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Abstract 18 

In 2008, a large sampling campaign took place in the Ross Sea between ~66°S and ~77°S during the 19 

NIWA IPY-CAML voyage of R/V Tangaroa, as part of the Census of Antarctic Marine Life (CAML). 20 

Samples of benthos were obtained by using a variety of sampling methods from 64 stations at 21 

depths of between 283 m to 3490 m. Mollusca accounted for 173 living species and 1034 22 

specimens, which were analysed in terms of variation in richness and composition with latitude 23 

and depth, and to assess which macrofaunal size fraction contained the highest biodiversity. 24 

Differences were detected in species composition with latitude (averaged across depth groups) 25 

but not for depth (averaged across latitudinal groups). Richness varied locally and showed a 26 

variety of patterns according to the areas and depths considered. New species accounted for ~7% 27 

of the total number of species and new regional records for ~12%. Rarity was high, with a ~41% of 28 

species represented by single individuals and ~63% occurring at one station only. The greatest 29 

diversity was found in the fine fraction (i.e. <4.1 mm) suggesting that the systematic use of fine-30 

mesh trawling in future sampling activities can be of help in accelerating the census of Antarctic 31 

mollusc fauna. 32 
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Introduction 38 

The Ross Sea continental shelf, with an area of roughly 473 km2, is the second largest in 39 

Antarctica after the Weddell Sea. The average depth of the shelf is 500 m, and the shelf break 40 

occurs at about 800-1000 m, from where the continental slope extends steeply down to 3000 m 41 

(Clarke et al, 2007; Scambos et al. 2007). Beyond the continental slope to the north, there are a 42 

number of seamounts and islands, including the Scott Seamount chain, the Admiralty Seamount, 43 

and the Balleny Islands. 44 

To date, around 28 historical and recent expeditions have collected benthic material in the 45 

region (Clarke et al, 2007; Griffiths et al. 2011; Schiaparelli et al. 2014 for the list of historical 46 

expeditions) making the Ross Sea continental shelf one of the best-studied Antarctic seabed areas 47 

(Clarke et al. 2007; Griffiths et al. 2011). 48 

However, despite this significant historical sampling effort, our knowledge of the benthic 49 

diversity of the Ross Sea is still incomplete, as demonstrated by recent additions of both small 50 

(Rehm et al. 2007; Ghiglione et al. 2013; Lörz et al. 2013; Schiaparelli et al. 2014; Błażewicz-51 

Paszkowycz et al. 2014; Piazza et al. 2014) and large taxa, including the 3 metres tall hydroid 52 

Branchiocerianthus sp. (Schiaparelli et al. in prep.), the stalked crinoids communities found on the 53 

Admiralty seamount (Bowden et al. 2011; Eléaume et al. 2011) and the large bivalve of the genus 54 

Acesta found on the Scott Seamount (Piazza et al. 2015). During the International Polar Year (IPY, 55 

2007/2008), under the coordination of Census of Antarctic Marine Life (CAML) (Schiaparelli et al. 56 

2013), substantial new sampling campaigns were undertaken in several Antarctic areas including 57 

the Ross Sea, which was the focus of a research voyage, the IPY-CAML voyage (TAN0802) of the 58 

R/V Tangaroa. 59 

In this paper we focus on Mollusca (all classes but Caudofoveata and Cephalopoda which were 60 

not present in the samples) one of the most extensively studied Phyla in Antarctica (Clarke and 61 

Johnston 2003; Griffiths et al. 2003), collected during the TAN0802. As with the earlier BioRoss 62 

voyage of the R/V Tangaroa in 2004 (Mitchell and Clark 2004; Schiaparelli et al. 2006), during the 63 

TAN0802 several benthic gears were deployed at each survey site in order to document the 64 

diversity of benthos. Deployment of multiple sampling gears with different mesh sizes at the same 65 

location is a well-known method in biodiversity assessment to compensate for the different 66 

catchability of the species (Bouchet et al. 2002; Longino et al. 2002; Clark et al. 2016).  67 

The gear types used during the TAN0802 voyage, included a rough-bottom trawl, beam trawl, 68 

epibenthic sledge, and a fine-mesh epibenthic or “Brenke” sledge. The Brenke sled (Brandt et al. 69 

2004; Brenke 2005; Lörz et al. 2013) is specifically designed to collect organisms from the benthic 70 
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boundary layer and has previously been utilized in the Weddell Sea and the Atlantic sector of the 71 

Southern Ocean, especially at abyssal depths (Schwabe et al. 2007; Brandt et al. 2014; Jörger et al. 72 

2014). The deployment of a Brenke sled during the TAN0802 expedition was its first use in the 73 

Ross Sea (Lörz et al. 2013). It also represents the second fine-mesh sampling event in the area, 74 

after the deployment in 2004 of a Rauschert dredge, which provided an unexpectedly large 75 

number of new records and species of molluscs for the Ross Sea (Ghiglione et al. 2013; Schiaparelli 76 

et al. 2014). The use of a Brenke sled during TAN0802 thus gave an opportunity to assess the 77 

distribution of mollusc biodiversity across size classes in Antarctica. 78 

Answering to this question is becoming an important issue for research in Antarctica, which 79 

also goes outside the geographical scope of the study, here limited to Ross Sea. In fact, by 80 

considering the need of robust baseline data to measure future changes, it will be of key 81 

importance to know if specific sampling gears having a small mesh size (i.e. 500 µm) have to be 82 

routinely deployed in future sampling activities in order to retain the smaller fraction, i.e. the one 83 

showing the highest diversity. 84 

In the deep sea, the observation that faunal diversity may be higher in smaller body-size 85 

fractions of the macrofauna has been clear since the 1960s, when mesh sizes smaller than 1 mm 86 

began to be routinely used, revolutionizing our knowledge of deep-sea diversity (Hessler and 87 

Sanders 1967). For molluscs in general, several studies highlighted that this could be a common 88 

pattern with peaks in numbers of individuals and species having been found for body size between 89 

0.5 and 4 mm in deep-sea gastropods in the western North Atlantic (McClain 2004), between 1.9 90 

and 4.1 mm in New Caledonian reef assemblages (Bouchet et al. 2002) and in the <5 mm fraction 91 

in Vanuatu reef assemblages (Albano et al. 2011). However, exceptions are also known (see 92 

McClain 2004 and references therein). 93 

An apparent lack of ‘microfauna’ in the Antarctic benthos was highlighted by Dell (1990: 264), 94 

who noted that this was likely to be a consequence of sorting methods that did not retain the 95 

smallest fraction of the fauna. However, fine-mesh trawling performed in 2004 with a Rauschert 96 

dredge (Schiaparelli et al. 2014) provided the first evidence that the smallest mollusc fraction in 97 

the Ross Sea is rich both in terms of species and specimens. If present data will confirmed this fact, 98 

it is clear that new ecological questions will probably have to be asked about the evolutionary, 99 

biogeographic and ecological mechanisms that may have led to a general ‘miniaturization’ of 100 

Antarctic mollusc fauna. The present data from TAN0802 provide a more extensive dataset with 101 

which to assess the diversity of Southern Ocean Mollusca in relation to body size. 102 

 103 
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Materials and methods 104 

 105 

Study area and sample processing 106 

 107 

The study area of TAN0802 covered a latitudinal range from ~66°S to ~77°S, spanning the whole 108 

Ross Sea region from the Ross Ice Shelf up to the northern seamounts systems (Admiralty and 109 

Scott) (Fig. 1). Three broad areas were considered, namely the “Northern area” (from ~66°S to 110 

~70°S), the “Central area” (from ~70°S to ~74°S) and the “Southern area” (from ~74°S to ~77°S) 111 

(Hanchet et al. 2008), following a natural latitudinal gradient. 112 

Benthic communities were sampled at sixty-four sampling events at depths ranging from 283 113 

m to 3490 m (Fig. 1; Supplementary Table 1) by deploying four types of towed gears with different 114 

mesh-sizes: Rough-bottom trawl (ORH); Beam trawl (TB); Brenke sled (SEH) (note that this 115 

acronym is reported as such in agreement with the original report of Hanchet et al. 2008 but it is 116 

often reported as EBS in literature), and Epibenthic sled (SEL) (Hanchet et al. 2008). Rough-bottom 117 

trawl is a commercial-style fish trawl with 300 mm mesh in the forepart of the net, tapering 118 

through 100 mm and 60 mm mesh sections to a 40 mm mesh cod-end. The Beam trawl is a 4 m 119 

wide bottom trawl designed to sample mega-faunal benthic invertebrates and small benthic fish, 120 

having a 25 mm mesh size for the whole net length. The Brenke sled has two fine-mesh with 500 121 

µm nets with rigid cod-end containers arranged one above the other (Brenke 2005, here, we 122 

report results from the upper and bottom net combined). The Epibenthic sled is a small sled with 1 123 

m wide mouth developed for sampling mega-epifauna on rough terrain; it has a short net of 25 124 

mm mesh inside a chafing cover of 100 mm mesh (Clarke and Stewart 2016). All gears were towed 125 

at approximately 1 knot, except for the ORH at 3 knots. 126 

Macroinvertebrates were sorted on board, preserved in 90% ethanol (or, in some cases, kept at 127 

-25°C for later DNA extraction). Fine fractions from Brenke sled catches were separated from the 128 

sediment through elutriation and preserved as bulk in 90% ethanol. 129 

 130 

Species classification 131 

 132 

In the laboratory, living specimens were sorted under a stereomicroscope, divided into 133 

morphospecies and classified to the lowest possible taxonomical level. Minute species, whenever 134 

necessary, were photographed using an Environmental Scanning Electron Microscopy (ESEM, 135 

model Leo Stereoscan 440). In this contribution all the living fractions of Gastropoda, Bivalvia, 136 
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Monoplacophora, Scaphopoda, Polyplacophora and Solenogatres were considered. Cephalopoda 137 

and Caudofoveata were not present in the samples. 138 

Nomenclature of species was crosschecked and matched with WoRMS 139 

(http://www.marinespecies.org; last check made on May 10, 2016). When available, molecular 140 

data (COI barcodes obtained in the framework of the Italian “BAMBi” project, Barcoding of 141 

Antarctic Marine Biodiversity, PNRA 2010/A1.10) were used in some cases used to split 142 

morphospecies lacking sound morphological characters (e.g. for the family Velutinidae). 143 

Specimens not classified to the specific level were included in the multivariate analyses and 144 

reported at the level of genus or family. 145 

The resulting dataset of geographic occurrences of the species will be made available through 146 

ANTABIF (the Antarctic node of the Global Biodiversity Information System; 147 

http://www.biodiversity.aq) in the collection of distributional data provided by the Italian National 148 

Antarctic Museum (MNA, Section of Genoa) (http://www.gbif.org/dataset/search?q=mna) 149 

(Ghiglione et al. in prep.). 150 

 151 

Statistical analyses 152 

 153 

Statistical analyses were performed to evaluate the effects of latitude and depth on species 154 

richness and composition and to compare species richness across body-size fractions. 155 

Since the deployment of sampling gears was not even (e.g. SEL was only used on the rough 156 

bottoms of the seamounts) and the majority of specimens were collected by the Brenke sled 157 

(Supplementary Fig. 1 and 2), statistical analyses were performed separately on datasets from the 158 

different gears. In the specific, species richness was studied only on Brenke sled data while 159 

composition was studied on presence/absence data considering all gears. 160 

Rarity was evaluated in terms of number of species collected as singletons (i.e. species found 161 

with a single specimen) and doubletons (i.e species found with two specimens only), or uniques 162 

(i.e. species occurring at a single station only) and duplicates (i.e. species occurring at two stations 163 

only). 164 

 165 

Effects of latitude and depth on species richness 166 

 167 

To understand richness patterns in relation to depth and latitude, Brenke sled samples were 168 

analysed through a combined analysis of rarefaction and extrapolation techniques. This analysis is 169 
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based on diversity accumulation curves produced on empirical estimates of the principal Hill 170 

numbers (Chao et al. 2012, 2014). Individual-based (for geographic areas) and sample-based (for 171 

depth) interpolation (rarefaction) and extrapolation curves (Colwell et al. 2012) were computed 172 

using the online iNEXT package (Chao et al. 2016; https://chao.shinyapps.io/iNEXTOnline/), which 173 

allows the comparison of samples taking into account sample coverage and completeness (Chao 174 

and Jost 2012, Chao et al. 2014) in the R-statistical environment (http://www.r-project.org). 175 

Uncertainty of estimations was reported in terms of 95% confidence intervals under the 176 

multinomial model for the observed species sample frequencies (in the case of the individual-177 

based interpolation/extrapolation curves) or under the Bernoulli product model for the incidence 178 

matrix (in the case of the sample-based interpolation/extrapolation curves) (Colwell et al. 2012). 179 

The non-overlap of 95% confidence interval was used as an indicator of statistical difference 180 

(Colwell et al. 2012). 181 

 182 

Effects of latitude and depth on species composition 183 

 184 

Species composition was evaluated through multivariate techniques to test the possible effects 185 

of latitude and depth in the structure of benthic communities using presence/absence data from 186 

all gears combined. In these analyses the factors “depth” (with levels: 1=0-500 m, 2=501-1000 m, 187 

3≥1001 m) and “latitude” (with levels: Northern area, Central area and Southern area, in accord 188 

with Schiaparelli et al. 2006) were used. Bray-Curtis similarity index was then calculated and non-189 

metric multidimensional scaling (nmMDS) performed. Two-ways ANOSIM (Clarke 1993) was used 190 

to test the differences among the factors latitude and depth and decouple the covariation of 191 

depth and latitude. All multivariate analyses were performed with the software PRIMER 6 of 192 

Plymouth Marine Laboratory (Clarke and Gorley 2005). 193 

 194 

Comparison of species richness across body-size fractions 195 

 196 

The numbers of species shared among gears were visualized through Venn diagrams, prepared 197 

by using jvenny (Bardou et al. 2014) and multivariate analyses on the factor “gear” (with levels: 198 

ORH, TB, SEH and SEL) were performed on presence/absence data to statistically explore possible 199 

different sampling performances of the deployed gears.  200 

Extrapolation and rarefaction analyses with iNEXT were also performed to highlight the 201 

completeness of the sampling (i.e. observed numbers of species compared to expected ones) on 202 



 7 

incidence data (i.e. presence/absence data). Finally, in order to compare the size-spectrum of 203 

species collected by each sampling gear, we counted the number of species present in different 204 

size-class bins having equivalent intervals (in a logarithm transformation with base 2, following  205 

Bouchet et al. 2002). The range size of the mollusc species considered was taken from the 206 

literature (when available) or directly measured on the collected specimens in the case of new 207 

species. 208 

 209 

Results 210 

 211 

From the 64 samples a total of 1034 living mollusc specimens belonging to 173 different species 212 

were collected. The full data set consisted of 509 specimens of Gastropoda (98 species), 446 213 

specimens of Bivalvia (62 species), 29 specimens of Scaphopoda (8 species), 31 specimens of 214 

Polyplacophora (2 species), 8 specimens of Monoplacophora (2 species) and 11 specimens of 215 

Solenogastres (not divided into morphospecies and treated at the class level). The complete list of 216 

species and their occurrence in the different areas is reported in the supplementary Table 2. 217 

 218 

Rarity 219 

 220 

Out of the 173 species found, 71 were singletons, corresponding to 41.04% of the total number 221 

of species, and 34 species were doubletons (representing the 19.65% of the total). In terms of 222 

presence/absence data (i.e. incidence), 109 species were uniques (63.01% of the total), and 39 223 

species were duplicates (22.54% of the total). Overall, ~54% of species were already reported in 224 

the literature for the Ross Sea, ~12% represent new records (marked with ‘*’ in the supplementary 225 

Table 2), ~7% new species (marked with ‘**’ in the supplementary Table 2), and ~28% have 226 

uncertain status. This latter group is composed of new species or new records that are not easily 227 

classifiable at present due to the unavailability of detailed iconography for some species and the 228 

general need of direct comparisons with type materials, which is beyond the scope of the present 229 

contribution. The Brenke sled samples contained the highest numbers of new records and new 230 

species (Table 1). 231 

 232 

Effects of latitude and depth on species richness 233 

 234 
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No differences in richness patterns were highlighted for Brenke data from the considered 235 

bathymetric ranges of 0-500 m, 501-1000 m and >1000 m (Supplementary Fig. 3) on incidence 236 

data. However, because latitude and depth are partially confounded, this analysis has to be 237 

treated with caution. In fact, if this analysis is done on abundance data for homogeneous groups 238 

of areas and depths, a variety of situations can be highlighted, indicating a high degree of 239 

heterogeneity (Fig. 2). Abyssal areas, for example, can be indistinguishable in numbers of expected 240 

species at depth >3000 m in the northern area (Fig. 2a) but can remarkably differ in the central 241 

area in stations at almost identical depths (e.g. station 147 at 1610 m vs station 135 at 1645 m, 242 

Fig. 2c). The same occurs in shelf stations (Fig. 2e) and in shelf to slope stations (Fig. 2d) but only at 243 

very low numbers of individuals (i.e. <20 individuals), while at higher numbers of individuals the 244 

confidence intervals are too large and do not show any difference between the stations. 245 

 246 

Effects of latitude and depth on species composition 247 

 248 

At the significance threshold of 0.05, composition varied (presence/absence data, all gears 249 

combined), among latitudinal areas across depth groups (2-ways ANOSIM global R=0.111; 250 

p=0.001), with the Northern Area being statistically distinct from the Central and Southern ones 251 

(Fig. 3; Table 2). The same test performed for depths groups across latitudinal areas did not show 252 

any appreciable difference due to depth (2-ways ANOSIM global R=0.021; p=0.197) (Table 3).  253 

 254 

Comparison of species richness and completeness across body-size fractions 255 

 256 

Due to the intrinsic sampling properties of each sampling gear, few species were common 257 

between sampling gears (Fig. 4). Accordingly, the multivariate analysis performed considering the 258 

factor gear (all gears combined, presence/absence data) showed that all gears differ in terms of 259 

collected species (ANOSIM global R=0.17; p=0.001) (Table 4). Only the rough-bottom trawl and the 260 

Beam trawl showed a higher similarity with 8 species in common (i.e. eight: Dentalium majorinum, 261 

Doris sp., Falsimargarita gemma, Marseniopsis mollis, Marseniopsis sp., Philobrya sublaevis, 262 

Prodoris clavigera and Tritoniella sp.) with an R value of 0.088 (Tab. 4). The highest number of 263 

shared species is between the Brenke sled and the Beam trawl (i.e. ten: Adacnarca nitens, 264 

Dentalium majorinum, Limatula simillima, Lissarca notorcadensis, Philobrya sublaevis, 265 

Propeamussium meridionale, Silicula rouchi, Thracia meridionalis, Tindaria antarctica, Yoldiella 266 

sabrina) despite the latter having a mesh 50 times larger than the former. Here, however, the 267 
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multivariate analysis indicates large differences between the two sampling gears (R=0.222; 268 

p=0.001) due to the higher number of species collected by the Brenke. 269 

The largest fraction of species was found in the body-size range 0.9-4.1 mm that was present 270 

only in the Brenke sled samples (Fig. 5). The Brenke sled samples also provided the broadest 271 

spectrum of size classes (from 0.4 to 88 mm), including some larger species that were retained by 272 

other gears with larger meshes (e.g. the Beam trawl) resulting in high cumulative richness (Fig. 6a) 273 

and sample completeness (Fig. 6b) curves. 274 

 275 

Discussion 276 

 277 

In biodiversity studies the achievement of an exhaustive list of species, i.e. a full census, for a 278 

given area is an ambitious task. Generally this process is also very expensive both in terms of time 279 

and costs. For these reasons, cost-effective compromises that might combine maximum sampling 280 

efficiency with a minimal sampling effort are usually desirable, as long as they guarantee 281 

meaningful statistical analyses. 282 

In this context, several alternatives to a full census have been developed to speed the inventory 283 

process. Rapid assessment techniques, for example, have been designed to rapidly evaluate the 284 

biodiversity of critically important field sites around the world (more details at: 285 

http://www.conservation.org/projects/Pages/Rapid-Assessment-Program.aspx). These surveys, 286 

however, are principally meant for conservation purposes and used in prioritisation activities, 287 

rather than to exhaustively inventory all species present in an area.  288 

When sampling activities are accomplished, a possible shortcut to speed the ‘processing time’ 289 

of collected species is the use of higher-taxon data as a surrogate for species richness (Gaston and 290 

Williams 1993). This choice of course greatly reduces the time required for sorting into 291 

Operational Taxonomic Units (OTUs) by adopting a coarser division. This method, however, needs 292 

to be initially tested for the group being studied and it usually works for genus-level data only (e.g. 293 

Souza et al. 2016), generally failing to give meaningful results at higher taxonomic levels. 294 

However, when the target of the study is the real number of species and not a proxy for it, no 295 

similar shortcuts are possible and techniques maximizing the opportunity to record the highest 296 

possible number of species in time available for sampling have to be found. 297 

To this aim, a well-known and effective approach that enables the collection of the number of 298 

species potentially close to the real one is the simultaneous use, in the same study area, of 299 

different sampling techniques. In this way, the different gears’ designs partially compensate for 300 
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differences in species catchability, maximising sampling efficiency (Bouchet et al. 2002; Longino et 301 

al. 2002). The statistical drawback of this method is that species abundances cannot be used, as 302 

these come from different sampling methods, each one with its own sampling bias, for example 303 

towards a given size range. 304 

In Antarctica, an area of our planet where climate change impacts are expected to increase by 305 

2100 (IPCC 2013, Bracegirdle et al. 2013) potentially leading to detrimental effects on the native 306 

fauna, the gathering of biodiversity data is of key importance. The assessment of a reference 307 

baseline for the diversity of the Antarctic marine fauna was one of the top five primary targets of 308 

the Census of Antarctic Marine Life (CAML) (Schiaparelli et al. 2013) and similar research priorities 309 

have also been highlighted by the recently accomplished SCAR horizon scan (Kennicutt et al. 2015) 310 

where a special focus was placed on the relationships between biodiversity and ecological 311 

processes. 312 

The data reported here from the extensive sampling of the NIWA TAN0802 IPY-CAML voyage 313 

provide a benchmark from which to measure future changes in the Ross Sea and also provide a 314 

key test to evaluate our knowledge gaps and more specific gear-related sampling issues. 315 

The results of our study demonstrate statistical differences in species composition between the 316 

Northern Area and the Central and Southern ones, but no variation related to depth across 317 

latitudinal areas. If only richness data are taken into account, by considering Brenke sled samples, 318 

a variety of patterns according to area and depth can be appreciated, denoting an overall large 319 

variability between samples even from purportedly similar areas. 320 

As a whole, these results suggest the existence of complex patterns and non-linear correlations 321 

between environmental determinants and the composition of benthic communities in the Ross 322 

Sea. This is in substantial agreement with Cummings et al. (2010), where all available literature for 323 

the Ross Sea was reviewed in search for a common pattern determined by latitude, depth, or any 324 

other important explanatory variable. However, Cummings et al. (2010) found no clear trends, the 325 

outcomes of the studies varying by group considered, location and gear used. It is probable that 326 

macrobenthic assemblages in the Ross Sea are strongly influenced by a ‘seafloor-habitat’ control 327 

effect, defined by depth, slope, current speed immediately above the seabed and organic content 328 

of seafloor sediments as already suggested by Barry et al. (2003).  329 

Besides the results focused on latitudinal or depth trends, the NIWA TAN0802 IPY-CAML data 330 

also allow for the evaluation of sampling performances of different gears and their relative 331 

contribution to a biodiversity studies when performed at a large geographical scale. In particular, 332 

among the considered gears, the catches of the fine-mesh sampling gear (i.e. Brenke sled) allowed 333 
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for testing if the micromolluscs represented the larger proportion of the total molluscan fauna 334 

both in terms of richness and abundance. In accordance with what was found from fine-mesh 335 

samples obtained by a Rauschert dredge during the Latitudinal Gradient Program (R/V Italica 336 

2004) expedition (Ghiglione et al. 2013; Schiaparelli et al. 2014), the Brenke sled provided the 337 

highest number of species and specimens compared to the other standard sampling gears 338 

(Supplementary Figure 2) and, in turn, of new species and new records for the area (Table 1; 339 

Supplementary Table 2 symbols “*” and “**” respectively). 340 

Previously, the Brenke sled was used in several localities out of the Antarctic area (Brandt et al. 341 

1995; Linse and Brandt 1998; Linse 2004; Kaiser et al. 2008; Kaiser et al. 2009; Brandt et al. 2013; 342 

Brandt et al. 2015) while, inside the Polar Front, it was deployed in the Weddell Sea and 343 

periantarctic areas only, especially in the abysses (Schwabe et al. 2007; Brandt et al. 2014; Jörger 344 

et al. 2014). In a few cases the benthic organisms collected with this gear were compared with the 345 

other gears, e.g. vs a box-corer (Hilbing 2004) or vs an Agassiz trawl (Schwabe et al. 2007;). In all 346 

these cases, however, no quantitative and statistical comparisons between the sampling gears 347 

performances were performed. 348 

At the beginning of our study we were not expecting many new findings from the TAN0802 349 

voyage, at least for the shelf area, given the extensive sampling effort done in the past along the 350 

Ross Sea shelf (e.g. Rehm et al. 2007; Ghiglione et al. 2013; Błażewicz-Paszkowycz et al. 2014; 351 

Piazza et al. 2014; Schiaparelli et al. 2014) and new records were only expected from deeper 352 

strata, only rarely investigated in the past. 353 

However, the TAN0802 data suggest that for molluscs, even in shallow waters, we are still far 354 

from a complete knowledge as more new records and new species are continuously added to the 355 

general inventory of the Ross Sea molluscs. For the Ross Sea area, Dell (1990) reported a total of 356 

193 species (considering the classes Gastropoda, Bivalvia, Polyplacophora and Scaphopoda). In the 357 

last 25 years and, in particular, following the expeditions of the last decade, this number has 358 

doubled, increasing up to 392 species (belonging to the same mollusc classes considered in Dell 359 

1990). 360 

The number of new records and new species added to the Ross Sea inventory has been 361 

dramatic. It increased by 20% after the Latitudinal Gradient Program (R/V Italica 2004) and 362 

TAN0402 BioRoss voyage (R/V Tangaroa 2004) expeditions (Schiaparelli et al. 2006), followed by 363 

further 18% after the Latitudinal Gradient Program (R/V Italica 2004) expedition (thanks to the use 364 

of a Rauschert dredge, Ghiglione et al. 2013; Schiaparelli et al. 2014) and by another 19% after the 365 

TAN0802 (present data). 366 
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The fact that any additional sampling performed is bringing new records even in shelf areas is a 367 

conundrum that can be reasonably explained by not only the increase of sampling effort, but also 368 

by the fact that part of the recent sampling is based on novel sampling methods, i.e. fine-mesh 369 

trawling. When this method is adopted, the proportion of new species that can be found is very 370 

high. This is not true only for molluscs as similar results in the Ross Sea were also found for 371 

Tanaidacea (Pabis et al. 2015) and Isopoda (Lörz et al. 2013) with 85% and 72% of new species 372 

respectively. 373 

Of course, species richness is just one aspect of biodiversity, and it might even not be the target 374 

of a survey focused on the understanding of specific causal factors and the relationship between 375 

environmental features and benthic community structure. In these cases, the use of ‘standard’ 376 

gears, as grabs (Cummings et al. 2010) or box-corers (Barry et al. 2003), is the only feasible 377 

solution for evaluating the possible influence of specific features on the distribution of benthic 378 

organisms, such as the percentage of fine sand and silt and the ratio of sediment chlorophyll a to 379 

phaeophytin (as in Cummings et al. 2010) or the organic percentage in seafloor sediments (as in 380 

Barry et al. 2003). 381 

In contrast, towed gears, provide a cross-habitat description, integrating different habitats and 382 

communities but, regrettably, do not allow the explanation of species richness and abundances 383 

based on specific environmental variables. However, when taxonomic richness is the targeted 384 

variable and the study has the aim to evaluate diversity over large spatial scales, fine-mesh towed 385 

gears ensure the best efficiency in catching highest numbers of species and specimens. In polar 386 

areas, where sampling constraints may be really high, such sampling methods could accelerate our 387 

knowledge increase of diversity and hence build the basis of future, more detailed sampling 388 

activities, to be performed by using purely quantitative methods, such as grabs or box-corers. 389 

Our results suggest that sampling with fine-mesh towed gears if routinely included in future 390 

benthic sampling activities in Antarctica, could greatly extend our knowledge of biodiversity, 391 

especially in areas where limited sampling has been performed in the past. 392 
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Figure legend: 568 

Figure 1. Map of sampling stations performed during the TAN0802 IPY-CAML voyage in the Ross 569 

Sea, Antarctica. Stations’ coordinates are reported in Supplementary Table 1. 570 

Figure 2. Richness rarefaction and extrapolation analyses performed with iNEXT on abundance 571 

data (Brenke sled stations only) among the considered latitudinal areas. 572 

Figure 3. MDS plot of all gears combined (presence/absence data) considering the factor 573 

“Latitudinal area”. 574 

Figure 4. Venn diagram showing the number of species collected during the TAN0802 by each gear 575 

and the number of shared species. 576 

Figure 5. Number of species occurring in each size class. Size classes are according to Bouchet et 577 

al. (2002) and have equivalent intervals in a log2 transformation. 578 

Figure 6. Richness rarefaction and extrapolation analyses performed with iNEXT on 579 

presence/absence data. Abbreviations: ORH = Rough-bottom trawl; SEH = Brenke sled; SEL = 580 

Epibenthic sled; TB = Beam trawl. (a). Rarefaction and extrapolation output for the factor gear. (b). 581 

Sample coverage output from the factor gear. 582 

 583 

 584 

Supplementary Figure 1. Maps of gear deployments during the TAN0802 voyage. 585 

Supplementary Figure 2. Numbers of species and specimens collected by each gear divided per 586 

mollusc class. Abbreviations: BIV = Bivalvia; GAS = Gastropoda; MON = Monoplacophora; POL = 587 

Polyplacophora; SCA = Scaphopoda; SOL = Solenogastres 588 

Supplementary Figure 3. Richness rarefaction and extrapolation analyses performed with iNEXT 589 

on incidence data (Brenke sled data only) for the bathymetric classes considered. 590 

 591 
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Table 1. Sampling performance with different deployed gears showing new records 
and new species.   

Gear 
 

New records New species N° of specimens 

Brenke sled (SEH) 
 

15  8  202 

Beam trawl (TB) 
 

4 2 7 

Epibenthic sled (SEL) 
 

2 1 16 

Rough-bottom trawl (ORH) 
 

0 1 3 

Total 
   

228 
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Table 2. Two-ways ANOSIM analysis for all gears combined (presence/absence data). Tests for 
differences between latitudinal area groups across depth factor groups. 

 R Sign. (%) Actual permutations Observed 

Global R 0.111 0.1   
Pairwise test     
Central Area vs Southern Area 0.089 10 999 99 
Central Area vs Northern Area 0.074 0.3 999 2 
Southern Area vs Northern Area 0.169 0.1 999 0 
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Table 3. Two-ways ANOSIM analysis for all gears combined (presence/absence data). Tests for 
differences between depth factor groups across latitudinal area groups. 

 R Sign. (%) Actual permutations Observed 

Global R 0.021 19.7   
Pairwise test     

0-500m  vs  501-1000m - 0.011 59.9 999 598 

0-500m  vs  >1001m  0.059 9.9 999 98 

501-1000m vs  >1001m 0.037 12.4 999 123 
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Table 4. One-way ANOSIM analysis for factor gear considering all gears combined (presence/absence 
data).  

 R Sign. (%) Actual permutations Observed 

Global R 0.17 0.1   
Pairwise test     
ORH - Beam trawl 0.088 1.5 999 14 
ORH - Brenke sled 0.377 0.1 999 0 
ORH - Epibenthic sled 0.138 0.1 999 0 

Beam trawl - Brenke sled 0.222 0.1 999 0 

Beam trawl - Epibenthic sled 0.075 0.1 999 0 

Brenke sled - Epibenthic sled 0.195 0.1 999 0 
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