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Summary

Large datasets on soil provide a temptation to search for relations between variables and then to model and make
inferences about them with statistical methods more properly used to test preplanned hypotheses on data from
designed experiments or sample surveys. The control of family-wise error rate (FWER) is one way to improve the
robustness of inferences from tests of multiple hypotheses. In its simplest form, hypothesis testing with FWER
control lacks statistical power. The a-investment approach to controlling the marginal false discovery rate is
one method proposed to improve statistical power. In this paper I outline the a-investment approach and then
demonstrate it in the analysis of a dataset on the rate of CO, emission from incubated intact cores of soil from
a transect over Cretaceous rocks in eastern England. Hypotheses are advanced after considering the literature
and examining relations among the available soil variables that might be proposed as explanatory factors for the
variation of CO, emissions. They are then tested in sequence with a-investment, such that the rejection of null
hypotheses increases the power to reject later ones, while controlling the overall marginal false discovery rate
at a specified value. This paper illustrates the use of a-investment to test a multiple set of hypotheses on a soil
dataset; statistical power is improved by ordering the sequence of hypotheses on the basis of process knowledge.
The approach could be useful in other areas of soil science where covariates must be selected for predictive
statistical models, notably in the development of pedotransfer functions and in digital soil mapping.

Highlights

a-investment controls marginal false discovery rate in statistical inference.
Hypotheses were advanced about soil factors that affect CO, emission from soil.
These hypotheses were tested in sequence with control of marginal false discovery rate.

Soil properties, land use and parent material were significant predictors.

can be examined by evaluating a particular contrast between
treatment means, which would be zero under a ‘null hypothesis’.

Introduction

Increasingly, soil science is undertaken with neither specific exper- In conventional frequentist inference the evaluation of a hypothesis

iments nor data from bespoke surveys, but rather with pre-existing is supported by computing a P-value, the probability of obtaining

datasets, sometimes public, collected for a different primary pur- evidence as strong as or stronger than the observed contrast if

pose. Such data may be very useful, but the problem of how to
evaluate statistically the weight of evidence that they provide for a
hypothesis is subtly different from the classical case of the designed
experiment. This is not recognized sufficiently in scientific practice.

In a bespoke experiment a scientist proposes a set of hypotheses.
These hypotheses correspond to the main effects of factors that
are varied in the experiment, or their interactions. The hypotheses
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the null hypothesis were true. The P-value therefore helps the
scientist to decide whether the experimental data are sufficient
to support a rejection of the null hypothesis and a scientifically
interesting interpretation of the observed contrast. Soil scientists
may also work with observational data rather than experiments, but
in principle it is still possible to use a set of preplanned contrasts
to test prior hypotheses. For example, Lark & Scheib (2013) tested
preplanned hypotheses about the effects of land use on lead content
of topsoil with data from the British Geological Survey’s London
Earth sample survey.
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This paper is concerned with a different problem. Here datasets
are unstructured, in the sense that they do not arise from an exper-
imental or sampling design selected to test a set of predetermined
hypotheses. They may contain a single target variable of interest
(e.g. some function of the soil system) and many other variables that
describe the state of the soil system, its outputs or its environment.
The temptation is to trawl the data with plots and correlation coef-
ficients to search for variables that have some apparent statistical
relation to the variable of interest, and then to evaluate the evidence
for such a relation by fitting linear models and applying some kind
of significance test. This approach is sometimes called ‘P-hacking’
(Wasserstein & Lazar, 2016).

The problem with this approach is that the P-value for a test
of the significance of a term in a linear model indicates the
probability that evidence as strong as or stronger than that provided
by the data would emerge against a null hypothesis of no effect
when that particular null hypothesis has been specified in advance.
This interpretation is not valid if the null hypothesis has been
selected for testing because the experimental evidence against
it looks strong in a table of means or on a plot. Consider the
following thought experiment. Generate a notional dataset with
one soil system response variable of interest and 100 potential
continuous explanatory variables of interest, but generate these
‘data’ as independent draws from a random number generator.
Next, undertake a regression of the response variable on each
explanatory variable, testing the null hypothesis of no linear
relation and rejecting a potential explanatory variable for which
the P-value of this test exceeds 0.05. By definition of the P-value,
the expected number of null hypotheses rejected with P <0.05
(potential explanatory factors regarded as significant) would be 5.
This means that in a test of all 100 null hypotheses, all of which are
true, the probability of rejecting at least one with P < 0.05 is 0.994.
This is clearly not satisfactory.

Reflection on this thought experiment shows why a crude
P-hacking exercise can be expected to lead to ‘discovery’ of effects
in a dataset that do not have the statistical evidence that is claimed
for them. The P-hacking strategy must be eschewed. However, the
thought experiment points to difficulties in approaches to data anal-
ysis that might be less evidently problematic. Consider a case where
a soil scientist wishes to use a large dataset to identify factors that
control some response of the soil system. It is proposed to test
several statistical models in which the response is the dependent
variable and subsets of soil properties constitute the independent
variables. The aim would be to select the model that is best-fitting
on some criterion and for which the data provide evidence of a
significant relation. The key to identifying the problem with this
approach is to recognize that, in the analysis of an unstructured
dataset with k proposed models, we do not really undertake k sepa-
rate tests, each of which represents a scientifically framed hypoth-
esis. Rather, we test a family of k hypotheses to discover whether
one or more are of interest. This is known as multiple hypothesis
testing (Tukey, 1991). If we adopt a rule of rejecting the null hypoth-
esis for a model (proposed in advance) if P < a then we know that
the probability of falsely rejecting a true null hypothesis is a. But

in the multiple-testing case, the probability that we will reject at
least one true null hypothesis among our set of k is somewhat larger.
Approaches that use multiple testing can be controlled statistically
provided that the models to be tested are proposed in advance. In
this paper I consider an approach to multiple hypothesis testing that
can be used by the soil scientist who rejects P-hacking strategies, but
who wishes to explore a set of possible explanatory models through
a set of multiple tests.

One general approach to statistically controlled multiple testing
uses Bonferroni’s inequality. If we denote the (unobserved) number
of falsely-rejected null hypotheses out of a set of k (not necessarily
independent) by the random variable V(k), then the family-wise
error rate (FWER) may be defined as:

FWER = P[V (k) > 1], (H

where P[-] denotes the probability of the term in brackets and
Bonferroni’s equality provides an upper bound for this:

k
P[V(k)ZI]SZP[V]:l], )
j=1

where V; is an indicator that is 1 if the jth null hypothesis is falsely
rejected and O otherwise. A common strategy to apply Bonferroni’s
inequality is to test each hypothesis against a threshold P-value of

a
— 3

X (3)
to impose an upper bound of a on the FWER. This is potentially
a very conservative procedure because for a large k the threshold
can be very small. A less conservative approach is to control not the
FWER but the false discovery rate (FDR) defined as:

_e[v®
FDR_E[R(k) R(k)>0}P[R(k)>O], )

where R(k) is an (observed) random variable, the number of
rejected null hypotheses out of k. Methods to control the FDR
have been proposed for independent sets of tests (Benjamini
& Hochberg, 1995) and for tests that cannot be regarded as
independent (Benjamini & Yekutieli, 2001).

These approaches have been used in soil science. For example,
Lark et al. (2007) used FDR control to select variables for predic-
tive models of soil properties. Turner ez al. (2008) used FDR control
to examine differences between subpopulations of the plant Ara-
bidopsis lyrata from sites with soil formed over contrasting par-
ent materials with respect to the occurrence of a large number of
genes. The FDR control therefore provides a solution for the soil
scientist who wants to test multiple hypotheses on an observational
dataset without making spurious claims of statistical significance
for selected models. However, whether controlling FWER with a
Bonferroni-based procedure or controlling FDR with one of the
methods mentioned above, there is a penalty of loss of power to
detect effects. Even in the case of FDR control, for the independent
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case the smallest P-value must be less than the threshold for FWER
control if any null hypotheses are to be rejected.

The common FWER-control criterion in Equation (3) is not
the only criterion that will satisfy control at FWER <a given
Equation (2) because the latter requires only that the thresholds
sum to « over all k tests, and setting all thresholds to k/a is
not a unique solution. In principle one might apply different
thresholds to different hypotheses, provided that the latter are not
selected on the basis of their P-values. This approach is known
as a-spending because it entails a prior decision about how to
allocate a total ‘resource’ over a set of k tests. Tukey (1991)
points out that this approach allows one to test some preselected
hypotheses at a larger threshold for P than is given in Equation (3)
provided that the thresholds over all k tests sum to a. This
approach has been used to design strategies for hypothesis testing
in medical trials.

Foster & Stine (2008) propose an extension of the a-spending
strategy to what they call a-investment. This is discussed further
in the theory section, but in short they show that control of what
is called the marginal false discovery rate can be achieved by a
strategy in which hypotheses are tested sequentially at thresholds
calculated by a rule under which the rejection of a null hypothesis
allows larger thresholds to be used to test subsequent ones. If one
thinks of the specified acceptable FWER under a-spending as a total
‘wealth’ to be distributed over tests, then the strategy of Foster &
Stine (2008) offers the opportunity to increase that wealth by the
judicious selection of hypotheses early in the sequence to increase
the power to detect significant effects in subsequent tests. It should
go without saying that this selection of hypotheses is not based
on the data, but on scientific considerations. This means that it is
inherent in a-investment that the search for significant effects in a
dataset is not delegated to an algorithm, but requires an element of
scientific judgement.

The approach to statistical inference based on a-investment is
new and has had limited application at the present time. Koenig
etal. (2015) show how the method can be used to ensure robust
inference from clinical trials, and Karp eral. (in press) discuss its
use for large genetic screening studies where multiple traits are
examined. The objective of this paper is to demonstrate application
of the a-investment approach to inference to a soil dataset. The
next section outlines the theory of a-investment and is followed by
an application of this to a case study on the rate of CO, emission
from soil cores. I then discuss the more general implications for
inference from soil datasets.

Theory
Marginal false discovery rate

The a-investment strategy of Foster & Stine controls the marginal
false discovery rate, mFDRﬂ, which is defined as

mFDR = BV (®)]

"TERMI 41 ®
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where V(k) and R(k) have the same meaning as in Equation (4). The
constant 7 > 0 is added to ensure that mFDR,, can be controlled in
the case of the ‘complete null hypothesis’ where all k hypotheses
are true.

The term V; in Equation (2) is an indicator, equal to 1 when the
Jjthnull hypothesis is incorrectly rejected and O otherwise; therefore,
Equation (2) can be written as:

k
PV 2 11< YE[V)],

i=1

<E[V®]. (6)

If mFDR, <a then this implies that, for the complete null
hypothesis (where all rejected null hypotheses are falsely rejected
and V(k) = R(k)),

ELV (0] < 7. ™

and so, if y =1 — &, we can combine Equations (6) and (7) to obtain:
PIVk) 211 <E[V(K)] L a. ®)

That is to say, controlling mFDR, at a with n=1—a controls
FWER at « in the case of the complete null hypothesis, which is
called control of FWER in the weak sense. Foster & Stine (2008)
report a series of simulation studies that show that control of FDR,
as defined in Equation (4), and of mFDR,, n=0.95, gives very
similar control of false discovery over a range of conditions.

a-investment

A set of up to k hypotheses is tested in a sequence. Under an
a-investing rule, the jth null hypothesis is rejected if p; <a;. The
threshold value for the jth test, «;, depends on the alpha-wealth after
the previous test, W(j — 1). If the jth test results in rejection of the
null hypothesis then there is an increase in the alpha-wealth and
W) > W(j— 1), otherwise W(j) < W(j —1). The sequence of tests
ends either at the kth test or at the jth test if W(j) goes to zero.

Foster & Stine (2008) show that an a-investing rule (governing
costs and payouts) of the form:

WH-WwW(i-D=w if p; <a,

=- if p>an (9

with initial a-wealth W(0) < an and payout @ < a controls mFDR,
atlevel  if there is a finite stopping time (i.e. the procedure will stop
after some not necessarily predetermined number of rejections).
They go on to show that a procedure that always spends some
(hopeful), but not all (thrifty), of its a-wealth testing the next
hypothesis has a finite stopping time.

The proof of this property by Foster & Stine (2008) requires the
condition that:

E [Vj|Rj—l’Rj—2’ ,Rl] <a, (10)

© 2017 British Geological Survey, NERC, European Journal of Soil Science, 68, 221-234



224 R. M. Lark

where R; € {0, 1} is an indicator, denoting the acceptance or rejec-
tion of hypothesis i (i.e. the properties of a particular test hold
regardless of the history of rejections) (Aharoni & Rosset, 2014).
This is a weaker assumption than that of independence of the
tests, although it is easiest to show that it holds if the tests are
independent. D.P. Foster (personal communication, 2015) sug-
gests one practical procedure in a linear modelling setting is to
orthogonalize a new predictor on any predictors for which the
hypothesis was rejected, on the basis that little information is pro-
vided by any test i for which R, =0. This approach is applied by
Lin etal. (2011). In this study I took a comparable approach. I
developed a single model for the response variable sequentially.
I tested a hypothesis about each potential explanatory variable in
turn, and in the sequence preplanned for the a-investment pro-
cedure. Each test was on the likelihood ratio statistic to com-
pare a null model (that includes all variables for which the
null hypothesis had previously been rejected) with a full model
that includes the variables in the null model and the new one
of interest.

One strategy to determine the threshold for rejection of the jth
null hypothesis, given the wealth after the previous test, is given by
Foster & Stine (2008). They propose that:

! 1
W1 1
6=WG )<1+j—h*v1+k—j>’ (1D

where #* is the index of the last rejected hypothesis. The two terms
in brackets are alternatives; the second is applied to the kth test. This
strategy is hopeful and thrifty, in the senses defined above. Given
the rationale for a-investment, the ordering of hypotheses for tests
should put those with the strongest scientific rationale early in the
sequence. The ordering can be dynamic, in that, for example, one
might choose to add a quadratic term in some predictor only if an
earlier test of a linear effect led to rejection of the null hypothesis.

In this study I followed a conservative hopeful and thrifty strategy
by setting the maximum level for any test to a so that:

qi=min{a,W(i_l)<l+jl_h*vl+;{—j>}. (2

I set «=0.05 and followed Aharoni & Rosset (2014) in setting
o=W(QO)=an.

Case study
The question and the data

In this case study I consider a dataset from a transect across a part
of Bedfordshire in eastern England. Details of this transect have
been published previously (Haskard ez al., 2010). The objective of
this original study was to examine the spatial variation of nitrous
oxide emissions, but data on the rate of CO, emissions were also
measured, although hitherto they have not been analysed.

The first site on the 7.5-km transect was at 508 329, 237 450 on the
British National Grid, and subsequent points were at approximately

30-m intervals on a line of bearing 173.5° from due north. The
soil types on this transect were described in the survey by King
(1969), who mapped them according to a legend of associations
of soil series from the classification of the Soil Survey of England
and Wales. The soil was under woodland, on arable land (with a
germinated autumn-sown crop, recently cultivated or under stubble)
or under rough grass (paddocks, field margins and one sports field).
Details of the sampling procedure and the laboratory analyses are
given elsewhere (Haskard eral., 2010; Lark & Milne, 2016). In
addition to the rate of CO, emission, the following soil variables
were measured: bulk density, volumetric water content, soil pH,
soil organic carbon (per cent by mass), total nitrogen (per cent by
mass), soil nitrate and ammonium (pug g=' soil). The volumetric
water content was converted to the water-filled pore space fraction
(WFPS) after Linn & Doran (1984) using the measured bulk density
(Minasny et al., 1999; Lark & Milne, 2016). The land use was also
recorded at each site.

This study was restricted to the first two soil associations mapped
by King (1969) on the transect (locations 1-171), the Cottenham
and Wicken associations. The soils of these two associations
formed in superficial material over the Lower Greensand and
the Gault Clay, respectively. They correspond to associations
of Arenosols and Cambisols (Cottenham association) and Cam-
bisols, Luvisols and Acrisols (Wicken association) according to
the World Reference Base classification (IUSS Working Group
WRB, 2006). The remaining soil on the transect formed over chalk
units (see Lark & Milne, 2016) and contains large amounts of
calcium carbonate. This was measured on each soil sample by the
water-filled calcimeter method of Williams (1949) for correction
of the determination of carbon content by combustion. It was
decided to exclude the chalk soil because of the possibility of a
contribution to the measured emission rate from abiotic sources
(Aciego Pietri & Brookes, 2008). In addition, exploratory analysis
showed considerable variation of the organic C to total N ratio,
suggesting that the determination of organic carbon was prone
to error because of the correction for inorganic carbon. Table 1
presents summary statistics on the soil properties for the 171
locations. Histograms are shown in Figure 1 and the variables
are plotted against location on the transect in Figure 2. Figure 3
shows the land use at locations on the transect and Figure 4
shows box and whisker plots for the soil properties within the
three land uses.

The objective of this case study was to identify variables in this
set, or derived from them, that account for spatial variation in the
rate of CO, emission by soil. To achieve this I first considered
reasons why available variables might be hypothesized to be
explanatory factors for this process. I then examined exploratory
statistics of the predictor variables only, to identify possible
redundancies between correlated variables. On the basis of these
considerations I then proposed a sequence of hypotheses to test
with a-investment. The identification of these hypotheses and
the associated exploratory analyses that supported the decision
are not reported in the main paper for reasons of space, but are
described in Supporting Information.
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Table 1 Summary statistics on available soil variables

Variable Units Mean Median SD Min. Max. Skewness
pH 6.82 7.19 1.16 3.65 8.03 —1.34
SocC Gravimetric % dry soil 2.99 2.54 1.82 1.23 19.87 5.13
log SOC log (gravimetric % dry soil) 0.99 0.93 0.41 0.21 2.99 1.15
CN 10.98 9.93 3.22 8.32 24.47 242
log CN 2.36 2.30 0.23 2.12 3.20 2.08
WFPS 0.77 0.81 0.17 0.35 1.00 —-0.59
BD gcm™3 1.21 1.21 0.22 0.63 1.86 -0.09
Ammonium pge! 1.69 0.29 5.41 0.02 40.41 5.06
log Ammonium log (ugg™ ") -0.99 —1.24 1.38 —3.91 3.70 1.24

log, natural logarithm; SOC, soil organic carbon; C:N, ratio of total carbon to total nitrogen; WFPS, water-filled pore space fraction; BD, bulk density.
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against location on the transect. Location is dis-
tance rescaled by the sampling interval (30 m).
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Distance / 30 m Distance / 30 m

Hypotheses to be tested in the model. As a scientifically plausible hypothesis, it is
sound practice to test this early in the sequence in line with
the ‘best-foot forward’ principle of Foster & Stine (2008). If a

1 A linear effect of soil organic carbon concentration. This is strong hypothesis is placed early in the sequence on the basis of

included because, of the available variables, it is the best proxy
for the substrate available to the soil microflora. A hypothesis
that the rate of CO, emission from soil depends, in part, on the
soil organic carbon (SOC) concentration is plausible biologically.
Because this variable is strongly skewed (Table 1) it was decided
to transform it to natural logarithms before using it as a predictor

scientific plausibility it will boost the initial alpha wealth.

2 A linear effect of ammonium. This is included to test the

hypothesis that ammonium concentration and CO, emission are
both signs of mineralization, a process that links the C and N
cycles in soil. Itis possible that such an effect will not be observed
because much of the carbon released by mineralization may be
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Figure 3 Land uses at locations on the transect. Location is distance
rescaled by the sampling interval (30 m).

in simpler organic forms that are not respired directly, and the
ammonium released may be assimilated rapidly by plant roots or
microorganisms in some circumstances. Because this variable is
strongly skewed (Table 1), I transformed it to natural logarithms
before using it as a predictor in the model.

3 A linear contrast between land uses. As noted above, land
use appears to reflect many soil properties, including SOC
and ammonium, which are already proposed as predictors. For
this reason I proposed an initial test of the linear contrast
between arable and non-arable land uses. Arable soil is the
most intensively managed, so other factors that might affect
CO, emission might be represented by this contrast, such as the
effect of autumn cultivations or residual fertilizer effects. One
more orthogonal contrast between land uses can be proposed
(woodland against grass), but this is introduced later in the
sequence.

4 A linear effect of bulk density. Although bulk density is cor-
related with SOC, evidence from two previous studies (Moy-
ano etal., 2012; Saiz etal., 2006) suggests that there may be
additional effects even when SOC is already represented in a
linear model.

5 A second-order polynomial function of water-filled pore space.
As discussed above, previous studies have shown an effect of
WEPS fraction on CO, emission from soil. Moyano et al. (2013)
identified a quadratic effect, so here I propose a polynomial
function of WFPS with linear and quadratic terms.

6 A linear effect of soil pH. There are some types of soil on
the transect with pH values that, according to Aciego Pietri &
Brookes (2008), would be sufficiently small to have a limiting
effect on soil respiration. For most of these soils, however, the
pH is outside the range where these authors expect to see an

a-investment 227

effect. For this reason this factor was included relatively late in
the sequence as a speculative hypothesis.

7 A linear effect of the ratio of soil organic carbon to total N.
This ratio is fairly stable at around 10 for most soil types
on the transect, but there are some larger values on the more
acid soil, predominantly under woodland in the north of the
transect. Because this variable is somewhat skewed (Table 1), I
transformed it to natural logarithms before using it as a predictor
in the model. Again, this factor is included late in the sequence
as a speculative hypothesis that ‘overflow respiration’ in the
presence of surplus organic carbon might be a factor causing
variation in CO, emissions.

8 The contrast between the two soil associations. This is the
contrast between the Cottenham association and the Wicken
association. Various soil properties were considered earlier in
the sequence so this is included to account for any differences
in the soil that these individual variables do not represent. These
could include structural and textural differences between soils
that contrast markedly with respect to parent material.

9 A linear contrast between land uses. This is the remaining
contrast orthogonal to the one introduced at (3) above, Woodland
against Grassland.

Analysis. After exploration of the predictor variables and for-
mulation of the list of hypotheses presented in the previous
section, exploratory analysis was carried out on the CO, emis-
sion data. Summary statistics are listed in Table 2. Histograms
of the raw data and data transformed to natural logarithms are
shown in Figure 5, and these variables are plotted against posi-
tion on the transect in Figure 6. The raw data have a skew-
ness coefficient of 1.26. The assumption of normality applies
to the random components in the linear mixed model used to
analyse these data, and not the data on the dependent vari-
able itself. I used the transformed data for this modelling and
checked the distribution of the residuals when the modelling
was complete.

Recall that, to make the condition in Equation (10) plausible, I
proposed that these successive hypotheses are tested in the con-
text of a single linear model formed by adding and testing terms
successively and retaining those for which the null hypothesis is
rejected. This means that a new term is tested by adding it to a
model that contains predictors for which the null hypothesis has
been rejected. This was done in the context of a linear mixed
model (Verbeke & Molenberghs, 2000) and the fixed effects
comprised all previouslyselected soil properties and the random
effects comprised a spatially correlated random variable and an
uncorrelated nugget term (Lark & Cullis, 2004). This model was
necessary because the sampled sites were not selected according
to an independent random sampling design, and so the residuals
from the fixed effects model cannot be treated as independent
random variables. I estimated the model parameters by maximum
likelihood with the likfit procedure for the geoR package on the R
platform (Diggle & Ribeiro, 2007; R Core Team, 2014). Maximum
likelihood was chosen because this allows models with different
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sets of fixed effects to be compared by a log-likelihood ratio test. If
¢\ is the maximized log-likelihood for a model with a set of fixed
effects selected previously and £ is the maximized log-likelihood
for a model with the same set of fixed effects and p additional terms
then the log-likelihood ratio statistic L,

L=2(tp~¢y), (13)

has a y? asymptotic distribution with p degrees of freedom under
the null hypothesis that there is no effect of the additional p terms.
This was the basis for testing terms, with p =1 in each case except
for bulk density where a linear and a quadratic term in the proposed
variable were added together.

1.5 times the interquartile range above the third

Arable Grassland quartile or below the first quartile of the data.

Table 2 Summary statistics on rate of CO, emission on original and
logarithmic scales (natural logarithms)

Units for
rate of CO,
emission Mean Median SD Min. Max. Skewness
pg kg~ ! day~! 10753.6 9246.2 6698.0 1871.8 43763.3 1.26
log pg kg~ ! day~! 9.10 9.10 0.66 7.50 10.70 —0.36
Residual

log pg kg~ ! day~! 0 -0.01 0.40 0.43 -0.77  0.62

Also included are statistics for the residuals from the complete model computed at the
end of the analysis.
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The initial model was fitted with a constant mean as the only
fixed effect. Models were fitted with spherical and with exponen-
tial covariance functions (Webster & Oliver, 2007), and the model
with the largest likelihood was selected, and the particular covari-
ance function was retained for all subsequent models. The first
hypothesis about a soil variable, SOC, was tested by comparing
a model with fixed effects SOC and an intercept with the initial
model in which the constant mean was the only fixed effect. In this
case p=1.

The a-investment was undertaken to specify the P-value at
which a null hypothesis would be rejected. The marginal false
discovery rate (mFDR,) was controlled with a =0.05 and # was
therefore 0.95. The ‘payout’ on rejection of the null hypothesis was
o =an=0.0475. The a-investing rule given in Equation (9) was
applied and the level of each test was determined by Equation (12).
Successive hypotheses were tested in the order introduced above
until either W(j) went to zero or all nine hypotheses were tested.

Results

Figure 7 shows (a) the value of W(j), the alpha-wealth, after
each test and (b) P-values for the successive tests (open circles)
and the levels, a;, against which each hypothesis was tested with
mFDR 45 controlled at 0.05 and with a-investment (solid discs).
The horizontal broken line shows the equivalent threshold for
testing nine hypotheses with FWER control at 0.05 by Bonferroni’s
inequality.

CO, emission rate /log, ug C kg soil™' day™

9.5 10.5
Figure 5 Histograms of rates of CO, emission
on (a) original and (b) logarithmic scales.

The first three null hypotheses are rejected, which is why the
alpha-wealth grows after each of these tests. These are the effects
of SOC, ammonium and the contrast between arable and non-arable
land use. The next four null hypotheses are accepted (bulk density,
WEFPS fraction, soil pH and ratio of soil organic carbon to total
nitrogen). The null hypothesis is rejected for the comparison
between soil associations, although the depletion of alpha-wealth
means that the test was against a threshold near 0.01. The null
hypothesis is then accepted for the contrast between woodland and
grassland. It is notable that the four hypotheses rejected in this case
would also be rejected against the Bonferroni thresholds, although
it is clear from Figure 7(b) that the power to reject hypotheses under
a-investment is much larger.

After the hypothesis testing I examined the fitted models more
closely. Table 3 gives the model effects. For each listed variable
Table 3 gives the fixed effect coefficient from the model where
that variable was first added. For the continuous variables the
effect is the regression coefficient, for the contrasts between levels
of a categorical variable (land use or soil association) the effect
is the (additive) difference between the two levels. In each case
the standard error of the effect is also given. Figure 8 shows
the variogram models, which describe the random effects of
(1) the models with a constant mean as the only fixed effect and
(ii) each model where a soil variable was added as an independent
variable and the null hypothesis was rejected. It is not possible to
compute an R? for a linear model fitted by maximum likelihood with
correlated random effects. Instead I used these models to compute
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Figure 6 Plots of rates of CO, emission
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the dispersion variance of the random effects along a 5-km transect
computed as the double integral of the variogram over the transect
(Webster & Oliver, 2007). If the dispersion variance of the random
effects for the model with a constant mean as the only fixed effect
is denoted 5'1%]0 and the dispersion variance for the jth model in the
sequence is denoted &I%}j then I define the approximate adjusted R?
for the jth model as

&%
%) :

%No

Ry=1- (14)

Values of i?i 4 are provided in Table 3.

The first null hypothesis tested in this sequence is the effect of
SOC. The null hypothesis is rejected; note that fx’i i for the model
with SOC as the only predictor is small (0.14). The SOC effect is
positive and about 3.3 times its standard error. Comparison of the
variograms for this model with the variogram for the model with
a constant mean as the only fixed effect (Figure 8) shows some
reduction in the variance of the correlated random term, but little
change in the spatial scale of this variation. The null hypothesis of
no effect of soil ammonium concentration is also rejected. The fixed
effect coefficient is positive and four times its standard error, and
including this term increases Ri 4 10 0.24.

Figure 9 was prepared only after the modelling was com-
plete. It shows plots of the rate of CO, emission against
(a) SOC and (b) ammonium concentration (all variables are

T
50

Distance / 30 m

against location on the transect, on (a) original
100 150

and (b) logarithmic scales. Location is distance
rescaled by the sampling interval (30 m).

on log scales). These graphs show the positive relations between
both variables and rates of CO, emission, albeit with relatively
shallow slopes.

The contrast between arable and non-arable land use is the next
statistically significant effect. The fixed effect coefficient is negative
(Table 3) and about five times its standard error. This implies that,
other factors being equal, the rate of emission from arable soil
is smaller than that from soil under the other land uses on the
transect. Figure 10(a) shows this and also the box and whisker plot
for rates of emission in the arable and other land use categories.
Adding this term to the model increases Ivi’ﬁ ;i t0 0.33. The variance
of the correlated random effect in the model is larger, but the range
of spatial dependence also increases substantially, such that the
variogram takes smaller values than for previous models for lags
smaller than 3000 m (Figure 8).

The final significant effect is the soil association. The effect
is negative, which implies larger emission rates over the Wicken
association than the Cottenham association (see Figure 10b). The
effect is larger than for the land use contrast, but of similar size
relative to its standard error. Including the term raises R§ 4 0 0.51,
and Figure 8 shows a substantial reduction in the variance of the
spatially correlated random effect; the random variation in the
model is dominated by the uncorrelated nugget term.

Figure 11 shows the histogram of residuals from the final model,
and their summary statistics are in the bottom line of Table 2. Note
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Discussion

The analysis of the data provides evidence for marked differences
between soil associations with respect to the rate of CO, emission.

Ammonium / log, ug g~

ammonium concentration.

Figure 9 Plots of rates of CO, emission against (a) SOC and (b) soil
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Figure 10 Box and whisker plots of rates of CO, emission for (a) arable
and non-arable land use and (b) Cottenham and Wicken soil associations.
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Figure 11 Histogram of residuals from model with all selected fixed
effects.

Note that this effect appears in a model where SOC and ammonium
content are already included, and a set of soil properties comprising
bulk density, water-filled pore space, pH and the SOC to total
N ratio have been considered but have not provided evidence to
reject the null hypothesis. This suggests that there are differences
between these soils with respect to important properties that affect
microbial activity, gas transport or both. The two associations
are over contrasting geological units (the Gault Clay and Lower
Greensand), but both are overlaid with substantial Quaternary
superficial deposits, although these do inherit some properties from
the bedrock (King, 1969). It is notable that including this factor in
the model removes almost all the spatially-dependent variation from
the residuals, which suggests that any factors unaccounted for vary
at short scales in the landscape relative to the sampling interval of
approximately 30 m.

The soil under arable land use also shows statistically significantly
smaller rates of CO, emission than does soil under other land uses.
Note again that SOC is already in the model, so this factor, while
also differing between soils under different land use, cannot be the
explanatory factor. Much of the arable land on the transect had
autumn-sown crops, and so had been cultivated within the previous
6 months. This disturbance, as well as long-term effects of arable
land use, might account for the difference between soil under arable
production and the other soil on the transect. Note that the difference
between the other two land-use classes was not significant.

Although the effect of SOC is not very strong in the model, it is
not surprising that it is a significant factor. It is interesting to note
the effect of ammonium, which suggests that the link between the
carbon and nitrogen cycles in soil at the mineralization stage might
be expressed here.

In summary, the organic carbon content of the soil, differences
between arable and non-arable land use and differences between
soil associations over two Cretaceous bed rock units with contrast-
ing lithology appear to account for about half the observed variation
in rates of CO, emission on this transect; the remaining variation
appears to be largely spatially independent at scales coarser than
30 m. Addition of the effect of soil association had the largest effect
on the relative importance of the spatially correlated term in the
random variation. Ammonium concentration in the soil appears as a
significant factor in the model, possibly indicating linkages between
two nutrient cycles.

The key point about this process is that, having tested a set
of predetermined hypotheses with control of the marginal false
discovery rate, we can have confidence that we have identified
effects for which our data provide robust evidence. This would not
be the case if we had used statistical testing post hoc to bolster our
interpretation of effects discovered by visual inspection of plots or
tables of means, or from some automated data mining procedure.

It might be argued that this is a counsel of perfection, and that the
application of data mining and visualization to large datasets has
considerable potential for the discovery of new knowledge about
processes in soil. This process is sometimes called ‘hypothesis dis-
covery’ (Payne, 2014). This might be useful, provided we remem-
ber that the hypothesis discovered remains to be tested on new
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data from an appropriately designed experiment or sample survey.
I am not aware of any studies in soil science where a data mining
exercise has been followed by hypothesis testing on a genuinely
independent set of data. It is more common to rely on a jackknif-
ing of the dataset into separate subsets for modelling and valida-
tion, but, as Brus eral. (2011) point out, it is often not clear how
to estimate unbiased statistics for model validation in these cir-
cumstances. The extent to which the two datasets can be regarded
as independent will be severely limited by the original sample
design. While there is some literature on jackknifing in the pres-
ence of dependence (e.g. Lele, 1991; Zhang et al., 2012), the prob-
lem of forming robust jackknife subsets from spatially-dependent
samples does not appear to have received adequate attention
since the difficulties of the spatial case were observed by Cressie
(1993).

In this study the a-investment procedure is used to test a sequence
of hypotheses about controls on the rate of a process in the soil.
Another setting in which a controlled procedure is needed to
identify statistically significant relations between a soil property
of interest and some subset of available covariates is digital soil
mapping (DSM). In DSM the covariates may include remote
sensor measurements and variables derived from a digital elevation
model. Central to the success of the a-investment procedure is the
preparation of a sequence of tests. As shown in the case study,
and in Supporting Information, the selection of a sequence of
tests does not depend only on the identification of plausible and
interesting mechanistic effects. In a statistical model the value of a
proposed covariate depends also on its correlation with covariates
already in use. This is why the correlation between covariates
was considered in the case study to avoid the use of more than
one from any subset that is strongly mutually correlated, at least
in early investment decisions. The process of assessing both the
prior scientific plausibility of a mechanistic relation between a
covariate and a target soil variable and the cross-correlations
between available covariates might be more challenging in the DSM
case than in studies that focus on soil processes. This is because the
covariates in DSM are often proxies for underlying processes with
tenuous or poorly understood mechanistic relations to the target
soil variable. In this case, knowledge of the processes might be
of limited value in the selection of a sequence of tests. This is a
problem that requires further research,

The statistical literature on a-investment raises another question
of interest. With the passage of time, the value of a dataset for testing
prespecified hypotheses that are genuinely independent of past tests
and analyses is likely to deteriorate. This is because reports of
analyses, including visualizations of data, mean that the scientific
community that might use those data learn the general patterns of
joint variation that the data exhibit. Therefore, the hypotheses that
are formulated are, to a greater or lesser extent, conditioned by those
data that are then used for validation. This problem has been studied
formally by Aharoni & Rosset (2014), who use the a-investing
procedure of Foster & Stine (2008) to develop the concept of
‘quality-preserving databases’ (QPDs). In the management of a
QPD all the hypotheses tested on that database are treated as a
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single stream, and it is recognized that maintaining the power of
tests within this stream requires that additional independent data
are added to the database over time. The a-investment approach
is used to manage the procedure optimally. It is then possible to
calculate the direct costs of maintaining the QPD (in terms of
the field, laboratory and data management costs of obtaining new
data), which can be passed directly to a data-user as the costs
of maintaining the QPD after hypothesis tests that he or she has
conducted on the data. It might be less straightforward to maintain
a soil QPD just by adding new data, particularly if sampling is
not carried out according to a probability design, and for soil
properties subject to temporal change. It might also be difficult to
convince funders of the need to add new data to a database simply
to ‘stand still’ in terms of its scientific utility, especially in an era
of limited resources in which the ‘measure once, use many times’
philosophy of data management has obvious attractions in many
areas of environmental science (e.g. Knol, 2010; Lindstrom et al.,
2012). Nonetheless, it is important to be aware that the continued
multiple uses of common public databases for scientific hypothesis
testing is not unproblematic statistically, and a-investment is one
approach that can be used to deal robustly with these problems while
maintaining statistical power.

Conclusions

This research has shown how the a-investment procedure can be
used to control the process of statistical hypothesis testing on a soil
dataset, by the investigation of prespecified hypotheses and main-
tenance of a selected marginal false discovery rate. This approach
can enable us to avoid problems entailed by multiple testing in a
disciplined, hypothesis-driven approach to inference from data,
which both maintains statistical power and guards against the perils
of ‘P-hacking’. In this particular case study I found that the rate of
CO, emission from incubated intact soil cores collected on a tran-
sect in eastern England was related to the organic carbon content
of the soil and the measured concentration of ammonium nitrogen.
The rates of emission also differed between arable and non-arable
land use (smaller in arable soil), but not between woodland soil and
that under grass. Rates of emission differed between soil formed
over the Lower Greensand and that formed over the Gault Clay
(larger in the latter), although no significant relations were found
with some individual soil properties (bulk density, water-filled pore
space fraction and organic carbon to total nitrogen ratio).

Supporting Information

The following supporting information is available in the online
version of this article:

Table S1. Correlations between soil variables.

Table S2. Correlations between residuals from land use mean for
each variable.

Figure S1. Values of each eigenvalue as a proportion of the trace.
Figure S2. Correlations of each variable with principal components
1-3
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