (2004–9 and
2010–2015)

Indicator Mean change P-value of change

A&H England
pH −0.04 0.03
Olsen P / mg kg−1 −0.4 0.21
Available K / mg kg−1 −4.0 0.11
Available Mg / mg kg−1 +3.0 0.18
IG England
pH +0.03 0.32
Olsen P / mg kg−1 −1.2 0.50
Available K / mg kg−1 −1.0 0.42
Available Mg / mg kg−1 +8.0 0.01
IG Wales
pH +0.01 0.48
Olsen P / mg kg−1 +0.3 0.4
Available K / mg kg−1 +11.0 0.07
Available Mg / mg kg−1 +11.0 0.05

are similar, although the CS2007 mean values are larger (by 3.2
and 2 mg kg−1) than the FD mean values for the two time periods,
which might be affected by analytical bias. The mean values for
CS2007 and FD for IG in Wales are similar (maximum difference
0.6 mg kg−1).

Available K. Table 5 shows the estimates of mean topsoil avail-
able K concentrations for the three combinations of nation and land
use for three national-scale surveys. In each of these three combi-
nations, the mean values from the LUCAS survey were substan-
tially larger than those for the FD (difference 81–120 mg kg−1); we
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Figure 3 Histograms of absolute change and rates
of change in four topsoil indicators for farmers’
data for arable and horticultural land for England
in which farms have data for both of two time
periods (2004–9 and 2010–15): (a,b) pH, (c,d)
Olsen P (mg kg−1), (e,f) available K (mg kg−1),
(g,h) available Mg (mg kg−1). The vertical red line
is at zero on the x-axis.

attribute this to the different extractants. However, the average con-
centration of available K in the soil sampled as part of the RSSS
in 2001 was 173.1 mg kg−1 (Oliver et al., 2006), which is similar to
the estimated mean values reported for the three combinations of
nation and land use from the FD (range 138–181 mg kg−1), both of
which used the same extractant (ammonium nitrate).

Available Mg. Table 6 shows the estimates of mean topsoil avail-
able Mg concentrations for the three combinations of nation and
land use for FD and three national-scale surveys. The estimated
mean available Mg concentrations for the NSI resampling (2003)
are substantially larger (difference range 40–46 mg kg−1) for Eng-
land (A&H and IG) than the FD. We cannot account for this dif-
ference because the same analytical methods were used in both
laboratories. Based on quality controlled unpublished data (NRM
Laboratories, 6 June 2016) from the WEPAL laboratory compar-
ison scheme we know that values reported from the NRM Lab-
oratories are not systematically biased from the overall mean of
several other laboratories. For IG in Wales, the NSI resampling and

FD for the two periods have similar mean concentrations of 140,
139 and 150 mg kg−1, respectively. The estimated mean Mg con-
centration (123 mg kg−1) from the RSSS (2001) for all three com-
binations of nation and land use is similar to the mean Mg values
for A&H soil across England for the FD for the two time periods
(120–123 mg kg−1).

Organic matter. Table 7 shows the estimates of mean topsoil
OM contents (%) for three combinations of nation and land
use for FD and three national-scale surveys. For both land-use
types across England the concentrations decrease in the order
LUCAS>CS2007>FD 2010–15. We cannot assess whether the
larger mean values in the LUCAS survey than in CS2007 and FD
result from the difference in analytical methods (carbon detection
following combustion in the LUCAS survey and LOI for CS2007
and the FD). For the CS2007 and FD (2010–15) for arable land and
grassland across England, the 95% confidence intervals of the mean
values overlap, indicating that the differences between them might
not be statistically significant.
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Figure 4 Maps of topsoil pH for arable and horticulture and improved grassland land-cover types of the farmers’ data on a 1-km grid across England and
Wales for two time periods (2004–9 (a) and 2010–15 (b)). Areas of land cover other than A&H or IG are shown in white. Coordinates are metres on the British
National Grid.

Change in farmers’ data

Figure 3 shows histograms of change and also rates of change in
four TIs for A&H land use of England between the two selected
time periods for FD farms with samples from both periods (see also
Figure 1). In each case the absolute change and rates of change
show an approximately normal distribution centred around zero.
This suggests that overall changes in the TIs are likely to be small
at the national scale.

The model-based estimates of change in TI between the two
time periods (Table 8) show that for these four indicators only the
reduction (0.04 pH units) in topsoil pH (P-value 0.03) for A&H
soil across England and the increase in available Mg (P-value 0.01)
for IG across England (increase of 8 mg kg−1) were statistically
significant. There are some clear changes in topsoil pH for different
regions of E&W for the two periods (2004–9 and 2010–15) of FD
(Figure 4). In particular, there is a significant increase in the area of
topsoil with pH values < 6 in parts of northern England, Wales and
parts of Devon (southwest England).

Coregionalization of topsoil pH

Variograms of the LUCAS survey (2009) and FD (2007–11) for
topsoil pH (Figure 5a,b, respectively) show autocorrelation (the

semivariances increase with increasing lag distance) to separating
distances of around 100 and 200 km, respectively. The semivari-
ances of the FD topsoil pH (n= 11 229) increase more smoothly
with distance than those of the LUCAS data (n= 567), partly
because there are many more sample locations (farms) in the for-
mer. The cross variogram (Figure 5c) shows that the two datasets
also show strong cross-correlation to a distance of around 120 km,
including a shorter range structure of around 20 km lag distance.
The parameters of the linear model of coregionalization fitted to
the variograms and cross variogram are given in Table 9.

Discussion

In general, we found reasonable agreement between estimated
mean values of TIs across national and land-cover combinations
for FD and representative national-scale surveys. Given that these
TIs exert a strong effect on soil fertility, land managers have
good reason to keep them within narrow limits. We provided
evidence above to show that in one case attributable bias from
the difference in analytical methods partly accounted for the
discrepancies in mean estimates between FD and national-scale
surveys. We consider that FD offer a potential means for monitoring
the soil indicators examined at the national scale that complement,
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Figure 5 Semivariance and cross-semivariance esti-
mates of topsoil pH across England and Wales for
both arable and horticulture and improved grassland
land-cover types for: (a) LUCAS survey (2009), (b)
farmers’ data (FD) (samples collected 2007–11) and
(c) their cross variogram.

Table 9 Parameters of the linear model of co-regionalization fitted to the
farmers’ data and LUCAS survey data (see Figure 5)

Model Sill semivariance Model range / m

LUCAS Nug 0.70 0
LUCAS Exp 0.38 66 667
Farmers’ data Nug 0.27 0
Farmers’ data Exp 0.35 66 667
Cross variogram Nug 0.50 0
Cross variogram Exp 0.36 66 667

Nug, nugget; Exp, exponential.

but do not replace, monitoring with statistically designed surveys.
Unbiased, statistically designed surveys are necessary to assess the
magnitude of any unattributable bias introduced into FD.

In a study that assessed changes in topsoil pH between 1978 and
2003, Kirk et al. (2009) reported annual increases in soil pH of
up to 0.04 units for parts of E&W, which they attributed partly
to reductions in sulphur deposition. Assuming the FD for topsoil
pH are robust, which is supported by their strong similarity to the
LUCAS survey, the FD show a small overall reduction in topsoil
pH for A&H land-cover types between 2004–9 and 2010–15.
The larger number and spatial distribution of measurements in FD
mean that we can identify changes in topsoil properties at the
regional scale, which cannot be detected by the sparser sampling
of representative surveys. For example, our maps based on FD
highlight reductions in topsoil pH to below the recommended

threshold (pH= 6) for optimum yield (Defra, 2010), which might
reflect reductions in the quantities of lime applied in these areas.

We identified an attributable source of bias from differences
in analytical methods used in the FD and other surveys for the
measurement of OP concentrations, which we suggested might
result from the use of different decolourants. In the method for the
FD, OP concentrations were typically smaller than those for the
LUCAS survey. This has important implications because the OP
concentrations (and their associated index values) from FD are used
to estimate the quantities of P fertilizer applied at the field scale to
ensure optimal yields (Defra, 2010). Further research is required to
determine which features of the OP analytical methods, including
whether a decolourant is used and its form, lead to the bias we
observed. There is also a need to determine which of these features
reflects more accurately the capacity of the soil to supply P to the
soil solution because it largely determines its uptake by crop roots,
which then affects crop yield.

Of our selected TIs, we found that OM content had far fewer mea-
surements in our FD than the other four indicators, although there
were substantially more in the second period (2010–15) than the
first. To improve our mean estimates of topsoil OM concentration
by including more measurements, we could investigate whether
laboratories other than NRM laboratories would provide their soil
measurements for subsequent data analysis. However, mean esti-
mates by the LUCAS and CS2007 surveys suggested that analytical
differences (LOI compared with determination of organic carbon
by combustion) in estimating OM content might have led to biased
estimates, and this would need to be accounted for when combining
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these data. This could be problematic if the main cause of observed
differences between these two methods is the loss of structural
water from clay minerals (Kucerik et al., 2016), the amount of
which is typically unknown in measurements on FD samples.

It is fortunate that the soil sampling depth (0–15 cm) for most
of the national-scale surveys and the FD were similar. There is
field-based evidence from cultivated land in parts of England that
changes from conventional to minimum or no tillage can lead to the
formation of two distinct horizons in the upper 25 cm of the solum
(Mike Slater, personal communication); the horizons separate at
around 10-cm depth. Therefore, it might be beneficial for farmers
to sample and measure the properties of these horizons separately.
If it became common for agronomists or farmers to take separate
samples at two depths, this information would need to be recorded
and accounted for in subsequent statistical analyses of FD. We were
able to use only a subset of FD soil measurements from all those
available because in many cases either land use or farm address
details were missing from the electronic records for many samples.
If agronomists and farmers recorded land, crop details and national
grid coordinates for every field from which they took soil samples
we would have a larger sample database for statistical analyses and
smaller geographical error associated with our model-based, spatial
analysis.

We chose to split the 12 years of FD into two datasets and develop
separate spatial models for the TIs. In future, we consider that
developing combined space-time models (De Cesare et al., 2001)
for each indicator would have the advantage that new data could be
added annually, and these models could be used to estimate mean
values and confidence intervals. The strong joint spatial correlation
(co-regionalization) we showed for topsoil pH suggests that we
could increase the resolution of maps based on statistically unbiased
surveys with the more densely sampled FD.

Conclusions

We were able to retrieve a sufficiently large number of geographical
coordinates for farms within the FD database to make model-based
mean estimates of topsoil indicator values for combinations of
nation (E&W) and land cover for two time periods (2004–9 and
2010–2105). However, there were insufficient FD for soil OM
content for the first time period to compute mean estimates. Where
common analytical approaches were used (e.g. topsoil pH) there
was generally good agreement between the estimated mean values
for FD and national surveys for different land-cover and nation
combinations. The mean topsoil pH values for the FD and LUCAS
surveys were similar and also showed strong coregionalization. For
other indicators (OP and available K), we identified an attributable
source of bias from differences in analytical protocols that are a
likely source of the discrepancies between estimated mean values
from the FD and national surveys. Such differences could be
accounted for in computing national-scale estimates of the TIs from
FD. Data from statistically designed surveys are required to estimate
any unattributable sources of bias in estimates of TI values from FD.

Our results, and those of other empirical studies, do not remove the
need for design-unbiased surveys in soil monitoring.

In general, there were small changes in the four TI values exam-
ined (pH, OP, available K and Mg) for FD between the two time
periods. Because of the large number of samples (n> 4000) in each
time period, we detected a small (0.04 units) but statistically sig-
nificant reduction in topsoil pH for arable soil of England with our
model-based approach. By creating maps of greater accuracy with
the samples of the FD, we were able to highlight a reduction in top-
soil pH between the two time periods for specific regions of E&W.
The strong joint spatial correlation in topsoil pH between FD and the
LUCAS data shows that one of the potential benefits of the denser
sampling of the former is to create more accurate maps of the latter.

Supporting Information

The following supporting information is available in the online
version of this article:
Table S1. Model parameters for mean topsoil pH values (no
transformation of original data); see Table 3 in main paper.
Table S2. Model parameters for mean topsoil Olsen P values
(Box–Cox transformation of original data); see Table 4 in main
paper.
Table S3. Model parameters for mean topsoil available K values
(Box–Cox transformation of original data); see Table 5 in main
paper.
Table S4. Model parameters for mean topsoil available Mg values
(Box–Cox transformation of original data); see Table 6 in main
paper.
Table S5. Model parameters for mean organic matter content; see
Table 7 in main paper.
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Appendix

Description of analytical method

Analytical method for soil Olsen P (OP) soil measurements with
activated charcoal (AC) as a decolourant. The analytical protocol
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described here was used for the analysis of 24 soil samples with
a range of OP concentrations. This protocol includes the addition
of AC as a decolourant and the results were compared with the
RB427 method (MAFF, 1986) in which polyacrylamide was used
as a decolourant. Apparatus:

1. Temperature controlled orbital shaker
2. Polythene bottles 100 ml
3. Polythene filter funnels
4. 250-ml glass conical flasks
5. Fluted Whatman no 42 filter papers (150 mm)
6. Bacofoil

Reagents:

1. 0.5 m sodium bicarbonate solution: dissolve 42 g sodium bicar-
bonate (NaHCO3) and 0.72 g sodium hydroxide pellets in 900 ml
of 18 MΩ deionized water. Adjust the pH to 8.5 using a satu-
rated solution of sodium hydroxide or concentrated sulphuric
acid and make up to 1 l with water. Mix thoroughly. Dissolve
210 g NaHCO3/3.6 g NaOH in 5 l) – store in a room at 20∘C.

2. Activated charcoal – product name ‘Acros organics’ Activated
Charcoal, NORIT SA2 (Fisher Scientific, Waltham, MA, USA).

Procedure (to be carried out in a 20∘C laboratory):

1. Weigh 5 g of air-dried soil, ground to pass a 2-mm sieve, into
a weighing boat and transfer to a 250-ml conical flask.

2. Add approximately 0.05–0.1 g AC from the tip of a spatula and
cover each flask with Bacofoil.

3. Peel back the Bacofoil and add 100 ml 0.5 m sodium bicarbon-
ate, reseal, swirl the flask and immediately place on the shaker.
These steps must be carried out speedily to avoid delays that
might vary the contact time.

4. Shake the flask in a temperature-controlled cabinet orbital
shaker at 20∘C for exactly 30 minutes at exactly 2 Hz.

5. Swirl the flask (to mix the extract and soil) and filter immedi-
ately through a Whatman no 42 filter paper discarding the first
10 ml of filtrate. Remove the filter paper and whatever solution
remains in the filter paper, exactly 45 minutes after discarding
the first 10 ml. Between runs it is essential to keep the contact
time constant.

6. After filtration the sample should be analysed immediately.
7. If the extracts are strongly coloured, shake the filtered extract

with 1 g of AC and filter through a Whatman no 42 filter paper.
8. Bottles should be capped, placed in a tray and taken to the anion

laboratory with an analysis information card ready for analysis
by Skalar continuous flow.

9. Blanks and in-house standard materials are included in each
batch shaken.

10. Duplicate extractions of at least one in every 10 samples should
also be included.

11. Sample extracts are analysed on the Skalar continuous flow
system.
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